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Abstract— The rapid progress in quantum computing has initiated a
new round of cryptographic innovation, that is, developing postquantum
cryptography (PQC) to resist attacks from well-established quantum
computers. In this brief, we propose a novel compact and optimized
polynomial multiplier accelerator (COPMA) for high-performance imple-
mentation of learning-with-rounding (LWR)-based PQC. As not many
LWR-based PQC schemes are available in the literature, we have just
used Saber, the National Institute of Standards and Technology (NIST)
third-round PQC standardization finalist, as a typical case study example.
First of all, we have formulated the polynomial multiplication, the major
component of Saber, into a novel “subpolynomial”-based processing
format for compact computation (yet has the potential for fast operation).
Then, we have designed the proposed algorithm into an area-efficient
polynomial multiplication hardware accelerator with high-frequency
operational capability. Finally, we have verified the efficiency of the
developed COPMA and have deployed it to build a cryptoprocessor.
The implementation and analysis demonstrate the superior performance
of the proposed COPMA. The proposed strategy is highly efficient and
can be extended to build other PQC hardware accelerators.

Index Terms— Compact and optimized polynomial multiplier accel-
erator (COPMA), high-performance, learning-with-rounding (LWR),
postquantum cryptography (PQC).

I. INTRODUCTION

There is a pressing need for acceptable alternatives for traditional

and extensively used cryptosystems such as Rivest Shamir Adleman

and Elliptic Curve cryptography, as these cryptosystems have been

proved to be vulnerable against quantum attacks [1], [2]. Therefore,

research related to postquantum cryptography (PQC) has drawn

increasing attention recently [3], [4]. As a result, various categories

of encryption schemes and algorithms have been developed and

optimized.

Among all the proposed schemes, the learning-with-rounding

(LWR) problem has gained much attention from the research com-

munity due to its high quantum attack resistance and relatively

simple implementation complexity [4], [5]. LWR is a variant of

the learning with errors (LWE) problem, where the errors are

produced by a rounding operation [6]. Recently, research has also

been carried out on efficient hardware implementations for LWR-

based PQC, especially on the field-programmable gate array (FPGA)

platform [2], [7].
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Polynomial multiplication over the ring is, typically, the key

arithmetic operation of LWR-based PQC, which is very obvious in

the representative LWR-based scheme (Saber) [6]. As the National

Institute of Standards and Technology (NIST) third-round PQC stan-

dardization finalist, herein Saber is used as a study example (not many

mature LWR-based schemes are available in the literature). However,

there still exist challenges for the efficient hardware implementation

of this polynomial multiplication: 1) most of the existing designs

require relatively large area usage to obtain high-speed operations [8],

[9]; and 2) almost all the existing lightweight polynomial multi-

pliers involve long computation time [10], [11], [12]. Besides that,

though there exist other hardware implementation strategies such as

high-level synthesis or hardware/software co-design, we here focus

on full-hardware design as it can lead to the most efficiency [8].

Based on these considerations, we propose a novel “subpolynomial”-

based processing strategy to design a polynomial multiplier with

the improved area and modest calculation cycles to obtain a novel

compact and optimized polynomial multiplier accelerator (COPMA).

COMPA was also deployed to build an efficient LWR-based PQC

coprocessor. Overall, the key contributions of this brief are as

follows.

1) Formulating the polynomial multiplier of LWR-based PQC into

a novel “subpolynomial”-based processing format for compact

computation and potential fast operation.

2) Mapping the proposed algorithm into an efficient polynomial

multiplier accelerator COPMA with the optimized area and

high-frequency operational capability.

3) Deploying the proposed COPMA (efficiency verified) to build

an LWR-based PQC coprocessor with comparison to showcase

the efficiency of the proposed design strategy.

The rest of the brief is arranged as follows. Section II presents the

proposed algorithm. The accelerator is presented in Section III. The

complexity and implementation of COPMA are shown in Section IV.

Further cryptoprocessor building is given in Section V. Conclusion

are drawn in Section VI.

II. COPMA: MATHEMATICAL DERIVATION

Brief overview: We have used the key encapsulation mechanism

(KEM) Saber, a module-LWR-based PQC [6], as a study case

applying the related notations and parameters throughout the brief.

For details of Saber, one can refer to [6].

Contribution-I: Overall, we have proposed a novel

“subpolynomial”-based polynomial multiplication algorithm for

Saber for compact computation and potential fast operation.

Definition: Let us define the polynomial multiplication as W =∑N−1
i=0 wi xi = DB mod f (x), where D = ∑N−1

i=0 di xi (di is

13-bit), B = ∑N−1
i=0 bi xi (bi is 4-bit), and wi is 13-bit [6]. The size

of bi and di are specified by Saber (also f (x)), but the proposed
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algorithm is also applicable to the polynomial multiplication of

arbitrary unequal-sized polynomials such as [13] (which can be one

of our future works). We further have

W = d0

(
b0 + · · · + bn−1x N−1

)
mod f (x) + · · ·

+ dN−1x N−1
(

b0 + · · · + bN−1x N−1
)

mod f (x) . (1)

Then, since for f (x) = x N +1, x N ≡ −1, which can be substituted

into (1) to execute the modulo operation as

W = d0

(
b0 + b1x + · · · + bN−1x N−1

)
+ · · ·

+ dN−1

(
−b1 − b2x − · · · − bN−1x N−2 + b0x N−1

)
. (2)

Without loss of generality, we can define B(0) = b0 + · · · +
bN−1x N−1 = B, . . . , B(N−1) = −b1 − b2x − · · · − bN−1x N−2 +
b0x N−1. Thus, we can rewrite (1) as

W =
N−1∑

i=0

B(i)di . (3)

Existing strategy: The existing high-speed designs are either based

on polynomial-wise-based schoolbook algorithms [8], [11] (similar

to (3), relatively large area) or Karatsuba algorithm (incurs very

large area). While considering the existing compact designs ( [10],

[11], [12]), not much algorithmic derivation has been made: [10]

is based on the Toom-Cook method, [11] is a lightweight version

of the high-speed architecture, [12] is based on the technique of

sharing of two point-wise multipliers within one DSP, and [14] is

a hardware/software co-design and no specific algorithm has been

presented.

Proposed derivation strategy: Based on the above discussion,

we propose here a novel “subpolynomial”-based polynomial mul-

tiplication algorithm, that is, only one part of the polynomial is

being accumulated to obtain compact implementation and possibly

fast operation. We thus define

B(i) =
u−1∑

j=0

B(i)
j (4)

where B(i)
j is a subpolynomial with v coefficients, for N = uv (u

and v are integers). For instance, we have

B(0)
0 = b0 + · · · + bv−1xv−1, . . . . . . . . .

B(0)
u−1 = bN−vx N−v + · · · + bN−1x N−1 (5)

which similarly applies to other B(i)
j (1 ≤ i ≤ N − 1).

Therefore, (3) can again be

W =
N−1∑

i=0

B(i)di =
N−1∑

i=0

u−1∑

j=0

B(i)
j di (6)

where the polynomial multiplication is computed by: 1) when i = 0,

execute
∑u−1

j=0 B(0)
j d0; 2) then switches to i = 1 and do the same

computation process, where the results are, respectively, accumulated

with the previous round of computation; and 3) repeat the computa-

tion process until i = N − 1.

We can finally have [from (6)]

W =
u−1∑

j=0

W j (7)

where W j = ∑N−1
i=0 B(i)

j di . We can have the algorithm as shown

in Algorithm 1 [following (4)–(7)]. This whole computation process

Algorithm 1 Proposed Polynomial Multiplication Algorithm

Applied to the LWR-Based PQC (Saber)

1

(Algorithm 1), undoubtedly, fulfills the proposed derivation strategy

that the final result is delivered through “subpolynomial”-based

accumulation and related operations.

III. COPMA: HARDWARE STRUCTURE

Brief overview: In this section, the proposed polynomial multipli-

cation hardware accelerator is presented by applying Algorithm 1,

which consists of four main components: 1) the input processing

component; 2) the multiplication component; 3) the accumulation

and output component; and 4) the control unit.

Contribution-II: We have proposed efficient algorithm-to-

architecture mapping techniques to design this accelerator.

Specifically, we have proposed a new accumulation format to

realize the proposed “subpolynomial”-based operation with compact

resource usage and high-frequency capability.

Input processing component: This component functions to make

the input polynomials ready for the computation of Algorithm 1.

As shown in Fig. 1, this component contains two circular shift

registers (CSRs) to load in di and bi , namely CSR-I and CSR-II,

respectively. CSR-I is a generic serial-in–serial-out shift register,

which takes one coefficient (13 bit) per cycle (during loading) and

sends out one coefficient every u cycles during the multiplication

process. Unlike CSR-I and CSR-II is a serial-in–parallel-out circular

shift register, as shown in Fig. 2, which takes one coefficient per

cycle in the loading mode and delivers v coefficients out in parallel

during the multiplication process. CSR-II also shifts coefficients by

(v − 1) positions to obtain all B(i)
j , and the switching of the modes

for both CSR-I and CSR-II are orchestrated by the control unit.

Multiplication component: The multiplication component executes

the N point-wise multiplications of step 5 of Algorithm 1. As shown

in Fig. 3, this component consists of two parts, that is, the precal-

culator and the selector. The precalculator reads in one coefficient

di and then calculates 2–4 multiples of di . The generated multiples

are then fed to the selector part. Then, v selectors choose the

corresponding multiple of di by reading bi . One MUX then selects

the positive/negative value of the desired result. In this way, the fan

outs of the MUXes are significantly reduced because we only need
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Fig. 1. COPMA: the proposed hardware accelerator.

Fig. 2. Internal structure of CSR-II for B (IC: inverter cell).

to select from 5 multiples (0–4) rather than 9 (−4–4), as the bi s are

denoted in the sign-magnitude format.

Accumulation and output component: We have designed a novel

accumulation component to realize the “subpolynomial”-based oper-

ation with the compact area and high-frequency capability. As seen

from Fig. 4, this component consists of v shift registers and v adders.

Each shift register is composed of 13 × N/v 1-bit registers. Each

adder takes in a 13-bit product sent out from the multiplication core

along with the output from the tail shift registers as inputs, then

adds the two input together, and loads it to the head of the shift

register which will shift a 13-bit chunk per cycle. The products

are accumulated and stored in the accumulation component and

finally shifted out in a correct order, which innovatively realizes the

proposed “subpolynomial”-based accumulation. As the accumulation

and output delivery are contained in the same component, resource

usage is minimized. Meanwhile, as a large number of registers are

Fig. 3. Multiplication component (IC).

Fig. 4. Details of the accumulation and output component.

Fig. 5. FSM with major control signals generated in each state.

involved, the designed component enables the accelerator to operate

at a high-frequency mode.

Control unit: The control unit produces signals such as “load,”

“reset,” “shift,” and “jump” to coordinate overall operation of

COPMA. We used a finite-state machine (FSM) with five consecutive

states, namely “reset,” “load,” “calculate,” “output,” and “done,” to

produce related control signals (Fig. 5). Here, csh_b, csh_d, and

csh_out are the signals determining whether the shift register for B,

D, and products of coefficients are taking in or shifting out the data.

IV. IMPLEMENTATION AND COMPARISON

Contribution-III.a: In this section, we provide the FPGA-based

implementation (and comparison) to confirm the efficiency of the

proposed COPMA.

FPGA-based implementation: The proposed design was coded

in VHDL and tested by Modelsim and then was implemented by
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AMD-Xilinx Vivado 2020.2 for N = 256 and bi as [−4, 4] [6].

To evaluate the compactness of the proposed design, we have

implemented the design with different v. Due to the available

hardware resources on the FPGA devices, we implemented the

proposed accelerator for v ≤ 64 (v, a power of 2) on the Artix-

7 XC7A12TLCSG325, while this limit grows to v = 128 for the

UltraScale+ XCZU9EG-2FFVB1156. The results are listed in Table I,

including LUT, register (FF), slices, and maximum frequency (Fmax),

latency, and the area–delay product (ADP). Note that the existing

designs did not report the slice usage and we just used the number

of LUTs to calculate ADP. Nevertheless, as the existing designs

such as [10], [12] also used other resources (DSPs and BRAMs),

their actual ADPs are higher than those listed.

Performance discussion: As shown in Table I, the area of the

proposed design increases as v grows. Also, as more components

are getting involved as v increases (causing a larger delay of signal

propagation), the maximum frequency gradually decreases. However,

we notice that the latency drops significantly as v doubles, which

provides a better computation time. Thus, we can see that ADP

constantly decreases as v increases: a larger v would lead to better

overall efficiency.

Comparison: As shown in Table II, our proposed design provides

much better area–time complexities than the state-of-the-art. For

v = 64, the ADP reduction is at least 67.50%, 41.05%, and 12.2%

compared to [10], [11], [12], respectively. Note the design of [12]

needs extra two BRAMs and two DSPs and its actual ADP is higher

than the listed value in Table II (the same to [10]). It is noted that

for a fair comparison, we only compare the proposed one with the

existing compact designs.

V. EXTENSION TO THE LWR-BASED PQC COPROCESSOR

Contribution-III.b: We further deployed COPMA to construct an

LWR-based PQC coprocessor that operates key generation, encapsu-

lation, and decapsulation of Saber, following the existing design style

in [8]. The implementation and comparison confirm the efficiency of

the proposed design.

This coprocessor contains the processor interface and control unit,

data RAM, program RAM, data bus and manager, and individual

arithmetic building blocks (i.e., binomial sampler, Keccak core, poly-

nomial multiplier (COPMA), etc.), as shown in Fig. 6. We have made

several adjustments to the polynomial multiplier while following the

same construction for the other components. We adjusted the input

size of the shift registers to 64-bit, instead of 4 and 13 bits, to interface

correctly with the RAM. We added a counter for the “load” state in

the control unit to enable/disable the two shift registers at the proper

time to load B and D, consecutively. An additional signal read is

introduced when all the modular polynomial multiplications are done.

The control unit will not go to the “output” state until it receives

the read signal, so that it can keep accumulating the multiplication

result and output afterward. We also changed the output size from

13 × v-bit to 64-bit so that the multiplier can output 1 word per

cycle at the “output” state.

Implementation and comparison: We have implemented the copro-

cessor, for v = 64 and v = 128, respectively, on the UltraScale+

XCZU9EG-2FFVB FPGA using Vivado 2020.2.

As shown in Table III, as different designs used different resources,

it is hard to use a normalized metric such as ADP for comparison.

Nevertheless, it is seen that our coprocessor possesses the high-

est frequency, which is more than 1.5× higher than the existing

high-performance Saber implementation [8], for both v = 64 and

v = 128. Although the number of cycles for KenGen./Enca./Deca.

is slightly higher than the existing high-performance implementa-

tion [8], our coprocessor still has a good delay time due to the high

TABLE I

IMPLEMENTATION RESULTS FOR THE PROPOSED COPMA

TABLE II

COMPARISON WITH EXISTING DESIGNS

Fig. 6. High-level description of the proposed instruction-set compact
LWR-based PQC coprocessor.

operating frequency. Also, when comparing with the existing work

in [8] (best balanced one in the literature), for v = 64, although the

delay of the proposed coprocessor is higher, the circuit area is only

85.74%; for v = 128, the novel design beats the existing work with

a 9.56% less area [the number of configurable logic blocks (CLBs)]

used, while the delay time is similar; the constructed coprocessor

consumes 26.55% and 15.89% less than [8], for v = 64 and v =

128, respectively. Note that the design of [8] has already shown its

efficiency over [10], [14]. When comparing with [15], the proposed

design (v = 128) has roughly doubled the delay, but with almost

half the number of LUTs and FFs. While the design of [15] has

used 64 additional DSPs, the existing one of [15] has more extra

resource usage than the proposed one, that is, the overall area–time
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TABLE III

COMPARISON OF THE AREA–TIME COMPLEXITIES FOR THE PROPOSED AND EXISTING HARDWARE IMPLEMENTATIONS ON FPGA

complexities of the proposed design is better than [15]. Besides

that, it is clear that the design of [16] exhibits significantly less

performance at the approximate same cost than the proposed one.

Finally, when comparing [9], the proposed design has efficiency in

much smaller resource usage, while the one of [9] covers only a

public-key encryption scheme.

Moreover, as shown in Table III, the proposed design used rela-

tively a larger number of FFs (yet still with small CLBs) to achieve

high-frequency operation, which leads to the overall area–time effi-

ciency. Meanwhile, after carefully measuring and comparing the per-

formance for different choices of v, we conclude that the coprocessor

reaches its best operating efficiency at v = 128. With this setup, the

coprocessor reaches a high operating speed with a relatively low area

usage, which is suitable for high-performance applications. On the

other hand, the proposed design of v = 64 uses considerably less

resource usage with a relatively slow speed and hence is preferred

for compact applications. Practically, users can always select the ideal

v to obtain the optimized design for specific applications.

Discussion and related works: While this work aims to develop

an efficient COPMA, future work may focus on its extension and

side-channel attacks (though the proposed design has constant time

and is resistant to timing attacks).

Other works also include the regular ring-LWE-based PQC

designs [17], [18], a polynomial multiplier accelerator [19], and

high-level synthesis of PQC schemes [20]. As these designs used

different study cases, we do not directly compare them though they

are also important works in the PQC field.

VI. CONCLUSION

This brief proposes COPMA, a novel hardware polynomial multi-

plier accelerator for LWR-based PQC. We first derived the proposed

algorithm by using Saber as a study case. A novel accelerator

is then proposed, along with the implementation result on FPGA

devices (with comparison). A PQC coprocessor was built deploying

the proposed polynomial multiplier. A comparative evaluation with

the state-of-the-art shows the superior efficiency of the proposed

COPMA.
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