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LEAP: Lightweight and Efficient Accelerator for Sparse Polynomial
Multiplication of HQC
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Abstract— The Hamming quasi-cyclic (HQC) code-based encryption
scheme is one of the fourth-round algorithms selected by the National
Institute of Standards and Technology (NIST) postquantum cryptography
(PQC) standardization process. However, very few hardware implemen-
tations have been reported for HQC to date. In this brief, we propose
a novel Lightweight and Efficient Accelerator for sparse Polynomial
multiplication (LEAP) of HQC, compatible with different parameters,
on the field-programmable gate array (FPGA) platform. First, we give a
mathematical derivation process for the sparse polynomial multiplication
deployed in HQC. Then, we explain the proposed hardware structure in
detail. Finally, we present the FPGA implementation results to confirm
the efficiency of the proposed LEAP, for example, the proposed design
for hqc-192 has at least 31.03% less area-delay product (ADP) than the
existing design. LEAP can be extended further to construct efficient HQC
cryptoprocessors.

Index Terms— Hamming quasi-cyclic (HQC), hardware design,
lightweight and efficient accelerator, postquantum cryptography (PQC),
sparse polynomial multiplication.

I. INTRODUCTION

It has been proven that traditional cryptosystems such as RSA and

ECC are vulnerable to attacks launched from large-scale quantum

computers [1]. Hence, the need for cryptosystems that are safe against

quantum attacks, collectively known as postquantum cryptography

(PQC), is at an all-time high [1], [2]. The National Institute of Stan-

dards and Technology (NIST) has started the PQC standardization

process, and the code-based Hamming quasi-cyclic (HQC) is recently

selected as one of the fourth-round candidates [3], [4].

Code-based cryptography refers to the cryptosystem that is based

on error-correcting codes [5]. HQC is a code-based PQC scheme

whose security relies on decoding small weight vectors of random

quasi-cyclic codes [4], [6]. Following the NIST PQC standardization

process, efforts are needed for efficient hardware implementation of

HQC, for example, on field-programmable gate array (FPGA) [3],

[7], which offers flexibility and fast development cycle to evaluate

the PQC scheme’s hardware complexity (a recent trend in the PQC

field [2]).

On the other side, however, very few hardware implementation

reports have been released for HQC: 1) the authors of HQC have

given a high-level synthesis-based hardware result [4] (no subcom-

ponents’ results like polynomial multiplier) and 2) another recent

hardware design was reported in [7].

A. Challenges

It is noted that the polynomial multiplier over F2 is a critical com-

ponent of HQC and its performance largely determines the overall
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efficiency of the scheme implementation [4]. However, one has to

be aware that the polynomial multiplier of HQC involves operations

of sparse matrices or vectors with very large dimensions [4], [7],

for example, polynomials of size n = 57 637 with only 149 nonzero

elements, which is extremely time- and space-consuming. Overall,

there exist two challenges: 1) for the multiplication algorithm, the

size and sparsity of the polynomial multiplication make it difficult

to deploy a suitable algorithmic procedure and 2) for the hardware

architecture design, the selection of a proper processing strategy is

tricky, as it will affect the other components (like memories) and the

total performance. Finally, we also consider the fact that very few

hardware designs are released so far.

Thus, in this brief, we propose a Lightweight and Efficient

Accelerator for sparse Polynomial multiplication (LEAP) of HQC.

In particular, we made three layers of contributions, as follows.

1) We give a detailed mathematical formulation to derive a new

algorithm for the sparse polynomial multiplication in HQC.

2) We construct the proposed LEAP through efficient algorithm-

to-architecture mapping techniques and strategies.

3) We provide sufficient implementation and comparison results

to showcase the superior performance of the proposed LEAP.

The rest of this brief is organized as follows. The preliminaries are

introduced in Section II. The mathematical derivation is presented in

Section III. The proposed LEAP is presented in Section IV. Imple-

mentation and comparison are presented in Section V. Conclusions

are given in Section VI.

II. PRELIMINARIES

A. Notations [4]

We define Z as the ring of integers and F2 as the binary finite field.

V is a vector space of dimension n over F2, where n ∈ Z. Elements in

V are vectors/polynomials in R = F2[X ]/(Xn −1) (lower-case bold),

while matrices are denoted by upper-case bold letters. ω(·) denotes

the Hamming weight of a vector (number of its nonzero coordinates).

C[n, k] denotes a linear code with length n and dimension. Elements

of C are referred to as codewords [8]. δ is the minimum number of

errors that the decoding algorithm can correct. All computations in

HQC are made in the ambient space F
n
2.

We have also used G, D, and W to represent related polynomials

for the proposed algorithm ([G] denotes the corresponding matrix).

P[·] denotes the index of nonzero elements. Nmem is the processing

bit-length of the memory.

B. Hamming Quasi-Cyclic

HQC is an Indistinguishability under Chosen Ciphertext Attack

(IND-CCA) secure encryption scheme built on the hardness of a

decision version of the syndrome decoding on structured codes [4].

HQC uses a decodable code C[n, k] and a random double-circulant

[2n, n] code, which features a precise upper bound for the decryption

failure probability analysis [4].

C. Algorithms

Let G(·),H(·),K(·) denote SHAKE256-512 (B7||G_FCT_

DOMAIN), SHAKE256-512 (B7||H_FCT_DOMAIN), and

SHAKE256-512 (B7||K_FCT_DOMAIN), respectively. Algorithms 1
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Algorithm 1 HQC.PKE [4]

Algorithm 2 HQC.KEM [4]

and 2 are the public-key encryption (PKE) and key encapsulation

mechanism (KEM) versions of HQC, respectively.

D. Security

There exist three security levels of HQC: hqc-128, hqc-192, and

hqc-256 [4] (LEAP is applicable to all three levels).

III. LEAP (MATHEMATICAL DERIVATION)

Polynomial multiplication over ring R = F2[X ]/(Xn − 1) exists

in most steps of HQC and thus has a huge impact on the overall

performance. Due to the large size of operand vectors but with

only very few nonzero elements, this polynomial multiplication is

Fig. 1. Indices and related columns within [G] and [D].

defined as a “sparse polynomial multiplier.” For instance, in hqc-

128, the Hamming weight of the vector is only ω = 66 or ωe = 75

when n = 17 669 [4]. Thus, traditional strategies like the schoolbook

method would be inappropriate as its complexity is O(n2). Based

on this consideration, we decided to propose a new polynomial

multiplication algorithm.

Definition 1: We define the sparse polynomial multiplication for

HQC as W = G D mod f (x), where f (x) = xn − 1, W =∑n−1
i=0 wi xi , G = ∑n−1

i=0 gi xi , and D = ∑n−1
i=0 di xi (gi , di , and wi

are all binary values in F2/(xn − 1)). Note that G is a polynomial

with only ω nonzero coefficients. Then, we have

W =
(

g0 + g1x + · · · + gn−1xn−1
)

d0 mod f (x)

+ · · · +
(

g0 + g1x + · · · + gn−1xn−1
)

dn−1xn−1 mod f (x)

(1)

which can be further derived as (since xn − 1 ≡ 0)

W =
(

g0 + g1x + · · · + gn−1xn−1
)

d0

+ · · · +
(

g0xn−1 + g1 + · · · + gn−1xn−2
)

dn−1 (2)

where we can have w0 = g0d0 + gn−1d1 + · · · + g1dn−1, w1 =
g1d0 +· · ·−g2dN−1, · · · , wn−1 = gn−1d0 +gn−2d1 +· · ·+g0dn−1,

where wi (0 ≤ i ≤ n − 1) can be obtained as⎡
⎢⎢⎢⎣

w0

w1
...

wn−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

g0 gn−1 · · · g1

g1 g0 · · · g2
...

... · · · ...

gn−1 gn−2 · · · g0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

d0

d1
...

dn−1

⎤
⎥⎥⎥⎦ . (3)

A. Proposed Computation Strategy

The direct computation of (3) will incur huge resource usage and

long delay time. Even with the deploying of subquadratic complexity

fast algorithms such as the Karatsuba algorithm [6], the computation

complexity could still be large. Considering that G is a polynomial

with only ω nonzero coefficients and [G]n×n is a circulant matrix,

we thus have the following definition.

Definition 2: For a polynomial G = (g1, g2, . . . , gn−1) ∈ F
n
2,

we define its circulant matrix rot(G) as

rot(G) =

⎡
⎢⎢⎢⎣

g0 gn−1 · · · g1

g1 g0 · · · g2
...

...
. . .

...

gn−1 gn−2 · · · g0

⎤
⎥⎥⎥⎦ ∈ F

n×n
2 . (4)

We can then have

[W ]n×1 = rot(G) × [D]n×1 = rot(D) × [G]n×1. (5)

From (4) and (5), one can see that after we switched the circulant

matrix from rot(G) to rot(D), we can compute (3) as follows: 1)

mark the nonzero indices of those coefficients within vector [G]n×1

and 2) sum the corresponding columns in the circulant matrix of

rot(D) to obtain the final results, as shown in Fig. 1. Following
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Fig. 2. Sum of column vectors.

Algorithm 3 Proposed Algorithm for Sparse Polynomial Multiplica-

tion of HQC

this strategy, the computation complexity of (3) is now reduced to

only O(nω).

As shown in Fig. 1, the indices of nonzero elements G are

denoted as P[·] and we can see that the polynomial multiplication is

equivalent to the sum of column vectors in rot(D) corresponding to

the nonzero elements in [G]n×1 (Fig. 2). We finally summarize this

process in Algorithm 3.

IV. LEAP (PROPOSED HARDWARE STRUCTURE DESIGN)

The overall structure of the proposed accelerator is shown in

Fig. 3, where it consists of two major components—the Preparatory

Component and the Multiplier—as described below.

A. Preparatory Component

The Preparatory Component contains one memory and one Index

Marker. As the proposed Algorithm 3 executes the multiplication

process assuming that the indices of nonzero elements in polynomial

G are provided as the input, an Index Marker for nonzero elements

is needed to deliver the correct indices to the following Multiplier.

B. Index Marker

As is shown in Fig. 4, the Index Marker consists of a circular-shift

register (ω blocks, each with �log2n� bits) and a counter. The Index

Marker takes one coefficient of the polynomial as its only input each

cycle and outputs the indices of the nonzero coefficients/elements in

serial. The counter counts one up each cycle and delivers the count

to the shift register; while the register, taking the count as an input

and the incoming coefficient/element of the polynomial as its enable
signal, records the count, that is, the index, when the element is “1.”

After recording the index, the shift register will shift 1 block (�log2n�
bits) until all elements are examined.

Fig. 3. Overview of the proposed accelerator: LEAP.

Fig. 4. Structural details of the Index Marker.

Fig. 5. Structural details of the Multiplier Component. Control signals:
“addr_rd” denotes the address read; “rd_data” is the data read; “wen” denotes
the write enable; “addr_wr” represents the address write; and “wr_data” is the
data write.

Fig. 6. Internal structure of the Execution Unit. Signal “rd_data_Daddr”
denotes the data read of D-related address and “rd_data_acc” represents the
data read of accumulation.

C. Multiplier Component

LEAP deals with the data reading from a whole memory block at

a time based on Algorithm 3 (see Fig. 5). According to Fig. 2, the

summation of the columns in rot(D) is bit-wise XOR operations,

where one operand can be obtained by circularly shifting from

another. The Component executes the multiplication by taking a

whole block of memory and adding it to the sum of the previous

column(s) read from the other memory (new input) and then writing

the data back. Note Nmem is the processing bit-length of the memory.

The Control Unit of the Multiplier Component takes the indices

from the Index Marker as its input and then calculates the corre-

sponding reading addresses. Apart from that, the Control Unit also

determines the position of the first bit in the column vector, that is,

the index of p[i][0] in the memory block of Fig. 1. Then starting from

the calculated bit, the Control Unit determines if the next memory

block will be used to form a Nmem-bit calculation segment, which is

XORed with the data read from the other memory. A counter counting

from 0 to �n/Nmem�−1 is also involved when calculating the reading

addresses for coefficients of G. Also, a �log2n�-bit counter is used

for calculating the writing addresses.

The Execution Unit (see Fig. 6) contains two Nmem-bit regis-

ters, which are used to store the calculation segment and coeffi-

cients formed/read in the previous cycle. The Calculation Segment
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TABLE I

IMPLEMENTATION RESULTS FOR THE PROPOSED LEAP

Generator generates an Nmem-bit calculation segment based on the

count from the Control Unit, the remainder of index/Nmem, and the

data segments from two registers. The generated calculation segment

and the data read from memory are written to the two Nmem-bit

registers, which can be used in the next cycle when a new calculation

segment is generated.

The XOR gates perform the XOR operation of the calculation

segment and the data read from the other memory, that is, Nmem

XOR gates in parallel to perform Nmem bit-wise additions that Nmem

results of sum-of-product can be calculated and updated to the

memory at one cycle.

LEAP is compatible with all commonly used memories by simply

adjusting the number of XORs and the register length (and Control

Unit). The RAMs used for G and D are single-port, while the one

storing the accumulated values is dual-port.

V. LEAP (COMPLEXITY AND COMPARISON)

A. Complexity Analysis

The complexities of the Index Marker are: one �log2n� × n bit

circular shift register and one �log2n� counter. The Index Marker

needs n cycles to examine G and records the indices of the nonzero

coefficients.

The complexities of the proposed LEAP are listed below: the

Control Unit requires a �log2n�-bit counter and a �log2n/Nmem�-bit

counter; the Execution Unit requires two Nmem-bit registers and

Nmem XOR gates. The latency is �(n/Nmem +1)�×ω (or ωr ) cycles.

B. Implementation

The experimental setup is as follows: 1) the proposed LEAP

was coded in VHDL and tested using Modelsim, then implemented

using Xilinx Vivado 2020.2; 2) the accelerator was coded in a

generic format that different parameter sets of HQC (n, ω, and ωr )

can be set during the implementation process; 3) different memory

block lengths were also chosen, that is, Nmem = 32, 64, and

128, respectively (these are the regular memory processing bits, the

implemented results help us to have a comprehensive understanding

of the complexity of the proposed design); and 4) the accelerator was

implemented on the Artix-7 xc7a200t-3 FPGA. The obtained results

are listed in Table I, including the number of LUTs, FFs, CLBs, and

required BRAM tiles.

C. Performance Discussion

The area usage of LEAP grows with the length of the memory

block (see Table I). This is because the registers storing the unem-

ployed coefficients (during the formation of the calculation segment)

possess the same length as the memory blocks and become larger

as the length of memory blocks increases. Also, the involved XORs

increase linearly with the length of the memory blocks. Besides,

the number of memory blocks involved decreases as Nmem becomes

larger. Finally, it is worth mentioning that the slight differences in

CLB usage between two cases (same n and Nmem, but different ω)

are due to the parameter changes in the Control Unit and related

place and route efficiency on the FPGA.

The latency is inversely proportional to the length of memory

blocks, while the maximum frequency for the proposed accelerator

overall remains high (delay time decreases as the Nmem increases

while proportionally changes to ω and n). Following Table I, one

can choose the desired LEAP with a proper Nmem based on the

potential application requirements.

D. Comparison

We have also listed the results of the state-of-the-art work in

Table II for comparison, based on the same memory block size, the

same ω, and the same FPGA device. Note that the existing report

of [7] does not give the CLB usage and hence we just use the LUT

to obtain the equivalent LUT (ELUT) to calculate area-delay product

(ADP) (following the strategy in [9] that one BRAM (8 k) is equal

to 70 CLBs and one CLB contains four LUTs). It is shown that the

proposed design has better overall area-time complexities than the

existing one. For the security levels of hqc-128, hqc-192, and hqc-

256, the proposed LEAP has 23.46%, 31.03%, and 24.72% less ADP

than the one of [7], respectively.

E. Extension to the Sparse Polynomial Multiplier in BIKE and
Comparison

BIKE is another NIST fourth-round PQC standardization candi-

date [3], [12], which also involves a sparse polynomial multiplier with

different parameter settings. We have extended the proposed design

to the sparse polynomial multiplier in BIKE [12] and implemented

it on the Artix-7 xc7a200t-3 FPGA and compared the performance

with [10], [11] (on the same FPGA). We have followed the com-

parison strategy of Table III; both area reduction and time reduction

are considered comprehensively to reach the final conclusion: the

proposed one has better area–time complexities than the existing

ones given in [10] and [11] (note that as both the proposed and

the existing designs have reported the CLB usage, we just follow the

strategy of [9] to convert the overall resource usage into equivalent

CLB (ECLB) usage). For instance, for n = 12, 323 and ω = 134,

the proposed design has 35.92% more CLBs than [10] but with 50%

reduction in BRAM usage (the ECLB of the proposed design is

smaller than [10]). Meanwhile, as LEAP has 14.03% less latency

time than [10], the ADP of LEAP is 16.44% less than [10]. A similar

situation applies to the comparison with [11]: 84.18% less ADP

than [11].

F. Discussion and Future Works

The proposed accelerator is lightweight overall as it contains

relatively small resource usage. Meanwhile, the proposed LEAP has

a low latency time and hence is also feasible for high-performance

applications.

While the major focus of this work is to develop an efficient poly-

nomial multiplier accelerator for HQC, future works may focus on

the construction of an HQC accelerator, further complexity reduction,

and side-channel attacks.
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TABLE II

IMPLEMENTATION RESULTS AND COMPARISON (SPARSE POLYNOMIAL MULTIPLIER FOR HQC)

TABLE III

IMPLEMENTATION RESULTS AND COMPARISON (EXTENSION TO BIKE, WHERE Nmem = 128)

G. Other Works

Other hardware implementations in the PQC field also include

lattice-based PQC designs of [13], [14], [15], [16], [17], [18],

and [19].

VI. CONCLUSION

This brief proposes a novel hardware accelerator for a sparse

polynomial multiplier of HQC: LEAP. We derived a new algorithm

for the targeted sparse polynomial multiplication. Then, we provided

the architectural details of the proposed accelerator. Finally, we pre-

sented the complexity analysis and implementation, and a related

comparison confirms the superior performance of the proposed LEAP.

This work is expected to be useful for the ongoing NIST PQC

standardization process.
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