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LEAP: Lightweight and Efficient Accelerator for Sparse Polynomial
Multiplication of HQC

Yazheng Tu™, Pengzhou He

Abstract— The Hamming quasi-cyclic (HQC) code-based encryption
scheme is one of the fourth-round algorithms selected by the National
Institute of Standards and Technology (NIST) postquantum cryptography
(PQC) standardization process. However, very few hardware implemen-
tations have been reported for HQC to date. In this brief, we propose
a novel Lightweight and Efficient Accelerator for sparse Polynomial
multiplication (LEAP) of HQC, compatible with different parameters,
on the field-programmable gate array (FPGA) platform. First, we give a
mathematical derivation process for the sparse polynomial multiplication
deployed in HQC. Then, we explain the proposed hardware structure in
detail. Finally, we present the FPGA implementation results to confirm
the efficiency of the proposed LEAP, for example, the proposed design
for hqc-192 has at least 31.03% less area-delay product (ADP) than the
existing design. LEAP can be extended further to construct efficient HQC
cryptoprocessors.

Index Terms— Hamming quasi-cyclic (HQC), hardware design,
lightweight and efficient accelerator, postquantum cryptography (PQC),
sparse polynomial multiplication.

I. INTRODUCTION

It has been proven that traditional cryptosystems such as RSA and
ECC are vulnerable to attacks launched from large-scale quantum
computers [1]. Hence, the need for cryptosystems that are safe against
quantum attacks, collectively known as postquantum cryptography
(PQCQ), is at an all-time high [1], [2]. The National Institute of Stan-
dards and Technology (NIST) has started the PQC standardization
process, and the code-based Hamming quasi-cyclic (HQC) is recently
selected as one of the fourth-round candidates [3], [4].

Code-based cryptography refers to the cryptosystem that is based
on error-correcting codes [5]. HQC is a code-based PQC scheme
whose security relies on decoding small weight vectors of random
quasi-cyclic codes [4], [6]. Following the NIST PQC standardization
process, efforts are needed for efficient hardware implementation of
HQC, for example, on field-programmable gate array (FPGA) [3],
[7], which offers flexibility and fast development cycle to evaluate
the PQC scheme’s hardware complexity (a recent trend in the PQC
field [2]).

On the other side, however, very few hardware implementation
reports have been released for HQC: 1) the authors of HQC have
given a high-level synthesis-based hardware result [4] (no subcom-
ponents’ results like polynomial multiplier) and 2) another recent
hardware design was reported in [7].

A. Challenges

It is noted that the polynomial multiplier over [F, is a critical com-
ponent of HQC and its performance largely determines the overall
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efficiency of the scheme implementation [4]. However, one has to
be aware that the polynomial multiplier of HQC involves operations
of sparse matrices or vectors with very large dimensions [4], [7],
for example, polynomials of size n = 57 637 with only 149 nonzero
elements, which is extremely time- and space-consuming. Overall,
there exist two challenges: 1) for the multiplication algorithm, the
size and sparsity of the polynomial multiplication make it difficult
to deploy a suitable algorithmic procedure and 2) for the hardware
architecture design, the selection of a proper processing strategy is
tricky, as it will affect the other components (like memories) and the
total performance. Finally, we also consider the fact that very few
hardware designs are released so far.

Thus, in this brief, we propose a Lightweight and Efficient
Accelerator for sparse Polynomial multiplication (LEAP) of HQC.
In particular, we made three layers of contributions, as follows.

1) We give a detailed mathematical formulation to derive a new
algorithm for the sparse polynomial multiplication in HQC.

2) We construct the proposed LEAP through efficient algorithm-
to-architecture mapping techniques and strategies.

3) We provide sufficient implementation and comparison results
to showcase the superior performance of the proposed LEAP.

The rest of this brief is organized as follows. The preliminaries are
introduced in Section II. The mathematical derivation is presented in
Section III. The proposed LEAP is presented in Section IV. Imple-
mentation and comparison are presented in Section V. Conclusions
are given in Section VI.

II. PRELIMINARIES
A. Notations [4]

We define Z as the ring of integers and [F5 as the binary finite field.
V is a vector space of dimension n over Fp, where n € Z. Elements in
Y are vectors/polynomials in R = F,[X]/(X" —1) (lower-case bold),
while matrices are denoted by upper-case bold letters. w(-) denotes
the Hamming weight of a vector (number of its nonzero coordinates).
Cl[n, k] denotes a linear code with length n and dimension. Elements
of C are referred to as codewords [8]. § is the minimum number of
errors that the decoding algorithm can correct. All computations in
HQC are made in the ambient space F g

We have also used G, D, and W to represent related polynomials
for the proposed algorithm ([G] denotes the corresponding matrix).
P[-] denotes the index of nonzero elements. Nyem is the processing
bit-length of the memory.

B. Hamming Quasi-Cyclic

HQC is an Indistinguishability under Chosen Ciphertext Attack
(IND-CCA) secure encryption scheme built on the hardness of a
decision version of the syndrome decoding on structured codes [4].
HQC uses a decodable code C[n, k] and a random double-circulant
[2n, n] code, which features a precise upper bound for the decryption
failure probability analysis [4].

C. Algorithms

Let G(-), H(-), K(-) denote SHAKE256-512 (B7||G_FCT_
DOMAIN), SHAKE256-512 (B7||H_FCT_DOMAIN), and
SHAKE?256-512 (B7||[K_FCT_DOMAIN), respectively. Algorithms 1
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Algorithm 1 HQC.PKE [4]
Setup(1*):

1 generate and output the global parameters param =
(n, k, 6, w, wr, We).
KeyGen(param):
sample h <— R, the generator matrix G € IF]; X" of C
sk = (x, y) + R? such that w = w(x) = w(y)
pk=(h,s=x+h-y)
returns (pk, sk).
Encrypt(pk, m):
6 generate e <— R, r = (r1,ra) < R? such that

w(e) =we and w(r1) = w(r12) = wy
7U0=r1+ h- ro
s v=mG+s-ry+e
9 return ¢ = (u,v).

Decrypt(sk, ¢):
10 return C.Decode(v —u - v).

L7 I R )

Algorithm 2 HQC.KEM [4]
Setup(1*):

1 generate and output the global parameters param =
(n, k, 0, w, wy, we), k will be the length of the
symmetric key being exchanged, typically k = 256.

KeyGen(param):
samples h <— R, the generator matrix G € IFIQCX" of C
sk = (x,y) + R? such that w = w(x) = w(y)
pk=(h,s=x+h-Yy)
return (pk, sk).
Encapsulate(pk):
generate m < %
7 derive the randomness 6 = < G(m)
8 generate the cyphertext
¢ + (u,v) = £.Encrypt(pk,m,6)

9 derive the symmetric key K < K(m,c)
10 d < H(m)
11 send (¢, d).

Decapsulate(pk, c, d):
12 decrypt m’ = £.Decrypt(sk, c)
13 compute §' = G(m’)
14 (re-)encrypt m’ to get ¢’ < £.Encrypt(pk, m’,6")
15 if ¢ # ¢/, ord # H(m') then
16 | abort
17 else
18 | derive the shared key K < K(m,c)
19 end

wm AR W N

=)

and 2 are the public-key encryption (PKE) and key encapsulation
mechanism (KEM) versions of HQC, respectively.

D. Security

There exist three security levels of HQC: hqc-128, hqc-192, and
hqc-256 [4] (LEAP is applicable to all three levels).

III. LEAP (MATHEMATICAL DERIVATION)

Polynomial multiplication over ring R = Fp[X]/(X" — 1) exists
in most steps of HQC and thus has a huge impact on the overall
performance. Due to the large size of operand vectors but with
only very few nonzero elements, this polynomial multiplication is

rot(D)[:, P[0]] rot(D)[:, Plw-1]]

-—= r—_———

I | | | i o
dy e |dn-p[0]+1| "'|dn-p[w-1]+1| e d 0
| P |
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| | | 7711
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| ]
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Fig. 1. Indices and related columns within [G] and [D].

defined as a “sparse polynomial multiplier.” For instance, in hqc-
128, the Hamming weight of the vector is only w = 66 or we = 75
when n = 17669 [4]. Thus, traditional strategies like the schoolbook
method would be inappropriate as its complexity is (’)(nz). Based
on this consideration, we decided to propose a new polynomial
multiplication algorithm.

Definition 1: We define the sparse polynomial multiplication for
HQC as W = GD mod f(x), where f(x) = x" — 1, W =

:':_01 wixt, G = Z:’:_OI gix', and D = Z:’:_()l dix' (g;, d;, and w;
are all binary values in Fy/(x" — 1)). Note that G is a polynomial
with only w nonzero coefficients. Then, we have

W= (go +gix 4 +gn—1x”_1)do mod f(x)

+-+ (go +gix+--+ g,,_lx"_l) dp_1x" "V mod f(x)
()
which can be further derived as (since x" — 1 = 0)

W = (go +g1x +--~+gn71xnfl)do

+oot (0" g+ g ) dar @)
where we can have wg = godo + gy—1d1 + -+ + g1dy—1, w1 =

g1do+---—g2dnN—1, . Wy—1 = gu—1do+8n—2d1++ - -+ 8godn—1,
where w; (0 <7 <n — 1) can be obtained as

wo g0  &n—-1 &l do
wi 81 80 R ) d
: = : : : S S
Wp—1 8n—1 8n—2 o 80 dp—1

A. Proposed Computation Strategy

The direct computation of (3) will incur huge resource usage and
long delay time. Even with the deploying of subquadratic complexity
fast algorithms such as the Karatsuba algorithm [6], the computation
complexity could still be large. Considering that G is a polynomial
with only @ nonzero coefficients and [G]"*" is a circulant matrix,
we thus have the following definition.

Definition 2: For a polynomial G = (g1, 82, 8—1) € F},
we define its circulant matrix rot(G) as

80 8n—-1 - 81

81 80 82
rot(G) = . i e Fy ™" 4

8n—1 -2 - 80

We can then have

W™ = rot(G) x [D]"*! = rot(D) x [G]"™*. (5)

From (4) and (5), one can see that after we switched the circulant
matrix from rot(G) to rot(D), we can compute (3) as follows: 1)
mark the nonzero indices of those coefficients within vector [G]"><1
and 2) sum the corresponding columns in the circulant matrix of
rot(D) to obtain the final results, as shown in Fig. 1. Following
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Fig. 2. Sum of column vectors.

Algorithm 3 Proposed Algorithm for Sparse Polynomial Multiplica-
tion of HQC
Input : G and D are binary polynomials.
Output: W = GD mod (2" — 1).
Initialization step
1 make ready the inputs G and D.
record the indices of nonzero elements in G into P.
Main step
fori =0t n—1do
for j =0t w—1do
w; = w; + rot(D)[:,Pj11;
end
end
Final step
8 serially deliver all the coefficients of output W;

(5]

N S o e W

this strategy, the computation complexity of (3) is now reduced to
only O(nw).

As shown in Fig. 1, the indices of nonzero elements G are
denoted as P[-] and we can see that the polynomial multiplication is
equivalent to the sum of column vectors in rot(D) corresponding to
the nonzero elements in [G]"*! (Fig. 2). We finally summarize this
process in Algorithm 3.

IV. LEAP (PROPOSED HARDWARE STRUCTURE DESIGN)
The overall structure of the proposed accelerator is shown in
Fig. 3, where it consists of two major components—the Preparatory
Component and the Multiplier—as described below.

A. Preparatory Component

The Preparatory Component contains one memory and one Index
Marker. As the proposed Algorithm 3 executes the multiplication
process assuming that the indices of nonzero elements in polynomial
G are provided as the input, an Index Marker for nonzero elements
is needed to deliver the correct indices to the following Multiplier.

B. Index Marker

As is shown in Fig. 4, the Index Marker consists of a circular-shift
register (@ blocks, each with [logyn] bits) and a counter. The Index
Marker takes one coefficient of the polynomial as its only input each
cycle and outputs the indices of the nonzero coefficients/elements in
serial. The counter counts one up each cycle and delivers the count
to the shift register; while the register, taking the count as an input
and the incoming coefficient/element of the polynomial as its enable
signal, records the count, that is, the index, when the element is “1.”
After recording the index, the shift register will shift 1 block ([logyn]
bits) until all elements are examined.

- —_—___- r-—-——— ————————- bl
I |
| 2/ Index | y) » | Multiplion 2/ m 2/
7 » T » 7> T »
| |rRam_c e Marker | |[|Dgzn] Executor Ko RAM_W | fiis
| I A |
' N |
| I |ram_D %
I | D [Nimem Nimem |
| h |
e = I
Preparatory Component Multiplier
Fig. 3. Overview of the proposed accelerator: LEAP.
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Fig. 4. Structural details of the Index Marker.
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Fig. 5. Structural details of the Multiplier Component. Control signals:
“addr_rd” denotes the address read; “rd_data” is the data read; “wen” denotes
the write enable; “addr_wr” represents the address write; and “wr_data” is the
data write.

2 Nmem-bit
Registers
Yo 4,
mem
Calculation
rd_data_Dasr—p~6=P»| Segment XOR
Niem Generator Noerr | Bates | 2y
mem
Nrem
rd_data_acc

Fig. 6. Internal structure of the Execution Unit. Signal “rd_data_D,gq;”
denotes the data read of D-related address and “rd_data_acc” represents the
data read of accumulation.

C. Multiplier Component

LEAP deals with the data reading from a whole memory block at
a time based on Algorithm 3 (see Fig. 5). According to Fig. 2, the
summation of the columns in rot(D) is bit-wise XOR operations,
where one operand can be obtained by circularly shifting from
another. The Component executes the multiplication by taking a
whole block of memory and adding it to the sum of the previous
column(s) read from the other memory (new input) and then writing
the data back. Note Npem is the processing bit-length of the memory.

The Control Unit of the Multiplier Component takes the indices
from the Index Marker as its input and then calculates the corre-
sponding reading addresses. Apart from that, the Control Unit also
determines the position of the first bit in the column vector, that is,
the index of p[i][0] in the memory block of Fig. 1. Then starting from
the calculated bit, the Control Unit determines if the next memory
block will be used to form a Npem-bit calculation segment, which is
XORed with the data read from the other memory. A counter counting
from O to [1/Nmem|—1 is also involved when calculating the reading
addresses for coefficients of G. Also, a [logyn]-bit counter is used
for calculating the writing addresses.

The Execution Unit (see Fig. 6) contains two Npem-bit regis-
ters, which are used to store the calculation segment and coeffi-
cients formed/read in the previous cycle. The Calculation Segment
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TABLE I
IMPLEMENTATION RESULTS FOR THE PROPOSED LEAP
N w Frl Time Area
) Cycle | (us) LUT [ FF [ CLB | #

\ hqe-128 (1 = 17,660) \
32 66 | 203 | 36,565 179.97 214 152 73 2
32 75 196 41,551 211.36 213 152 78 2
64 66 182 18,349 100.72 440 278 135 2
64 75 179 20,851 116.81 458 278 150 2
128 66 | 196 9,241 47.14 2453 1 663 | 678 | 4
128 75 | 201 10,501 5223 2443 | 662 | 689 | 4

\ hqc-192 (n = 35,581) |
32 100 | 202 | 111,301 551.50 238 156 86 4
32 114 | 198 | 126,883 640.82 234 154 91 4
64 100 | 188 | 55,701 296.16 452 [ 280 | 152 | 4
64 114 | 191 | 63,499 333.12 439 | 280 | 152 | 4
128 || 100 | 210 | 27,901 13250 | 2,370 | 664 | 657 | 4
128 114 | 201 31,807 158.08 2,371 | 664 665 4

[ hqc-256 (n = 57,637) |
32 || 131 | 195 | 236,194 | 1,208.13 | 211 | 158 | & | 8
32 149 | 195 | 268,648 | 1,376.82 206 156 76 8
64 131 182 | 118,163 648.36 448 291 174 8
64 149 | 188 | 134,399 [ 713.12 440 [ 284 ] 164 | 8
128 || 131 | 207 | 59,213 28547 | 2,247 | 665 | 648 | 8
128 || 149 | 211 | 71,869 34044 | 2,330 | 669 | 684 | 8

% Nmem. #: BRAM tiles. L: Unit for Fr. (frequency): MHz.

Generator generates an Npem-bit calculation segment based on the
count from the Control Unit, the remainder of index /Nmem, and the
data segments from two registers. The generated calculation segment
and the data read from memory are written to the two Nmem-bit
registers, which can be used in the next cycle when a new calculation
segment is generated.

The XOR gates perform the XOR operation of the calculation
segment and the data read from the other memory, that is, Nmem
XOR gates in parallel to perform Npyem bit-wise additions that Npem
results of sum-of-product can be calculated and updated to the
memory at one cycle.

LEAP is compatible with all commonly used memories by simply
adjusting the number of XORs and the register length (and Control
Unit). The RAMs used for G and D are single-port, while the one
storing the accumulated values is dual-port.

V. LEAP (COMPLEXITY AND COMPARISON)
A. Complexity Analysis

The complexities of the Index Marker are: one [logyn] x n bit
circular shift register and one [logyn] counter. The Index Marker
needs n cycles to examine G and records the indices of the nonzero
coefficients.

The complexities of the proposed LEAP are listed below: the
Control Unit requires a [logyn]-bit counter and a [logyn/Nmem |-bit
counter; the Execution Unit requires two Npem-bit registers and
Nmem XOR gates. The latency is [(1n/Nmem+1)] X @ (or ;) cycles.

B. Implementation

The experimental setup is as follows: 1) the proposed LEAP
was coded in VHDL and tested using Modelsim, then implemented
using Xilinx Vivado 2020.2; 2) the accelerator was coded in a
generic format that different parameter sets of HQC (n, w, and w;)
can be set during the implementation process; 3) different memory
block lengths were also chosen, that is, Npem = 32, 64, and
128, respectively (these are the regular memory processing bits, the
implemented results help us to have a comprehensive understanding
of the complexity of the proposed design); and 4) the accelerator was
implemented on the Artix-7 xc7a200t-3 FPGA. The obtained results
are listed in Table I, including the number of LUTs, FFs, CLBs, and
required BRAM tiles.

C. Performance Discussion

The area usage of LEAP grows with the length of the memory
block (see Table I). This is because the registers storing the unem-
ployed coefficients (during the formation of the calculation segment)
possess the same length as the memory blocks and become larger
as the length of memory blocks increases. Also, the involved XORs
increase linearly with the length of the memory blocks. Besides,
the number of memory blocks involved decreases as Npem becomes
larger. Finally, it is worth mentioning that the slight differences in
CLB usage between two cases (same n and Nmem, but different w)
are due to the parameter changes in the Control Unit and related
place and route efficiency on the FPGA.

The latency is inversely proportional to the length of memory
blocks, while the maximum frequency for the proposed accelerator
overall remains high (delay time decreases as the Nmem increases
while proportionally changes to @ and n). Following Table I, one
can choose the desired LEAP with a proper Nmem based on the
potential application requirements.

D. Comparison

We have also listed the results of the state-of-the-art work in
Table II for comparison, based on the same memory block size, the
same w, and the same FPGA device. Note that the existing report
of [7] does not give the CLB usage and hence we just use the LUT
to obtain the equivalent LUT (ELUT) to calculate area-delay product
(ADP) (following the strategy in [9] that one BRAM (8 k) is equal
to 70 CLBs and one CLB contains four LUTSs). It is shown that the
proposed design has better overall area-time complexities than the
existing one. For the security levels of hqc-128, hqc-192, and hqc-
256, the proposed LEAP has 23.46%, 31.03%, and 24.72% less ADP
than the one of [7], respectively.

E. Extension to the Sparse Polynomial Multiplier in BIKE and
Comparison

BIKE is another NIST fourth-round PQC standardization candi-
date [3], [12], which also involves a sparse polynomial multiplier with
different parameter settings. We have extended the proposed design
to the sparse polynomial multiplier in BIKE [12] and implemented
it on the Artix-7 xc7a200t-3 FPGA and compared the performance
with [10], [11] (on the same FPGA). We have followed the com-
parison strategy of Table III; both area reduction and time reduction
are considered comprehensively to reach the final conclusion: the
proposed one has better area—time complexities than the existing
ones given in [10] and [11] (note that as both the proposed and
the existing designs have reported the CLB usage, we just follow the
strategy of [9] to convert the overall resource usage into equivalent
CLB (ECLB) usage). For instance, for n = 12,323 and w = 134,
the proposed design has 35.92% more CLBs than [10] but with 50%
reduction in BRAM usage (the ECLB of the proposed design is
smaller than [10]). Meanwhile, as LEAP has 14.03% less latency
time than [10], the ADP of LEAP is 16.44% less than [10]. A similar
situation applies to the comparison with [11]: 84.18% less ADP
than [11].

F. Discussion and Future Works

The proposed accelerator is lightweight overall as it contains
relatively small resource usage. Meanwhile, the proposed LEAP has
a low latency time and hence is also feasible for high-performance
applications.

While the major focus of this work is to develop an efficient poly-
nomial multiplier accelerator for HQC, future works may focus on
the construction of an HQC accelerator, further complexity reduction,
and side-channel attacks.
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TABLE I
IMPLEMENTATION RESULTS AND COMPARISON (SPARSE POLYNOMIAL MULTIPLIER FOR HQC)
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Time Complexity

Area Complexity ‘

’ Design || Nmem | w ‘ B! } Cydle | (us) | TR? % LUT | LUTR® [ FF | BRAM | BR? | ELUT® [ AR%* | APP ‘ ADPR? ‘
| hqe-128 (n = 17,669) \
7] 28 | 75 | 228 | 18,165 [ 82.30 - 1,834 - 513 4 - [ 295 - 243K -
LEAP || 128 | 75 | 201 | 10,501 | 5223 | 3654% | 2,443 | 2493% | 662 | 4 0% | 3,563 | -17.09% | 186k | 23.46%
| hige-192 (n = 35,581) |
[ 71 ] 128 [ 114 [ 215 ] 56960 | 26497 | - | 1821 [ - [587 ] 6 [ - [ 3500 [ - | ok | - |
[ LEAP || 128 | 114 | 201 | 31,807 | 158.08 | 40.34% | 2,371 | -23.20% | 664 | 6 | 0% | 4051 | -13.58% | 640k | 31.03% |
\ hqe-256 (n = 57,637) \
[ 71 [ 128 [ 149 | 203 | 119333 | 587.85 | - [ 1837 ] - [606] 6 [ - | 3517 | - [206%k] - |
[ TEAP || 128 | 149 | 211 | 71,869 | 340.44 | 42.09% | 2,330 | -21.16% | 669 | 8 | 25% | 4570 | -23.04% | 1,556k | 24.72% |

L. Unit for Fr. (frequency): MHz.

2: TR (time reduction); LUTR (LUT reduction); BR (BRAM reduction); AR (area reduction).

3: ELUT (equivalent LUT, reported LUTs added with the transferred equivalent LUTs from BRAMs). As [7] did not report the configurable logic block
(CLB) usage, we hence use LUT calculate the overall area: equivalent LUT (ELUT). 1 BRAM(8k) equals 70 CLBs and 1 CLB contains 4 LUTs (from [9]).
4: Refers to the overall area-complexity reduction, a comprehensive consideration including both the LUT usage and the BRAM usage reductions (which are

calculated as the ELUT usage reduction).

5: (Area-delay product) ADP=#ELUT x Time.

TABLE III
IMPLEMENTATION RESULTS AND COMPARISON (EXTENSION TO BIKE, WHERE Npem = 128)

6. ADPR (area-delay product reduction).

. Time Complexit; Area Complexit
’ Design H ‘ ‘ F! % Cycle | (Ms)p{ TR % LUT | FF | CLB | CLBRZ | BRPAMY{ BR? [ ECLB® | ARZ" { ADP? | ADPR ‘
[ [I0] | 12,323 | 71 | 185 | 7,172 | 38.77 - [ 1% | 381 ]38 ] - [ 8 [ 98 [ - ] 36k [ - |
[ LEAP || 12,323 | 71 | 208 | 6,959 | 3346 | 13.10% | 2,433 | 660 | 676 | 44.08% | 4 | 50% | 956 | -188% | 32k | 11.11% |
[ [10] || 12,323 | 134 | 184 [ 13,535 | 7344 | - | 1,249 | 386 | 437 | - 8 | - [ 97 | - [ Bk [ - |
[ LEAP || 12,323 | 134 | 208 | 13,133 | 63.14 | 14.03% | 2,467 | 661 | 682 | -35.92% | 4 | 50% | 962 | 351% | 6ik | 1644% |
[ (101 ]| 10,163 | 71 | 210 [ 51,688 | 24613 | - | - | - [ 292 ] - [ 5 | [ 642 | - | 158k | - |
[ LEAP || 10,163 | 71 | 222 | 5,752 | 2591 | 89.47% | 2,460 | 661 | 681 | -57.12% | 4 | 20% | 961 | 33.19% | 25k | 84.18% |

L: Unit for Fr. (frequency): MHz.

2: TR (time reduction); CLBR (CLB reduction); BR (BRAM reduction); AR (area reduction).

3: ECLB (equivalent CLB, reported CLBs added with the transferred equivalent CLBs from BRAMs). 1 BRAM(8k) equals 70 CLBs (from [9]).
4: Refers to the overall area-complexity reduction, a comprehensive consideration including both the CLB usage and the BRAM usage reductions (which are

calculated as the ECLB usage reduction).

G. Other Works

Other hardware implementations in the PQC field also include
lattice-based PQC designs of [13], [14], [15], [16], [17], [18],
and [19].

VI. CONCLUSION

This brief proposes a novel hardware accelerator for a sparse
polynomial multiplier of HQC: LEAP. We derived a new algorithm
for the targeted sparse polynomial multiplication. Then, we provided
the architectural details of the proposed accelerator. Finally, we pre-
sented the complexity analysis and implementation, and a related
comparison confirms the superior performance of the proposed LEAP.
This work is expected to be useful for the ongoing NIST PQC
standardization process.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., 1994,
pp. 124-134.

J. Xie, K. Basu, K. Gaj, and U. Guin, “Special session: The recent
advance in hardware implementation of post-quantum cryptography,” in
Proc. IEEE 38th VLSI Test Symp. (VTS), Apr. 2020, pp. 1-10.

PQC Standardization Process: Announcing Four Candidates to
be Standardized, Plus Fourth Round Candidates. [Online]. Avail-
able: https://csre.nist.gov/News/2022/pgc-candidates-to-be-standardized-
and-round-4

C. A. Melchor et al. Hamming Quasi-Cyclic (HQC) (NIST Round 4
Submission). [Online]. Available: https://pqc-hqc.org/index.html

R. Overbeck and N. Sendrier, “Code-based cryptography,” in
Post-Quantum  Cryptography. Cham, Switzerland: Springer, 2009,
pp. 95-145.

C.-Y. Lee and J. Xie, “Digit-serial versatile multiplier based on a novel
block recombination of the modified overlap-free Karatsuba algorithm,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 1, pp. 203-214,
Jan. 2019.

[2]

[3]

[4

=

[5

[ty

5: (Area-delay product) ADP=#ECLB x Time.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

6. ADPR (area-delay product reduction).

S. Deshpande, M. Nawan, K. Nawaz, J. Szefer, and C. Xu, “Towards
a fast and efficient hardware implementation of HQC,” Cryprol. ePrint
Arch., pp. 1-24, 2022.

S. Lin and D. J. Costello, Error Control Coding, vol. 2. New York, NJ,
USA: Prentice-Hall, 2001.

W. Liu, S. Fan, A. Khalid, C. Rafferty, and M. O’Neill, “Optimized
schoolbook polynomial multiplication for compact lattice-based cryp-
tography on FPGA,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 27, no. 10, pp. 2459-2463, Oct. 2019.

R.-Brockmann et al., “Racing BIKE: Improved polynomial multipli-
cation and inversion in hardware,” in Proc. IACR TCHES, 2022,
pp. 557-588.

J. Hu, W. Wang, R. C. C. Cheung, and H. Wang, “Optimized poly-
nomial multiplier over commutative rings on FPGAs: A case study on
BIKE,” in Proc. Int. Conf. Field-Program. Technol. (ICFPT), Dec. 2019,
pp. 231-234.

N. Aragon et al. Bit Flipping Key Encapsulation (BIKE)) (NIST Round 4
Submission). [Online]. Available: https://bikesuite.org/

A. Basso and S. S. Roy, “Optimized polynomial multiplier architectures
for post-quantum KEM saber,” in Proc. 58th ACM/IEEE Design Autom.
Conf. (DAC), Dec. 2021, pp. 1285-1290.

T. Bao, P. He, and J. Xie, “Systolic acceleration of polynomial multi-
plication for KEM saber and binary ring-LWE post-quantum cryptogra-
phy,” in Proc. IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST),
Jun. 2022, pp. 157-160.

K. Basu et al., “NIST post-quantum cryptography—A hardware evalu-
ation study,” Cryptol. ePrint Arch., pp. 1-16, 2019.

D.-E.-S. Kundi, A. Khalid, S. Bian, C. Wang, M. O’Neill, and
W. Liu, “AXRLWE: A multilevel approximate ring-LWE co-processor
for lightweight IoT applications,” IEEE Internet Things J., vol. 9, no. 13,
pp. 10492-10501, Jul. 2022.

C. P. Renteria-Mejia and J. Velasco-Medina, “High-throughput ring-
LWE cryptoprocessors,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 25, no. 8, pp. 2332-2345, Aug. 2017.

S. Bian, M. Hiromoto, and T. Sato, “Filianore: Better multiplier architec-
tures for LWE-based post-quantum key exchange,” in Proc. 56th Annu.
Design Autom. Conf., Jun. 2019, pp. 1-6.

B. J. Lucas et al., “Lightweight hardware implementation of binary
ring-LWE PQC accelerator,” IEEE Comput. Archit. Lett., vol. 21, no. 1,
pp. 17-20, Jan. 2022.

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 20:08:03 UTC from IEEE Xplore. Restrictions apply.



