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Abstract—Post-quantum cryptography (PQC) has drawn sig-
nificant attention from various communities recently and one
of the recent advances is the hardware acceleration of PQC
algorithms. While Hamming Quasi-Cyclic (HQC) is one of the
recently announced National Institute of Standards and Technol-
ogy (NIST) fourth-round PQC standardization candidates, very
few related hardware implementation works have been reported,
particularly lacking solid works on important components such
as the sampler. As a fixed-weight sparse vector sampler with
constant-time operation is critical to the hardware HQC accel-
erator, in this paper, we present a novel hardware-implemented
LOw-latency and ConStant-timing fixed-weight sampler (LOCS).
In total, we have proposed three stages of efforts. First of all, a
new algorithm for efficient realization of the fixed-weight sparse
vector generation based on Fisher-Yates shuffle algorithm is
proposed. Then, we have innovatively designed the algorithm into
a new hardware sampler: LOCS. Finally, we have conducted a
thorough comparison to showcase the efficiency of the proposed
sampler, e.g., the proposed LOCS involves 66.7% less latency time
than the state-of-the-art design (n = 17, 669) while remaining
constant-time operation. To the authors’ best knowledge, this is
the first hardware-implemented pure constant-time (no failure
probability) fixed-weight sampler for HQC.

I. INTRODUCTION

As it has been proven that the traditional cryptosystems

such as RSA and elliptic curve cryptography are vulnerable

to the attacks launched from mature quantum computers [1],

[2], the need for Post-Quantum Cryptography (PQC) is at an

all-time high [1], [3]. The National Institute of Standards and

Technology (NIST) started the PQC standardization process

in 2016 and announced the fourth-round candidates recently.

HQC, which stands for the Hamming Quasi-Cyclic (HQC),

was selected as one of the fourth-round candidates [4], [5].

HQC is a code-based PQC scheme whose security relies

on decoding small weight vectors of random quasi-cyclic

codes [5]. Following the NIST PQC standardization, efficient

hardware implementations of HQC are seriously needed, e.g.,

on Field-Programmable Gate Array (FPGA) devices.

Existing Works. Hardware implementation for PQC is one

of the recent advances in the field [4], [6], [7], [8], [9], [10],

[11], [12], [13]. So far, however, very few hardware imple-

mentations of HQC are available. The authors of HQC have

released a high-level synthesized hardware implementation [5].

Another recent hardware design for HQC was given in [14].

Existing Challenges. It is noted that the fixed-weight sparse

vector generation is one the major operations of HQC (see

Algorithm 1 in Section II). Fixed-weight sparse vectors are

involved in many steps of the algorithmic operations of HQC

(e.g., the sparse polynomial multiplication) and thus the effi-

ciency of the generation of such vectors is critical to the overall

success of the implemented scheme. So far, however, efficient

implementations of the sparse vector generation (especially

hardware designs) are very rare and the major challenges

include (as seen from the recent work of [14]): (i) there still

exist situations that the generated indices are duplicated (when

randomly sampling the indices for non-zero elements); (ii)

meanwhile, the designed hardware structure requires extra pro-

cedures to check the incidents of the duplication of generated

indices, which actually makes the whole sampling process a

non-constant-timing operation; (iii) it is still time-consuming

to generate the actual sparse vectors along with the indices of

the non-zero elements at the same time.

Therefore, in this paper, we propose a novel hardware-

implemented LOw-latency and ConStant-timing fixed-weight

sampler (LOCS) for HQC. Key contributions are:

• We have presented the proposed constant-time algorith-

mic operation based on Fisher-Yates shuffling for the

generation of the fixed-weight sparse vector (for HQC).

• We have then presented the corresponding hardware

architecture with thorough internal structural descriptions.

• We have given the final comparison to demonstrate the

superior performance of the proposed sampler.

Note that this is the first constant-time sampler for HQC (no

failure probability), and the proposed sampler generates the

fixed-weight sparse vectors into two forms, i.e., indices and

the actual random binary vectors, for further use/calculation.

The rest of the paper is organized as follows. Section II gives

the preliminary. Section III presents the proposed algorithm.

Section IV introduces the proposed structure. The comparison

and conclusion are given in Sections V and VI, respectively.

II. PRELIMINARY KNOWLEDGE

Notations. We define F2 as the binary finite field. Vec-

tors/polynomials in R = F2[X]/(Xn − 1) are represented

by lower-case bold letters. ω(·) denotes the Hamming weight

of a vector, i.e., the number of its nonzero coordinates. C[n, k]
denotes a linear code with length n and dimension k. Elements

of C are referred to as codewords [15]. δ is the minimum

number of errors that the decoding algorithm can correct. Also,

all computations in HQC schemes are made in the ambient

space F
n
2 . Interested readers may refer the details of these

notations to [5]. Also, in the following of the paper, we use h
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to represented the generated fixed-weight vectors and P [i] to

denote the index of the ith non-zero element in the vector.

HQC. HQC is a Chosen Ciphertext Attack (IND-CCA)

secure encryption scheme built on the hardness of a decision

version of the Syndrome Decoding on structured codes [5].

As HQC uses a decodable code C[n, k] and a random double-

circulant [2n, n] code, it features a detailed and precise upper

bound for the decryption failure probability analysis [5].

Interested readers can refer to the document of [5] for details.

Algorithms. Let G(·),H(·),K(·) denote SHAKE256-512

(·||G FCT DOMAIN), SHAKE256-512 (·||H FCT DOMAIN) and

SHAKE256-512 (·||K FCT DOMAIN), respectively. Algorithm

1 represents the key encapsulation mechanism (KEM) version

of HQC. For the public key encryption (PKE) version, inter-

ested ones may read [5] for the detailed information.

Algorithm 1: HQC.KEM [5]

Setup(1λ):
1 generate and output the global parameters param =

(n, k, δ, ω, ωr, ωe), k will be the length of the

symmetric key being exchanged, typically k = 256;

KeyGen(param):
2 samples h ← R, the generator matrix G ∈ F

k×n
2 of C;

3 sk = (x, y) ← R2 such that ω = ω(x) = ω(y);
4 pk = (h, s = x + h · y);

5 return (pk, sk);

Encapsulate(pk):
6 generate m ← F

k
2 ;

7 derive the randomness θ = ← G(m);
8 generate the cyphertext

c ← (u,v) = E .Encrypt(pk,m, θ);
9 derive the symmetric key K ← K(m, c);

10 d ← H(m);
11 send (c, d);

Decapsulate(pk, c,d):
12 decrypt m′ = E .Decrypt(sk, c);
13 compute θ′ = G(m′);
14 (re-)encrypt m′ to get c′ ← E .Encrypt(pk,m′, θ′);
15 if c �= c′, or d �= H(m′) then
16 abort;

17 else
18 derive the shared key K ← K(m, c);
19 end

Security. HQC has three security levels, namely hqc-128,

hqc-192, hqc-256, respectively [5], each with different param-

eter sets. Note the proposed LOCS is applicable to all of them.

Sampling of the fixed-wight vectors As shown in Step 3 of

Algorithm 1, two fixed-weight vectors are sampled/generated

for further computation. These two vectors have the length of

n and Hamming weight of ω, which means only ω elements

in each vector are ‘1’s while all other elements are ‘0’s.

Besides that, the positions/indices of the non-zero elements are

random. Overall, the process of generating the indices and the

vectors is defined as the “sampling of fixed-weight vectors”.

Fisher-Yates Shuffle. The Fisher–Yates shuffle is an al-

gorithm for generating a random permutation of a finite

sequence. It was firstly described in [16] and further developed

into a modern version in [17]. This algorithm has been proven

to be able to produce an unbiased permutation (Algorithm 2).

Algorithm 2: The modern version of the Fisher–Yates

shuffle
Input : Array A with n elements;

Output: Shuffled array A;

1 for i = 0 to n− 2 do
2 j ← random integer such that i ≤ j ≤ n;

3 exchange A[i] and A[j];
4 end

III. THE PROPOSED ALGORITHMIC OPERATION FOR

FIXED-WEIGHT SPARSE VECTOR GENERATION

Following the Fisher–Yates shuffling algorithm, we propose

the constant-time fixed-weight sparse vector generating algo-

rithm, as described in Algorithm 3.

Algorithm 3: Proposed algorithm for the generating

of the fixed-weight sparse vector of HQC

Input : n, ω;

Output: h, P ;

Setup Step:

1 for i = 0 to ω − 1 do
2 h[i] = 1;

3 end
4 for i = ω to n− 1 do
5 h[i] = 0;

6 end
Swap Step:

7 for i = 0 to ω − 1 do
8 j ← random integer such that 0 ≤ j ≤ n;

9 exchange h[i] and h[j];
10 end

Index Marking Step:

11 j = 0
12 for i = 0 to n− 1 do
13 if h[i] = 1 then
14 P [j] = i;
15 j = j + 1;

16 else
17 end

In the existing strategy for generating the fixed-weight

sparse vector [14], the possible duplication of the generated

indices for non-zero elements will result in extra time and

resource usage for re-generating a new index to make sure

all the indices are distinct (as there will be one non-zero

element less in the vector if two generated indices are the

same). However, by applying the Fisher–Yates shuffling, our

proposed algorithm is able to avoid this situation since ω non-

zero elements are already set in the vector in advance. Also,

the random numbers generated will make sure those elements

are placed in random positions and the exchanging operation

doesn’t have an impact on the number of the non-zero elements

(even if two identical indices are generated).

Example. To better illustrate how our proposed algorithm

prevents re-generating extra indices, an example is given here.
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Fig. 1: The proposed fixed-weight sparse vector sampler.
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Fig. 2: Structure of BS component (interacting with RAM h).

Suppose index 100 is generated at the second iteration during

the swap step, then after executing the exchanging operation,

h[2]=‘0’ and h[100]= ‘1’. After two iterations, index 100 is

generated again, the two elements, h[4] and h[100] will still

both be ‘1’ after the swap operation and this will not reduce

the number of ‘1’s in the vector.

Therefore, by keeping the number of non-zero elements in

the vector always equal to ω and thus obviating the probability

of generating extra indices, the proposed algorithm remains

time-constancy even though identical indices are generated.

Also, by first generating the vector itself and then marking

all the indices of non-zero elements rather than generating

the indices directly, the proposed algorithm is able to present

the generated vectors in both two formats for future use, e.g.,

polynomial multiplication and outputting the secret key.

IV. LOCS: PROPOSED SAMPLER ARCHITECTURE

Following the proposed algorithm, we further present the

hardware-implemented LOCS. The proposed sampler contains

four major components, namely Random Number Generating

(RNG) Component, Bit Swapping (BS) Component, Index

Marking (IM) Component, and Control Unit (CU), respec-

tively, as shown in Fig. 1. Note that the data flow is 128-bit

and can be extended to other bit-lengths (such as 32 or 64-bit).

RNG component. The RNG component is responsible for

generating random numbers used for deriving the indices

for non-zero elements, according to Step 8 of the proposed

Algorithm 3. The generation of random numbers is realized

by executing SHAKE-256 using a Keccak wrapper (including

the Keccak core and other sub-components such as output

buffer and control unit) to achieve the desired output length

and format. When executing the SHAKE-256 operation, a 128-

bit long message segment m is used as the seed to generate

the random numbers and then sent into the component along

with some other parameters like n and ω corresponding to

different security levels of HQC. The output will be delivered

in the length of 128-bit to the memory RAM N, where all the

generated random numbers are stored for further usage.

RAM_h

addr_rd
rd_data

addr_wr
wr_data
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Output
Buffer 128 RAM_P

addr_rd
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Control
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128
P

Fig. 3: Structure of IM (interacting with RAM h and RAM P).

Fig. 4: The internal structure of the bit examiner.

BS component. The internal structure of the BS component

is shown in Fig. 2, which consists of a shift register, a position

calculator, a swap executor, and a counter. The BS component

is used for shuffling the vector by swapping the bits at certain

iterations during the swapping step, as stated in Step 9 of

Algorithm 2. When executing the swapping operation, it firstly

sets up the original vector where the first ω bits are ‘1’s

and writes it to RAM h. Then, the BS component reads the

generated random numbers from RAM N and calculates the

corresponding indices by executing modulo n operation. The

calculated indices are then sent to the position calculator to

determine the position in RAM h of the corresponding bit,

as well as the position of the bit corresponds to the current

iteration (which is determined by the counter). After that, the

swap executor reads two data segments containing the two bits

mentioned above from RAM h and swaps those two bits, and

then writes them back to RAM h. The vectors are shuffled and

stored in RAM h after the swapping step is done and then are

delivered to the IM component to record the indices of non-

zero elements that can be accessed for other usage. Note here

the random numbers are set as 16-bit long since they cover

the range from ‘0’ to the biggest n (all three security levels

of HQC) so that all the possible indices can be obtained.

IM component. The internal structure of the IM Component

is shown in Fig. 3, which consists of a Bit Examiner, a Control

Unit, and an Output Buffer. After it starts to work, the bit

examiner reads a memory chunk from RAM h and determines

if there exists ‘1’ or not. If there exists one or more ‘1’s, the

examiner will output the corresponding index (indices) to the

output buffer and then set the bit(s) to 0. If there is no ‘1’ in the

chunk, the bit examiner will output a signal to the control unit

to calculate the next address to read. When the output buffer
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TABLE I: Comparison of the Implementation Results

Design n ω LUT FF Slice BRAM Fmax Latency Delay1 Failure Probability.∗ Constant-Time

Existing Sampler [14] 17,669 75 240 111 - 2 226 709 3.14 1.1× 2−11 No

Existing Sampler [14] 35,581 114 229 112 - 2 220 1,840 8.36 1.1× 2−9 No

Existing Sampler [14] 57,673 149 234 117 - 2 228 2,106 9.24 1.1× 2−12 No

Existing Sampler [14] 17,669 75 316 124 - 2 223 3,649 16.36 2.8× 2−199 Not Strictly

Existing Sampler [14] 35,581 114 295 125 - 2 246 4,200 17.80 1.1× 2−280 Not Strictly

Existing Sampler [14] 57,673 149 314 192 - 2.5 242 5,935 24.52 4.9× 2−355 Not Strictly

Proposed Sampler 17,669 75 1,560 766 490 2 170 976 5.45 N/A Strictly Yes
Proposed Sampler 35,581 114 1,553 761 444 3 185 1,636 6.17 N/A Strictly Yes
Proposed Sampler 57,673 149 1,569 779 464 3 181 2,268 8.69 N/A Strictly Yes

Proposed Sampler2 17,669 75 7,004 4,176 2,004 2 170 976 5.45 N/A Strictly Yes

Proposed Sampler2 35,581 114 6,985 4,148 1,979 3 185 1,636 6.17 N/A Strictly Yes

Proposed Sampler2 57,673 149 7,211 4,173 1,985 3 181 2,268 8.69 N/A Strictly Yes

Unit for delay: ns. Unit for Fmax: MHz.
∗: Failure probability: the probability that the Sampler fails to generate the vector in constant time.
1: Delay is calculated as latency×(1/Fmax), where the latency refers to the computation cycles (Keccak core operation cycles are also included).
2: The performance listed here includes all the components (Keccack is also included). Note the Keccack core of [18] is used in the proposed sampler.

is full, the content in the buffer (ideally eight different indices

for non-zero elements) will be written to the memory RAM P.

The structure determining the indices of ‘1’s is depicted in a

chain of MUXes, where one of the two inputs is the index

while the other is the output from the MUX below, as shown

in Fig. 4. When a bit is ‘1’, the corresponding MUX will

select its index and outputs it to the MUX above; on the other

hand, if a bit is ‘0’, the MUX will just propagate the output

delivered from the MUX below. Here we have an indicator

no one (in the actual implementation we set it to a binary

string of ‘1’s) to indicate that there is no ‘1’ existing. The

control unit will be notified when the output of the Mux chain

is equal to no one and calculates the next memory address

to read once the indicating signal is received. Note the IM

examines all the memory addresses even if all the indices have

been marked in order to achieve a constant-time operation.

V. IMPLEMENTATION AND COMPARISON

In this section, we have implemented the proposed sampler

of Fig. 1, corresponding to different security levels of HQC,

on the FPGA platform. We have also compared the proposed

sampler with the existing design to verify its efficiency.

Experimental Setup. The experimental setup is as fol-

lows: (i) the proposed design was described in VHDL and

implemented on the Artix-7 xc7a200t-3 FPGA through Vivado

2020.2 (after place & route); (ii) we have obtained its imple-

mentation performance under three security level parameter

sets of HQC (n = 17, 669, ω = 75; n = 35, 581, ω = 113;

and n = 57, 637, ω = 149); (iii) the obtained implementation

results, including the number of resource usage (LUTs, FFs,

and BRAMs), maximum frequency (MHz), latency, delay

time, and related failure probability are listed in Table I along

with those of the existing one [14]; (iv) as the design of

[14] only reported the resource usage of the sampler core

(excluding the Keccak), we similar also listed the related

performance for the sake of a fair comparison (nevertheless,

the implementation results of our full sampler are also listed).

Implementation Results and Comparison. As shown in

Table I, the resource utilization of the proposed sampler

remains stable for different security levels as the main data

flow in the sampler is fixed and the major difference between

different security implementations is the number of iterations.

On the other hand, the latency of the proposed design increases

proportionally to ω because the higher number of non-zero

elements leads to more iterations when generating the indices

and swapping the corresponding bits.

Besides that, it is shown that the proposed sampler has

a much lower latency than the existing design, i.e., 66.7%,

65.3%, and 64.6% less delay time than the existing design for

hqc-128, hqc-192, and hqc-256, respectively. As the proposed

sampler is based on the Fisher-Yates shuffle, it requires more

resource usage than the existing design of [14]. Nevertheless,

the existing one of [14] still suffers the probability that it

could not complete the generation in a constant time; while

the proposed design eliminates all chances of failure and is a

completely time-constant fixed-weight sparse vector sampler.

Moreover, the proposed sampler is able to generate two forms

of vectors, namely indices and vectors, which are stored in the

memory for further steps of usage (while the existing design

does not provide that). In conclusion, the proposed sampler is

more practical for actual usage than the existing one of [14].

Future Work and Discussion. The proposed LOCS, to our

best knowledge, is the first real hardware-implemented real

constant-timing sampler for HQC (also with low-latency). We

hope the following works can focus more on the actual hard-

ware acceleration of HQC and related side-channel attacks.

VI. CONCLUSION

This paper presents a novel hardware-implemented fixed-

weight sampler for HQC with real constant-time operation

(first work in the literature). We have presented the pro-

posed constant-timing algorithmic process based on the Fisher-

Yates shuffling for vector generation. Then, the details of

the structure of the hardware sampler based on the proposed

algorithm are provided. Finally, the implementation results

of the proposed design and the comparison are presented to

confirm the efficiency of the proposed design.
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