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Abstract

The rapid spread of SARS-CoV-2 has placed a significant burden on public health systems

to provide swift and accurate diagnostic testing highlighting the critical need for innovative

testing approaches for future pandemics. In this study, we present a novel sample pooling

procedure based on compressed sensing theory to accurately identify virally infected

patients at high prevalence rates utilizing an innovative viral RNA extraction process to mini-

mize sample dilution. At prevalence rates ranging from 0–14.3%, the number of tests

required to identify the infection status of all patients was reduced by 69.26% as compared

to conventional testing in primary human SARS-CoV-2 nasopharyngeal swabs and a coro-

navirus model system. Our method provided quantification of individual sample viral load

within a pool as well as a binary positive-negative result. Additionally, our modified pooling

and RNA extraction process minimized sample dilution which remained constant as pool

sizes increased. Compressed sensing can be adapted to a wide variety of diagnostic testing

applications to increase throughput for routine laboratory testing as well as a means to

increase testing capacity to combat future pandemics.

Author summary

The rapid spread of COVID-19 highlighted the need for testing approaches that are rapid

and accurate while reducing the use of critical testing reagents when resources are scarce.

One method to increase testing throughput and reduce material usage is to pool samples

prior to testing. With this method a single negative result indicates all samples within the

pool are negative. However, the efficiency gains from pooling samples decreases when the

infection prevalence rate is high, as with the COVID-19 pandemic, where many pools will

return positive test results. In this study, we present a novel mathematical approach to
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pooled testing based on compressed sensing theory allowing us to accurately identify

infected samples within a pool at high prevalence rates. Experimentally, we validated our

compressed sensing method in a coronavirus model system as well as with primary

human COVID-19 nasal swab samples. Using our method, we were able to reduce the

number of tests required by 69% while identifying infected samples with 100% accuracy.

Our compressed sensing pooled testing method exhibited high accuracy and reproducibil-

ity and offered several advantages including the conservation of vital supplies and

increased throughput that may facilitate a more rapid response to future pandemics.

Introduction

The rapid spread of SARS-CoV-2 worldwide placed a significant burden on diagnostic testing

and public health to provide fast and accurate testing strategies. The number of COVID-19

tests being performed each day has increased 8-fold since testing reagents became widely avail-

able. In the United States, an average of 1–2 million COVID-19 quantitative reverse transcrip-

tion polymerase chain reaction (qRT-PCR) tests were performed each day in November

2020-May 2021, August 2021-October 2021, and December 2021-February 2022. To date, the

total number of tests performed in the US is nearly 1 billion with a daily average still ranging

from 50,000 to over 1 million [1–3]. Additionally, multiple new and more infectious variants

of COVID-19 continue to emerge worldwide harboring genetic mutations significant enough

to result in breakthrough infection causing concern for current vaccine formulations [4–8].

Continued testing and screening remain critically important to minimize virus spread, thus

the development of innovative strategies and techniques to increase testing capacity without

reducing the accuracy and efficacy of testing is crucial.

A traditional method to increase testing capacity is by pooling samples as opposed to con-

ducting individualized testing, known as “group testing” [9–11]. When the prevalence rate is

low within the population, the majority of samples will test negative, thus a single negative

result indicates that all patients within that pool are negative. However, the ability to accurately

identify the status of individual samples using this method diminishes quickly as the preva-

lence rate increases [12–15]. Current CDC guidelines require subsequent individual testing of

all patients within a pool if the pool is positive [16]. Throughout the SARS-CoV-2 pandemic,

locally high prevalence rates of >10% have been observed repeatedly with some areas surpass-

ing 30% multiple times during recent waves of infections caused by newly emerging virus vari-

ants [17–19]. These high prevalence rates are well beyond the capacity of traditional pooling

methods as many pools will be positive requiring additional individual testing and inevitably

increasing the number of tests required. More sophisticated pooling efforts have been devel-

oped and validated during the pandemic though the accuracy and effectiveness of these new

approaches decreases as the prevalence rate rises, highlighting the need to develop new

approaches that can be used at high prevalence rates during the current and future pandemics

[13,16,20–23].

In this study, we present a novel and innovative pooling protocol based on compressed

sensing theory utilizing mathematically-derived mixing matrices and decoding algorithms to

accurately identify positive patients within pools at high prevalence rates. The application of

compressed sensing in signal analysis is widely documented in the literature. In the biological

sciences, compressed sensing has been employed in the identification of rare genetic alleles

and signal acquisition in fluorescence microscopy [24–27]. The compressed sensing theory

indicates that reconstruction of a sparse signal can be achieved with fewer measurements than
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linear signal processing. The assumption is that the majority of signal measurements will be

either zero or irrelevant. This aspect of compressed sensing and signal analysis directly applies

to diagnostic testing, even in cases of high prevalence.

Additionally, we propose a new approach to pooled testing in which the viral load of each

individual sample within a pool can be quantified [28–30]. Secondary to the power of com-

pressed sensing to reduce the number of measurements needed, the main objective is to pro-

vide an estimate of the original signal. In the case of pooled testing, that translates to a real

number determination of individual patient viral loads within a pool, not simply the overall

viral load of the pool. Our proposed approach works both in a non-adaptive setting, where

only one qRT-PCR run is performed for a group of samples, and in an adaptive setting, where

additional qRT-PCR runs can be requested based on earlier testing results. We also employ a

modified RNA extraction process in which the patient swab samples are pooled prior to RNA

extraction allowing the sample to be concentrated thus minimizing sample dilution and the

possibility of false negative results. This approach has shown high accuracy and reproducibility

at prevalence rates >10% with various sample sizes using an experimental mouse coronavirus,

mouse hepatitis virus strain 1 (MHV-1), as well as human nasopharyngeal patient samples

containing SARS-CoV-2 RNA.

Results

We consider the problem of estimating the viral load of a population with N individuals x 2

RN
þ

from their pooled testing results in n pools. The pooling protocol is modeled by a mixing

matrix A 2 Rn�N
þ

which is a composite of the participation matrix P2{0,1}n×N and the viral

load adjusting matrix W 2 Rn�N
þ

, i.e., A = P�W where � denotes element-wise multiplication,

i.e., Aij = PijWij. We denote by b 2 Rn
þ

the viral load of all the pools after the mixing but before

the qRT-PCR amplification, i.e., b = Ax. The value of b can be determined by the Ct value read-

out of the pools after the qRT-PCR. The i -th pool is claimed to be positive or pi = 1 if yi2O,

and negative or pi = 0 if yi=2O where O is the range of Ct value, e.g., O = [12,34], and p2{0,1}n is

the status of all the pools. This relation can be modeled by an indicator function IO as follows:

pi ¼ IOðyiÞ ¼
1; if yi 2 O;

0; if yi=2O:

(

The quantitative relation between b and y can be obtained via interpolation, i.e., b = f−1(y)

where f−1 is the element-wise function for mapping the Ct value to viral load, and it is obtained

via interpolation, i.e., bi = f−1(yi). For the sake of reducing the false negative at the cost of more

later tests, a technician can be conservative enough to mark positive results for mixtures

although they have moderately large Ct values for which negative results can be assigned when

the criterion is relaxed. We model this process as bi = f−1(yi+ηi).
In practice, multiple stages of pooling may be required to achieve a balance between effi-

ciency and accuracy. In this scenario, we have a group of participation matrices, i.e., PðiÞ 2

f0; 1g
ni�N

; i ¼ 1; 2; � � � ; viral load adjusting matrices, i.e., WðiÞ 2 Rni�N
þ

; i ¼ 1; 2; � � � ; and mix-

ing matrices, i.e., AðiÞ 2 Rni�N
þ

; i ¼ 1; 2; � � � ;. A visual illustration of the above mathematical

modeling framework of the pooling procedure in the i -th stage is presented in Fig 1.

Our goal is to decode the status of all the individual samples, i.e., positive (meaning that a

sample contains viral RNA) or negative (meaning that a sample does not contain viral RNA),

and the viral load of each sample. The problem can be solved under the compressed sensing

framework by finding the solution to the following L1 optimization problem, minxkxk1, such

that f−1(y) = Ax, under the assumption that x is sparse, or minxkxk1, such that f−1(y+η) = Ax

PLOS COMPUTATIONAL BIOLOGY Use of compressed sensing for COVID-19 testing and beyond

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010629 October 24, 2022 3 / 20

https://doi.org/10.1371/journal.pcbi.1010629


where η2Rn characterizes the noise or reading error occurring in the readout of Ct values

[28, 30].

Though the accuracy outcomes from solving the above optimization problems are favorable

when N is large, that is not optimal for keeping the complexity of the mixing process low in

clinical virus testing. Therefore, we will focus on the cases where N is small, i.e., N = 7,15,31,40,

which differs from the case in compressed sensing where the values of N and n are large.

Mixing matrix design

The design of mixing matrix A2Rn×N involves a participation matrix and a viral load adjusting

matrix. The participation matrix P2{0,1}n×N is a binary matrix, and its elements indicate the

participation of individual samples in different pools, i.e., the i -th individual sample partici-

pates in the j-th pool if Pji = 1, and it does not appear in the j-th pool if Pji = 0. The elements of

the viral load adjusting matrix W 2 Rn�N
þ

indicate the adaptation or scaling factor of the viral

load (copy number/volume) of individual samples that are used in different pools due to the

pooling procedure where Rn�N
þ

is the set of positive real numbers. For example, the viral load

of i-th individual sample added to the j-th pool is diluted by 4 times if Wji ¼ 1

4
.

In our laboratory experiments, we utilized an MHV-1 coronavirus model system in which

we can concentrate and fix the sample dilution. In our primary human RNA samples contain-

ing SARS-CoV-2 viral RNA, the samples were supplied as pre-extracted RNA and could not be

concentrated after pooling [31–36]. Thus, the design of both the participation matrix and the

viral load adjusting matrix differs for these two virus models illustrating our system’s ability to

adapt to real-world situations. In our experiments with MHV-1, the participation matrices are

obtained by constructing the parity check matrices. There is a one-to-one correspondence

between the participation matrix P and the mixing matrix A, we will refer them alternatively in

the subsequent sections.

Parity check matrix and fixed dilution

We now introduce how the participation matrix P and the viral load adjusting matrix W are

designed for MHV-1 with a small population size N, i.e., N = 7, 15, and 31, and a low

Fig 1. Mathematical framework for pooling in the i -th stage in a multiple-stage pooling strategy.

https://doi.org/10.1371/journal.pcbi.1010629.g001
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prevalence rate. In this scenario, there is approximately one infected individual within N = 7,

15, or 31. From information theory, we know that the parity check matrix for Hamming codes

can guarantee the identification of one error in codewords or the identification of the parity

check matrix column which corresponds to the error in the codewords [37]. In virus testing,

such a matrix can guarantee the identification of the positive sample within all of the tested

samples. This exactly fits our need for the laboratory experiments with MHV-1 using a small

population size and low prevalence rate, and we can use such parity checking matrices as the

participation matrices.

The construction of such parity check matrices can be described as follows. We let

N = 2n−1, and the columns of P are simply all the nonzero binary sequence of length n. For

example, when n = 3, each column of P has 3 elements. Since each element of the column can

be either 0 or 1, we have totally 23 different columns. After removing the column with all zero

elements, the rest N = 23−1 columns are used to form P. As we consider N = 7, 15, and 31, the

corresponding participation matrices are shown in Fig 2A–2C.

In our laboratory experiments with MHV-1, since we take 5 μL from each individual sam-

ple to form the sample pool which is then concentrated to a volume of 20 μL regardless of the

number of individual samples participating in the pool implying that the viral load for an indi-

vidual sample within a pool is ¼ of its original viral load. Thus, we can design the allocation

matrix as follows:

Wij ¼
1=4; Pij 6¼ 0

0; Pij 6¼ 0
; i 2 ½n�; j 2 ½N�:

(

Bipartite graph matrix and unfixed dilution

Though these parity check matrices are easy to construct, it cannot scale up for large N or high

prevalence rates since such parity check matrices can only guarantee the identification of one

positive sample, while high N or prevalence rates can result in more than one positive sample

in the population. Another consequence of a large N is the high number of nonzero elements

in the participation matrix, which results in increased complexity during laboratory

Fig 2. Optimized group testing mixing matrix design. (A-C) Hamming code parity check pooling matrix design for N = 7, 15, and 31. (A) N = 7 numerical

matrix with 3 pools (3x7). (B) N = 15 numerical matrix with 4 pools (4x15). (C) N = 31 pixel matrix with 5 pools (5x31). (D) Bipartite pooling matrix design

optimized for high N and prevalence rates. N = 40 pixel matrix with 16 pools (16x40). (A,B,C,D) White pixel indicates a sample included in the pool. Black

pixel indicates a sample not included in pool.

https://doi.org/10.1371/journal.pcbi.1010629.g002
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experiments. This motivates us to design participation matrices which can not only succeed in

scenarios where positive samples are present, but also have low complexity as indicated by the

number of nonzero elements in the participation matrix. We propose to use the binary matri-

ces constructed using a bipartite graph as the participation matrices [38,39]. A bipartite graph

is a graph G(L, R, E) with two sets of vertices, i.e., left vertices L and right vertices set R, and

edges only exist between vertices from different vertex sets. For a given bipartite graph, each

vertex i in L corresponds to a column in a binary matrix P, and each vertex j in R corresponds

to a row in the matrix. The matrix has element Pji = 0 if there is no edge between i and j, or Pji
= 1 if an edge exists. As we know, each variable (sample) is assigned to a subset of measure-

ments (pools). Intuitively speaking, we select a different subset of pools for each variable in a

way such that every possible k infected samples are connected to a sufficiently distinct set of

measurements. In this way, by looking at the measurement results (for example, which pools

are positive), one can inversely figure out which samples are infected. More precisely, in com-

pressed sensing, we would like to pick the subset of pools for each variable in a way such that

every 2k column vectors of the corresponding 0–1 measurement matrix are linearly indepen-

dent [28,29,38,39]. We designed our measurement matrix or the bipartite graph according to

the design of expander graph which has nice theoretical performance guarantees [39]. In this

approach, we assign each sample to l randomly chosen pools. According to coding-theoretic

results, such resulting bipartite graphs will correspond to a satisfactory measurement matrix

with high probability if the number of pools is large enough [39]. After generating the mea-

surement matrix from such procedures, we use our previously designed optimization methods

from Cho M, et al. 2018 to verify the required algebraic conditions are satisfied for this gener-

ated matrix [38]. In fact, after testing many randomly generated matrices using this approach,

we find that the bipartite graph shown in Fig 2D (having 4 pools per sample) satisfies the

required algebraic condition for distinguishing 2 Infected samples among 40 samples, with

theoretical performance guarantees [38]. In practice, we find that this matrix works very well,

often greatly outperforming the (conservative) performance guarantees we computed, mean-

ing the algorithm figures out which samples are infected even when the number (k) of infected

samples is bigger than the guaranteed sparsity 2. We use the above approach to construct a

well-designed binary matrix P2{0,1}16×40 for our SARS-CoV-2 experiments with each column

having only 4 nonzero elements as shown in Fig 2D. In our case, R is the set of pools, and L is

the set of individual samples.

For SARS-CoV-2 virus testing in our laboratory experiments, since equal volumes of sam-

ples participating in a particular pool are mixed together without sample concentration, the

viral load for each individual sample in the mixture is scaled down by the number of partici-

pants. Thus, the allocation matrix can be designed as:

Wij ¼

1
PN

j¼1
Pij

; Pij 6¼ 0

0;Pij ¼ 0

; i 2 n½ �; j 2 N½ �:

8
><

>:

Sample pooling

In many group testing processes, patient samples are pooled after RNA extraction or the total

pool volume dictates the RNA elution volume. In both cases, this means the fold dilution of

each sample is dependent on the total number of samples within a pool. Thus, as the number

of patients pooled increases, the sample becomes more dilute, significantly increasing the

probability of a false negative test result. This phenomenon has required pools to remain

small, usually less than 5 patients per pool [14,15,23,40]. To reduce the dilution effect of pool-

ing, a modified RNA isolation protocol was developed using TRIzol phenol/chloroform that
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can be more broadly applied to RNA extraction kits and automated systems such as the King-

Fisher [41]. With this method, patient samples are pooled prior to RNA extraction. After the

isopropanol precipitation and ethanol step, the pelleted RNA can be significantly concentrated

by reducing the final volume of water used to solubilize the RNA thus minimizing the potential

impact of sample dilution (Fig 3A).

To test the dilution effect of traditional pooling on qRT-PCR Ct results as compared to our

modified RNA extraction protocol, we utilized the widely used murine coronavirus MHV-1 as

a model system [31–36]. Using a MATLAB-derived computational script, we pseudo-ran-

domly generated simulated samples based on a Ct value range of 12–34 cycles. These

Fig 3. Modified pooling protocol eliminates dilution effect of group testing. (A) RNA extraction and qRT-PCR workflow in individual testing, traditional

pooling (group testing), and the modified pooling protocol. Numerical examples are theoretical to display dilution effect and can be scaled to individual

diagnostic testing facility protocols. (B) MHV-1 was used to generate individual samples of various viral loads (1x109-1x102 copy number/qRT-PCR reaction).

qRT-PCR was performed on each sample to develop ground truth Ct values. Samples were then used in various pool sizes in traditional pooling and in the

modified pooling protocol. Increases in sample Ct values from the ground truth values were calculated and plotted as ΔCt Value. Data are presented as the

mean ± SEM from two combined independent experiments (n = 16). For statistical analysis a one-way ANOVA with a Tukey’s post hoc test was performed.
���p<0.001, ns = not significant. Created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1010629.g003
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experimental parameters were chosen from current CDC testing guidelines and growing evi-

dence that individuals with viral loads corresponding to a Ct value of 34 and above are likely

non-infectious and/or not reliable to diagnose positive patients [42–45].

As expected, samples pooled by traditional group testing exhibited a significant impact on

the Ct value resulting in signal dilution (Fig 3B). However, the dilution effect was minimized

or eliminated in the modified RNA extraction protocol. (Fig 3B). Importantly, the ΔCt was

consistent among all pools regardless of the number of samples indicating the pool size could

be significantly increased without causing further sample dilution. These results suggest that

the dilution caveat of traditional group testing can be minimized by our modified extraction

protocol which could be implemented using automated RNA extraction devices in clinical

labs. Patient RNA samples can also be concurrently extracted individually and banked if repeat

testing is required. This approach provides a standard dilution effect that is consistent regard-

less of either the pool size or the volume which significantly simplifies downstream computa-

tion and decoding while reducing the chance of a false negative result.

Viral load decoding with success certificate

We next developed a decoding algorithm which decodes each sample’s viral load from testing

results of pooled samples. A unique feature of our decoding algorithm is the decoding success

certificate it provides: assuming that the PCR instrument testing readings are accurate, our

decoding protocol and algorithm can guarantee that the decoding results reveal the only set of

positive samples that fit the testing results, and thus guarantee correctly identifying all the posi-

tive and negative samples.

We want to emphasize that in the virus testing practice, we will only have the Ct value data

y, and the qualitative data p which is obtained from the Ct value. So, if there is no error, a pool

has positive testing results, i.e., pi = 1 if and only if there is at least one positive element of x
participating in the i-th pooling test. The goal of viral load decoding is to decode the viral load

vector x from Ct value data y. Thus, we end up with solving for x using the under-determined

measurement systems, i.e., f−1(y) = Ax where f−1 is the inverse function of f. Note that in virus

testing, the Ct value is first obtained from the qRT-PCR, and then used for interpolating the

virus load f−1(y) for each pool. Since we reduce the number of tests used, this is often an under-

determined system. However, since the viral load vector x is often sparse (meaning only a

small number of samples are positive), we are motivated to borrow techniques from com-

pressed sensing to solve for the sparse x. In compressed sensing literature, the problem is usu-

ally solved by the basis pursuit approach minxkxk1, such that f−1(y) = Ax under the assumption

that x is sparse [28,30]. However, naïve applications of the compressed sensing approach can-

not provide success certificates for the decoding results; traditional compressed sensing can

provide a sparse solution but cannot exclude the possibility that there exists another solution

(possibly denser) fitting the testing results. In addition, different Ct values (which are in nature

the logarithm of the viral load) dictate a wide range for viral loads measured in real numbers

(for example, from 10−6 to 106). Traditional compressed sensing techniques cannot handle

such a large range of viral loads accurately and, in basis pursuit decoding results, we cannot

distinguish well between negative samples and positive samples with a small but non-negligible

viral load [28,29]. This is especially true when we consider a noisy version of this problem,

where f−1(y+Δy) = Ax where Δy2Rn characterizes the noise occurring in the measurement of

Ct values.

Another difference between solving under-determined systems in compressed sensing and

those in the virus testing is that the values of N and n are often small in the later, and large in

the former. A large N may not be optimal for maintaining high reliability and minimizing the
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complexity of mixing process in clinical virus testing (S1 Fig). This subtle difference is critical

for successful recovery: the commonly used L1 minimization in compressed sensing may not

be able to recover x when N is small.

Novel compressed sensing-based virus decoding algorithm

Addressing the challenges mentioned above, we propose a novel algorithm for decoding viral

load from pool testing results (S2 Fig). A unique feature of our algorithm is that our algorithm

work under both non-adaptive pool testing (using only one PCR run), and adaptive pool test-

ing which allows our algorithm to provide success certificates for decoding results. Our algo-

rithm utilizes quantitative qRT-PCR readings, beyond traditional binary readings, and novel

decoding methods to greatly reduce the number of needed tests.

Our testing/decoding protocol is described by Algorithm 1 (main decoding algorithm),

which calls Algorithm 2 (determining definitely positive and definitely negative samples) and

Algorithm 3 (sparse support set estimation) as subroutines. Algorithm 1 uses Algorithm 2

(determining definitely positive and definitely negative samples) and pool testing results to

decode samples into the set of definitely positive samples (Pos), the set of definitely negative

samples (Neg), and the set of samples with undetermined statuses (U). Note that our Algorithm

2 provides a success decoding certificate for the samples in Pos and Neg. Furthermore, Algo-

rithm 1 utilizes compressed sensing and sparsity inspired Algorithm 3 to estimate a sparse sup-

port set (namely a small support set) K which contain the set of samples which are either

definitely positive or highly likely positive. If only non-adaptive testing is allowed, we can sim-

ply already declare K as the decoded set of positive samples. If adaptive testing is allowed, Algo-

rithm 1 requests new intelligently-designed (designed under the guidance of the decoded sets

Pos, Neg, U and K) pool testing, and repeat Algorithm 2 of determining definitely positive and

definitely negative samples. This testing-decoding process is repeated until all the samples are

decoded to be in either the set of positive samples or the set of negative samples, thus providing

success decoding certificates for every sample.

Now we discuss how the decoded sets Pos, Neg, U and K can help optimize the design of

newly requested pools in adaptive testing and help save the number of tests. The decoded

sparse set K provided by Algorithm 3 is an “estimate” of the ground-truth set of positive sam-

ples, and can be used to greatly reduce the number of needed tests. For example, we can pool

the set of samples not belonging to the union of Pos, Neg and K into a single pool for testing: if

the testing result is negative (which happens with high probability), that set of samples can all

be classified into set Neg without needing any further testing for them; if the testing result is

positive (which rarely happens), we can test those involved samples individually. For samples

in K but not in Pos after the first round of testing, we perform individual confirmation testing

to obtain success certificate for them in the 2nd round of tests in adaptive testing. In fact, if we

adopt such testing designs, we can provide success certificates for each sample within at most 3

rounds of testing, while greatly saving the number of needed tests compared with traditional

group testing or individual testing.

Algorithm 1 relies on Algorithm 2 to determine definitely positive and negative samples,

and to provide decoding success certificates. To do so, in Algorithm 2, we propose to solve a

sequence of minimization and maximization pairs for estimating an upper and a lower bound

for each element of x 2 RN
þ

. For i = 1,2,� � �,N, we solve

minx xi;

such that Lj � ðAxÞj � Uj; j 2 suppðpÞ
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ðAxÞj ¼ 0; j=2suppðpÞ

x � 0;

and

maxx xi;

such that Lj � ðAxÞj � Uj; j 2 suppðpÞ

ðAxÞj ¼ 0; j=2suppðpÞ

x � 0;

where Lj ¼ f �1ðyubj Þ ¼ f �1ðyj þ ZÞ and Uj ¼ f �1ðylbj Þ ¼ f �1ðyj � ZÞ with η>0 being a parame-

ter characterizing the noise in Ct value readings and supp(p) = {i2{1,2,� � �,n}: pi6¼0} is the set of

indices whose corresponding elements of p are nonzero (namely positive pools). After we get

the lower bound estimates x�
lb 2 RN

þ
(x�

ub 2 RN
þ

), we compare each of its elements with an upper

bound virus load threshold parameter εvlub (εvllb). If ðx�
lbÞi > εvlub (or ðx�

ubÞi < εvllbÞ, we claim

the i-th sample of x must be positive (or negative). By performing the comparison for each

i2[N], we can obtain index sets Pos and Neg which are the index sets of samples which are defi-

nitely positive and definitely negative, respectively. Finally, the index set of samples whose sta-

tus cannot be determined can be obtained as U: = [N]\(Pos[Neg).
Algorithm 3 (sparse support set estimation) is instead used to estimate a “most likely”

sparse support set, namely the set of positive samples. Algorithm 3 is inspired by ideas in com-

pressed sensing which takes advantage of the viral load vector often being sparse. However,

there is a key difference between traditional compressed sensing and how Algorithm 3 is used

in our decoding: traditional compressed sensing cannot guarantee that sparse support set must

be the ground-truth set of positive samples; in contrast, Algorithm 1 can utilize Algorithms 2

and 3 to provide eventual success decoding certificates using as few tests as possible, as

explained above. To perform “sparse support set estimation”, Algorithm 3 uses previously

decoded Pos, Neg, U and solves a weighted least square problem for each possible cardinality

k2{1,2,� � �,|U[Pos|} and for each possible support set K�U[Pos with cardinality with k ele-

ments, i.e.,

minx

X

j2suppðpÞ

ðf �1ðyjÞ � ðAxÞjÞ
2

ðf �1ðyjÞÞ
2

;

such that xK � 0; xðPos[UÞ K ¼ 0; xNeg ¼ 0:

The main idea is to estimate a sparse virus load vector x 2 RN
þ

such that the deviation

between the estimated pool virus load (Ax)j and the corresponding interpolated pool virus

load f−1(yj) is minimized. Due to the wide range that the sample virus load can reside, i.e., from

10−6 to 106, we normalize the deviation via a scaling factor 1

f�1ðyjÞ
. If the solution of the optimiza-

tion problem above gives a good fit for the pool measurement results, we will update the

involved the samples as highly likely positive samples, and include them in the sparse support

set.
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Usually in practice, the combinatorial characteristics of the exhaustive search can bring

high computational complexity and high accuracy. In our virus testing problem, due to the

small size of the problem, the exhaustive search can be a good option. Another technique we

use to reduce the computational complexity is that we try to find the sparsest solution. This is

achieved by finding the solution with the smallest support set such that the misfit between the

estimated Ct value and the measured Ct value is smaller than a given tolerance for all the

observed positive pools.

Overall, in our testing protocol (described by Algorithm 1), after we find a sparsest solution

to the testing result, we continue to provide a success certificate for our decoding results. We

pool the individual samples that are in U but not in the set K of highly likely positive samples

together into a pool (namely pool the samples which are highly likely to be negative samples

but not yet certified to be negative), and test them collectively. If the testing result for that pool

is negative, all the involved samples are certified to negative. For the samples in the sparsest

solution but not in the set Pos, we also test them individually to certify the correctness of the

decoding results. In summary, through an adaptive data requesting component (more

abstractly detailed below), whenever our protocol decode a sample to be positive or negative,

that decoding result comes with a success certificate.

The adaptive data requesting component is motivated by the fact that even though one

round of pooling tests is usually enough to accurately determine the status of all the individu-

als, extra rounds of pooling can be requested if a single round of pooling test is not enough to

provide decoding success certificate. In this scenario, we denote the mixing matrix A in the

first round by Að1Þ 2 Rn1�N
þ

where n1 = n, and the mixing matrices in the later rounds by

Að2Þ 2 Rn2�N
þ

, Að3Þ 2 Rn3�N
þ

, � � �. Correspondingly, the pooling results in different rounds are

yð1Þ 2 Rn1

þ
, yð2Þ 2 Rn2

þ
, � � � where y = y(1). Then in the i-th round of pooling, we use all the pool-

ing results yð1Þ 2 Rn1

þ
, yð2Þ 2 Rn2

þ
, � � �, yðiÞ 2 Rni

þ
and the mixing matrices Að1Þ 2 Rn1�N

þ
,

Að2Þ 2 Rn2�N
þ

, � � �, AðiÞ 2 Rni�N
þ

for estimating all the individual samples. The extra pooled test-

ing results can be obtained for samples whose status and viral load cannot be determined by

previous pooled testing results. The mixing matrices for pooling the undetermined samples

can be case-specific in practice or follow the pool-highly-likely-negative-sample designs

described above in the manuscript. Under the multi-stage pooling framework, a visual illustra-

tion of the estimation in the i-th stage pooling is presented in S3 Fig

Compressed sensing pooling protocol validation

To demonstrate a proof of concept, we simulated experimental parameters as in Fig 3 where a

MATLAB-based script was used to generate pseudorandom experimental parameters based

on N = 7, 15, and 31 total samples with an overall prevalence rate ranging between 0–10%. The

script was ran 25 times for each N returning 75 unique testing scenarios. Due to random distri-

bution of positive (ie infected) samples, the individual experiment prevalence rates (defined as

the number of positive samples divided by N) ranged between 0–14%. We subsequently tested

pooling scenarios with the model coronavirus, MHV-1, to generate positive samples in testing

scenarios with at least one positive sample per pool [31–36]. Experiments where all samples

within a pool were negative were excluded from in lab physical validation testing. Samples

were mixed together to form n different pools according to the participation matrix in Fig 2.

Total RNA was extracted from the generated pools utilizing our 1:4 modified pooling tech-

nique (Fig 3A). Total RNA isolated from sample pools was then amplified via qRT-PCR to

generate a numerical readout of Ct values. To avoid accidental errors, for every group of N
samples and a given mixing matrix A2Rn×N (where n is is n1 in Algorithm 1) experiments

were duplicated. Ct values from the tested pools were delivered to the decoding team blinded
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to all experimental parameters including the prevalence rate. In all the experiments carried out

in this manuscript, we have obtained 100% sensitivity and specificity for our compressed sens-

ing-based approach.

In one of our experiments where N = 31, pools 1, 2, 4, and 5 returned Ct values within the

bounds to be considered positive (Table 1). With this information alone, Algorithm 2 can

decode the samples with Neg = {3,6,8,9,12,13,14,15,16,20,21,23,24,25,27,29} as negative, and

the rest of the samples are undetermined. This means U =

{1,2,4,5,7,10,11,17,18,19,22,26,28,30,31}, and Pos = ; (S1 Table). These sets are consistent

with the ground-truth viral loads in that the samples decoded by Algorithm 2 as negative

indeed have almost zero virus load. We remark that, however, our Algorithm 3 of finding a

sparse support can significantly reduce the size of the set of samples considered highly likely to

be positive. For example, from the decoding results using Algorithm 3, we can see that apart

from giving zero estimate for the virus load of samples specified by Neg, Algorithm 3 also esti-

mates all samples from U, except sample 17, to have zero virus load. This result can be vali-

dated with request for one extra pooling test involving all the samples in U except 17.

After initial pooling and decoding, further pooling for confirmation testing may be

required. We will refer to the matrix in Fig 2C as P(1). From our decoding result, we request

an additional pooling test (P(2)) since not all sample infection statuses can be determined with

100% certainty. Thus, we designed the mixing matrix which pools all the samples that are

highly negative (S4 Fig). If the result of that pool comes back negative, we have confirmed that

the involved samples are indeed negative; if that pool turns out to be positive (which is highly

unlikely to happen), we will request testing the involved samples individually. Viral loads

which are very small in magnitude can be due to numerical error, and we can simply treat it

as 0.

In total, 80 tests were required to identify all positive samples within the population of 299

total samples. After a single round of testing, the infection status of 88.6% of all samples was

established with 100% certainty regardless of prevalence rate or pool size. One subsequent

round of verification testing identified the infection status of 95.3% samples and 14 remaining

samples which required further testing to determine infection status with full certainty. This

resulted in a 69.26% reduction in the total number of tests required as compared to individual-

ized testing. These experiments were repeated with similar parameters and results bringing the

total number of computer simulated samples tested to 2650 and experimentally tested samples

to 598 (Table 2).

To further validate our pooling and detection system, we obtained human patient RNA

samples from the University of Iowa diagnostic testing laboratory. Samples were provided as

extracted RNA; thus, our modified RNA extraction protocol was not utilized (Fig 3A). An

optimized participation matrix was generated to reflect the expected dilution effect (Fig 2D).

Experimental parameters were pseudo-randomly generated as previously described with a

total N of 40 patients and a set prevalence rate of 10%. To compare to currently accepted pool-

ing guidelines (traditional pooling), we used the same experimental parameters to define

Table 1. N = 31 MHV-1 pooled testing qRT-PCR results.

Pool # Status Ct Duplicate 1 Ct Duplicate 2

Pool 1 Pos 35.068 34.234

Pool 2 Pos 35.107 34.526

Pool 3 Neg NA NA

Pool 4 Pos 35.021 34.697

Pool 5 Pos 34.031 34.123

https://doi.org/10.1371/journal.pcbi.1010629.t001
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positive patients within pools containing 5 patients which has been previously determined as

optimal for high prevalence rates at or >10% [23]. Pools that were positive were subsequently

tested individually, per CDC guidelines, to confirm positivity. The pooling results for one of

two independent experiments is presented in Table 3. For both of the two runs, we requested

extra pooling results for decoding, and thus required the generation of an additional mixing

matrix (S5 Fig). Additional pooling results and individual patient viral loads is shown in

S1 and S2 Tables.

After one round of testing and compressed sensing decoding, 2 patients were identified and

confirmed as positive and 72 were confirmed as negative leaving 6 patients as likely positive

(Table 3). Two subsequent pools and four individual confirmation tests provided adequate

data points to determine the infection status of all patients with 100% certainty (S2 Table). 32

tests were required to determine the infection status of 92.5% of all patients. Additional confir-

matory testing brought the total tests performed to screen 80 patients to 38 (S3 Table). This is

a 52.5% reduction in the number of tests needed as compared to current individual testing.

Additionally, traditional pooling methods required 51 total tests to identify the status of all 80

patients which is 34.2% more than what was required using our compressed sensing method

(Table 4).

Table 2. Compressed sensing decoded pooled testing significantly decreases the number of tests required to identify infected samples.

# of Patient Infection Status

Identified

Number of

Patients per

Pool

Total Simulated

Samples Tested

Total Samples

Experimentally Pooled

Experimental

Prevalence Rate

Round 1 Round 2 Round 3 Tests

Required

% Tests Saved Compared

to Individual Testing

7 175 7 0–14.3% 7 (100%) NA NA 3 57.10%

15 375 75 0–6.7% 65

(86.7%)

75

(100%)

NA 23 69.30%

31 775 217 0–6.45% 193

(88.9%)

203

(93.5%)

217

(100%)

54 81.40%

Totals: 1325 299 0–14.3% 265

(88.6%)

285

(95.3%)

299

(100%)

80 69.26%

https://doi.org/10.1371/journal.pcbi.1010629.t002

Table 3. Human COVID-19 sample pooled testing qRT-PCR results.

Pool # Status Ct Duplicate 1 Ct Duplicate 2

Pool 1 Pos 33.92 32.961

Pool 2 Pos 20.68 20.909

Pool 3 Pos 34.065 36.231

Pool 4 Pos 26.562 27.051

Pool 5 Neg NA NA

Pool 6 Pos 26.719 26.864

Pool 7 Pos 19.977 20.386

Pool 8 Pos 27.063 27.756

Pool 9 Neg NA NA

Pool 10 Pos 20.636 20.945

Pool 11 Pos 27.574 27.266

Pool 12 Pos 20.196 20.925

Pool 13 Neg NA NA

Pool 14 Pos 32.336 32.185

Pool 15 Neg NA NA

Pool 16 Pos 33.133 32.97

https://doi.org/10.1371/journal.pcbi.1010629.t003
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Discussion

Together, our experimental data provides a proof of concept and validates our compressed

sensing pooling technique as an efficient, effective, and reproducible method to greatly

increase COVID-19 testing capacity. Using our novel testing approach, we were able to iden-

tify positive samples with extreme accuracy at prevalence rates at �10% in both an MHV-1

coronavirus model system and with human COVID-19 patient samples. This required approx-

imately one third as many tests as would be needed with current individual testing procedures

(Tables 2 and 4).

Pooled testing is an effective approach to increase testing capacity and allow widespread

screening to occur and has been implemented with limited success during the COVID-19 pan-

demic [9–14,40,46–51]. However, current pooled testing efforts lose efficacy and precision as

prevalence rates increase and ultimately require substantial additional confirmation testing.

Advances in pooled testing have arisen in response to the COVID-19 pandemic where accu-

rate testing of pool sizes of up to 16 individuals has been reported [22]. However, Eberhardt

et al. showed the improvement factor over individual testing was dramatically reduced as pool

size and prevalence increased requiring multi-stage testing with advantages only at relatively

low prevalence rates of 1–5%, well below current COVID-19 rates [22]. In 2020 for the first

time in the field, we proposed to use compressed sensing techniques for quantitative virus test-

ing with high prevalence, and computational experiments validated the effectiveness of our

method [49]. Others such as Ghosh et al. and Shental et al., showed the superiority of com-

pressed sensing virus testing technology using a non-adaptive approach though their method

could only succeed at low prevalence rates <10% [50,51]. In contrast, our current work uses

an adaptive approach and can succeed at prevalence rates >10% and utilizes a success certifi-

cate to ensure results are accurate.

Current CDC and FDA regulatory guidelines allow for pooled SARS-CoV-2 sample testing,

though the number of patients per pool is recommended to stay under 5 and must include

viral copy number quantification via a standard curve. However, the CDC states this method

provides a testing benefit at prevalence rates <5% and when one individual per pool is positive

[23,40,52]. Additionally, strict validation showing the ground truth Ct value of an individual

does not increase more than 1.7 cycles after pooling to reduce to risk of sample dilution and

false negatives [52]. Abdalhamid et al. reported a pooling method that returned accurate posi-

tivity results though they observed that the Ct values increased up to 5.03 cycles due to sample

dilution. Due to this dilution effect on the Ct value, they recommended an optimal pool size of

5 individuals [23]. To minimize the pooling dilution effect, we utilized a modified RNA extrac-

tion protocol which differs from current clinical diagnostic lab procedures by simply concen-

trating the RNA to a set volume regardless of the number of input samples (Fig 3A). This

standardizes the dilution to an expected and reproducible ΔCt from the ground truth value

that does not change if the number of samples within a pool increases (Fig 3B). This protocol

alone removes the risk of samples with low levels of virus being diluted in a pool and being

Table 4. Compressed sensing decoded pooled testing accurately identifies positive human COVID-19 samples at real world prevalence rates.

# of Patient Infection Status

Identified

Number of

Patients per

Pool

Total Patient

Samples Pooled

Experimental

Prevalence Rate

Round 1 Round 2 Round

3

Tests

Required

Tests Required for

Traditional Pooling

% Tests Saved

Compared to

Individual Testing

Human

COVID-19

Swabs

40 80 10% 74

(92.5%)

80

(100%)

NA 38 51 52.50%

https://doi.org/10.1371/journal.pcbi.1010629.t004
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read as a false negative. The modified RNA extraction protocol was not a requirement as we

were able to accurately and reproducibly identify infected samples in primary human SARS-

CoV-2 pooling experiments without utilizing the modified protocol. However, inclusion of

this modification to our compressed sensing pooling method increased the ease of identifying

infected samples within a pool. This demonstrates the adaptability and flexibility of our com-

pressed sensing pooling method (Table 2).

Our approach demonstrates an effective process to combat testing bottlenecks for future

pandemics. Many clinical testing labs currently utilize automated 96-well plate RNA extraction

systems in which parameters can be changed to fit our new protocols. We have generated opti-

mized pool mixing matrices at N = 7, 15, 31, and 40 demonstrating the adaptability of our

approach which can be further adjusted to fit clinical testing needs in multiples of 8 and 12.

Additionally, we have created a decoding software in which qRT-PCR data can be entered and

the program will decode the data, identify positive samples, and generate additional pools for

further testing. Most importantly, the application of our testing method is broad and can be

applied to many testing applications within medicine and beyond such as serum antibody test-

ing, drug screening, avian influenza surveillance, water contamination testing, etc. Our com-

pressed sensing testing method is perfectly positioned for testing applications such as these as

they are sparse by nature and require accurate results from many data points.

The emergence of new pathogens and variants is ongoing and will continue to be a signifi-

cant threat to public health and humanity as a whole [4–8]. Implementing a highly accurate

pooled testing procedure is absolutely critical to mitigating the spread of viral pandemics such

as COVID-19, thus saving lives and decreasing the economic impact from high mortality rates

and widespread quarantines. Our use of compressed sensing in pooled testing demonstrated

high sensitivity in experimental infection models with the model coronavirus MHV-1, as well

as with primary human SARS-CoV-2 samples. The utilization of compressed sensing theory in

signal analysis is well established, but its use in the testing of physical specimens has the poten-

tial to revolutionize how we provide accurate results when testing large numbers of samples.

This will position healthcare professionals to rapidly respond to future pandemics by identify-

ing infected individuals early, minimize spread, and save lives.

Materials and methods

Ethics statement

The University of Iowa determined that this project did not meet the regulatory definition of

human subjects research and therefore IRB approval was not required.

Generation of experimental parameters and positive MHV-1 samples

A MATLAB-based computer script was used to generate pseudorandom viral loads for each of

N individual samples based on an average prevalence rate of 5%, and positive sample Ct values

in the range 12–34. The MHV-1 standard curve was used to plot the generated sample Ct

value (X) and interpolate the dilution of MHV-1 virus stock (Y) required. According to these

estimates Y, MHV-1 was diluted in viral transport media as in the CDC-approved nasopharyn-

geal swab collection protocol [42,44].

MHV-1 sample pooling

5–20 μL of generated MHV-1 samples were pooled together in equal volumes on ice as desig-

nated by the appropriate mixing matrix. Negative samples were added as sterile viral transport

media.
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Human patient sample pooling

Human samples that were to be discarded were supplied as extracted RNA in 96-well plates

from the University of Iowa Diagnostic Testing Lab. Patients were identified as positive or neg-

ative with no information on Ct number, viral load, or any patient identifiable information.

5 μL of patient samples were pooled together in equal volumes on ice as designated by the

appropriate mixing matrix.

Isolation of viral RNA

Viral RNA was extracted via a modified TRIzol phenol/chloroform extraction protocol and

can be scaled as needed (Fig 2). A patient pool of 20 μL total volume was mixed with 200 μL

TRIzol. The sample was vortexed for 10 sec and incubated for 5 min at room temperature

(RT). 40 μL of chloroform was added, vortexed for 10 sec, and incubated for 5 min at RT. The

mixture was centrifuged at 12,000 x g for 10 min at 4˚C. 100 μL of the upper aqueous layer was

transferred to a sterile 1.5 mL tube. 100 μL of isopropanol supplemented with 2 μg glycogen

was added, vortexed for 10 sec, and incubated for 5 min at RT. The pellet was mixed with

180 μL of 75% ethanol and resuspended by gentle inversion and centrifuged at 14,000 x g for

10 min at RT. The supernatant was aspirated and the pellet was air dried for 10 min in a sterile

laminar flow hood. The RNA pellet was resuspended in 20 μL of RNAse-free diethyl pyrocar-

bonate-treated H2O and incubated at 55˚C for 5 min.

qRT-PCR

5μL of patient pools and samples were mixed with the GoTaq qRT-PCR master mix (Promega)

and ran in duplicate on a QuanStudio 3 thermocycler via the FAST qRT-PCR protocol as rec-

ommended by the CDC [44]. An MHV-1 virus stock or SARS-Cov-2 S protein containing

plasmid of known concentrations were used to generate a standard curve consisting of seven

to ten 10-fold serial dilutions. The resulting amplification curves were analyzed with Applied-

Biosystems Design and Analysis 2.4.

Compressed sensing decoding

An optimization algorithm leveraging the non-negativity of viral loads was used to give an

upper and lower bound on the viral load for each sample. If the lower bound for a sample’s

viral load is not zero, we are sure that that sample is positive; if the upper bound for a sample’s

viral load is equal to 0, we are sure that that sample is negative. This identifies samples which

are either definitely positive or definitely negative. For the samples with ambiguous infection

statuses, we perform exhaustive search for the smallest set of positive samples (namely sparsest

solution, having the smallest number of positive samples) fitting the observed viral loads of

these pools. The remaining samples were mixed together into a pooled sample to confirm that

they are indeed negative: if this pooled sample comes back positive, further testing will be nec-

essary, but this is statistically unlikely. All data, code, and materials are available at: https://

github.com/WXU2022/00_CS_Virus_Testing.

Supporting information

S1 Fig. Compressed sensing accuracy increases with N. Random test simulation to assess the

performance of compressed sensing at low and high N. A Bernoulli random matrix A2

{0,1}n×N with Pr(Aij = 0) = Pr(Aij = 1) = 0.5 is used for both cases. We take n = round(0.3�N),

and the x is generated uniformly from [0,100]N with sparsity round(0.05�N). The horizontal

axis is the index element of x. The vertical axis is the value of the element. (A) N = 10. (B)
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N = 100.
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S2 Fig. Compressed sensing decoding algorithms. (A) Algorithm 1 virus decoding. (B) Algo-

rithm 2 determining positive and definitely negative samples. (C) Algorithm 3 exhaustive

search for sparse support set.

(TIFF)

S3 Fig. Estimation of the i-th stage under the framework of multi-stage pooling.

(TIFF)

S4 Fig. Adaptive request pooling matrix. Pooling matrix designed for additional testing

requests. 1 indicates sample is included in the pool. 0 indicates the sample is not included in

the pool.

(TIFF)

S5 Fig. Human COVID-19 additional testing pooling matrix. Pooling matrix designed for

additional testing requests in human COVID-19 samples. N = 40 (3x40). 1 indicates patient is

included in the pool. 0 indicates the patient is not included in the pool.

(TIFF)

S1 Table. MHV-1 individual sample infection status after one round of testing.

(DOCX)

S2 Table. Human COVID-19 sample second round qRT-PCR results.
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S3 Table. Human COVID-19 individual patient infection status results.
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