
Work-in-Progress: High-Performance Systolic
Hardware Accelerator for RBLWE-based

Post-Quantum Cryptography

Tianyou Bao1, José L. Imaña2, Pengzhou He1, and Jiafeng Xie1
1: Dept. Electrical & Computer Engineering, Villanova University, USA. Email: {tbao,phe,jiafeng.xie}@villanova.edu.
2: Dept. Computer Architecture & Automation, Complutense University, Madrid, Spain. Email: jluimana@ucm.es.

Abstract—Ring-Binary-Learning-with-Errors (RBLWE)-based
post-quantum cryptography (PQC) is a promising scheme suitable
for lightweight applications. This paper presents an efficient hard-
ware systolic accelerator for RBLWE-based PQC, targeting high-
performance applications. We have briefly given the algorithmic
background for the proposed design. Then, we have transferred
the proposed algorithmic operation into a new systolic accelerator.
Lastly, field-programmable gate array (FPGA) implementation
results have confirmed the efficiency of the proposed accelerator.

Index Terms—Polynomial multiplication, PQC, RBLWE, sys-
tolic hardware accelerator

I. INTRODUCTION
Post-quantum cryptography (PQC) has drawn significant

attention from the research community recently [1-2]. While

the ongoing National Institute of Science and Technology

(NIST) PQC standardization process targets general-purpose

PQC algorithms, there is also a need of developing lightweight

PQC for related applications such as Internet-of-Things (IoT)

devices/servers. Ring-Binary-Learning-with-Errors (RBLWE, a

variant of Ring-LWE)-based scheme is a promising PQC to

serve such a role as it uses binary errors to obtain small

computational complexity. Several related works have recently

been carried out on this PQC scheme [3-8].

Though a few designs for RBLWE-based PQC have been

released, high-performance hardware acceleration (e.g., for IoT

servers) for the RBLWE-based scheme has not been well

covered. Meanwhile, the recent research on the PQC field has

gradually switched to the hardware implementation side [8].

In particular, it is noticed that the recent high-speed structures

for RBLWE-based scheme are mostly based on the processing

setups of serial-in serial-out or parallel-in serial-out [8]. This

type of input/output processing, however, may not be ideal

for high-performance applications as the targeted environments

like IoT servers actually have abundant resources for deploying

higher-speed PQC accelerators. With these considerations, in

this paper, we propose to design a novel hardware systolic

accelerator for RBLWE-based PQC under such applications.
II. PRELIMINARIES

Notation 1. Define n is the security level of the RBLWE-based

PQC and the size of the polynomial (over ring Zq/(x
n + 1))

and log2q as the bit-width for the coefficients in the integer

polynomial [3].

Overview. RBLWE-based PQC scheme involves three phases:

key generation, encryption and decryption [3]. As shown in

Fig. 1, one can conclude that the major arithmetic operation

of the RBLWE-based PQC is the polynomial multiplication

Alice Bob

r2: secret key p: public key
p

c1,c2:
ciphertext ˜

 ˜

a: public parameter
(known by two parties)

 key generation:
 r1,r2: polynomial (binary);

 p=r1-ar2;

 encryption:
 e1,e2,e3: binary errors;

m=encode(m);
 c1=ae1+e2; c2=pe1+e3+m;

 decryption:
 m=decode(c1r2+c2);

Fig. 1. Major operational phase of the RBLWE-based PQC.

(followed by a polynomial addition), where one polynomial

consists of integer coefficients and another polynomial involves

merely binary coefficients.

Inverted range representation. A recent report [5] has used

the inverted range representation (−�q/2�, �q/2� − 1) for the

integer coefficients of the polynomial such that all the involved

modular addition/subtraction can be performed without any

reduction. We also follow this strategy for the proposed design.

Quantum security. The RBLWE-based scheme is based on

the average-case hardness of the RBLWE problem [3], which

achieves 73-bits/140-bits quantum security for (n, q)=(256,256)

and (n, q)=(512, 256), respectively (fits well lightweight appli-

cations [6]).
III. ALGORITHMIC OPERATION

Following Section 2, one can use the operation in the decryp-

tion phase as the typical algorithmic operation for RBLWE-

based PQC.

Notation 2. Define the major algorithmic operation as

W = DB +G mod f(x) = DB +G mod (xn + 1), (1)

where W =
∑n−1

i=0 wix
i, D =

∑n−1
i=0 dix

i, G =
∑n−1

i=0 gix
i,

and B =
∑n−1

i=0 bix
i; bi denotes the binary coefficient and di,

gi and wi are log2q-bit coefficient over Zq . Generally, (1) can

be transferred into⎡
⎢⎣

w0

...

wn−1

⎤
⎥⎦ =

⎡
⎢⎣

d0 · · · −d1
...

. . .
...

dn−1 · · · d0

⎤
⎥⎦×

⎡
⎢⎣

b0
...

bn−1

⎤
⎥⎦+

⎡
⎢⎣

g0
...

gn−1

⎤
⎥⎦,

(2)

where we define each element within matrix [D] as [D]i,j , e.g.,

[D]1,1 = d0 and [D]1,n−1 = −d1. Similarly, we have [W]0,1 =
w0 (also [B] and [G]). We can have the proposed algorithm in

Fig. 2.

5

2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)

978-1-6654-7294-4/22/$31.00 ©2022 IEEE
DOI 10.1109/CODES-ISSS55005.2022.00009

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 H

ar
dw

ar
e/

So
ftw

ar
e

C
od

es
ig

n
an

d
Sy

st
em

 S
yn

th
es

is
 (C

O
D

ES
+I

SS
S)

 |
97

8-
1-

66
54

-7
29

4-
4/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
O

D
ES

-I
SS

S5
50

05
.2

02
2.

00
00

9

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 19:41:30 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Proposed algorithmic operation
for RBLWE-based PQC

Input: B, D, and G (B is a binary polynomial,
D and G are log2q-bit integer polynomials);
Output: W=BD+G mod f(x) (f(x)=xn+1);
Initialization step
Make ready B, D, and G;
Z=0;
Main step

for j=1 to n do
for i=1 to n do // parallel execution

Z=Z+[B]i,j[D]j,1;
end

end

Final step
Deliver the output W;

W=Z;

1

4
5
6
7
8
9

10

Z=[G];

2

3

Fig. 2. Major operational phase of the RBLWE-based PQC.

PE-1 PE-2 PE-3 ... PE-n
g0
d0

g1
d1

g2
d2

gn-1
dn-1

...

w0 w1 w2 wn-1

...

... bn-1bn-2b0

...

controller

‘1’

decryption output

two MSBs

Fig. 3. Proposed systolic accelerator, where gi denotes the inverted gi (two’s
complement form). PE: processing element.

1

log2q

log2q
log2q

adder

‘1’
carry_in clk

sel

log2q log2q

PE-1

(b)

1

log2q

log2q
log2q

adder

‘0’
carry_in clk

sel

log2q log2q

PE

(a)

log2q log2q

Fig. 4. Internal structures of (a) PE (regular one); (b) PE-1.

IV. PROPOSED SYSTOLIC ACCELERATOR

Following Algorithm 1, we can have the proposed hardware

accelerator of Fig. 3. The components are described below.

PE. The internal structure of the PE is shown in Fig. 4(a).

The signals of gi and di are fed to the MUX first and then

connected to the following AND. The AND cell has n parallel

AND cells (each has log2q AND gates), where one inputs of

these AND gates are connected with the 1-bit input from top

and another input of these AND gates are connected with these

log2q-bit (from MUX), respectively. Note that PE-1 needs an

extra inverter of log2q-bit (the carry in of the adder is also set

as ‘1’) to meet the requirement of two’s complement [8], as

highlighted in Fig. 4(b). Besides that, all the coefficients of G
are needed to be inverted (see Fig. 3) [8].

Controller. A controller is needed for the operation of the

accelerator. The controller is based on a finite state machine,

which involves three stages, namely “loading”, “computation”,

and “done”.

Overall operation. The two inputs D and G are fed to the

accelerator according to Line 1 of Algorithm 1. While the

coefficients of G (inverted form) are loaded into the respective

PEs when the first input on top is ‘1’. Then, all coefficients

of D are multiplied with matched coefficients of B in a serial

format, and results are accumulated through the paired adder

TABLE I
COMPARISON OF THE IMPLEMENTATION RESULTS

design n ALMs Fmax latency delay1 ADP∗

[5] 256 5,734 369.14 257 0.696 3,991
[7] 256 4,495 321.03 258 0.804 3,614

Prop. 256 5,271 414.25 257 0.62 3,268
[5] 512 11,470 336.36 513 1.525 17,492
[7] 512 9,038 317.06 514 1.621 14,652

Prop. 512 10,525 368.6 513 1.391 14,648

Unit for delay: ns. ∗: ADP=#LUT×delay (×103). 1: delay is calculated
as latency × (1/Fmax), where the latency refers to the computation time
(Decryption phase).
For a fair comparison, we have only compared with the existing designs of
[5], [7] with similar input and output setup, i.e., parallel-in and/or parallel-out.

and register in the PEs. The overall loading and computation

take (n+1) cycles, and then the output becomes available in

parallel (n parallel XORs are connected with the output’s two

most significant bits (MSB) [4]).
V. COMPLEXITY AND COMPARISON

We have implemented the design of Fig. 3 on the field-

programmable gate array (FPGA) platform. The proposed ac-

celerator is coded with VHDL and verified by ModelSim, and

we have selected Intel Stratix-V 5SGXMABN1F45C2 device

(follow [7]) to obtain implementation results through Intel

Quartus Prime 17.0. We have listed the adaptive logic modules

(ALMs), maximum frequency (Fmax), latency cycles, delay

(critical-path × latency, where critical-path=1/Fmax), and area-

delay product (ADP= #ALM×delay) in Table 1. One can see

that the proposed design has smaller area-time complexities

than the existing ones [5,7], e.g., for n=256, the proposed

design has 9.6% less ADP than [7] (similar to n = 512).

Discussion. The proposed accelerator still needs development:

(i) novel algorithmic/ architectural innovations are needed to

design a more efficient accelerator; (ii) related side-channel

attacks and countermeasures are also required to be developed.
VI. CONCLUSION

An efficient hardware systolic accelerator for RBLWE-based

PQC is proposed. We have proposed three layers’ efforts.

The following work may focus on algorithmic/architectural

innovations and side-channel attacks and countermeasures.
ACKNOWLEDGMENT

J. Xie was supported by NSF SaTC-2020625 and

in part by NIST-60NANB20D203. J.L. Imaña was sup-

ported by PID2021-123041OB-I00 funded by MCIN/AEI/

10.13039/501100011033 and by “ERDF A way of making

Europe”, and by the CM under grant S2018/TCS-4423.
REFERENCES

[1] W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. Symp. Founda. of Computer Science, pp. 124-134, 1994.

[2] Post-quantum cryptography round 3 submissions. https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions

[3] J. Buchmann et al., “High-performance and lightweight lattice-based
public-key encryption,” ACM IoT Priv., Trust, & Security, 2016.

[4] A. Aysu et al., “Binary Ring-LWE hardware with power side-channel
countermeasures,” DATE, pp. 1253-1258, 2018

[5] S. Ebrahimi et al., “Post-quantum cryptoprocessors optimized for edge and
resource-constrained devices in IoT,” IEEE J-IoT, 2019.

[6] F. Göpfert et al., “A hybrid lattice basis reduction and quantum search
attack on LWE,” PQCrypto, pp. 184-202, 2017.

[7] J. Xie et al., “Efficient implementation of finite field arithmetic for Binary
Ring-LWE post-quantum cryptography through a novel lookup-table-like
method,” DAC, 2021, pp. 1279-1284.

[8] J. Imaña et al., “Efficient Hardware Arithmetic for Inverted Binary Ring-
LWE Based Post-Quantum Cryptography,” IEEE TCAS-I, 2022.

6

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 19:41:30 UTC from IEEE Xplore. Restrictions apply.

