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Abstract—Recent advances in quantum computing have ini-
tiated a new round of cryptosystem innovation as the existing
public-key cryptosystems are proven to be vulnerable to quantum
attacks. Several types of cryptographic algorithms have been
proposed for possible post-quantum cryptography (PQC) candi-
dates and the lattice-based key encapsulation mechanism (KEM)
Saber is one of the most promising algorithms. Noticing that
the polynomial multiplication over ring is the key arithmetic
operation of KEM Saber, in this paper, we propose a novel
strategy for efficient implementation of polynomial multiplication
on the hardware platform. First of all, we present the proposed
mathematical derivation process for polynomial multiplication.
Then, the proposed hardware structure is provided. Finally,
field-programmable gate array (FPGA) based implementation
results are obtained, and it is shown that the proposed design
has better performance than the existing ones. The proposed
polynomial multiplication can be further deployed to construct
efficient hardware cryptoprocessors for KEM Saber.

I. INTRODUCTION

It is proven that the current public-key cryptosystems are
vulnerable to the attacks launched from powerful quantum
computers executing Shor’s algorithm [1-3] (in the next 15 to
20 years). Post-quantum cryptography (PQC) has thus gained
substantial attention from various communities. The National
Institute of Standards and Technology (NIST) has already
started the PQC standardization process [3]. The lattice-based
key encapsulation mechanism (KEM) Saber is among one of
the recently released third-round PQC finalists [4].

KEM Saber is built on the module learning-with-rounding
(MLWR) problem [5-6], which is a module variant of the LWR
problem [7]. LWR is a variant of the learning with errors
(LWE) problem [8-9], where the errors are produced by a
rounding operation rather than from a random distribution [5].
Since its initial introduction in [5], important works have been
released on KEM Saber about its quantum and classic secu-
rity levels and related computational complexity. Along with
the NIST third-round PQC standardization process, research
on KEM Saber has gradually switched to implementations,
especially the hardware implementation strategies [10-16].
Existing Works. There are two types of hardware design
strategies for KEM Saber: the hardware-software co-design
and the full hardware design. The former type can be seen
in a recent paper of [17], where the authors proposed to use
the Toom-Cook approach for efficient implementation of the
polynomial multiplication of KEM Saber. Another hardware-
software co-design is proposed in [18], where the design has
better performance than the previous one but with larger area-

complexity. A very recent report suggested using the number
theoretic transform (NTT) approach for the implementation of
polynomial multiplication within Saber on a RISC-V acceler-
ator [19]. For the full hardware design type, the first design
is proposed in [20]. Then, a new Karatsuba algorithm-based
Saber cryptoprocessor is reported in [21]. After that, a new
optimized polynomial multiplier for Saber is presented in [22].
Efficient implementations of KEM Saber can also be seen in
the very recent works of [23] and [24], respectively. Overall,
these works represent the major efforts in the field.

It is noted that the polynomial multiplication over ring is the
major arithmetic operation of KEM Saber. However, efficient
implementations of high-performance polynomial multiplica-
tion (especially hardware designs) are very limited: (i) The
proposed existing works such as [20], [22] still use the tradi-
tional schoolbook algorithm and no other algorithmic deriva-
tions have been made; (ii) Not many specific designs for high-
performance polynomial multiplications are reported though
this type of implementation is critical to the overall efficiency
of the final cryptoprocessor; (iii) The existing designs mostly
use the sign magnitude format to process the data, which
actually requires extra resource for data type transferring.
Based on this consideration, in this paper, we propose a
novel hardware implementation of polynomial multiplication
for KEM Saber with high-performance. Key contributions are:

« We have presented the proposed algorithmic operation for

the polynomial multiplication of KEM Saber.

« We have introduced the corresponding hardware architec-

ture with thorough internal structural descriptions.

« We have given the final comparison to demonstrate the

superior performance of the proposed design.

The rest of the paper is organized as follows. Section II
focuses on the preliminary knowledge. Section III presents
the proposed algorithmic derivation. Section IV introduces the
proposed structure. The comparison is provided in Section V,
and the conclusion is given in Section VL

II. PRELIMINARY KNOWLEDGE
KEM Saber: MLWR-based Scheme. LWR is a variant of the
LWE problem, where the errors are generated by a rounding
operation [4], i.e., the samples are produced through (a,b =
|2(a, s)1p) € Zj x Zp. The MLWR-based scheme is based
on the module LWR problem.

Saber is an IND-CCA secure KEM built on the hardness
of the MLWR problem, which achieves both classical and
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quantum security [4]. Firstly, Saber is introduced as a Chosen
Plaintext Attack (CPA) secure public-key scheme. Then, a
Chosen Ciphertext Attack (CCA) secure KEM Saber is const-
ructed through the Fujisaki-Okamoto transformation [4], [25].
Saber public-key encryption scheme involves three oper-
ational phases, namely key generation, encryption, and de-
cryption. During the key generation phase, a public matrix
of polynomials A and a secret vector of polynomials s are
produced to generate the vector b through scaling and rounding
operations (public key contains A and b, and secret key is
s). During the encryption phase, the ciphertext is generated
through the operation of V' = s’b. During the decryption
phase, the original message is obtained through the approx-
imation of V (from sb’). KEM Saber is built based on the
encryption scheme, and the detailed information can be seen
at [4], [5]. Note that polynomial multiplication determines the
overall performance (or complexity) of KEM Saber.
Security Ranks. There are three security ranks of parameters
settings, i,e., LightSaber, Saber, and FireSaber. The polynomial
degree is N = 256 and moduli g = 212 and p = 219. KEM
Saber uses secrets sampled from the binomial distribution: [-
5,5] (LightSaber), [-4,4] (Saber), and [-3,3] (FireSaber) [5].
Polynomial Multiplication for KEM Saber. Polynomial
multiplication is the key operation of KEM Saber, where one
polynomial contains small-size coefficients ([-5,5]) and the
other polynomial has coefficients of either 10-bit or 13-bit.
ITI. THE PROPOSED ALGORITHMIC OPERATION FOR
POLYNOMIAL MULTIPLICATION OF KEM SABER
Without loss of generality, we can define that one polyno-
mial consists of coefficients of 4-bit (generated by the binomial
sampling) and the other polynomial has coefficients of 13-bit
(the polynomial with 10-bit coefficients is also covered here).
Define the polynomial multiplication for KEM Saber as

W = GD mod f(z), (1)

where f(z) =2V +1, W = Z?;_Dl wizt, G = Z?;Bl gz,

and D = "N 1diat (gi, di, and w; are 4-bit, 13-bit, and

13-bit integers over ring Zq/(z + 1), respectively).
Generally, we can have

N-1 N-1
W= Gdiz' mod f(z) = ) _(Gz' mod f(z))di, (2)
i=0 i=0

which turns to be the accumulation of (Gz* mod f(z))d; (N
cycles). This strategy has also been used in the existing reports
such as [20], [22]. Though the existing designs have used the
sign magnitude format for computation to ease the implemen-
tation process (especially the modulo operation involved sign
inversion and multiplications), extra resources are required to
transfer the data in/out of polynomial multiplication into two’s
complement form for further processing [22].

Proposed Mathematical Derivation Strategy. Based on this
consideration, we propose to: (¢) design the polynomial multi-
plication with full two’s complement representation (eliminate
extra resource usage); (¢¢) move the modulo operation outside
of the point-wise multiplications (reduce propagation delay).

Let us define N = hk (h and k are integers), we can have

h—1
B=3 i, 3)
j=0
where D; = dg; + - - - + dyj4r—12*9t5~1. Then, we have
h—1 h—1
W = Z GD;z¥mod f(z) = Z G*)D; mod f(z), (4)
j=0 Jj=0

where we defined Gz*/ mod f(z) = G*7). The final output
becomes the accumulation of G(*7) D; (followed by a modulo
operation). We thus have the proposed algorithmic process as

Algorithm 1: Proposed polynomial multiplication al-
gorithmic operation for KEM Saber

Inputs : G and D are integer polynomials. // the
actual bit-width of the coefficients follow (1).
Output: W = GD mod (zV +1).

Initialization step
1 Process the inputs G and D, ie., D = Z;.:Dl D;z*I
and GO = G;
2 W=0;
Main step
3for j=0t0 h—1do
s | W=W +G*)D; mod f(z); // follow (4)
s | Obtain G*U+1) from G7) (follow the operation
of G*1) = Gz*I mod f(z));

6 end
T W=W;
Final step

8 Deliver all the coefficients of output W;

Simple Example. Assume N = 4 and k = 2, we can have
GO =G = gy + g1z + gaz® + gaz®,
GW = Gz? mod f(z)
= (902 + g12° + g2z + g32°) mod f(z)
= —g2 — g3z + goz® + q12°,

(5)

where f(z) = 2! +1 = 2* = —1 has been substituted. The
final output becomes W = [G(®) Dy + G(Y) D;] mod f(z) and

GO (do + dyz) mod f(z) = godo + (g1do + god1)z+
(g2do + g1d1)z® + (g3do + g2do)z* + gsdiz*mod f(z)
= (godo — g3d1) + (91do + god1)z + (godo + g1d1)z>
+ (gado + gado)z®,

where G(1)(dy + daz) mod f(x) can be similarly calculated.
Overall, G()(dy + d;z) (followed by the modulo operation)
is calculated first and then accumulated with G(!)(dy + d3z)
(along with a following modulo operation) to obtain W.
IV. PROPOSED ARCHITECTURE

The proposed polynomial multiplication architecture for
KEM Saber is shown in Fig. 1, where the architecture consists
of three main components, namely the circular shift-register
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Fig. 1: The proposed polynomial multiplication (KEM Saber).
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Fig. 2: CSR (k = 2, values in the registers are initially loaded).

(CSR), the multiplication and addition (MAA) component, and
the final modular and accumulation (FMA) component.

CSR component. According to Step 5 of Algorithm 1, we
have to execute the operation of obtaining G(*7+%) from G(k9)
every clock cycle. Since G*7) = Gz*¥ mod f(z), we can
have G(ki+k) = GzFi+F mod f(z) = Gz*z*F mod f(z) =
G® gk mod f(z), ie., obtaining G*I*%) from G*7) re-
quires the operation of -zF mod f(z). To execute this op-
eration, a novel CSR is used for the proposed architecture
as shown in Fig. 2 (for simplicity of discussion, we have
presented the case of & = 2, which can be easily extended
to other values of k). For this example, we have used one
DE-MUX (D-MUX), two MUXes, N 4-bit registers, and two
sign inverters (SIs). In the loading stage, the even-order (and
the odd-order) coefficients are respectively loaded into the
corresponding registers through the functions of D-MUX and
MUZXes. After that, two MUXes operate to let the values
loaded in the registers shift in a circular format (through a
sign inverter (SI), as shown in Fig. 3). The SI works to invert
the values in the right-left registers under two’s complement
format. All the outputs are finally combined to form N parallel
outputs to be fed to the following MAA component.
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Fig. 4: The details of the MAA component (k = 2).

MAA component. The MAA component executes the
operation of G(*)D; (connecting Step 4 of Algorithm 1
and also the provided example). We have proposed a new
MUX-based multiplier to save the resource usage under two’s
complement representation format, which is different from that
of [22]. We have again used & = 2 to present the detailed
structure, as shown in Fig. 4. Two inputs from D (13-bit) are
multiplied with N parallel outputs from the CSR component,
respectively. To save the resource usage, the related multi-
plicand coefficients are pre-calculated in the pre-computing
(PRC) cell. Since our polynomial multiplier targets all three
security ranks of KEM Saber, we have used an 11-to-1 MUX
in the multiplication (Mul.) cell, as shown in Fig. 5. Note
that the sign bit from 4-bit parallel inputs are used as carry-in
for the following adders (including the FMA component, as
shown in Fig. 6) to meet the two’s complement representation
requirement. Besides that, due to the order difference of the
two inputs from D (see the example of (5)), we have used
(N — 1) adders to produce (N + 1) parallel outputs (13-bit).
This structure can be easily extended to other values of k.

FMA component. The internal structure for the FMA
component is shown in Fig. 6 (k = 2), where it consists of a
final modulo and an accumulation & output sub-components.
The final modulo sub-component is relatively simple, i.e., the
(N + 1)th output from the MAA component is inverted and
adds with the first output (carry-in is set as ‘1’ according to
the two’s complement format) while the rest (N — 1) parallel
inputs remain the same. The accumulation & output sub-
component involves NV parallel accumulation-final output (AC-
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FO) units, where each unit contains an adder, a register, and
a MUX. During the accumulation process, the MUX is set to
channel that the output of the register is added with the newly
arrived input from the final modulo sub-component and then
stored in the register again. After the accumulation process is
finished (IV cycles), the MUX sets to another channel that all
the values stored in the registers can be serially delivered out.

V. IMPLEMENTATION AND COMPARISON

The proposed structure of Fig. 1 needs N cycles of input
loading, N/k cycles of computation, and N cycles of final
output delivering. We have coded the proposed polynomial
multiplication and obtained the implementation results.

Experimental setup. We have set the experiment as fol-
lows: (i) We have coded the proposed architecture with
VHDL and implemented the design on the Xilinx UltraScale+
XCZU9EG-FFVB1156-2 FPGA through Vivado 2019.2; (ii)
We have used N = 256 and have verified the correctness of

TABLE I: Comparison of the Implementation Results

[ design || LUT | FF | Fmax | delay! | ADP* | power® |
| UltraScale+ XCZU9EG-FFVB1156-2 FPGA device |
Ext. [20]2 29,141 | 4,907 250 512 14,920
Ext. [22] 22,118 | 4,920 250 512 11,324 -
Pro. (k = 2) 23,784 | 4,404 270 474 11,274 1.116
Pro. (k = 4) 44,176 | 4,420 256 250 11,309 2.556

The designs in [20], [22] use sign magnitude representation to ease the
implementation, but require extra resources for data type transferring (into
two’s complement form) between the polynomial multiplication and other
components within KEM Saber (this resource usage is not reported here).
For a fair comparison, we only list the existing designs with a latency of
128 (the same as proposed design of k& = 2).

Unit for delay: ns. *: ADP=#LUT xdelay (x103).

1: delay is calculated as latency x (1/Fmax), where the latency refers to the
computation time (input loading and output delivering are not included).

2: this implementation results come from [22], where the same authors have
re-implemented their design in [20].

3: The existing designs do not report the power consumption.

the code through ModelSim; (iii) We have selected £ = 2 and
k = 4 for the proposed design to obtain the implementation
performance. The obtained results, including the number of
LUT, FF, maximum frequency (MHz), and power consumption
(dynamic power, W), are listed in Table L.

The LUT utilization of the proposed design increases almost
proportionally when k& increases from 2 to 4 while the number
of FF remains nearly the same. This is because the registers
used in the proposed structure, mainly from the CSR and
the AC-FO units, are very stable even when &k changes.
Meanwhile, the increase of k& has impacts on the Fmax.

We have also listed the major works in the field, ie.,
the polynomial multiplications of [20], [22] for comparison,
as shown in Table L. It is shown that the proposed design
(k = 2) has the least area-delay product (ADP) among all
the reported designs, e.g., 24.4% smaller than the existing
design [20]. Besides that, one has to note that the proposed
design covers all security ranks of KEM Saber while the
existing ones of [20], [22] only cover two. The efficiency of
the proposed design comes from two aspects: (i) the MAA
component has used a new data processing method, which
reduces involved propagation delay; (ii) the multipliers used
in the MAA component have used a new resource sharing
scheme, which lowers the overall area occupation.

Finally, we want to emphasize that the proposed design is
wholly built on the two’s complement representation system,
while the existing designs ([20], [22]) are based on the sign
magnitude format (require extra resource usage for data type
transferring [20]). Future works may focus on algorithmic and
architectural innovations and side-channel attacks [26-29].

VI. CONCLUSION

This paper presents a novel implementation of polynomial
multiplication for KEM Saber on FPGA platform. We have
firstly presented the proposed algorithmic process for poly-
nomial multiplication. Then, the details of the structure are
provided. Implementation and comparison are finally given to
confirm the efficiency of the proposed design.
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