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Abstract—The rapid advancement in quantum technology has
initiated a new round of exploration of efficient implementation
of post-quantum cryptography (PQC) on hardware platforms.
Key encapsulation mechanism (KEM) Saber, a module lattice-
based PQC, is one of the four encryption scheme finalists in
the third-round National Institute of Standards and Technology
(NIST) standardization process. In this paper, we propose a novel
Toeplitz Matrix-Vector Product (TMVP)-based design strategy to
efficiently implement polynomial multiplication (essential arith-
metic operation) for KEM Saber. The proposed work consists
of three layers of interdependent efforts: (i) first of all, we
have formulated the polynomial multiplication of KEM Saber
into a desired mathematical form for further developing into
the proposed TMVP-based algorithm for high-performance op-
eration; (ii) then, we have followed the proposed TMVP-based
algorithm to innovatively transfer the derived algorithm into
a unified polynomial multiplication structure (fits all security
ranks) with the help of a series of algorithm-to-architecture co-
implementation/mapping techniques; (iii) finally, detailed imple-
mentation results and complexity analysis have confirmed the
efficiency of the proposed TMVP design strategy. Specifically, the
field-programmable gate array (FPGA) implementation results
show that the proposed design has at least less 30.92% area-
delay product (ADP) than the competing ones.

Index Terms—High-performance, key encapsulation mecha-
nism (KEM) Saber, polynomial multiplication, post-quantum
cryptography (PQC), Toeplitz Matrix-Vector Product (TMVP).

I. INTRODUCTION

It has been proven that the well-established quantum com-
puter employing Shor’s algorithm can break the current public-
key cryptosystems such as Rivest Shamir Adleman (RSA) and
Elliptic Curve Cryptography [1], [2], [3]. Indeed, along with
the rapid advancement in quantum computing, the attention
from the research community on post-quantum cryptography
(PQC) and related implementations have reached an all-time
high [2]. As indicated by the National Institute of Science and
Technology (NIST) third-round PQC standardization process
[3], lattice-based cryptography is recognized as one of the most
promising classes due to its small implementation complexity
and strong security proof [3].

A lot of lattice-based cryptography is based on the learning-
with-errors (LWE) problem [4], [5]. The standard LWE-based
scheme involves large computational complexity, and hence
it takes large resource occupation when implemented on the
hardware platform. The learning-with-rounding (LWR) is a
variant of LWE [6], and quite a good number of works have

been released on the related PQC [7], [8], [9], [10], [11],
[12], [13], including the NIST’s third-round finalist, the key
encapsulation mechanism (KEM) Saber [3].

Existing Works. Overall, we can categorize the existing
hardware designs for KEM Saber into two types, namely
the hardware-software co-design and the full-hardware design.
The former type refers to the recent report of [9], where
the authors use the Toom-Cook method to implement the
polynomial multiplication for KEM Saber. Another report is
recently released in [10], where the authors similarly use
the same Toom-Cook approach to obtain better performance
at the cost of large resource usage. For the latter type,
the first design is released in [11], where the authors use
a schoolbook-based polynomial multiplication to obtain an
efficient KEM Saber implementation. After that, a Karatsuba
algorithm-based KEM Saber is released in [12] to obtain high
performance. Optimized polynomial multiplication structures
for KEM Saber are recently presented in [14]. Very recently, a
compact KEM Saber coprocessor [15] and high-performance
KEM Saber architectures are proposed in [16]. These works
represent the primary efforts in the field.

Noticing that the polynomial multiplication over ring
Zy /(N +1) (I is either q or p [7], [8]) is the critical arithmetic
operation of KEM Saber, the existing works, however, still
need significant improvements: (i) the very recent existing
high-performance work, such as the structure in [11], is still
based on the traditional schoolbook method and hence novel
design strategy needs to be developed; (ii) not many algorithm-
architecture co-implementation (i.e., mapping algorithm to
architecture) techniques have been proposed to improve the
performance of the polynomial multiplications, especially
on the presenting thorough mathematical derivation process
to obtain efficient algorithms for architecture mapping; (iii)
there exist limited unified polynomial multiplication works
for all three security levels of KEM Saber. With this point
of view, in this paper, we propose an efficient implemen-
tation of polynomial multiplication for KEM Saber on the
field-programmable gate array (FPGA) platform for high-
performance applications. Specifically, we have proposed a
novel Toeplitz Matrix-Vector Product (TMVP)-based design
strategy for the targeted polynomial multiplication that the
involved computational complexity is reduced. Meanwhile, the
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finalized polynomial multiplication is a unified architecture,
which fits well for all three security levels of KEM Saber.
Major Contributions. In total, we have carried out four
layers of innovative works for the efficient implementation of
polynomial multiplication for KEM Saber, as:

o We have proposed thorough mathematical derivation to
lay a solid foundation for the novel TMVP-based design
strategy and the related algorithm.

o We have then presented a detailed design process to inno-
vatively transfer the TMVP-originated algorithm into the
desired architecture with the help of several algorithm-
to-architecture mapping techniques.

o We have conducted complexity analysis and comparison,
based on the FPGA implementation results, to demon-
strate the efficiency of the proposed TMVP strategy.

Specifically, this is the first hardware implementation of
TMVP-based polynomial multiplication for KEM Saber,
which offers many unique features: (i) unified structure fits for
all three security levels of KEM Saber; (ii) high-performance
operation with low computational time; and (iii) overall effi-
ciency in area-time complexities.

The rest of this paper is organized as follows. The pre-
liminaries are introduced in Section II. The proposed TMVP
strategy is formulated in Section III. The proposed hardware
polynomial multiplication structure is provided in Section IV.
Complexity analysis and comparison are presented in Section
V. Finally, the conclusions are given in Section VI.

II. PRELIMINARIES

Notations. We follow the existing papers [7], [8], [11] to list
the following notations. Define p and ¢ as two powers of 2 as
p = 2°7 and ¢ = 2%¢ and let Z, be the ring of integers modulo
q. We also define the ring of polynomials R, = Z,[z]/{z"™ +
1) for p and Ry = Zg[z]/(x™ +1) for g, respectively. a is used
to represent a vector and a(z) is used to denote the polynomial
in R, where the coefficients can be seen as a vector and the
i-th coefficient is the ¢-th entry of the vector. Moreover, the
operator |-| denotes the rounding operation.

Besides that, 3, represents the binomial distribution based
on parameter g, which produces values in the range of
[—p1/2, /2 wi.th probability of WWQ*N: < 5.#
denotes that x is randomly sampled from the binomial distri-
bution. If we replace = with X, then it means a polynomial
X is sampled from the binomial distribution. The notation of
2 < U(S) denotes that x is uniformly selected from S.

The MLWR-based Encryption Scheme: KEM Saber. The
LWR is a variant of the LWE problem, where the error term
is introduced by a rounding operation rather than obtaining it
from a random distribution [8]. The samples for LWR-based
scheme are generated by (a,b = L%(a, s)1p) € Zy X Zy. Saber
is built on the hardness of the module LWR (MLWR) problem.

In brief, Saber consists of key generation, encryption, and
decryption. In the key generation (Algorithm 1), a public
matrix of polynomials A and a secret vector of polynomials s
are generated. Meanwhile, the vector b is calculated through
the scaling and rounding of the product As, where the public

key consists of A and b and the secret key is the vector s. In
the encryption, the message is encrypted by v;’ = s’b” (s’ is a
vector for the encryption). The produced ciphertext involves b’
(from rounding As’). While during the decryption, the message
is recovered through the approximation of v; (from sb’).

Let F : {0,1}* — {0,1}" and G : {0,1}* — {0,1}x"
denote the hash functions SHA3-256 and SHA3-512, respec-
tively, we have Algorithms 1, 2, and 3 to represent KEM Saber.

Algorithm 1 Saber. KEM.PKE.KeyGen() [7], [8]

(seeda, b, s)=Saber.PKE.KeyGen().

pk = (seeda,b).

pkh = F(pk).

2 = U({0,1}256),

return (pk := (seedy,b), sk := (s, z1, pkh)).

Algorithm 2 Saber. KEM.Encaps(pk = (seeda, b)) [7], [8]

m = U({0,1}25).

(K7 C) = g(]:(pk), m)
c=Saber.PKE.Enc(pk, m;r).
K = F(K,c).

return (c, K).

Algorithm 3 Saber.KEM.Decaps(sk =
(seeda,b), o) [7], [8]

(szvpkh)apk =

m/=Saber.PKE.Dec(s, c).

(K',¢) = G(pkh,m').
c'=Saber.PKE.Enc(pk, m’;r’).

if ¢ = ¢ then return K = H(K,¢).
else return K = H(zy,¢).

Module Ranks. There are three module ranks with [ =
2, 3, and 4 for the NIST security levels 1, 3, and 5, respec-
tively, called LightSaber, Saber, and FireSaber. The polynomial
degree is set as N = 256 and moduli ¢ = 23 and p = 210.
The secrets sampled are [-5,5] (LightSaber), [-4,4] (Saber), to
[-3,3] (FireSaber), respectively [7], [8].

TMVP over GF(2"). The TMVP method is originally in-
troduced in [17] for polynomial multiplication over GF(2™).
This approach has been further developed/deployed in follow-
ing works such as [18], [19], [20], [21]. An n X n Teoplitz
matrix is a matrix T = [t; jJo<i j<n—1, Where t; j = t;_1 j_1
[17]. Define V = (Vj, V1) as an n x 1 column vector (V4 and

Vi are 2 x 1 column vectors) and Tg, 77, and 15 as 2 x 2

2 22
Toeplitz matrices. Thus,
7 - Zo | _ | To Tz o
| Z ] | T To Vi
ey

_ | To(Vo + Vi) + (T2 + To)Vs
ToVo+WV1)+(Th +To)Vo |’

which involves four components, i.e., component matrix point
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(CMP), component vector point (CVP), point-wise multi-

ply (PWM), and reconstruction (R): CMP(T) = (Tz +
Ty, To, Ty + Th), CVP(V) = (W, Vo + V1, V), P =
PWM(CMP(T),CVP(V)) = (P, P, P), and Z =

R(P) = (P + P, P1 + B) (for Py = (Tx + To)Va,
Py =To(Vo + V1), and P» = (T1 + Tp) Vo). Because of this
setup, the original complexity of O(n?) is now reduced to
three matrix-vector products of O((%)?).

The operation of (1) can be iteratively applied to the

original polynomial multiplication to obtain subquadratic-
complexity. The software implementation of KEM Saber based
on TMVP is presented in [22]. However, its strategy (full
parallel processing) cannot be directly deployed for hardware
implementation (which involves very large resource usage and
is impractical in actual applications).
Polynomial Multiplication for KEM Saber. The polynomial
multiplication is the key operation of the Saber protocol, where
one polynomial involves small-size coefficients (e.g., in the
range of -4 to +4 for Saber) and the other polynomial has
coefficients of 10-bit or 13-bit (13-bit design covers 10-bit).

III. ALGORITHMIC FORMULATION

This section focuses on the mathematical formulation for
the polynomial multiplication of KEM Saber, i.e., transfer it
into the desired form for further extension to derive a novel
algorithm originated from the proposed TMVP design strategy.
Extension of the Existing TMVP Approach to the Integers.
Define again ¢; ; is an integer as well as v;. Still,

[ Zj } _ [ To(Ve + Vi) + (T5 = Ty) VY )
Z To(Vo + Vi) + (T1 = Tg) Vg
where t} j 1s in the two’s complement form. Similarly, the

TMVP approach under integers also consists of four compo-
nents, where two subtractions are used to replace the original
additions in the CMP component.
Formulation of the Polynomial Multiplication for KEM
Saber. The general form can be defined as follows.
Notation 1. Deﬁne polynomials as: W = ZN_Ol w;x’,
D =" "dat, and G = YN ! gixt, where g; is the 4-bit
coefﬁcient over ring and d; and w; are coefficients of 13-bit
over ring. Meanwhile, let polynomial W be the product of the
polynomials of D and G. We then have (f(z) = 2V + 1)

W = DG mod f(x).

Then, we can rewrite (3) into another form of

3)

N—-1
W =G dir' modf(x Zd (Ga' mod f(x)).
=0 =0

Notation 2. Define again Gl = G2° mod f(z) = G,
G = Gz' mod f(x) = GI% mod f(x), ...,and GIN-1 =
GzN~! mod f(x) = [N 2z mod f(x).

Thus, we can have

G =go + g1 + goa® + - -

G =—gn_1+goz+--

N-1
+gn—1T ;

+gn_ I'N_17
N—-2 (5)

1

GV = — g1 — gow — gga® — - + gz,

N:_

for x
Then, the original multiplication of (4) becomes

N-1
W= dGl, (6)
i=0
which can be further expanded into
W = wo + wzr +---+ wN_lfol
=( godo + qidox +---+gn_1dox¥ ) )
+ .........

+(—g1dn-1 — godN_1x — -+ + gOdN—1JUN71),
from where we can observe that each coefficient of W is the

addition of N terms (the same order of x), as

wo = godo + (—gn-1d1)+ (—gn—2d2) +---+ (—g1dn_1),
~—~ —_———
term—1 term—2 term—3 term— N
wy = g1do + god1 + (—gn—1d2) + + (—g2dn_1),
WN—1 = gN—1do + gn—2d1 + gn—3d2 + - - + godn—1,
3
where we can further transfer into matrix-vector product as
wo go  —9gn-1 -0 do
wy g1 90 —g2 dy
— . X .
WN—_1 gN-1 gN—2 '+ Qo dn—1
which can be further defined as
W] =[G] x [D], (10)

where [W], [G], and [D] are N x1, N x N, and N x 1 matrices,
respectively, according to (9). Note that the elements in one
certain matrix are denoted as [W]; 1, [G]; ;, and [D];1 (1 <
i,7 < N) such that we can have [G]1,1 = g0, [G]2,1 = ¢1. etc.

One can note that [G] is actually an N x N Toeplitz matrix,
one can thus follow the extended TMVP method of (2) to have

Wo | | Go Ga Dy
=L@ gl m) o
where [W;] and [D;] are % x 1 matrix-vectors (0 <
1 S ]-) as [ ] [ wN/Q—l]T, Tt [-DI] =
[dyja -+ dy-1]"; [G]] % x & Toeplitz matrices (0 <
j<2)as
go —gN-1 —IN/2+1
9 go o TON/242
[Go] = ) : . . ,
: : - : (12)
gn/2—1 9Nj2-2 g0

Meanwhile, one can also find that [G2] = —[G1], such that

Wo | | Go -G « Dy
Wy - Gy Gy D4 (13)
_ [ Go(Do + D1) + (=G1 — Go) Dy }
Go(Do + D1) + (G1 — Go) Dy
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TABLE I: Theoretical Computational Complexities of the
Schoolbook- and TMVP-based Approaches

[ Strategy [[ #Multipliers | #Adders |
Schoolbook approach N? N?
TMVP approach (1-iteration) 3N?Z/4 N?/2+3N/2

where the original N x N matrix-vector product (complexity
of O(N?)) has been turned into a form of three & x & matrix-
vector products (each with a complexity of (9((%’2) )) and
extra number of adders, as listed in Table I.

Proposed Mathematical Derivation Strategy. The theoreti-
cal analysis (Table I) has shown that the TMVP-based polyno-
mial multiplication has lower complexity than the schoolbook-
based one. The direct hardware implementation of (13), how-
ever, seems to be impractical, especially considering the fact
that the elements of [G] and [D] are 4-bit and 13-bit (or 10-bit)
integers over the ring, respectively (the overall resource usage
would be huge). Even though we apply the TMVP approach
to (13) recursively to obtain subquadratic-complexity, the
overall implementation is still quite challenging. It will also
potentially have a significant computational delay when taking
these recursive operations into account.

With these above considerations, we thus propose a novel
mathematical derivation strategy to obtain a high-performance
realization of the polynomial multiplication with relatively
low-complexity: (i) firstly transferring the three %-size matrix-
vector products into the accumulation forms suitable for high-
speed operation yet saves computational complexity; (ii) then
finding out proper operational sequence among these three
accumulation forms to obtain the optimal resource usage; (iii)
connecting these related operations to produce the desired final
output. Following this strategy, we can thus have:

Step-I. Let us consider [Go][Dg + D;] first, which can be
easily extended to the other two matrix-vector products. It is
obvious that [Dy + Dj] is still an & x 1 matrix-vector, and

2
thus we can have ([Go][Doy + D1] is an & x 1 matrix)

[Gol[Do + D1] = [G0]~ [Do + D1]i+
[Gol:2[Do + Dil2 + - + [Gol. nyj2[Do + Dilny2

N/2 (14)
= Z[Go}:,g [Do + D1l;,

where the results of the original matrix-vector product (all
N/2 elements) have become an accumulation of N/2 terms

of ZN/z[GQ}”[DO + D;];, and each term involves N/2
1nd1v1dua1 point-to-point multiplications of one column [Gy). ;
with the corresponding [Dg + D1 ;.

Note that we propose this kind of accumulation based
on multiple considerations (mainly for ease of further im-
plementation). (a) All N/2 elements of [Gy].; within one
accumulation, e.g., j = 1, actually are the N/2 elements of
the first column of the matrix [Go] (from left), which is very
easy for mapping into hardware components. (b) The element
of [Dy+ Dy]; is one by one processed such that the involved
number of adders (13-bit) is minimized, as demonstrated by
the hardware design in Section IV.

Similarly, the other two N/2 x N/2 matrix-vector products
of (13) can also have
N/2
[~G1 — Gol[D1] =) [~G1 — Gol. ;[D1l;;,
=1
w2
[G1 = Go][Do] =[G — Gol. ;[Dol;-

j=1

15)

Thus, all three N/2-size matrix-vector products have been
transferred into the forms of accumulation that each requires
N/2 cycles of operations to obtain the desired output.

Step-II. When connecting (14) and (15) with (13), one can
find that the output of (14) needs to be added with the two
matrix-vector products of (15) to deliver the final output.
Theoretically speaking, there is nothing particular involved
within this process. While standing on the implementation
point of view, especially that a typical accumulator uses more
resources than an adder, we rewrite (13) as

[(Wo] =[Go(Do + D1) + (=G1 — Go)D1],
(16)
(W1] =[Go(Do + D1) + (G1 — Go) Do),
and then
[Go(Dg + D1) + (=G — Go)D4]
N/2 N/2
= Z [Gol..;[Do + D1]; + Z [~G1 — Gol. ;[D1];
j=1 (17)
N/2

= ([Gol.,;[Do + Di]; +

[—=G1 — Gol.,;[Dl;),

where the original two separate accumulations are combined
together as one to save the resource usage, as shown later also
in the implementation section (Section IV).

Similarly, we have

[Wi] = [Go(Do + D1) +

N/2

=2 (Gl

j=

Step-IIL. It is possible to combine the operations of (17) and
(18) together, after considering again that: (i) the obtaining of
final output results actually rests on the two accumulations
of (17) and (18), which can be processed in parallel; (ii) the
actual elements/coefficients involved within (17) and (18) are
basically the half matrix of [G] (left side, since only [Gy] and
[G1] are needed) except with some signs inverted, and the
elements from the matrix of [D].

Meanwhile, as specified in Step-I, each accumulation step
involves one column of matrix [Gy] (or [G1]), which is actually
one complete column of the original matrix [G] though only
the left half side of the matrix is involved. This discovery
inspires us to treat the parallel accumulations of (17) and (18)
as one complete operation to facilitate further implementation.

In particular, the obtaining of [-G; — Gp] and [G; — Gy
are no longer treated as separate operations but rather the

(G1 — Go) Do)

(18)

\[Do + D1]; + [G1 — Go)..;[Dol;)-
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Fig. 1: (a) The proposed polynomial multiplication architecture based on Algorithm 1; SI: sign inverter. (b) The accumulator
(ACQ). (c) and (d) Design details for M-2, where (c) is the common factors shared by all the M-2 cells and (d) is the 11-to-1
MUX in the M-2 cell to produce the final output.

operation based on one complete column of the original matrix
[G]. Then, the corresponding elements of [-G; — Gy] and
[G1 — Gp] will be produced through the element-wise based
sign inverting and adding/subtracting operations (Section IV).
The Proposed TMVP-based Algorithm. Based on the above
derivations, we can thus derive the proposed algorithm as:

Algorithm 1: Proposed TMVP based polynomial mul-
tiplication algorithm for KEM Saber

Input : G and D are integer polynomials. // the
actual bit-width of the coefficients follow
Notation 1.

Output: W = GD mod (zV 4 1).

Initialization step
1 make ready the inputs G and D.
2 [Wo] = [Wh] = [0]; // W] and [W7] are & x 1
matrices.
Main step
3fori=11 N/2do
4 for j =11t N/2 do

5 [Wo] =
[(Wol+[Goli,;[Do+D1lj+[—G1—Goli, ;[D1];.

6 [W1] = (W1] + [Goli j[Do + D1l + [G1 —
GO]i,j [D()]]"l. // fOllOWil‘lg (17)—(18)

7 end

8 end

9 [Wo] = [Wols [Wh] = [Wh].

Final step

10 deliver all the coefficients of output W;

(d)

which fully fulfills the objectives of the proposed mathematical
derivation strategy.

IV. PROPOSED POLYNOMIAL MULTIPLICATION
HARDWARE ARCHITECTURE

The proposed polynomial multiplication hardware architec-
ture is shown in Fig. 1, which is obtained through several
algorithm-architecture co-implementation techniques.
Overall Description. The proposed architecture of Fig. 1 con-
tains N/2 number of arithmetic units (highlighted as the gray
box) to produce N coefficients of . Besides that, a circular
shift-register (CSR) is needed to load all the coefficients of
polynomial G into the proper position to be further processed
to produce the correct output to the N/2 arithmetic units.
Meanwhile, the coefficients from two N/2-size matrix-vectors
are also serially fed to the structure. The N output coefficients
of W are delivered out in a parallel format. Note that all
the input/output data are processed in the two’s complement
representation form. The details of the involved components,
as well as related techniques, are listed below.

CSR. The internal structure of the CSR is shown in Fig.
2, where in total there are N number of registers and one
MUX. In the loading stage, the selection of the MUX (sel-
1) is set as ’1’ that the input from polynomial G are serially
loaded into the registers. After that, the selection signal (sel-1)
is switched to ‘0’ that the values loaded in the registers are
circularly shifted once per cycle. Note that a sign inverter (SI)
is required to invert the sign of the bottom value to generate
the correct output. The outputs of the registers are connected
to the outside to be used as the correct values to constitute
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Gp Region

G Region

Fig. 2: The CSR (values in the registers are initial loadings).

the same column of matrices [Go] and [G] (Algorithm 1),
specified as the Gy and GGy regions, respectively, in Fig. 2.

Arithmetic Unit. The arithmetic unit, as highlighted in
Fig. 1, is the major component for the proposed polynomial
multiplication architecture. According to the procedures shown
in Steps 5 and 6 of Algorithm 1, we can firstly consider two
important operations involved there: the two corresponding
elements (with sign inverted) from matrix [Gy] and matrix
[G1] need to be added together to be multiplied with one
coefficient from [D] (Step 5). In contrast, the same elements
from matrix [Gy] and matrix [G;] are subtracted, which can be
seen as the addition with another element with sign inverted,
and then multiplied with the related coefficient from [Dy] (Step
6). These two operations can thus be transferred into the two SI
cells, two 4-bit adders (AD-1), and two following multipliers
(M-1) within one arithmetic unit, as shown in Fig. 1. Note
that there is another pair of addition operations involved within
Steps 5 and 6 of Algorithm 1, i.e., [Dy+D1];. But for the sake
of resource usage saving, we purposely arrange the elements
from [Go] and [G;] be added in the parallel format (in N/2
arithmetic units) since the 4-bit adder has smaller area usage
than the 13-bit one.

Meanwhile, to further save the resource usage, we follow
the existing design style of [14] that all the M-1 and M-
2 cells connecting with the same input from Dj (or D; or
their addition output) share the common factors. Consider that
the coefficients generated from the sampler (input ) are in
the range of [-5,5] (unified implementation including all three
security levels of KEM Saber) and the output style of the adder
(AD-2 for serial inputs Dy and D;), we can thus use a MUX-
based lookup-table (LUT) method to realize M-2. This setup
requires all the possible output values to be pre-computed and
shared with the other parallel N/2 adders in the arithmetic
units. Each M-2 cell contains one 11-to-1 MUX (the output

of the AD-2 is used as the selection signal to the MUX) to
execute the proper operation. As shown in Figs. 1(c) and (d),
the values inside of the dotted blue box are the common factors
to be shared among all the M-2 cells, and X is the value of
the 13-bit input. For all the M-1 cells in Fig. 1, however, we
use another MUX since the output of the adder (AD-1) now
lies in the range of [-10,10]. We can use the 21-to-1 MUXes
for all the M-2 cells, and all the 20 common factors are shared
among all arithmetic units.

Lastly, according to Steps 5 and 6 of Algorithm 1, the
elements of [Dy] and [D;] are serially fed into the structure
such that only one 13-bit adder is needed, as shown by the
shared red line in Fig. 1. The output of each M-2 cell is
added with the related outputs of two M-1 cells, respectively.
Then, the outputs of the AD-2 are delivered to the accumulator
(ACC) to produce the final output. As indicated in Section III,
this kind of setup brings resource usage saving to the overall
structure since an ACC has a larger area than an adder. As
shown in Fig. 1(b), each ACC involves one adder and one
register (DFF) connected in a feedback loop format such that
the newly received input is added with the previous output of
the adder to produce the output again for storing in the register.
Note that one arithmetic unit produces two output coefficients,
and the final output coefficients of W from all the arithmetic
units are available in parallel.

Control Cell. A control cell is required to coordinate all
the components in the structure of Fig. 1 function properly.
The operational status of the architecture of Fig. 1 involves
three stages, namely loading, computing, and delivering. The
loading stage refers to the loading of input coefficients of GG
into the CSR. The computing stage denotes the computation
of the required operations according to mainly Steps 5 and 6
of Algorithm 1 to produce the correct output. The delivering
stage refers to the transferring output results into the memory.
Polynomial Multiplication Deploying Consideration. For
the deploying of the proposed polynomial multiplication core,
we have made several extra efforts and updates:

Data Input/Output Buffer. As shown in Algorithm 1, the
proposed polynomial multiplier takes two inputs G and D,
and produces one output W. Thus, the proposed architecture
requires two input buffers and one output buffer. (a) Since
each coefficient of input polynomial G is 4-bit in length
and these coefficients are assumed to be sent from regular
memory as 64-bit (regular in modern processor), the input
buffer of G contains N = 256 cells (each cell contains
four 1-bit registers). During the loading phase, the data in
each cell is passed to the 16th cell ahead of the current
location. In this way, the loading phase of the secret-key G
takes only 16 cycles. Then, during the computation phase,
each cell passes data to the next cell ahead to execute the
necessary computation according to the nature of the for-loop
in Algorithm 1. (b) The input buffer of D consists of four 16-
bit cells, which are aligned up to receive one 64-bit word from
external memory. In odd cycles, a new word is loaded into D’s
input buffer; while in even cycles, data in the bottom two cells
are shifted into the top two cells. In this way, the core of the
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TABLE II: Comparison of the Area-Time Complexities for the Proposed and Existing Hardware Implementations

[ design [ LUT [ FF [ CLB [ Fmax (MHz) [ DSPs [ latency’ [ delay (us) | ADP® [ ADPR# ]
[t 17,406 | 5,069 [ 2712 250 0 256 1.02 17.823.74 [ -10.75%
(1212 13,735 | 4,486 - 160 85 83 0.52 * -

[23] (FIR) 3 [ 16971 | 8,755 - 250 0 511 2.04 34,688.72 | -115.54%

[23] (Fast2)® || 25,831 | 12,850 | - 250 0 255 1.02 26,347.62 | -63.71%
[23] (Fast4)3 || 35,306 | 19,143 - 250 64 127 051 * -
[24] 26,884 | 14,524 | 4419 441 0 264 0.60 16,093.82 -

Proposed 30,047 | 7,680 | 4,834 344 0 128 0.37 11,117.39 | 30.92%

! latency denotes to the number of clock cycles.

0: ADP refers to area-delay product, which is ADP=#LUT xdelay (since some of the existing designs do not report the CLB usage).
# :ADPR denotes the ADP reduction, where the design of [24] is used as a baseline to calculate the corresponding results.

L. The reported number of CLBs is obtained from the released source code.
2: This design is based on Karatsuba algorithm.

3: This design is based on filtering-based fast algorithm (Fast.4 has smaller latency but with larger resource usage).
*: These designs use large number of DSPs, which is difficult to calculate the actual ADP here. This is because one DSP typically can be seen as equivalent
to 102.4 slices [25], which indicates that the designs of [12], [23] need at least 8,704 and 6,554 equivalent CLBs (for using DSPs).

proposed multiplier can read two coefficients of polynomial
D from the top two cells in each cycle. The most significant
three bits of each cell are abandoned since each coefficient of
D is 13-bit in length. (¢) The output buffer for polynomial W
consists of 64 cells with each cell as 64-bit length. All output
coefficients are loaded into the output buffer in one cycle when
the result is ready. In the following 64 cycles, the data is
shifted into the memory one cell by another. Each output cell
contains only 52 1-bit registers in the actual implementation
since each coefficient is coded in 13-bit.

Meanwhile, the control cell for the polynomial multipli-
cation is also updated to coordinate with the input/output
data transferring. Overall, The proposed architecture of Fig.
1 requires only N/2 cycles of accumulation to generate the
output W, which benefited from the proposed TMVP-based
algorithm. Besides that, the proposed polynomial multiplica-
tion is a unified structure that fits all security levels of Saber.

V. COMPLEXITY & COMPARISON

The proposed polynomial multiplication architecture (in-
cluding the input/output buffer and control cell) is coded
in VHDL with functionality verified. Finally, we have used
Vivado 2020.2 to synthesize and implement it on the targeted
AMD-Xilinx UltraScale+ XCZU9EG-2FFVB1156 FPGA de-
vice. Note that the implemented unified architecture fits well
for all three security levels of KEM Saber with N = 256, and
the detailed performance results are provided as follows.
Complexity. The area usage for the proposed polynomial
multiplier is listed in Table II, where the maximum frequency
reaches to 344MHz. One can notice that the polynomial
multiplier occupies 30,047 LUTs and 7,680 FFs (4,834 CLBs).
Meanwhile, the time-complexity of the proposed hardware
accelerator, in terms of the number of computation cycles and
related computational time, are also listed in Table II.
Comparison With The Existing Implementations. We have
compared the area-time complexities of the proposed archi-
tecture with the existing implementations to demonstrate the
efficiency of the proposed design strategy.

Comparison Consideration. Considering the facts that: (i)
the proposed polynomial multiplication is a unified archi-
tecture for high-performance operations; (ii) the proposed

polynomial multiplication is based on the TMVP fast al-
gorithm; (iii) the polynomial multiplication is implemented
with actual deploying consideration. We thus: (a) compare
our proposed architecture with the existing high-performance
hardware polynomial multipliers for Saber ([11], [12]); (b) also
compare the high-performance hardware designs with practical
setup on input/output processing [23], [24] ([26] and [14] do
not have this setup and hence are not listed for comparison);
(c) we do not include compact designs for KEM Saber (like
[15]) due to the processing style difference.

Comparison Details. The detailed complexities of the pro-
posed architectures are listed in Table II, along with the
available implementations [11], [12], [23], [24].

As seen from Table II, when comparing with the exist-
ing KEM Saber polynomial multiplication implementations,
the proposed accelerator has significantly outperformed the
existing designs of [11], [12], [23], [24]. For instance, the
proposed design has 30.92% less area-delay product (ADP)
than the existing designs. As the proposed accelerator is a
unified architecture, the comparison with the existing unified
design of [24] reflects more precise information on the pro-
posed architecture’s superior performance. It is shown that the
proposed accelerator has slightly larger area usage (because
of the processing three matrix-vector products at the same
time) but with a much shorter time. More detailedly, the
proposed accelerator has 11.77% more LUTs and 47.12%
less FFs (overall 9.4% larger CLBs) than the existing unified
design of [24] while involves 38.33% less latency time. Hence,
the proposed accelerator involves significantly smaller area-
time complexities than the one of [24]. The similar situation
happens to the comparison with [11] and two designs of [23].

Apart from that, when considering the comparison with
[12] and one design of [23] (see Table II), the proposed
polynomial multiplier still obtains much small resource usage
while maintains very efficient time-complexity. This is because
the existing architectures of [12], [23] use very large number
of DSPs, which equivalent to at least 8,704 and 6,554 equiv-
alent CLBs (just for DSPs) based on the estimation standard
proposed in [25].

Overall, due to the benefits brought by the proposed TMVP
design strategy, the proposed polynomial multiplication un-
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doubtedly has more balanced performance and is more suitable
for practical application than the existing ones.

Discussion. The proposed TMVP-based polynomial multiplier
features: (i) shorter computational latency; (ii) reduced com-
plexity and resource usage due to the TMVP strategy (three
%-size matrix-vector products); (iii) simple architecture with
efficient implementation. As this is the first TMVP-based
hardware polynomial multiplication for Saber, we expect this
strategy can be extended for other PQC implementation.
Other Works and Future Research. There also exist impor-
tant lattice-based PQC designs includes the Ring-LWE-based
designs of [27], [28]. Though these designs have different
focuses, they represent the major advance in the field. Future

work will focus on side-channel attacks and countermeasures.
VI. CONCLUSION

In this paper, we propose a novel TMVP-based polynomial
multiplication for KEM Saber. Firstly, we have formulated
the polynomial multiplication of KEM Saber into the pro-
posed TMVP-based algorithm. Then, we have transferred the
proposed TMVP-based algorithm into the desired polynomial
multiplication architecture. Finally, detailed implementation
results and complexity analysis have shown that the pro-
posed polynomial multiplication structure has significantly
better area-time complexities than the state-of-the-art solu-
tions. To the authors’ best knowledge, this is the first report
on the hardware implementation of polynomial multiplication
of Saber based on TMVP. The research outcome of this
work is expected to generate significant impacts on efficient
implementation for other PQC schemes.
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