
IoT Sentinel: Correlation-based Attack Detection,

Localization, and Authentication in IoT Networks

Dianshi Yang∗†, Abhinav Kumar†, Stuart Ray†, Wei Wang†, Reza Tourani†

∗Digital Security Department, EURECOM, Sophia Antipolis, France

dianshi.yang@eurecom.fr
†Department of Computer Science, Saint Louis University, St. Louis, USA

{dianshi.yang, abhinav.kumar, stuart.ray, wei.wang.5, reza.tourani}@slu.edu

AbstractÐSecurity issues have become one of the major chal-
lenges for Internet-of-Things (IoT) networks. To overcome this
challenge, the recent commonly-used approaches mainly focus
on conducting encryption on IoT communication or performing
continuous authentication for IoT devices by using pre-shared
credentials (e.g., passcode and wireless channel signatures). How-
ever, these mechanisms are deemed insufficient, in part, due to the
increasing number of data breaches and the recent proliferation
of sensitive IoT devices and applications.

We present IoT Sentinel ± a novel security system that explores
the correlation between IoT devices to effectively and efficiently
secure IoT networks. Specifically, our system (i) detects potential
attacks, (ii) localizes the attacker, and (iii) conducts dynamic
implicit authentication at the same time. Moreover, instead
of requiring full physical-layer access to IoT devices for fine-
grained measurement of the wireless signal, IoT Sentinel uses
only coarse packet-level device correlation information to secure
IoT networks with negligible overhead to the network. Thus,
making our approach compatible with existing constrained IoT
devices. We extensively evaluate the efficacy of IoT Sentinel in
different scenarios and settings. The experiment results show that
our approach achieves around 96% attack detection accuracy,
more than 70% attacker localization accuracy, and around 100%
device authentication accuracy.

Index TermsÐInternet of Things, Attack Detection and Local-
ization, Authentication

I. INTRODUCTION

The proliferation of Internet-of-Things (IoT) devices across

various domains, such as smart buildings, precision agricul-

ture, and medical IoT [1], have significantly improved the

quality of life. However, IoT devices also significantly expand

the attack surface, offering adversaries ample opportunities to

orchestrate stealthy attacks. For instance, by impersonating

a legitimate device, the attacker can hijack communication

sessions or inject false data into the IoT networks, which

introduces severe security concerns [2], [3]. This calls for the

design of novel and lightweight security measures to thwart

such threats effectively.

To secure IoT networks, the common trend is using pre-

shared security credentials for access control and secure

communication [4]±[9]. For instance, in [6], IoT devices in

the network can generate multiple encryption keys according

to the time information to secure the data-sharing process.

On the other hand, recently, continuous authentication-based

approaches have also been proposed to defend against various

threats for IoT networks [10], [11]. For example, [10] allows
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Fig. 1. An example of our proposed approach: (a) An active attacker can inject
false data into the IoT network or take control of the legitimate IoT device.
IoT Sentinel accurately detects these attacks. (b) After detecting attacks, IoT
Sentinel can authenticate vulnerable devices and localize the attacker.

IoT devices to leverage the physical-layer information, such as

Channel State Information (CSI), to identify the changes in the

network. Interestingly, the context information gathered from

IoT devices has been successfully used for device authenti-

cation [11]. These approaches work well in their application

scenarios.

However, the increasing number of social engineering at-

tacks and data breaches, along with the proliferation of IoT

devices and applications, have significantly increased the pos-

sibility of leaking security information, such as secret keys

or passwords. For instance, the authors in [12] have shown

the success of social engineering attacks in obtaining secure

credentials for attacking IoT networks. Another important

factor in the insecurity of IoT networks is the human errors

in choosing weak or redundant credentials, which is in part

due to the number of devices and heterogeneity of IoT appli-

cations [13]. As a result, existing secret key-based approaches

are deemed unreliable due to their vulnerabilities to a wide

range of attacks. On the other hand, although continuous au-

thentication schemes use devices’ implicit and unique patterns

to authenticate legitimate devices, these approaches either

use fine-grained physical-layer information (e.g., CSI [10]) or

hardly collected information [11] to conduct authentication. In

practice, it is difficult for the user always to have access to the

physical layers of all IoT devices. In addition, hardly collected

information may introduce overhead to IoT networks. More

importantly, current approaches primarily focus on attack de-

tection and defense, which has left the adversary’s localization

unexplored. Therefore, even if some approaches successfully

detect potential attacks, the attacker can still remain stealthy
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Fig. 2. A simplified example to show the effect of the attacker. (a) When
the IoT network is not under attack, IoT nodes 1 and 4 are correlated, while
nodes 2 and 3 are correlated. (b) The attacker breaks the original correlation
relationships when the IoT network is under attack.

and keep trying to attack IoT networks.

In this paper, we introduce IoT Sentinel (Figure 1) ±

a novel IoT authentication system that (i) detects potential

active attacks, (ii) localizes the malicious IoT device, and

(iii) conducts implicit dynamic authentication in IoT networks

simultaneously. The design of IoT Sentinel does not require

full physical-layer access to IoT devices and further incurs

negligible overhead. In designing IoT Sentinel, we need to

overcome the following three main challenges. First, how to

detect potential active attacks (e.g., impersonation and reply

attack) without requiring full physical-layer access to IoT

devices? Second, how to find the location of the adversary?

Third, how to authenticate IoT devices without introducing

much overhead to the network?

To overcome these challenges and achieve attack detection

and localization, the key idea of IoT Sentinel is to explore

the hidden features of device correlation in the IoT network.

Specifically, we analyzed the delay and link quality correla-

tions between IoT devices and found that these packet-level

correlations are very sensitive to the changes in the wireless

channel. When an active attacker tries to inject false data

into the IoT network or conduct replay attacks, the wireless

traffic from the attacker will introduce additional noise and

fluctuation to the wireless channel, which affects the original

correlation between IoT devices. However, since the packet-

level correlation only provides the coarse measurement of

IoT devices and the wireless channel, using these measure-

ments for accurate attack detection and malicious device

localization is still challenging. To transfer our key idea into a

practical system, we introduce a new Correlation Composition

Awareness (CCA) model and Pair Collaborative Localization

(PCL) technique to conduct accurate attack detection and

localization. Our CCA and PCL are designed based on a

novel architecture using Gated Recurrent Units (GRU). To

conduct dynamic implicit authentication without imposing

significant overhead on the constrained IoT devices, we design

a Behavior and Performance Measurement (BPM) scheme,

which leverages the heterogeneity of IoT devices’ hardware

and software stack in identifying suspicious devices.

The novel contributions of this paper are as follows:

• To the best of our knowledge, this is the first work that

investigates the utility of coarse IoT device correlation in-

formation, such as delay and link quality correlations to (i)

detect active attacks, (ii) localize the malicious IoT devices and

Attack
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Fig. 3. An example of the insight behind the potential attack: The additional
traffic introduced by the attacker affects the original delay correlation between
node 1 and node 4.

(iii) conduct dynamic implicit authentication simultaneously.

The IoT Sentinel’s design is generic and introduces minimal

overhead to the network, which makes it applicable to existing

IoT networks and heterogeneous applications.

• We design a novel Correlation Composition Awareness

(CCA) model and a Pair Collaborative Localization (PCL)

technique to conduct accurate attack detection and malicious

IoT devices localization. We also introduce a Behavior and

Performance Measurement (BPM) scheme for low overhead

implicit authentication of IoT devices.

• We conduct extensive experiments in different real-world

scenarios and settings. The experiment results show that IoT

Sentinel can achieve more than 96% attack detection accuracy,

70% malicious device localization accuracy, and around 100%

device authentication accuracy.

II. OBSERVATION

This section shows our observation of the correlation be-

tween IoT devices when the IoT network is under attack,

which motivates us to design IoT Sentinel, which can detect

attacks, localize malicious IoT devices, and conduct low-

overhead dynamic implicit authentication at the same time.

A. Analysis of the IoT Correlation Information

In the context of wireless IoT networks, researchers have

shown that link quality correlation between IoT devices can

be used to significantly improve the network throughput and

reduce network latency [14]±[16]. However, little work has

investigated the possibility of using the correlation (i.e., link

quality correlation and delay correlation) between IoT devices

to detect potential attacks and localize malicious devices and

intruders. To fill the knowledge gap, this section reports

our initial analysis and empirical study on using correlation

information for attack detection and localization.

In IoT networks, link quality correlation and delay cor-

relation can be estimated by analyzing the received packet

information at the receiver side. In real-world scenarios, due

to the instability of the wireless channel, the packet-level link

quality and delay may vary according to the changes in the

wireless channel. Therefore, when an active attacker joins the

network, the additional wireless traffic may introduce sudden

changes in the original correlation relationship between IoT

devices. A simplified example is shown in Figure 2 (a). IoT

nodes 1, 2, 3, and 4 are communicating with the server.

Nodes 1 and 4 are highly correlated, while nodes 2 and 3

are highly correlated. However, as shown in Figure 2 (b),
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Fig. 4. The delay and link quality correlations between two IoT devices. Our initial experiments represent attack scenarios where the change in delay and
link quality correlations are imperceptible ((b) and (d)), which motivates the need for a robust detection and localization machine learning model.

when the IoT network is under attack (e.g., an attacker tries to

inject false data to the network), the attacker unintentionally

breaks the original correlation relationship. As shown in Figure

3, the attacker breaks the delay correlation between nodes

1 and 4 in time windows T3 and T4. This is because most

IoT devices use the Carrier-Sense Multiple Access (CSMA)

schemes to avoid potential collisions, while the channel access

for CSMA is inherently fair [17], [18]. When an attacker tries

to communicate with the server, the additional traffic from

the attacker inevitably breaks the delay pattern of other IoT

devices. Therefore, the detection of changes in the correlation

patterns can lead to the detection of potential attacks and

localization of malicious devices.

B. Experiment Setup and Our Observation

To empirically assess our reasoning, we deploy a server

(JetsonTX2) and multiple IoT clients (Raspberry Pi3 and

Raspberry Pi4) in a smart building on our campus. The IoT

clients communicate with the server according to their own

working schedule. The distances from the clients to the server

vary from 5m to 30m, which is the common setting in a smart

building scenario. We also placed a laptop 20m away from the

server as the attacker to inject false data into the IoT network.

Since all the experiments follow similar trends, we only show

the correlation between two clients (Figure 4).

From Figures 4 (a) and (c), it is evident that the link quality

and delay correlations show different patterns when the IoT

network is under attack. Specifically, when the IoT network is

not under attack, IoT clients show positive delay correlations.

This is primarily because IoT clients can overhear the wireless

traffic transmitted from each other, and they are competing for

the channel according to the CSMA scheme. However, when

the attacker joins the network (from 50s to 100s), these IoT

clients have to frequently back off to avoid collisions with the

wireless traffic from the attacker, which breaks the original

delay correlation. Interestingly, the link quality correlation

becomes unstable due to the additional noise introduced to

the network between 50s to 100s time period. The above

experiment results motivate us to use delay and link quality

correlations for attack detection and localization.

However, as shown in Figures 4 (b) and (d), due to the ran-

domness of the wireless channel, it is possible that delay and

link quality correlations remain similar when the IoT network

is under attack. In this case, it is challenging to detect the

attacker by using traditional data processing approaches (e.g.,

using a complex correlation model or designing a data filter).

This observation motivates us to design a robust correlation-

based attack detection and localization approach using Gated

Recurrent Units (GRU) machine learning architecture.

III. MODELS AND ASSUMPTIONS

A. System Model

Our design considers heterogeneous IoT networks, such as

smart buildings or smart farms. The IoT network comprises

a set of constrained IoT devices, such as sensors, actuators,

and security cameras, deployed in the infrastructure. The

IoT devices sense the environment, collect different types of

data, and transmit it to the server. The server processes the

data received from these devices for analytical and control

purposes. The typical communication in IoT networks happens

over the wireless medium. As such, we consider a wireless IoT

network in which all the devices are equipped with wireless

communication modules that allow them to send real-time

data to the server. We further consider the IoT network to be

heterogeneous in the sense that it consists of IoT devices with

a wide range of resources, capabilities, and tasks. In particular,

these IoT devices feature different hardware architectures,

hardware specifications (e.g., processing unit and memory),

and software stacks, including the operating system.

As mentioned earlier, IoT devices transmit their sensory

information to the server. We assume that the communication

between the legitimate IoT devices and the server is protected

through a secure communication protocol, such as TLS or

using a pre-shared key. We note that secure communication

is a common assumption. More importantly, the design of

IoT Sentinel is independent of the presence (or lack of) of

any secure communication. We also consider that IoT devices

perform measurements and packet transmission according to

their applications. For instance, a phasor measurement unit

measures the frequency in the power grid around 60 mea-

surements per second [19] or a Nest thermostat measures the

temperature once every minute.

B. Threat Model and Assumptions

In this work, we consider an active adversary whose primary

objective is to compromise the integrity of the system by

injecting false information, aiming to deceive the server while
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Fig. 5. IoT Sentinel features three core modules: (i) the correlation monitoring module continuously scans the wireless channel and infers correlation
information; (ii) the anomaly detection & localization module identifies and localizes an attack; and (iii) the dynamic authentication module implicitly
authenticates only suspicious IoT devices to detect the adversary.

concealing its presence. To orchestrate such an active attack,

the adversary has to infiltrate the wireless network to be able

to transmit false data to the server on the shared wireless

channel. To infiltrate the network and inject false information,

we assume that the adversary has obtained the requisite

credentials (e.g., the network security key) through common

attack vectors, such as spear-phishing attacks or using the

leaked password files. Thus, the adversary can directly inject

false information into the system. Note that this is a reasonable

assumption since the objective of this work is to detect attacks

aimed at compromising the integrity of the system, rather than

those that target the confidentiality of communication.

We emphasize that these attack vectors are among the

most common exfiltration approaches, primarily due to the

increasing success of social engineering attacks, data breaches,

and inherent vulnerabilities in IoT devices. However, we do

not consider the scenario in which the adversary compromises

a legitimate device and uses it to inject false data.

We neither impose any restriction on the mobility of the

adversary nor on the adversary’s location, with the exception

that the adversary should remain within the transmission range

of the server for successful wireless communication. Finally,

we do not impose any restrictions on the computing capability

of the adversary. We also consider a secure onboarding pro-

cess, where the server performs individual authentication of

the IoT devices for the first time and only allows legitimate

IoT devices to join the network. Onboarding an IoT device

often requires an interaction between the user and the device,

e.g., scanning a QR code or manually pressing a button for

device pairing. As such, the adversary can only orchestrate the

infiltration and false data injection after the network initiation.

IV. DESIGN OVERVIEW

The design goals of IoT Sentinel are to (i) detect active

attacks, (ii) localize malicious IoT devices, and (iii) identify

the suspicious device(s). To achieve these goals, we designed

three modules as the core of IoT Sentinel (Figure 5):

• Device Correlation Monitoring (§ V-A): In IoT Sentinel,

the server calculates the delay and link quality correlations

between each pair of IoT devices according to the received

packets. Since IoT devices have different work schedules, the

server may receive different numbers of packets from each

IoT device in a given time frame. The mismatches between

the number of packets affect the correlation calculation, which

consequently impacts the detection efficacy. Therefore, instead

of calculating the correlation based on a fixed time window,

IoT Sentinel dynamically changes the time window according

to the traffic rates of IoT devices.

• Continuous Anomaly Detection and Localization (§ V-B):

According to the correlation information, IoT Sentinel will

dynamically detect the potential attack and localize the ma-

licious IoT devices. To cope with the randomness in the

wireless channel, we design two novel techniques ± Corre-

lation Composition Awareness (CCA) and Pair Collaborative

Localization (PCL) ± to support more accurate attack detection

and localization under different scenarios.

• Dynamic Implicit Authentication (§ V-C): In IoT net-

works, continuously authenticating all devices incurs signif-

icant communication and computation overhead and reduces

the life-cycle of battery-operated IoT devices. Thus, we de-

sign a device Behavior & Performance Measurement (BPM)

module for IoT Sentinel to analyze the unique system patterns

(e.g., CPU utilization, memory usage, and response time) in

the IoT devices, aiming to accurately detect the malicious IoT

device, whose behavior is different from the behavior of known

devices. According to the outcome of the PCL to the BPM

module, IoT Sentinel dynamically selects a smaller subset

of suspicious IoT devices, and implicitly authenticates them

by analyzing their performance behavior. Thus, reducing the

system’s overhead and increasing the lifetime of IoT devices.

V. DETAILED DESIGN OF IOT SENTINEL

A. Device Correlation Monitoring

We first show how to monitor correlation among IoT

devices in the network. Specifically, in IoT Sentinel, the server

calculates the delay and link quality correlation using Pearson

Correlation [20]. Since the traffic rates of different IoT devices

may vary according to their applications, the server uses a

time window with dynamic sizes to calculate the correlation.

Formally, we define the minimal and max window sizes as

Tmin and Tmax, respectively. If the traffic rate τi from a

typical IoT device i is lower than the predefined threshold

I (I can be determined based on the corresponding smart IoT

application), the size of the time window T can be calculated

as: T = a1(
I
τi
)Tmin + a0Tmax, where a0 and a1 are decision

factors (a1, a0 ∈ {0, 1}). If the traffic rate from one typical

IoT device is too low, increasing the time window size may

result in an extremely high correlation monitoring delay. In

this case, a1 and a0 will be set to 0 and 1, respectively, and

IoT Sentinel will use the default max time window Tmax.
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The calculation of delay correlation is a challenging task

primarily due to the lack of strict synchronization between

the IoT devices in the network (each IoT device has its

own working schedule and timer). As a result, it is relatively

difficult for the server to measure the time delay of each packet

accurately. To overcome this challenge, IoT Sentinel mainly

measures the relative packet transmission delay. Specifically,

before transmitting the packet to the server, each packet is

assigned a timestamp by the sender. Upon receiving the packet,

the server will assign a timestamp to each packet according to

the server’s timer. Then, the relative packet transmission delay

D is calculated by the differences in timestamps between the

IoT sender and the server. Since IoT Sentinel only needs to

calculate the delay correlation, the timers’ differences between

the IoT sender and server will not affect the correlation results.

Now, to calculate the link quality and delay correlations,

we first define the correlation factor as C. Considering Φ
represents the number of IoT devices, then the correlation of

link quality Q or packet delay D between IoT devices i and

j ± denoted by rEi,j ± can be calculated as:

rEi,j =

∑T

i,j=0
(Ei − Ei)(Ej − Ej)

√

∑T

i,j=0
(Ei − Ei)2

∑

(Ej − Ej)2
,

where E ∈ {Q,D} and T is the size of the time window.

B. Continuous Anomaly Detection and Localization

Our preliminary analysis (Figure 4) shows an evident

change in the correlation measurements when the attacker

transmits data. However, the impact of the attacker on the

correlation drastically changes based on the attacker’s be-

havior, such as traffic rate. Thus, resulting in a non-linear

attack detection and localization decision boundary. As such,

manually setting a linear threshold for attack detection and

localization will be ineffective, particularly when dealing with

various scenarios and configurations. For example, when a

new legitimate device joins the network, it will also change

the correlation between devices. To address this challenge,

we propose to use a machine learning-based attack detection

and localization framework as supervised learning models

effectively learn non-linear decision boundaries and can be

consistently fine-tuned to adapt to new environments, layouts,

configurations (e.g., adding new legitimate devices), and attack

signatures.

In IoT Sentinel, we design a Recurrent Neural Network for

learning the temporal dependencies of link quality and delay

correlations prior to an attack as well as the attacker’s impact

on these temporal dependencies. In particular, we use Gated

Recurrent Units (GRU) since it has fewer parameters than

Long-Short Term Memory (LSTM) with a similar performance

to an LSTM-based model [21]. To eliminate the need for

designing separate attack detection and attacker localization

models, we include an early exit to the final machine learning

pipeline, resulting in a single memory-efficient neural network.

To train the attack detection model, we generated the train-

ing dataset, in which the delay and link quality correlations

Algorithm 1: Detection and Localization Training

Input: F = FL

(

FD(x)
)

(untrained), DD

Output: F = FL

(

FD(x)
)

Detection Auxiliary Model Training:

1 for number of the training epochs do

2 Use stochastic gradient descent to update FD on:

LFD

(

C1

(

FD(xi, yi)
)

)

, ∀(xi, yi) ∈ DD

3 end

4 Freeze FD ▷ C1(FD) is the fully-trained Auxiliary

detection model.

66 DL ← FD(x), ∀x ∈ DD ▷ Generated using FD(x).

Localization Auxiliary Model Training:

7 for number of the training epochs do

8 Use stochastic gradient descent to update FD on:

LFL

(

C2

(

FL(xi, yi)
)

)

, ∀(xi, yi) ∈ DL

9 end

10 QUANTIZE(F ) ▷ Dynamic-range quantization.

11 Return F ▷ Fully-trained detection and

localization model.

between pairs of devices are set as input features. We formalize

our attack detection dataset (DD) as:

DD =
{

(

X ,YD
)

: X = ⟨rDi,j , r
Q
i,j⟩

}

,

where CD
i,j and CQ

i,j are the delay correlation and link quality

correlation between device i and device j, respectively. The

label (YD) will be equal to 0 if there is no attack and 1
otherwise. We build our model with an early exit feature, using

two smaller auxiliary classifiers ± C1

(

FD(rDi,j , r
Q
i,j)

)

for attack

detection and C2

(

FL

(

FD(rDi,j , r
Q
i,j)

)

)

for attack localization.

For training the attack localization auxiliary model, we gen-

erated a dataset that uses the detection model’s outcome. We

formally define the Localization dataset (DL) as:

DL =
{

(

X ,YL
)

: X = ⟨FD(rDi,j , r
Q
i,j)⟩

}

,

where X is the output of the detection model, and YL ∈
{Z1, Z2, Z3, Z4} are the localization model’s labels, which

represent the adversary’s zone (the region of the network

where the attacker is located).

The detection and localization model consists of GRU

layers followed by batch normalization and dropout layers,

which allows the model to achieve higher accuracy and avoids

overfitting. We trained the model by modifying the multi-exit

training algorithm proposed in [22] as shown in Algorithm

1. In training the attack detection and localization model, we

take a greedy approach, in which we first divide the early exit

model into two auxiliary classifiers and then optimize each

one individually. The first classifier, i.e., C1(FD), is used for

detection and is trained using stochastic gradient descent to

update the untrained Classifier (Line 1-2). After this training
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step, we freeze the layers of the trained detection classifier

(Line 4) and use the output of the detection classifier as the

training set for the localization auxiliary classifier (Line 7-8).

After completing model training, we compress the final model

using the 8-bit dynamic range quantization method to reduce

the model’s memory footprint.

C. Dynamic Implicit Authentication

After attack detection and adversary localization, aiming

to identify the intruder’s device, IoT Sentinel dynamically

selects a subset of devices and implicitly authenticates them

using the behavior and performance measurement module.

The dynamic device selection process uses the outcome of

the correlation abnormality detection module and chooses

those devices that are located in the attack zone. The implicit

authentication process analyzes the performance and behavior

of devices for a particular process to identify a device with

a behavior distinct from other known devices. The operation

of the authentication process spans two phases ± registration

and inference. During the registration phase, i.e., IoT device

onboarding, the server loads a solving procedure (PROC())

to IoT devices and performs multiple rounds of challenge-

response with each legitimate device to create a corpus of

ground truth performance and behavior baselines, including

memory and CPU utilization along with function calls of the

software stack. During the inference phase (Algorithm 2), the

server sends a challenge to the selected IoT devices. These

devices, using the pre-loaded PROC(), solve the challenge and

reply to their responses along with their performance and

behavioral measurements. While various challenges can be

plugged into IoT Sentinel, in our evaluation, we used factoring

large numbers as the challenge.

Analyzing these features allows the server to identify an

anomalous device whose performance does not match the

legitimate known devices. While various challenges can be

plugged into IoT Sentinel, in our evaluation, we used factoring

large numbers as the challenge. We note that only legitimate

devices are equipped with PROC(). However, even if the

attacker obtains the challenge-solving procedure and solves the

challenge, its performance and behavior measurements would

be different from the behavior of a legitimate device, which

is primarily due to differences in the processes running on

legitimate devices and the adversary.

Per Algorithm 2, the server initiates the authentication

process by generating and sending a fixed-length random

number (R) as the challenge to the target device ϕ (Lines 1-

3). The target device, on receiving R, first initializes requisite

structures (Line 4) and then runs PROC(R) to solve the

challenge (Lines 5-6). During the challenge-solving proce-

dure, device ϕ measures the performance of the PROC(R)

procedure, including its CPU utilization (U ), the allocated

memory (M ), and the list of all system and function calls used

by PROC(R) along with their frequencies, i.e., Lf (Lines 7-

10). In addition, device ϕ measures the execution time of

the PROC(R) procedure (T ). These performance metrics are

influenced by different factors, including the device’s hardware

Algorithm 2: Behavior & Performance Detection

Input: Set of target devices (Φ)

Output: Adversary ϕ′
(

MVERIFY(Rφ′) = 0
)

1 R = GENERATE-CHALLENGE (1n)

2 for (ϕ ∈ Φ) do

3 SEND (R) to ϕ
4 U ← 0,M ← 0, Lf = {} ▷ ϕ operations start.

5 Tstart ← UNIX EPOCH (CURRENT)

6 PID ← PROC (R)

7 while
(

S ← PROC (R)
)

do

8 U ←
U+

U
PID
i

Utotal
i

i+1

9 M ←
M+MPID

i

i+1

10 Lf ← ptrace
11 end

12 Tend ← UNIX EPOCH (CURRENT)

13 T = Tend − Tstart

14 Rφ =
〈

U,M, T, Lf , SHA256(S)
〉

15 SEND(Rφ) to server ▷ ϕ operations end.

16 {0, 1} ←MVERIFY(Rφ)
17 end

specifications, the operating system, and the processes running

on the device. As a result, devices of the same type with a sim-

ilar configuration show different performance measurements

due to variations in their daemon processes or other running

applications. Finally, device ϕ creates the response as a 5-tuple

(Line 14), including the solution’s digest and the measured

performance and behavioral information, and sends it back to

the server for authentication.

To collect the system and function calls of the PROC()

process, we used function call hooking [23] and function

interposition [24] methods. For function call hooking, we used

ptrace (Line 10 of Algorithm 2), which is a system call in

Unix-like operating systems for monitoring, execution control,

and memory examination of a given process [25]. The function

interposition is a method of replacing the primary implemen-

tation of calling a function in dynamic libraries with calls to

user-defined wrappers. Thus, allowing the implementation of

custom functionalities for tracing the execution of a program

in a more granular way. In IoT Sentinel, we intercepted

malloc and free functions by implementing a wrapper around

them.Upon the completion of PROC() process, ptrace returns

a list of system call numbers and their frequencies. We note

that the system call names may follow different naming

conventions depending on the environment of the operating

system and the hardware architecture of the host devices.

In building the dynamic authentication module, we designed

a lightweight fully-connected neural network consisting of

four layers for learning the behavioral and performance mea-

surement of the IoT devices and predicting the legitimacy of
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Fig. 6. We conduct experiments in two smart buildings. Each features multiple zones (separated with gray dashed lines).

the IoT device. In particular, we trained a binary classification

neural network using the ground-truth data that the server

collected during the device onboarding phase and deployed

the trained model on the server for device authentication.

VI. IMPLEMENTATION AND EVALUATION

A. Experiment Setup

As shown in Figure 6, we extensively evaluate IoT Sentinel

under various settings in two smart building scenarios. Smart

building 1 has a relatively open area with fewer walls and

obstacles with two main entrances on the left and right sides

and frequent human movement. We placed the wireless server

(JetsonTX2 and a WiFi AP ± Tenda N301) in the open square

and used two JetsonTX2 devices, where Jet18 runs Ubuntu18

and Jet20 runs Ubuntu20. We randomly distributed eleven

Legitimate IoT devices (Raspberry Pi3 and Pi4) in both the

open square and glass meeting rooms. Specifically, Raspberry

Pi3 and Pi4 use 32-bit Debian version 8 Jessie and Debian

version 11 Bullseye operating systems, respectively. Each IoT

device has the same challenge stored in a binary executable

format and a daemon to receive the challenge from the server.

Each IoT client uses MIRACL library [26] for big-number

computing. To communicate with the server, these IoT clients

use WiFi channel 1 (2412MHz) to transmit data packets and

CSMA schemes to avoid potential collisions. To attack the IoT

network, we use MSI GP65 Leopard 9SE to act as an attacker;

we chose only one attacker as it represents a stealthier attack

scenario. The attacker is placed in different zones and can send

packets to impersonate any legitimate devices in the network.

To show the effectiveness of our design, we use the same

server, IoT devices, and attacker to conduct experiments in

smart building 2, which is shown in Figure 6 (b). Smart

building 2 is a pure indoor environment with thick walls and

multiple obstacles. This building consists of several office

rooms on the side of a long corridor. In this scenario, the

wireless server is in the meeting room, while legitimate IoT

devices are randomly distributed both in rooms and along the

corridor. During the experiment, all the doors of the rooms

were closed to simulate a real-world scenario. The attacker

was randomly placed in any possible position.

B. Attack Detection Accuracy

To evaluate the effectiveness of IoT Sentinel, in Figure 7(a),

we first show the attack detection accuracies under different

Fig. 7. Detection accuracy under different window sizes and traffic rates.

window sizes in both smart building 1 and smart building 2.

In this experiment, we define the time window size varies

according to the number of packets received by the server. As

we can see from these figures, the attack detection accuracies

and F1-score are more than 96% regardless of window sizes,

which is much higher than that of random guessing (50%).

This is because the active attacker breaks the original corre-

lation relationships between legitimate IoT devices, which is

extremely easy to be detected by IoT Sentinel.

Figure 7(b) shows the attack detection accuracy under

different network traffic occupancy rates. As we can see from

these two figures, the attack detection accuracy of IoT Sentinel

remains relatively stable in most cases. In addition, we also can

find that the attack detection accuracy is slightly increased as

the traffic occupancy rate increases. This is because the server

receives more packets, which makes it easier to update the

device correlation in real time. As a result, the attack detection

accuracy is slightly increased in this case. In summary, IoT

Sentinel can accurately detect potential attacks regardless of

the time window and traffic rates.

C. Attacker Localization Accuracy

Figure 8 shows the attacker localization accuracy under

different window sizes and traffic occupancy rates. Specifi-

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on September 25,2023 at 19:15:29 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. Localization accuracy under different window sizes and traffic rates.

cally, we first show the attacker localization accuracy under

different window sizes in Figure 8(a). As we can see from

the experiment results, as the window size increases, the

localization accuracies increase from 62% to 69% and 58%

to 68% in smart building 1 and smart building 2, respectively,

which is much higher than that of random guessing (30%).

This is because the number of packets received by the server

is increased, which makes it easier for the server to measure

the wireless channel more accurately.

Figure 8 (b) shows the localization accuracy under different

traffic rates. In smart building 1, IoT sentinel is able to achieve

more than 72% localization accuracy at a network traffic rate

of 40%. While in smart building 2, the localization accuracy

increases as the network traffic rate increases. In this scenario,

the max localization accuracy is 70% at a network traffic rate

of 80%. This experiment proves our analysis ± The higher

number of packets received by the server will provide a more

accurate estimation of the wireless channel. In summary, IoT

Sentinel can effectively localize the potential active attacker.

The higher the traffic rate, the better the localization accuracy.

D. Mobility Analysis

We also conduct experiments to study the performance of

IoT Sentinel in the mobile scenario. During the experiment,

the attacker is moving at a speed of 1m/s in random direc-

tions in the test environment across different zones. Since

the experiments in smart building 1 and smart building 2

show similar trends, in Figure 9, we only show the results

in smart building 1. As we can see from these results, the

attack detection accuracy and F1-score remain above 90%,

while the accuracy and F1-score of attacker localization are

about 60%. The mobility of the attacker introduces additional

noises to the wireless channel, such as fluctuations in signal

strength and packet loss, which affects the accuracy of attack

localization. Although localization accuracy is slightly lower

than that of a static attack, it is still significantly higher

than random guessing, which shows the efficiency of IoT

Fig. 9. Detection and localization accuracy for a mobile attacker.

Fig. 10. Detection and localization accuracy over different time periods.

Sentinel. In summary, IoT sentinel can effectively detect

potential attacks and localize mobile malicious IoT devices

in the mobile scenario.

E. External Environment Interference Analysis

To evaluate the performance of our system under varying

levels of environmental interference, we conducted tests during

both daytime and nighttime with a window size of 50 packets

and a traffic occupancy rate of 100%. During the daytime,

there are high levels of interference from pedestrians and

external electronic devices, while during the nighttime, there

is a quieter environment with fewer pedestrian activities.

Per Figure 10, the level of interference in the environment

affects the accuracy of attack detection. During the daytime,

when there is a high level of interference from pedestrians

and external electronic devices, the attack detection accuracy

and F1-score are dropped to about 80%, which is still high

enough to detect potential attacks. During the nighttime, the

attack detection accuracy is over 95%. On the other hand, the

localization accuracy remains around 70% for both daytime

and nighttime. In summary, the performance of IoT Sentinel

is high enough to detect attacks and localize malicious devices

regardless of environmental interference.

F. Evaluation of Dynamic Implicit Authentication

To evaluate the efficacy of the BPM module, we analyzed

the challenge-solving process on a Raspberry Pi3, a Rasp-

berry Pi4, and two JetsonTX2 devices. We installed different

operating systems on these devices to assess the behavioral

differences between different software stacks. Figure 11(a)

shows that the learning-based BPM module achieves 100%

accuracy in differentiating legitimated devices from outsiders.

While the BPM module uses a binary classifier for scalability

purposes, our investigation revealed that our model could

identify whenever a malicious device is introduced to the

system with a very high probability (Figure 11(b)). Such
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Fig. 11. Accuracy and F1-Score of the device authentication model.

outstanding efficacy is primarily due to evident trends in the

performance and behavior of various IoT devices, which we

will show in what follows.

From Figure 12, one can observe distinctive performances

across all four devices. Even for scenarios where some of

the metrics are fairly similar, e.g., execution time and CPU

utilization of JetsonTX2 devices, running different operating

systems resulted in distinct memory usage (Figure 12(a)). We

also compared the efficacy of the BPM module in differen-

tiating two identical Raspberry Pi4 under light and heavy

processing workloads (Figure 13). Compared to the light

workload scenario with a more homogeneous performance

benchmark, the heavy workload scenario has shown more

fluctuations in the measured performance, particularly memory

usage and CPU utilization. This is primarily because of

resource contention among processes and cache effects with

multiple threads, which caused performance reduction. We

also assessed the impact of different operating systems on the

challenge-solving process (the list of function calls in Table I).

Despite some similarities across different operating systems,

e.g., write function, we have observed distinct patterns that can

be used in classifying different devices. For instance, some

specialized function for ARM64 system like fstat64 is only

used by JetsonTX2 devices, while the ARM32 specialized

function fstat is used for Raspberry Pi devices. Also, even

for the same device type, different versions of an operating

system result in different function calls usage, e.g., nanosleep

or faccessat. In summary, IoT Sentinel can effectively and

accurately authenticate IoT devices using the evident trends

in hardware specifications, processing workloads, and software

stacks of various devices.
VII. RELATED WORK

We categorize the related work into the following two parts:

•Wireless Correlation and Localization. Link quality corre-

lation in wireless networks has been extensively studied [14],

[27], [28]. Most of the literature discusses the approach of

using link quality correlation to increase network efficiency.

For example, in [14], the author mainly leverages the link

quality correlation to reduce communication overhead. To

be best of our knowledge, little work has been done to

use coarse packet-level link quality and delay correlations

for attack detection and malicious localization. On the other

hand, researchers have also proposed lots of approaches in

the field of localization using wireless signals [29]±[31]. For

instance, [30] and [31] mainly use RSSI and CSI information

Fig. 12. Performance benchmarking of BPM module across various hard-
ware/software configurations.

Fig. 13. Comparison of two Raspberry Pi4 with identical hardware and
software specifications under different processing loads.

for localization, respectively. Interestingly, EAR [29] can use

ambient wireless signals to conduct accurate localization and

gesture recognition. Unlike their approaches, IoT Sentinel

mainly leverages link quality and delay correlation to detect

potential attacks and localize malicious IoT devices.

• Authentication of IoT Devices. Researchers have pro-

TABLE I
THE LIST OF FUNCTION CALLS FOR THE PROC() PROCESS ALONG WITH

THEIR FREQUENCIES. A DASHED LINE REPRESENTS NO FUNCTION CALL.

JetsonTX2-18 JetsonTX2-20 Pi4 Pi3

access - - 1 7

cacheflush - - - 1

clock nanosleep - 1 - -

close 3 3 6 8

faccessat 4 1 - -

fstat 4 4 - -

fstat64 - - 7 9

lseek - - - 12

mmap 8 8 - -

mmap2 - - 13 22

mprotect 6 6 10 14

munmap 1 1 2 2

nanosleep 1 - - 1

open - - - 8

openat 3 3 6 -

read 2 2 4 18

readlink - - 1 -

rt sigaction - - - 1

rt sigprocmask - - - 2

set tls - - 1 1

uname - - - 1

write 1 1 1 1
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posed lots of work on Wireless Authentication techniques

[4]±[8], [32], [33]. For example, AuthIoT [32] harnesses a

learning-based authentication scheme for wireless IoT devices

without input interfaces. Move2Auth [33] requires users to

perform hand gestures in front of a given IoT device for

authentication. On the other hand, continuous authentication

techniques [10], [11] are considered more secure since an

adversary cannot obtain permanent access to a network. For

example, ContexIoT [11] mainly uses fine-grained context

identification for continuous authentication. Different from

their approaches, IoT Sentinel implicitly authenticates a small

number of devices according to attack detection and malicious

localization results, which significantly reduces the overhead.

VIII. CONCLUSION

This paper introduces IoT Sentinel, which leverages coarse

packet-level correlation information (i.e., link quality and

delay correlation) to (i) detect active attacks, (ii) localize

the malicious IoT device and (iii) conduct dynamic implicit

authentication simultaneously. To do this, we design novel

Correlation Composition Awareness (CCA) and Pair Collabo-

rative Localization (PCL) techniques that can conduct attack

detection and localization in noisy wireless environments. To

reduce network overhead and further improve the security

level of IoT networks, we also introduce the Behavior and

Performance Measurement (BPM) technique. The real-world

evaluation results show that IoT Sentinel can achieve more

than 96% attack detection accuracy, 70% malicious device lo-

calization accuracy, and 100% device authentication accuracy.
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