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Abstract—Security issues have become one of the major chal-
lenges for Internet-of-Things (IoT) networks. To overcome this
challenge, the recent commonly-used approaches mainly focus
on conducting encryption on IoT communication or performing
continuous authentication for IoT devices by using pre-shared
credentials (e.g., passcode and wireless channel signatures). How-
ever, these mechanisms are deemed insufficient, in part, due to the
increasing number of data breaches and the recent proliferation
of sensitive IoT devices and applications.

We present IoT Sentinel — a novel security system that explores
the correlation between IoT devices to effectively and efficiently
secure IoT networks. Specifically, our system (i) detects potential
attacks, (ii) localizes the attacker, and (iii) conducts dynamic
implicit authentication at the same time. Moreover, instead
of requiring full physical-layer access to IoT devices for fine-
grained measurement of the wireless signal, IoT Sentinel uses
only coarse packet-level device correlation information to secure
IoT networks with negligible overhead to the network. Thus,
making our approach compatible with existing constrained IoT
devices. We extensively evaluate the efficacy of IoT Sentinel in
different scenarios and settings. The experiment results show that
our approach achieves around 96% attack detection accuracy,
more than 70% attacker localization accuracy, and around 100 %
device authentication accuracy.

Index Terms—Internet of Things, Attack Detection and Local-
ization, Authentication

I. INTRODUCTION

The proliferation of Internet-of-Things (IoT) devices across
various domains, such as smart buildings, precision agricul-
ture, and medical IoT [1], have significantly improved the
quality of life. However, IoT devices also significantly expand
the attack surface, offering adversaries ample opportunities to
orchestrate stealthy attacks. For instance, by impersonating
a legitimate device, the attacker can hijack communication
sessions or inject false data into the IoT networks, which
introduces severe security concerns [2], [3]. This calls for the
design of novel and lightweight security measures to thwart
such threats effectively.

To secure IoT networks, the common trend is using pre-
shared security credentials for access control and secure
communication [4]-[9]. For instance, in [6], IoT devices in
the network can generate multiple encryption keys according
to the time information to secure the data-sharing process.
On the other hand, recently, continuous authentication-based
approaches have also been proposed to defend against various
threats for IoT networks [10], [11]. For example, [10] allows
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Fig. 1. An example of our proposed approach: (a) An active attacker can inject
false data into the IoT network or take control of the legitimate IoT device.
IoT Sentinel accurately detects these attacks. (b) After detecting attacks, IoT
Sentinel can authenticate vulnerable devices and localize the attacker.

IoT devices to leverage the physical-layer information, such as
Channel State Information (CSI), to identify the changes in the
network. Interestingly, the context information gathered from
IoT devices has been successfully used for device authenti-
cation [11]. These approaches work well in their application
scenarios.

However, the increasing number of social engineering at-
tacks and data breaches, along with the proliferation of IoT
devices and applications, have significantly increased the pos-
sibility of leaking security information, such as secret keys
or passwords. For instance, the authors in [12] have shown
the success of social engineering attacks in obtaining secure
credentials for attacking IoT networks. Another important
factor in the insecurity of IoT networks is the human errors
in choosing weak or redundant credentials, which is in part
due to the number of devices and heterogeneity of IoT appli-
cations [13]. As a result, existing secret key-based approaches
are deemed unreliable due to their vulnerabilities to a wide
range of attacks. On the other hand, although continuous au-
thentication schemes use devices’ implicit and unique patterns
to authenticate legitimate devices, these approaches either
use fine-grained physical-layer information (e.g., CSI [10]) or
hardly collected information [11] to conduct authentication. In
practice, it is difficult for the user always to have access to the
physical layers of all IoT devices. In addition, hardly collected
information may introduce overhead to IoT networks. More
importantly, current approaches primarily focus on attack de-
tection and defense, which has left the adversary’s localization
unexplored. Therefore, even if some approaches successfully
detect potential attacks, the attacker can still remain stealthy
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Fig. 2. A simplified example to show the effect of the attacker. (a) When
the ToT network is not under attack, IoT nodes 1 and 4 are correlated, while
nodes 2 and 3 are correlated. (b) The attacker breaks the original correlation
relationships when the IoT network is under attack.

and keep trying to attack IoT networks.

In this paper, we introduce IloT Sentinel (Figure 1) —
a novel IoT authentication system that (i) detects potential
active attacks, (ii) localizes the malicious IoT device, and
(iii) conducts implicit dynamic authentication in IoT networks
simultaneously. The design of IoT Sentinel does not require
full physical-layer access to IoT devices and further incurs
negligible overhead. In designing IoT Sentinel, we need to
overcome the following three main challenges. First, how to
detect potential active attacks (e.g., impersonation and reply
attack) without requiring full physical-layer access to IoT
devices? Second, how to find the location of the adversary?
Third, how to authenticate IoT devices without introducing
much overhead to the network?

To overcome these challenges and achieve attack detection
and localization, the key idea of IoT Sentinel is to explore
the hidden features of device correlation in the IoT network.
Specifically, we analyzed the delay and link quality correla-
tions between loT devices and found that these packet-level
correlations are very sensitive to the changes in the wireless
channel. When an active attacker tries to inject false data
into the IoT network or conduct replay attacks, the wireless
traffic from the attacker will introduce additional noise and
fluctuation to the wireless channel, which affects the original
correlation between IoT devices. However, since the packet-
level correlation only provides the coarse measurement of
IoT devices and the wireless channel, using these measure-
ments for accurate attack detection and malicious device
localization is still challenging. To transfer our key idea into a
practical system, we introduce a new Correlation Composition
Awareness (CCA) model and Pair Collaborative Localization
(PCL) technique to conduct accurate attack detection and
localization. Our CCA and PCL are designed based on a
novel architecture using Gated Recurrent Units (GRU). To
conduct dynamic implicit authentication without imposing
significant overhead on the constrained IoT devices, we design
a Behavior and Performance Measurement (BPM) scheme,
which leverages the heterogeneity of IoT devices’ hardware
and software stack in identifying suspicious devices.

The novel contributions of this paper are as follows:

e To the best of our knowledge, this is the first work that
investigates the utility of coarse IoT device correlation in-
formation, such as delay and link quality correlations to (i)
detect active attacks, (ii) localize the malicious IoT devices and
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Fig. 3. An example of the insight behind the potential attack: The additional
traffic introduced by the attacker affects the original delay correlation between
node 1 and node 4.

(iii) conduct dynamic implicit authentication simultaneously.
The IoT Sentinel’s design is generic and introduces minimal
overhead to the network, which makes it applicable to existing
IoT networks and heterogeneous applications.

e We design a novel Correlation Composition Awareness
(CCA) model and a Pair Collaborative Localization (PCL)
technique to conduct accurate attack detection and malicious
IoT devices localization. We also introduce a Behavior and
Performance Measurement (BPM) scheme for low overhead
implicit authentication of IoT devices.

e We conduct extensive experiments in different real-world
scenarios and settings. The experiment results show that IoT
Sentinel can achieve more than 96 % attack detection accuracy,
70% malicious device localization accuracy, and around 100%
device authentication accuracy.

II. OBSERVATION

This section shows our observation of the correlation be-
tween IoT devices when the IoT network is under attack,
which motivates us to design IoT Sentinel, which can detect
attacks, localize malicious IoT devices, and conduct low-
overhead dynamic implicit authentication at the same time.

A. Analysis of the IoT Correlation Information

In the context of wireless IoT networks, researchers have
shown that link quality correlation between IoT devices can
be used to significantly improve the network throughput and
reduce network latency [14]-[16]. However, little work has
investigated the possibility of using the correlation (i.e., link
quality correlation and delay correlation) between IoT devices
to detect potential attacks and localize malicious devices and
intruders. To fill the knowledge gap, this section reports
our initial analysis and empirical study on using correlation
information for attack detection and localization.

In IoT networks, link quality correlation and delay cor-
relation can be estimated by analyzing the received packet
information at the receiver side. In real-world scenarios, due
to the instability of the wireless channel, the packet-level link
quality and delay may vary according to the changes in the
wireless channel. Therefore, when an active attacker joins the
network, the additional wireless traffic may introduce sudden
changes in the original correlation relationship between IoT
devices. A simplified example is shown in Figure 2 (a). IoT
nodes 1, 2, 3, and 4 are communicating with the server.
Nodes 1 and 4 are highly correlated, while nodes 2 and 3
are highly correlated. However, as shown in Figure 2 (b),

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on September 25,2023 at 19:15:29 UTC from IEEE Xplore. Restrictions apply.



—— No Attack —— Attack —— No Attack — Attack
| - 1 1

WTER
L

\\ ‘ ‘ H
ﬂ

Delay Correlation
o

Delay Correlation
o

Attack Attack
-1 -1
0 5Q 100 150 0 50 100 150
Time (s) Time (s)

(a) Delay Correlation (b) Delay Correlation

- —— No Attack — Attack - — No Attack — Attack

S 1 s 1

© ©

e Iy °

5 ||l g |||

& I Ll 2 d

> 0 > O+ w

£ | \ = '

E i Rl |

o IAttac o I Attack

= =

) 50 100 150 = o 50 100 150
Time (s) Time (s)

(c¢) Link Quality Correlation (d) Link Quality Correlation

Fig. 4. The delay and link quality correlations between two IoT devices. Our initial experiments represent attack scenarios where the change in delay and
link quality correlations are imperceptible ((b) and (d)), which motivates the need for a robust detection and localization machine learning model.

when the IoT network is under attack (e.g., an attacker tries to
inject false data to the network), the attacker unintentionally
breaks the original correlation relationship. As shown in Figure
3, the attacker breaks the delay correlation between nodes
1 and 4 in time windows 73 and 7. This is because most
IoT devices use the Carrier-Sense Multiple Access (CSMA)
schemes to avoid potential collisions, while the channel access
for CSMA is inherently fair [17], [18]. When an attacker tries
to communicate with the server, the additional traffic from
the attacker inevitably breaks the delay pattern of other IoT
devices. Therefore, the detection of changes in the correlation
patterns can lead to the detection of potential attacks and
localization of malicious devices.

B. Experiment Setup and Our Observation

To empirically assess our reasoning, we deploy a server
(JetsonTX2) and multiple IoT clients (Raspberry Pi3 and
Raspberry Pi4) in a smart building on our campus. The IoT
clients communicate with the server according to their own
working schedule. The distances from the clients to the server
vary from 5m to 30m, which is the common setting in a smart
building scenario. We also placed a laptop 20m away from the
server as the attacker to inject false data into the IoT network.
Since all the experiments follow similar trends, we only show
the correlation between two clients (Figure 4).

From Figures 4 (a) and (c), it is evident that the link quality
and delay correlations show different patterns when the IoT
network is under attack. Specifically, when the IoT network is
not under attack, IoT clients show positive delay correlations.
This is primarily because IoT clients can overhear the wireless
traffic transmitted from each other, and they are competing for
the channel according to the CSMA scheme. However, when
the attacker joins the network (from 50s to 100s), these IoT
clients have to frequently back off to avoid collisions with the
wireless traffic from the attacker, which breaks the original
delay correlation. Interestingly, the link quality correlation
becomes unstable due to the additional noise introduced to
the network between 50s to 100s time period. The above
experiment results motivate us to use delay and link quality
correlations for attack detection and localization.

However, as shown in Figures 4 (b) and (d), due to the ran-
domness of the wireless channel, it is possible that delay and
link quality correlations remain similar when the IoT network
is under attack. In this case, it is challenging to detect the

attacker by using traditional data processing approaches (e.g.,
using a complex correlation model or designing a data filter).
This observation motivates us to design a robust correlation-
based attack detection and localization approach using Gated
Recurrent Units (GRU) machine learning architecture.

III. MODELS AND ASSUMPTIONS
A. System Model

Our design considers heterogeneous IoT networks, such as
smart buildings or smart farms. The IoT network comprises
a set of constrained IoT devices, such as sensors, actuators,
and security cameras, deployed in the infrastructure. The
IoT devices sense the environment, collect different types of
data, and transmit it to the server. The server processes the
data received from these devices for analytical and control
purposes. The typical communication in IoT networks happens
over the wireless medium. As such, we consider a wireless IoT
network in which all the devices are equipped with wireless
communication modules that allow them to send real-time
data to the server. We further consider the IoT network to be
heterogeneous in the sense that it consists of IoT devices with
a wide range of resources, capabilities, and tasks. In particular,
these IoT devices feature different hardware architectures,
hardware specifications (e.g., processing unit and memory),
and software stacks, including the operating system.

As mentioned earlier, IoT devices transmit their sensory
information to the server. We assume that the communication
between the legitimate IoT devices and the server is protected
through a secure communication protocol, such as TLS or
using a pre-shared key. We note that secure communication
is a common assumption. More importantly, the design of
IoT Sentinel is independent of the presence (or lack of) of
any secure communication. We also consider that IoT devices
perform measurements and packet transmission according to
their applications. For instance, a phasor measurement unit
measures the frequency in the power grid around 60 mea-
surements per second [19] or a Nest thermostat measures the
temperature once every minute.

B. Threat Model and Assumptions

In this work, we consider an active adversary whose primary
objective is to compromise the integrity of the system by
injecting false information, aiming to deceive the server while
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IoT Sentinel features three core modules: (i) the correlation monitoring module continuously scans the wireless channel and infers correlation

information; (ii) the anomaly detection & localization module identifies and localizes an attack; and (iii) the dynamic authentication module implicitly

authenticates only suspicious IoT devices to detect the adversary.

concealing its presence. To orchestrate such an active attack,
the adversary has to infiltrate the wireless network to be able
to transmit false data to the server on the shared wireless
channel. To infiltrate the network and inject false information,
we assume that the adversary has obtained the requisite
credentials (e.g., the network security key) through common
attack vectors, such as spear-phishing attacks or using the
leaked password files. Thus, the adversary can directly inject
false information into the system. Note that this is a reasonable
assumption since the objective of this work is to detect attacks
aimed at compromising the integrity of the system, rather than
those that target the confidentiality of communication.

We emphasize that these attack vectors are among the
most common exfiltration approaches, primarily due to the
increasing success of social engineering attacks, data breaches,
and inherent vulnerabilities in IoT devices. However, we do
not consider the scenario in which the adversary compromises
a legitimate device and uses it to inject false data.

We neither impose any restriction on the mobility of the
adversary nor on the adversary’s location, with the exception
that the adversary should remain within the transmission range
of the server for successful wireless communication. Finally,
we do not impose any restrictions on the computing capability
of the adversary. We also consider a secure onboarding pro-
cess, where the server performs individual authentication of
the IoT devices for the first time and only allows legitimate
IoT devices to join the network. Onboarding an IoT device
often requires an interaction between the user and the device,
e.g., scanning a QR code or manually pressing a button for
device pairing. As such, the adversary can only orchestrate the
infiltration and false data injection after the network initiation.

IV. DESIGN OVERVIEW

The design goals of IoT Sentinel are to (i) detect active
attacks, (ii) localize malicious IoT devices, and (iii) identify
the suspicious device(s). To achieve these goals, we designed
three modules as the core of IoT Sentinel (Figure 5):

e Device Correlation Monitoring (§ V-A): In IoT Sentinel,
the server calculates the delay and link quality correlations
between each pair of IoT devices according to the received
packets. Since IoT devices have different work schedules, the
server may receive different numbers of packets from each
IoT device in a given time frame. The mismatches between
the number of packets affect the correlation calculation, which
consequently impacts the detection efficacy. Therefore, instead

of calculating the correlation based on a fixed time window,
IoT Sentinel dynamically changes the time window according
to the traffic rates of IoT devices.

e Continuous Anomaly Detection and Localization (§ V-B):
According to the correlation information, IoT Sentinel will
dynamically detect the potential attack and localize the ma-
licious IoT devices. To cope with the randomness in the
wireless channel, we design two novel techniques — Corre-
lation Composition Awareness (CCA) and Pair Collaborative
Localization (PCL) — to support more accurate attack detection
and localization under different scenarios.

e Dynamic Implicit Authentication (§ V-C): In IoT net-
works, continuously authenticating all devices incurs signif-
icant communication and computation overhead and reduces
the life-cycle of battery-operated IoT devices. Thus, we de-
sign a device Behavior & Performance Measurement (BPM)
module for IoT Sentinel to analyze the unique system patterns
(e.g., CPU utilization, memory usage, and response time) in
the IoT devices, aiming to accurately detect the malicious IoT
device, whose behavior is different from the behavior of known
devices. According to the outcome of the PCL to the BPM
module, IoT Sentinel dynamically selects a smaller subset
of suspicious IoT devices, and implicitly authenticates them
by analyzing their performance behavior. Thus, reducing the
system’s overhead and increasing the lifetime of IoT devices.

V. DETAILED DESIGN OF IOT SENTINEL
A. Device Correlation Monitoring

We first show how to monitor correlation among IoT
devices in the network. Specifically, in IoT Sentinel, the server
calculates the delay and link quality correlation using Pearson
Correlation [20]. Since the traffic rates of different IoT devices
may vary according to their applications, the server uses a
time window with dynamic sizes to calculate the correlation.
Formally, we define the minimal and max window sizes as
Tonin and T4, respectively. If the traffic rate 7; from a
typical IoT device ¢ is lower than the predefined threshold
I (I can be determined based on the corresponding smart IoT
application), the size of the time window 7' can be calculated
as: T = al(%)Tmm + aoTymaz, Where ag and a; are decision
factors (a1,ap € {0, 1}). If the traffic rate from one typical
IoT device is too low, increasing the time window size may
result in an extremely high correlation monitoring delay. In
this case, a; and ap will be set to 0 and 1, respectively, and
IoT Sentinel will use the default max time window 1},,4.-
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The calculation of delay correlation is a challenging task
primarily due to the lack of strict synchronization between
the IoT devices in the network (each IoT device has its
own working schedule and timer). As a result, it is relatively
difficult for the server to measure the time delay of each packet
accurately. To overcome this challenge, IoT Sentinel mainly
measures the relative packet transmission delay. Specifically,
before transmitting the packet to the server, each packet is
assigned a timestamp by the sender. Upon receiving the packet,
the server will assign a timestamp to each packet according to
the server’s timer. Then, the relative packet transmission delay
D is calculated by the differences in timestamps between the
IoT sender and the server. Since IoT Sentinel only needs to
calculate the delay correlation, the timers’ differences between
the IoT sender and server will not affect the correlation results.

Now, to calculate the link quality and delay correlations,
we first define the correlation factor as C. Considering ®
represents the number of IoT devices, then the correlation of
link quality @ or packet delay D between IoT devices ¢ and
j — denoted by r/’; — can be calculated as:
> —o(Ei — E)(E; — Ej)

E _ ,j=0

Y ST B - B (B - By

where E € {Q, D} and T is the size of the time window.

)

B. Continuous Anomaly Detection and Localization

Our preliminary analysis (Figure 4) shows an evident
change in the correlation measurements when the attacker
transmits data. However, the impact of the attacker on the
correlation drastically changes based on the attacker’s be-
havior, such as traffic rate. Thus, resulting in a non-linear
attack detection and localization decision boundary. As such,
manually setting a linear threshold for attack detection and
localization will be ineffective, particularly when dealing with
various scenarios and configurations. For example, when a
new legitimate device joins the network, it will also change
the correlation between devices. To address this challenge,
we propose to use a machine learning-based attack detection
and localization framework as supervised learning models
effectively learn non-linear decision boundaries and can be
consistently fine-tuned to adapt to new environments, layouts,
configurations (e.g., adding new legitimate devices), and attack
signatures.

In IoT Sentinel, we design a Recurrent Neural Network for
learning the temporal dependencies of link quality and delay
correlations prior to an attack as well as the attacker’s impact
on these temporal dependencies. In particular, we use Gated
Recurrent Units (GRU) since it has fewer parameters than
Long-Short Term Memory (LSTM) with a similar performance
to an LSTM-based model [21]. To eliminate the need for
designing separate attack detection and attacker localization
models, we include an early exit to the final machine learning
pipeline, resulting in a single memory-efficient neural network.

To train the attack detection model, we generated the train-
ing dataset, in which the delay and link quality correlations

Algorithm 1: Detection and Localization Training

Input: F' = F (Fp(z)) (untrained), Dp
Output: F = Fy,(Fp(z))
Detection Auxiliary Model Training:

1 for number of the training epochs do
Use stochastic gradient descent to update ['p on:

LE, (Cl (FD(miayi)))av(xivyi) €Dp

3 end
4 Freeze Fp > Cy(Fp) is the fully-trained Auxiliary
detection model.

6 Dp < Fp(z),Yx € Dp > Generated using Fp(z).

Localization Auxiliary Model Training:
7 for number of the training epochs do
Use stochastic gradient descent to update F'p on:

Lp, (C2 (FL(xiayi))>’v(xi7 vi) € Di,

9 end
10 QUANTIZE(F') > Dynamic-range quantization.
11 Return F' © Fully-trained detection and

localization model.

between pairs of devices are set as input features. We formalize
our attack detection dataset (Dp) as:

Dy = {(X,)JD) X = <r£j,r§j>},

where C’il?j and C’zQJ are the delay correlation and link quality
correlation between device ¢ and device j, respectively. The
label (Vp) will be equal to O if there is no attack and 1
otherwise. We build our model with an early exit feature, using
two smaller auxiliary classifiers — Cy (Fpp (rfj, ’I“IQJ)) for attack
detection and Csy (F i3 (F D (rfj, r%))) for attack localization.
For training the attack localization auxiliary model, we gen-
erated a dataset that uses the detection model’s outcome. We
formally define the Localization dataset (Dy) as:

Dy = {(X,yL) X = <FD(r{?j,rffj)>},

where X is the output of the detection model, and Y €
{Z1,72,Z3,Z4} are the localization model’s labels, which
represent the adversary’s zone (the region of the network
where the attacker is located).

The detection and localization model consists of GRU
layers followed by batch normalization and dropout layers,
which allows the model to achieve higher accuracy and avoids
overfitting. We trained the model by modifying the multi-exit
training algorithm proposed in [22] as shown in Algorithm
1. In training the attack detection and localization model, we
take a greedy approach, in which we first divide the early exit
model into two auxiliary classifiers and then optimize each
one individually. The first classifier, i.e., C1(Fp), is used for
detection and is trained using stochastic gradient descent to
update the untrained Classifier (Line 1-2). After this training
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step, we freeze the layers of the trained detection classifier
(Line 4) and use the output of the detection classifier as the
training set for the localization auxiliary classifier (Line 7-8).
After completing model training, we compress the final model
using the 8-bit dynamic range quantization method to reduce
the model’s memory footprint.

C. Dynamic Implicit Authentication

After attack detection and adversary localization, aiming
to identify the intruder’s device, IoT Sentinel dynamically
selects a subset of devices and implicitly authenticates them
using the behavior and performance measurement module.
The dynamic device selection process uses the outcome of
the correlation abnormality detection module and chooses
those devices that are located in the attack zone. The implicit
authentication process analyzes the performance and behavior
of devices for a particular process to identify a device with
a behavior distinct from other known devices. The operation
of the authentication process spans two phases — registration
and inference. During the registration phase, i.e., IoT device
onboarding, the server loads a solving procedure (PROC())
to IoT devices and performs multiple rounds of challenge-
response with each legitimate device to create a corpus of
ground truth performance and behavior baselines, including
memory and CPU utilization along with function calls of the
software stack. During the inference phase (Algorithm 2), the
server sends a challenge to the selected IoT devices. These
devices, using the pre-loaded PROC(), solve the challenge and
reply to their responses along with their performance and
behavioral measurements. While various challenges can be
plugged into IoT Sentinel, in our evaluation, we used factoring
large numbers as the challenge.

Analyzing these features allows the server to identify an
anomalous device whose performance does not match the
legitimate known devices. While various challenges can be
plugged into IoT Sentinel, in our evaluation, we used factoring
large numbers as the challenge. We note that only legitimate
devices are equipped with PROC(). However, even if the
attacker obtains the challenge-solving procedure and solves the
challenge, its performance and behavior measurements would
be different from the behavior of a legitimate device, which
is primarily due to differences in the processes running on
legitimate devices and the adversary.

Per Algorithm 2, the server initiates the authentication
process by generating and sending a fixed-length random
number (R) as the challenge to the target device ¢ (Lines 1-
3). The target device, on receiving R, first initializes requisite
structures (Line 4) and then runs PROC(R) to solve the
challenge (Lines 5-6). During the challenge-solving proce-
dure, device ¢ measures the performance of the PROC(R)
procedure, including its CPU utilization (U), the allocated
memory (M), and the list of all system and function calls used
by PROC(R) along with their frequencies, i.e., Ly (Lines 7-
10). In addition, device ¢ measures the execution time of
the PROC(R) procedure (7). These performance metrics are
influenced by different factors, including the device’s hardware

Algorithm 2: Behavior & Performance Detection
Input: Set of target devices (P)

Output: Adversary ¢ (Mygriey(Rg) = 0)

1 R = GENERATE-CHALLENGE (1™)

2 for (¢ € @) do

SEND (R) to ¢

U+0,M<«+0,L;={} > ¢ operations start.
Tstart < UNIX EPOCH (CURRENT)

PID + Proc (R)

7 while (S < PRoC (R)) do

(= WY B )

uPID
U Giotar
8 Ut —31—
M M.PID
9 M 2
10 Ly « ptrace
11 end

12 Tena < UNIX EPOCH (CURRENT)

13 T = Tend - Tstart

14 Ry = <U, M, T, Ly, SHA256(S)>

15 SEND(R) to server > ¢ operations end.
16 {0, 1} < MVERlpy(R¢)

17 end

specifications, the operating system, and the processes running
on the device. As a result, devices of the same type with a sim-
ilar configuration show different performance measurements
due to variations in their daemon processes or other running
applications. Finally, device ¢ creates the response as a 5-tuple
(Line 14), including the solution’s digest and the measured
performance and behavioral information, and sends it back to
the server for authentication.

To collect the system and function calls of the PROC()
process, we used function call hooking [23] and function
interposition [24] methods. For function call hooking, we used
ptrace (Line 10 of Algorithm 2), which is a system call in
Unix-like operating systems for monitoring, execution control,
and memory examination of a given process [25]. The function
interposition is a method of replacing the primary implemen-
tation of calling a function in dynamic libraries with calls to
user-defined wrappers. Thus, allowing the implementation of
custom functionalities for tracing the execution of a program
in a more granular way. In IoT Sentinel, we intercepted
malloc and free functions by implementing a wrapper around
them.Upon the completion of PROC() process, ptrace returns
a list of system call numbers and their frequencies. We note
that the system call names may follow different naming
conventions depending on the environment of the operating
system and the hardware architecture of the host devices.

In building the dynamic authentication module, we designed
a lightweight fully-connected neural network consisting of
four layers for learning the behavioral and performance mea-
surement of the IoT devices and predicting the legitimacy of
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Fig. 6. We conduct experiments in two smart buildings. Each features multiple zones (separated with gray dashed lines).

the IoT device. In particular, we trained a binary classification
neural network using the ground-truth data that the server
collected during the device onboarding phase and deployed
the trained model on the server for device authentication.

VI. IMPLEMENTATION AND EVALUATION

A. Experiment Setup

As shown in Figure 6, we extensively evaluate IoT Sentinel
under various settings in two smart building scenarios. Smart
building 1 has a relatively open area with fewer walls and
obstacles with two main entrances on the left and right sides
and frequent human movement. We placed the wireless server
(JetsonTX2 and a WiFi AP — Tenda N301) in the open square
and used two JetsonTX2 devices, where Jet18 runs Ubuntul8
and Jet20 runs Ubuntu20. We randomly distributed eleven
Legitimate IoT devices (Raspberry Pi3 and Pi4) in both the
open square and glass meeting rooms. Specifically, Raspberry
Pi3 and Pi4 use 32-bit Debian version 8 Jessie and Debian
version 11 Bullseye operating systems, respectively. Each IoT
device has the same challenge stored in a binary executable
format and a daemon to receive the challenge from the server.
Each IoT client uses MIRACL library [26] for big-number
computing. To communicate with the server, these IoT clients
use WiFi channel 1 (2412MHz) to transmit data packets and
CSMA schemes to avoid potential collisions. To attack the IoT
network, we use MSI GP65 Leopard 9SE to act as an attacker;
we chose only one attacker as it represents a stealthier attack
scenario. The attacker is placed in different zones and can send
packets to impersonate any legitimate devices in the network.

To show the effectiveness of our design, we use the same
server, [oT devices, and attacker to conduct experiments in
smart building 2, which is shown in Figure 6 (b). Smart
building 2 is a pure indoor environment with thick walls and
multiple obstacles. This building consists of several office
rooms on the side of a long corridor. In this scenario, the
wireless server is in the meeting room, while legitimate IoT
devices are randomly distributed both in rooms and along the
corridor. During the experiment, all the doors of the rooms
were closed to simulate a real-world scenario. The attacker
was randomly placed in any possible position.

B. Attack Detection Accuracy

To evaluate the effectiveness of IoT Sentinel, in Figure 7(a),
we first show the attack detection accuracies under different
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Fig. 7. Detection accuracy under different window sizes and traffic rates.

window sizes in both smart building 1 and smart building 2.
In this experiment, we define the time window size varies
according to the number of packets received by the server. As
we can see from these figures, the attack detection accuracies
and Fl-score are more than 96% regardless of window sizes,
which is much higher than that of random guessing (50%).
This is because the active attacker breaks the original corre-
lation relationships between legitimate IoT devices, which is
extremely easy to be detected by IoT Sentinel.

Figure 7(b) shows the attack detection accuracy under
different network traffic occupancy rates. As we can see from
these two figures, the attack detection accuracy of IoT Sentinel
remains relatively stable in most cases. In addition, we also can
find that the attack detection accuracy is slightly increased as
the traffic occupancy rate increases. This is because the server
receives more packets, which makes it easier to update the
device correlation in real time. As a result, the attack detection
accuracy is slightly increased in this case. In summary, IoT
Sentinel can accurately detect potential attacks regardless of
the time window and traffic rates.

C. Attacker Localization Accuracy

Figure 8 shows the attacker localization accuracy under
different window sizes and traffic occupancy rates. Specifi-
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Fig. 8. Localization accuracy under different window sizes and traffic rates.

cally, we first show the attacker localization accuracy under
different window sizes in Figure 8(a). As we can see from
the experiment results, as the window size increases, the
localization accuracies increase from 62% to 69% and 58%
to 68% in smart building 1 and smart building 2, respectively,
which is much higher than that of random guessing (30%).
This is because the number of packets received by the server
is increased, which makes it easier for the server to measure
the wireless channel more accurately.

Figure 8 (b) shows the localization accuracy under different
traffic rates. In smart building 1, IoT sentinel is able to achieve
more than 72% localization accuracy at a network traffic rate
of 40%. While in smart building 2, the localization accuracy
increases as the network traffic rate increases. In this scenario,
the max localization accuracy is 70% at a network traffic rate
of 80%. This experiment proves our analysis — The higher
number of packets received by the server will provide a more
accurate estimation of the wireless channel. In summary, loT
Sentinel can effectively localize the potential active attacker.
The higher the traffic rate, the better the localization accuracy.

D. Mobility Analysis

We also conduct experiments to study the performance of
IoT Sentinel in the mobile scenario. During the experiment,
the attacker is moving at a speed of 1m/s in random direc-
tions in the test environment across different zones. Since
the experiments in smart building 1 and smart building 2
show similar trends, in Figure 9, we only show the results
in smart building 1. As we can see from these results, the
attack detection accuracy and Fl-score remain above 90%,
while the accuracy and Fl-score of attacker localization are
about 60%. The mobility of the attacker introduces additional
noises to the wireless channel, such as fluctuations in signal
strength and packet loss, which affects the accuracy of attack
localization. Although localization accuracy is slightly lower
than that of a static attack, it is still significantly higher
than random guessing, which shows the efficiency of IoT
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Sentinel. In summary, IoT sentinel can effectively detect
potential attacks and localize mobile malicious IoT devices
in the mobile scenario.

E. External Environment Interference Analysis

To evaluate the performance of our system under varying
levels of environmental interference, we conducted tests during
both daytime and nighttime with a window size of 50 packets
and a traffic occupancy rate of 100%. During the daytime,
there are high levels of interference from pedestrians and
external electronic devices, while during the nighttime, there
is a quieter environment with fewer pedestrian activities.

Per Figure 10, the level of interference in the environment
affects the accuracy of attack detection. During the daytime,
when there is a high level of interference from pedestrians
and external electronic devices, the attack detection accuracy
and Fl-score are dropped to about 80%, which is still high
enough to detect potential attacks. During the nighttime, the
attack detection accuracy is over 95%. On the other hand, the
localization accuracy remains around 70% for both daytime
and nighttime. In summary, the performance of IoT Sentinel
is high enough to detect attacks and localize malicious devices
regardless of environmental interference.

F. Evaluation of Dynamic Implicit Authentication

To evaluate the efficacy of the BPM module, we analyzed
the challenge-solving process on a Raspberry Pi3, a Rasp-
berry Pi4, and two JetsonTX2 devices. We installed different
operating systems on these devices to assess the behavioral
differences between different software stacks. Figure 11(a)
shows that the learning-based BPM module achieves 100%
accuracy in differentiating legitimated devices from outsiders.
While the BPM module uses a binary classifier for scalability
purposes, our investigation revealed that our model could
identify whenever a malicious device is introduced to the
system with a very high probability (Figure 11(b)). Such
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outstanding efficacy is primarily due to evident trends in the
performance and behavior of various IoT devices, which we
will show in what follows.

From Figure 12, one can observe distinctive performances
across all four devices. Even for scenarios where some of
the metrics are fairly similar, e.g., execution time and CPU
utilization of JetsonTX2 devices, running different operating
systems resulted in distinct memory usage (Figure 12(a)). We
also compared the efficacy of the BPM module in differen-
tiating two identical Raspberry Pi4 under light and heavy
processing workloads (Figure 13). Compared to the light
workload scenario with a more homogeneous performance
benchmark, the heavy workload scenario has shown more
fluctuations in the measured performance, particularly memory
usage and CPU utilization. This is primarily because of
resource contention among processes and cache effects with
multiple threads, which caused performance reduction. We
also assessed the impact of different operating systems on the
challenge-solving process (the list of function calls in Table I).
Despite some similarities across different operating systems,
e.g., write function, we have observed distinct patterns that can
be used in classifying different devices. For instance, some
specialized function for ARM64 system like fstat64 is only
used by JetsonTX2 devices, while the ARM32 specialized
function fstat is used for Raspberry Pi devices. Also, even
for the same device type, different versions of an operating
system result in different function calls usage, e.g., nanosleep
or faccessat. In summary, IoT Sentinel can effectively and
accurately authenticate IoT devices using the evident trends
in hardware specifications, processing workloads, and software
stacks of various devices.

VII. RELATED WORK

We categorize the related work into the following two parts:
o Wireless Correlation and Localization. Link quality corre-
lation in wireless networks has been extensively studied [14],
[27], [28]. Most of the literature discusses the approach of
using link quality correlation to increase network efficiency.
For example, in [14], the author mainly leverages the link
quality correlation to reduce communication overhead. To
be best of our knowledge, little work has been done to
use coarse packet-level link quality and delay correlations
for attack detection and malicious localization. On the other
hand, researchers have also proposed lots of approaches in
the field of localization using wireless signals [29]-[31]. For
instance, [30] and [31] mainly use RSSI and CSI information
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Fig. 13. Comparison of two Raspberry Pi4 with identical hardware and
software specifications under different processing loads.

for localization, respectively. Interestingly, EAR [29] can use

ambient wireless signals to conduct accurate localization and

gesture recognition. Unlike their approaches, IoT Sentinel

mainly leverages link quality and delay correlation to detect

potential attacks and localize malicious IoT devices.

o Authentication of IoT Devices. Researchers have pro-
TABLE 1

THE LIST OF FUNCTION CALLS FOR THE PROC() PROCESS ALONG WITH
THEIR FREQUENCIES. A DASHED LINE REPRESENTS NO FUNCTION CALL.

| JetsonTX2-18  JetsonTX2-20 Pi4 Pi3
access - 1 7
cacheflush - - - 1
clock_nanosleep - 1 - -
close 3 3 6 8
faccessat 4 1 -
fstat 4 4 - -
fstat64 - - 7 9
Iseek - - - 12
mmap 8 8 - -
mmap?2 - - 13 22
mprotect 6 6 10 14
munmap 1 1 2 2
nanosleep 1 - - 1
open - - - 8
openat 3 3 6 -
read 2 2 4 18
readlink - - 1 -
rt_sigaction - - - 1
rt_sigprocmask - - - 2
set_tls - - 1 1
uname - - - 1
write 1 1 1 1
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posed lots of work on Wireless Authentication techniques
[4]-[8], [32], [33]. For example, AuthloT [32] harnesses a
learning-based authentication scheme for wireless IoT devices
without input interfaces. Move2Auth [33] requires users to
perform hand gestures in front of a given IoT device for
authentication. On the other hand, continuous authentication
techniques [10], [11] are considered more secure since an
adversary cannot obtain permanent access to a network. For
example, ContexIoT [11] mainly uses fine-grained context
identification for continuous authentication. Different from
their approaches, IoT Sentinel implicitly authenticates a small
number of devices according to attack detection and malicious
localization results, which significantly reduces the overhead.

VIII. CONCLUSION
This paper introduces IoT Sentinel, which leverages coarse
packet-level correlation information (i.e., link quality and
delay correlation) to (i) detect active attacks, (ii) localize
the malicious IoT device and (iii) conduct dynamic implicit
authentication simultaneously. To do this, we design novel
Correlation Composition Awareness (CCA) and Pair Collabo-
rative Localization (PCL) techniques that can conduct attack
detection and localization in noisy wireless environments. To
reduce network overhead and further improve the security
level of IoT networks, we also introduce the Behavior and
Performance Measurement (BPM) technique. The real-world
evaluation results show that IoT Sentinel can achieve more
than 96% attack detection accuracy, 70% malicious device lo-
calization accuracy, and 100% device authentication accuracy.
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