
Novel Implementation of High-Performance
Polynomial Multiplication for Unified KEM Saber

based on TMVP Design Strategy

Pengzhou He and Jiafeng Xie* (*: corresponding author)

Department of Electrical and Computer Engineering, Villanova University, Villanova PA 19087, USA

Email: {phe,jiafeng.xie}@villanova.edu

Abstract—The rapid advancement in quantum technology has
initiated a new round of exploration of efficient implementation
of post-quantum cryptography (PQC) on hardware platforms.
Key encapsulation mechanism (KEM) Saber, a module lattice-
based PQC, is one of the four encryption scheme finalists in
the third-round National Institute of Standards and Technology
(NIST) standardization process. In this paper, we propose a novel
Toeplitz Matrix-Vector Product (TMVP)-based design strategy to
efficiently implement polynomial multiplication (essential arith-
metic operation) for KEM Saber. The proposed work consists
of three layers of interdependent efforts: (i) first of all, we
have formulated the polynomial multiplication of KEM Saber
into a desired mathematical form for further developing into
the proposed TMVP-based algorithm for high-performance op-
eration; (ii) then, we have followed the proposed TMVP-based
algorithm to innovatively transfer the derived algorithm into
a unified polynomial multiplication structure (fits all security
ranks) with the help of a series of algorithm-to-architecture co-
implementation/mapping techniques; (iii) finally, detailed imple-
mentation results and complexity analysis have confirmed the
efficiency of the proposed TMVP design strategy. Specifically, the
field-programmable gate array (FPGA) implementation results
show that the proposed design has at least less 30.92% area-
delay product (ADP) than the competing ones.

Index Terms—High-performance, key encapsulation mecha-
nism (KEM) Saber, polynomial multiplication, post-quantum
cryptography (PQC), Toeplitz Matrix-Vector Product (TMVP).

I. INTRODUCTION

It has been proven that the well-established quantum com-

puter employing Shor’s algorithm can break the current public-

key cryptosystems such as Rivest Shamir Adleman (RSA) and

Elliptic Curve Cryptography [1], [2], [3]. Indeed, along with

the rapid advancement in quantum computing, the attention

from the research community on post-quantum cryptography

(PQC) and related implementations have reached an all-time

high [2]. As indicated by the National Institute of Science and

Technology (NIST) third-round PQC standardization process

[3], lattice-based cryptography is recognized as one of the most

promising classes due to its small implementation complexity

and strong security proof [3].

A lot of lattice-based cryptography is based on the learning-

with-errors (LWE) problem [4], [5]. The standard LWE-based

scheme involves large computational complexity, and hence

it takes large resource occupation when implemented on the

hardware platform. The learning-with-rounding (LWR) is a

variant of LWE [6], and quite a good number of works have

been released on the related PQC [7], [8], [9], [10], [11],

[12], [13], including the NIST’s third-round finalist, the key

encapsulation mechanism (KEM) Saber [3].

Existing Works. Overall, we can categorize the existing

hardware designs for KEM Saber into two types, namely

the hardware-software co-design and the full-hardware design.

The former type refers to the recent report of [9], where

the authors use the Toom-Cook method to implement the

polynomial multiplication for KEM Saber. Another report is

recently released in [10], where the authors similarly use

the same Toom-Cook approach to obtain better performance

at the cost of large resource usage. For the latter type,

the first design is released in [11], where the authors use

a schoolbook-based polynomial multiplication to obtain an

efficient KEM Saber implementation. After that, a Karatsuba

algorithm-based KEM Saber is released in [12] to obtain high

performance. Optimized polynomial multiplication structures

for KEM Saber are recently presented in [14]. Very recently, a

compact KEM Saber coprocessor [15] and high-performance

KEM Saber architectures are proposed in [16]. These works

represent the primary efforts in the field.

Noticing that the polynomial multiplication over ring

Zl/(x
N+1) (l is either q or p [7], [8]) is the critical arithmetic

operation of KEM Saber, the existing works, however, still

need significant improvements: (i) the very recent existing

high-performance work, such as the structure in [11], is still

based on the traditional schoolbook method and hence novel

design strategy needs to be developed; (ii) not many algorithm-

architecture co-implementation (i.e., mapping algorithm to

architecture) techniques have been proposed to improve the

performance of the polynomial multiplications, especially

on the presenting thorough mathematical derivation process

to obtain efficient algorithms for architecture mapping; (iii)

there exist limited unified polynomial multiplication works

for all three security levels of KEM Saber. With this point

of view, in this paper, we propose an efficient implemen-

tation of polynomial multiplication for KEM Saber on the

field-programmable gate array (FPGA) platform for high-

performance applications. Specifically, we have proposed a

novel Toeplitz Matrix-Vector Product (TMVP)-based design

strategy for the targeted polynomial multiplication that the

involved computational complexity is reduced. Meanwhile, the

20
23

 2
4t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Q
ua

lit
y

El
ec

tro
ni

c
D

es
ig

n
(IS

Q
ED

) |
 9

79
-8

-3
50

3-
34

75
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
Q

ED
57

92
7.

20
23

.1
01

29
32

0

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 20:28:27 UTC from IEEE Xplore. Restrictions apply.

finalized polynomial multiplication is a unified architecture,

which fits well for all three security levels of KEM Saber.

Major Contributions. In total, we have carried out four

layers of innovative works for the efficient implementation of

polynomial multiplication for KEM Saber, as:

• We have proposed thorough mathematical derivation to

lay a solid foundation for the novel TMVP-based design

strategy and the related algorithm.

• We have then presented a detailed design process to inno-

vatively transfer the TMVP-originated algorithm into the

desired architecture with the help of several algorithm-

to-architecture mapping techniques.

• We have conducted complexity analysis and comparison,

based on the FPGA implementation results, to demon-

strate the efficiency of the proposed TMVP strategy.

Specifically, this is the first hardware implementation of

TMVP-based polynomial multiplication for KEM Saber,

which offers many unique features: (i) unified structure fits for

all three security levels of KEM Saber; (ii) high-performance

operation with low computational time; and (iii) overall effi-

ciency in area-time complexities.

The rest of this paper is organized as follows. The pre-

liminaries are introduced in Section II. The proposed TMVP

strategy is formulated in Section III. The proposed hardware

polynomial multiplication structure is provided in Section IV.

Complexity analysis and comparison are presented in Section

V. Finally, the conclusions are given in Section VI.

II. PRELIMINARIES

Notations. We follow the existing papers [7], [8], [11] to list

the following notations. Define p and q as two powers of 2 as

p = 2εp and q = 2εq and let Zq be the ring of integers modulo

q. We also define the ring of polynomials Rp = Zp[x]/〈xN +
1〉 for p and Rq = Zq[x]/〈xN+1〉 for q, respectively. a is used

to represent a vector and a(x) is used to denote the polynomial

in R, where the coefficients can be seen as a vector and the

i-th coefficient is the i-th entry of the vector. Moreover, the

operator �·� denotes the rounding operation.

Besides that, βμ represents the binomial distribution based

on parameter μ, which produces values in the range of

[−μ/2, μ/2] with probability of μ!
(μ/2+x)!(μ/2−x)2

−μ. x ← βμ

denotes that x is randomly sampled from the binomial distri-

bution. If we replace x with X, then it means a polynomial

X is sampled from the binomial distribution. The notation of

x ← U(S) denotes that x is uniformly selected from S.

The MLWR-based Encryption Scheme: KEM Saber. The

LWR is a variant of the LWE problem, where the error term

is introduced by a rounding operation rather than obtaining it

from a random distribution [8]. The samples for LWR-based

scheme are generated by (a, b = �p
q 〈a, s〉�p) ∈ Z

n
q ×Zp. Saber

is built on the hardness of the module LWR (MLWR) problem.

In brief, Saber consists of key generation, encryption, and

decryption. In the key generation (Algorithm 1), a public

matrix of polynomials A and a secret vector of polynomials s
are generated. Meanwhile, the vector b is calculated through

the scaling and rounding of the product As, where the public

key consists of A and b and the secret key is the vector s. In

the encryption, the message is encrypted by v1
′ = s′bT (s′ is a

vector for the encryption). The produced ciphertext involves b′

(from rounding As′). While during the decryption, the message

is recovered through the approximation of v1 (from sb′).
Let F : {0, 1}∗ → {0, 1}n and G : {0, 1}∗ → {0, 1}l×n

denote the hash functions SHA3-256 and SHA3-512, respec-

tively, we have Algorithms 1, 2, and 3 to represent KEM Saber.

Algorithm 1 Saber.KEM.PKE.KeyGen() [7], [8]

(seedA, b, s)=Saber.PKE.KeyGen().

pk = (seedA, b).
pkh = F(pk).

z1 = U({0, 1}256).
return (pk := (seedA, b), sk := (s, z1, pkh)).

Algorithm 2 Saber.KEM.Encaps(pk = (seedA, b)) [7], [8]

m = U({0, 1}256).
(K̂, c) = G(F(pk),m).

c=Saber.PKE.Enc(pk,m; r).

K = F(K̂, c).

return (c,K).

Algorithm 3 Saber.KEM.Decaps(sk = (s, z, pkh), pk =
(seedA, b), c) [7], [8]

m′=Saber.PKE.Dec(s, c).
(K̂ ′, c′) = G(pkh,m′).
c′=Saber.PKE.Enc(pk,m′; r′).
if c = c′ then return K = H(K̂, c).

else return K = H(z1, c).

Module Ranks. There are three module ranks with l =
2, 3, and 4 for the NIST security levels 1, 3, and 5, respec-

tively, called LightSaber, Saber, and FireSaber. The polynomial

degree is set as N = 256 and moduli q = 213 and p = 210.

The secrets sampled are [-5,5] (LightSaber), [-4,4] (Saber), to

[-3,3] (FireSaber), respectively [7], [8].

TMVP over GF (2m). The TMVP method is originally in-

troduced in [17] for polynomial multiplication over GF (2m).
This approach has been further developed/deployed in follow-

ing works such as [18], [19], [20], [21]. An n × n Teoplitz

matrix is a matrix T = [ti,j]0≤i,j≤n−1, where ti,j = ti−1,j−1

[17]. Define V = (V0, V1) as an n× 1 column vector (V0 and

V1 are n
2 × 1 column vectors) and T0, T1, and T2 as n

2 × n
2

Toeplitz matrices. Thus,

Z =

[
Z0

Z1

]
=

[
T0 T2

T1 T0

] [
V0

V1

]

=

[
T0(V0 + V1) + (T2 + T0)V1

T0(V0 + V1) + (T1 + T0)V0

]
,

(1)

which involves four components, i.e., component matrix point

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 20:28:27 UTC from IEEE Xplore. Restrictions apply.

(CMP), component vector point (CVP), point-wise multi-

ply (PWM), and reconstruction (R): CMP(T) = (T2 +
T0, T0, T0 + T1), CVP(V) = (V1, V0 + V1, V0), P =
PWM(CMP(T),CVP(V)) = (P0, P1, P2), and Z =
R(P) = (P0 + P1, P1 + P2) (for P0 = (T2 + T0)V1,

P1 = T0(V0 + V1), and P2 = (T1 + T0)V0). Because of this

setup, the original complexity of O(n2) is now reduced to

three matrix-vector products of O((n2)
2).

The operation of (1) can be iteratively applied to the

original polynomial multiplication to obtain subquadratic-

complexity. The software implementation of KEM Saber based

on TMVP is presented in [22]. However, its strategy (full

parallel processing) cannot be directly deployed for hardware

implementation (which involves very large resource usage and

is impractical in actual applications).
Polynomial Multiplication for KEM Saber. The polynomial

multiplication is the key operation of the Saber protocol, where

one polynomial involves small-size coefficients (e.g., in the

range of -4 to +4 for Saber) and the other polynomial has

coefficients of 10-bit or 13-bit (13-bit design covers 10-bit).

III. ALGORITHMIC FORMULATION

This section focuses on the mathematical formulation for

the polynomial multiplication of KEM Saber, i.e., transfer it

into the desired form for further extension to derive a novel

algorithm originated from the proposed TMVP design strategy.
Extension of the Existing TMVP Approach to the Integers.

Define again t′i,j is an integer as well as v′i. Still,[
Z ′
0

Z ′
1

]
=

[
T ′
0(V

′
0 + V ′

1) + (T ′
2 − T ′

0)V
′
1

T ′
0(V

′
0 + V ′

1) + (T ′
1 − T ′

0)V
′
0

]
, (2)

where t′i,j is in the two’s complement form. Similarly, the

TMVP approach under integers also consists of four compo-

nents, where two subtractions are used to replace the original

additions in the CMP component.
Formulation of the Polynomial Multiplication for KEM
Saber. The general form can be defined as follows.

Notation 1. Define polynomials as: W =
∑N−1

i=0 wix
i,

D =
∑N−1

i=0 dix
i, and G =

∑N−1
i=0 gix

i, where gi is the 4-bit

coefficient over ring and di and wi are coefficients of 13-bit

over ring. Meanwhile, let polynomial W be the product of the

polynomials of D and G. We then have (f(x) = xN + 1)

W = DG mod f(x). (3)

Then, we can rewrite (3) into another form of

W = G
N−1∑
i=0

dix
i modf(x) =

N−1∑
i=0

di(Gxi mod f(x)). (4)

Notation 2. Define again G[0] = Gx0 mod f(x) = G,

G[1] = Gx1 mod f(x) = G[0]x mod f(x), . . ., and G[N−1] =
GxN−1 mod f(x) = G[N−2]x mod f(x).

Thus, we can have

G[0] =g0 + g1x+ g2x
2 + · · ·+ gN−1x

N−1,

G[1] =− gN−1 + g0x+ · · ·+ gN−2x
N−1,

· · · · · · · · ·
G[N−1] =− g1 − g2x− g3x

2 − · · ·+ g0x
N−1,

(5)

for xN ≡ −1.
Then, the original multiplication of (4) becomes

W =
N−1∑
i=0

diG
[i], (6)

which can be further expanded into

W = w0 + w1x + · · ·+ wN−1x
N−1

=(g0d0 + g1d0x + · · ·+ gN−1d0x
N−1)

+ · · · · · · · · ·
+(−g1dN−1 − g2dN−1x− · · ·+ g0dN−1x

N−1),

(7)

from where we can observe that each coefficient of W is the

addition of N terms (the same order of x), as

w0 = g0d0︸︷︷︸
term−1

+(−gN−1d1)︸ ︷︷ ︸
term−2

+(−gN−2d2)︸ ︷︷ ︸
term−3

+ · · ·+ (−g1dN−1)︸ ︷︷ ︸
term−N

,

w1 = g1d0 + g0d1 + (−gN−1d2) + · · ·+ (−g2dN−1),

· · · · · · · · ·
wN−1 = gN−1d0 + gN−2d1 + gN−3d2 + · · ·+ g0dN−1,

(8)

where we can further transfer into matrix-vector product as⎡
⎢⎢⎢⎣

w0

w1

...

wN−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

g0 −gN−1 · · · −g1
g1 g0 · · · −g2
...

...
. . .

...

gN−1 gN−2 · · · g0

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎣

d0
d1
...

dN−1

⎤
⎥⎥⎥⎦ ,

(9)

which can be further defined as

[W] = [G]× [D], (10)

where [W], [G], and [D] are N×1, N×N , and N×1 matrices,

respectively, according to (9). Note that the elements in one

certain matrix are denoted as [W]i,1, [G]i,j , and [D]i,1 (1 ≤
i, j ≤ N) such that we can have [G]1,1 = g0, [G]2,1 = g1, etc.

One can note that [G] is actually an N×N Toeplitz matrix,

one can thus follow the extended TMVP method of (2) to have[
W0

W1

]
=

[
G0 G2

G1 G0

]
×

[
D0

D1

]
, (11)

where [Wi] and [Di] are N
2 × 1 matrix-vectors (0 ≤

i ≤ 1) as [W0] = [w0 w1 · · · wN/2−1]
T , · · · , [D1] =

[dN/2 · · · dN−1]
T ; [Gj] are N

2 × N
2 Toeplitz matrices (0 ≤

j ≤ 2) as

[G0] =

⎡
⎢⎢⎢⎣

g0 −gN−1 · · · −gN/2+1

g1 g0 · · · −gN/2+2

...
...

. . .
...

gN/2−1 gN/2−2 · · · g0

⎤
⎥⎥⎥⎦ ,

· · · · · · · · · .

(12)

Meanwhile, one can also find that [G2] = −[G1], such that[
W0

W1

]
=

[
G0 −G1

G1 G0

]
×
[

D0

D1

]

=

[
G0(D0 +D1) + (−G1 −G0)D1

G0(D0 +D1) + (G1 −G0)D0

]
,

(13)

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 20:28:27 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Theoretical Computational Complexities of the

Schoolbook- and TMVP-based Approaches

Strategy #Multipliers #Adders

Schoolbook approach N2 N2

TMVP approach (1-iteration) 3N2/4 N2/2 + 3N/2

where the original N ×N matrix-vector product (complexity

of O(N2)) has been turned into a form of three N
2 ×N

2 matrix-

vector products (each with a complexity of O((N2)
2)) and

extra number of adders, as listed in Table I.

Proposed Mathematical Derivation Strategy. The theoreti-

cal analysis (Table I) has shown that the TMVP-based polyno-

mial multiplication has lower complexity than the schoolbook-

based one. The direct hardware implementation of (13), how-

ever, seems to be impractical, especially considering the fact

that the elements of [G] and [D] are 4-bit and 13-bit (or 10-bit)

integers over the ring, respectively (the overall resource usage

would be huge). Even though we apply the TMVP approach

to (13) recursively to obtain subquadratic-complexity, the

overall implementation is still quite challenging. It will also

potentially have a significant computational delay when taking

these recursive operations into account.

With these above considerations, we thus propose a novel
mathematical derivation strategy to obtain a high-performance

realization of the polynomial multiplication with relatively

low-complexity: (i) firstly transferring the three N
2 -size matrix-

vector products into the accumulation forms suitable for high-

speed operation yet saves computational complexity; (ii) then

finding out proper operational sequence among these three

accumulation forms to obtain the optimal resource usage; (iii)

connecting these related operations to produce the desired final

output. Following this strategy, we can thus have:

Step-I. Let us consider [G0][D0 + D1] first, which can be

easily extended to the other two matrix-vector products. It is

obvious that [D0 + D1] is still an N
2 × 1 matrix-vector, and

thus we can have ([G0][D0 +D1] is an N
2 × 1 matrix)

[G0][D0 +D1] = [G0]:,1[D0 +D1]1+

[G0]:,2[D0 +D1]2 + · · ·+ [G0]:,N/2[D0 +D1]N/2

=

N/2∑
j=1

[G0]:,j [D0 +D1]j ,

(14)

where the results of the original matrix-vector product (all

N/2 elements) have become an accumulation of N/2 terms

of
∑N/2

j=1 [G0]i,j [D0 + D1]j , and each term involves N/2
individual point-to-point multiplications of one column [G0]:,j
with the corresponding [D0 +D1]j .

Note that we propose this kind of accumulation based

on multiple considerations (mainly for ease of further im-

plementation). (a) All N/2 elements of [G0]:,j within one

accumulation, e.g., j = 1, actually are the N/2 elements of

the first column of the matrix [G0] (from left), which is very

easy for mapping into hardware components. (b) The element

of [D0 +D1]j is one by one processed such that the involved

number of adders (13-bit) is minimized, as demonstrated by

the hardware design in Section IV.

Similarly, the other two N/2×N/2 matrix-vector products

of (13) can also have

[−G1 −G0][D1] =

N/2∑
j=1

[−G1 −G0]:,j [D1]j ,

[G1 −G0][D0] =

N/2∑
j=1

[G1 −G0]:,j [D0]j .

(15)

Thus, all three N/2-size matrix-vector products have been

transferred into the forms of accumulation that each requires

N/2 cycles of operations to obtain the desired output.

Step-II. When connecting (14) and (15) with (13), one can

find that the output of (14) needs to be added with the two

matrix-vector products of (15) to deliver the final output.

Theoretically speaking, there is nothing particular involved

within this process. While standing on the implementation

point of view, especially that a typical accumulator uses more

resources than an adder, we rewrite (13) as

[W0] =[G0(D0 +D1) + (−G1 −G0)D1],

[W1] =[G0(D0 +D1) + (G1 −G0)D0],
(16)

and then

[G0(D0 +D1) + (−G1 −G0)D1]

=

N/2∑
j=1

[G0]:,j [D0 +D1]j +

N/2∑
j=1

[−G1 −G0]:,j [D1]j

=

N/2∑
j=1

([G0]:,j [D0 +D1]j + [−G1 −G0]:,j [D1]j),

(17)

where the original two separate accumulations are combined

together as one to save the resource usage, as shown later also

in the implementation section (Section IV).

Similarly, we have

[W1] = [G0(D0 +D1) + (G1 −G0)D0]

=

N/2∑
j=1

([G0]:,j [D0 +D1]j + [G1 −G0]:,j [D0]j).
(18)

Step-III. It is possible to combine the operations of (17) and

(18) together, after considering again that: (i) the obtaining of

final output results actually rests on the two accumulations

of (17) and (18), which can be processed in parallel; (ii) the

actual elements/coefficients involved within (17) and (18) are

basically the half matrix of [G] (left side, since only [G0] and

[G1] are needed) except with some signs inverted, and the

elements from the matrix of [D].
Meanwhile, as specified in Step-I, each accumulation step

involves one column of matrix [G0] (or [G1]), which is actually

one complete column of the original matrix [G] though only

the left half side of the matrix is involved. This discovery

inspires us to treat the parallel accumulations of (17) and (18)

as one complete operation to facilitate further implementation.

In particular, the obtaining of [−G1 − G0] and [G1 − G0]
are no longer treated as separate operations but rather the

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 20:28:27 UTC from IEEE Xplore. Restrictions apply.

C
irc

ul
ar

 S
hi

ft-
R

eg
is

te
r

+

G

W0

W1

D0

D1

Wn-2

Wn-1

…
 …

 ...

gN-1, ..., g1, g0

G
0
R

eg
io

n

SI

SI

G
1
R

eg
io

n

+

+

+

+

ACC

ACC

4

4

4 5

5
AD-1

AD-1

13

13

M-1

M-1

13
M-2

AD-2

AD-2

AD-2

13

13

13 13

13

… … ... … … ... … … ...

+SI

SI

+

+

+

ACC

ACC

4

4 5

5
AD-1

AD-1

M-1

M-1

13
M-2

AD-2

AD-2

13

13

13 13

13

…
 …

 ...

4

4

4

dN/2-1, ..., d1, d0

dN-1, ..., dN/2+1, dN/2

(a)

+ 13
clk

DFF

(b)

4

0

X 2X

<<1
<<2

3X 4X

+

(1
1-

to
-1

) M
U

X

13

13

+

5X

SI SI SI SI SI

-X -2X -3X -4X -5X

(c)

X
2X
3X
4X
5X
-X

-2X
-3X
-4X
-5X

M-2
output

(d)

Unit-1

Unit-N/2

Fig. 1: (a) The proposed polynomial multiplication architecture based on Algorithm 1; SI: sign inverter. (b) The accumulator

(ACC). (c) and (d) Design details for M-2, where (c) is the common factors shared by all the M-2 cells and (d) is the 11-to-1

MUX in the M-2 cell to produce the final output.

operation based on one complete column of the original matrix

[G]. Then, the corresponding elements of [−G1 − G0] and

[G1 − G0] will be produced through the element-wise based

sign inverting and adding/subtracting operations (Section IV).

The Proposed TMVP-based Algorithm. Based on the above

derivations, we can thus derive the proposed algorithm as:

Algorithm 1: Proposed TMVP based polynomial mul-

tiplication algorithm for KEM Saber

Input : G and D are integer polynomials. // the

actual bit-width of the coefficients follow

Notation 1.

Output: W = GD mod (xN + 1).

Initialization step
1 make ready the inputs G and D.

2 [W0] = [W1] = [0]; // [W0] and [W1] are N
2 × 1

matrices.

Main step
3 for i = 1 to N/2 do
4 for j = 1 to N/2 do
5 [W0] =

[W0]+[G0]i,j [D0+D1]j+[−G1−G0]i,j [D1]j .

6 [W1] = [W1] + [G0]i,j [D0 +D1]j + [G1 −
G0]i,j [D0]j,1. // following (17)-(18)

7 end
8 end
9 [W0] = [W0]; [W1] = [W1].

Final step
10 deliver all the coefficients of output W ;

which fully fulfills the objectives of the proposed mathematical

derivation strategy.

IV. PROPOSED POLYNOMIAL MULTIPLICATION

HARDWARE ARCHITECTURE

The proposed polynomial multiplication hardware architec-

ture is shown in Fig. 1, which is obtained through several

algorithm-architecture co-implementation techniques.

Overall Description. The proposed architecture of Fig. 1 con-

tains N/2 number of arithmetic units (highlighted as the gray

box) to produce N coefficients of W . Besides that, a circular

shift-register (CSR) is needed to load all the coefficients of

polynomial G into the proper position to be further processed

to produce the correct output to the N/2 arithmetic units.

Meanwhile, the coefficients from two N/2-size matrix-vectors

are also serially fed to the structure. The N output coefficients

of W are delivered out in a parallel format. Note that all

the input/output data are processed in the two’s complement

representation form. The details of the involved components,

as well as related techniques, are listed below.

CSR. The internal structure of the CSR is shown in Fig.

2, where in total there are N number of registers and one

MUX. In the loading stage, the selection of the MUX (sel-

1) is set as ’1’ that the input from polynomial G are serially

loaded into the registers. After that, the selection signal (sel-1)

is switched to ‘0’ that the values loaded in the registers are

circularly shifted once per cycle. Note that a sign inverter (SI)

is required to invert the sign of the bottom value to generate

the correct output. The outputs of the registers are connected

to the outside to be used as the correct values to constitute

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 20:28:27 UTC from IEEE Xplore. Restrictions apply.

…
clk

gN/2

clk
gN-1

10 sel-1

G

C
SR

clk
gN/2-1

…

clk
g0

4

SI

4

G
0
R

eg
io

n
G

1
R

eg
io

n

Fig. 2: The CSR (values in the registers are initial loadings).

the same column of matrices [G0] and [G1] (Algorithm 1),

specified as the G0 and G1 regions, respectively, in Fig. 2.

Arithmetic Unit. The arithmetic unit, as highlighted in

Fig. 1, is the major component for the proposed polynomial

multiplication architecture. According to the procedures shown

in Steps 5 and 6 of Algorithm 1, we can firstly consider two

important operations involved there: the two corresponding

elements (with sign inverted) from matrix [G0] and matrix

[G1] need to be added together to be multiplied with one

coefficient from [D1] (Step 5). In contrast, the same elements

from matrix [G0] and matrix [G1] are subtracted, which can be

seen as the addition with another element with sign inverted,

and then multiplied with the related coefficient from [D0] (Step

6). These two operations can thus be transferred into the two SI

cells, two 4-bit adders (AD-1), and two following multipliers

(M-1) within one arithmetic unit, as shown in Fig. 1. Note

that there is another pair of addition operations involved within

Steps 5 and 6 of Algorithm 1, i.e., [D0+D1]j . But for the sake

of resource usage saving, we purposely arrange the elements

from [G0] and [G1] be added in the parallel format (in N/2
arithmetic units) since the 4-bit adder has smaller area usage

than the 13-bit one.

Meanwhile, to further save the resource usage, we follow

the existing design style of [14] that all the M-1 and M-

2 cells connecting with the same input from D0 (or D1 or

their addition output) share the common factors. Consider that

the coefficients generated from the sampler (input G) are in

the range of [-5,5] (unified implementation including all three

security levels of KEM Saber) and the output style of the adder

(AD-2 for serial inputs D0 and D1), we can thus use a MUX-

based lookup-table (LUT) method to realize M-2. This setup

requires all the possible output values to be pre-computed and

shared with the other parallel N/2 adders in the arithmetic

units. Each M-2 cell contains one 11-to-1 MUX (the output

of the AD-2 is used as the selection signal to the MUX) to

execute the proper operation. As shown in Figs. 1(c) and (d),

the values inside of the dotted blue box are the common factors

to be shared among all the M-2 cells, and X is the value of

the 13-bit input. For all the M-1 cells in Fig. 1, however, we

use another MUX since the output of the adder (AD-1) now

lies in the range of [-10,10]. We can use the 21-to-1 MUXes

for all the M-2 cells, and all the 20 common factors are shared

among all arithmetic units.

Lastly, according to Steps 5 and 6 of Algorithm 1, the

elements of [D0] and [D1] are serially fed into the structure

such that only one 13-bit adder is needed, as shown by the

shared red line in Fig. 1. The output of each M-2 cell is

added with the related outputs of two M-1 cells, respectively.

Then, the outputs of the AD-2 are delivered to the accumulator

(ACC) to produce the final output. As indicated in Section III,

this kind of setup brings resource usage saving to the overall

structure since an ACC has a larger area than an adder. As

shown in Fig. 1(b), each ACC involves one adder and one

register (DFF) connected in a feedback loop format such that

the newly received input is added with the previous output of

the adder to produce the output again for storing in the register.

Note that one arithmetic unit produces two output coefficients,

and the final output coefficients of W from all the arithmetic

units are available in parallel.

Control Cell. A control cell is required to coordinate all

the components in the structure of Fig. 1 function properly.

The operational status of the architecture of Fig. 1 involves

three stages, namely loading, computing, and delivering. The

loading stage refers to the loading of input coefficients of G
into the CSR. The computing stage denotes the computation

of the required operations according to mainly Steps 5 and 6

of Algorithm 1 to produce the correct output. The delivering

stage refers to the transferring output results into the memory.

Polynomial Multiplication Deploying Consideration. For

the deploying of the proposed polynomial multiplication core,

we have made several extra efforts and updates:

Data Input/Output Buffer. As shown in Algorithm 1, the

proposed polynomial multiplier takes two inputs G and D,

and produces one output W . Thus, the proposed architecture

requires two input buffers and one output buffer. (a) Since

each coefficient of input polynomial G is 4-bit in length

and these coefficients are assumed to be sent from regular

memory as 64-bit (regular in modern processor), the input

buffer of G contains N = 256 cells (each cell contains

four 1-bit registers). During the loading phase, the data in

each cell is passed to the 16th cell ahead of the current

location. In this way, the loading phase of the secret-key G
takes only 16 cycles. Then, during the computation phase,

each cell passes data to the next cell ahead to execute the

necessary computation according to the nature of the for-loop

in Algorithm 1. (b) The input buffer of D consists of four 16-

bit cells, which are aligned up to receive one 64-bit word from

external memory. In odd cycles, a new word is loaded into D’s

input buffer; while in even cycles, data in the bottom two cells

are shifted into the top two cells. In this way, the core of the

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 20:28:27 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Comparison of the Area-Time Complexities for the Proposed and Existing Hardware Implementations

design LUT FF CLB Fmax (MHz) DSPs latency! delay (μs) ADP0 ADPR#

[11]1 17,406 5,069 2712 250 0 256 1.02 17,823.74 -10.75%

[12]2 13,735 4,486 - 160 85 83 0.52 ∗ -

[23] (FIR) 3 16,971 8,755 - 250 0 511 2.04 34,688.72 -115.54%

[23] (Fast.2)3 25,831 12,850 - 250 0 255 1.02 26,347.62 -63.71%

[23] (Fast.4)3 35,306 19,143 - 250 64 127 0.51 ∗ -
[24] 26,884 14,524 4,419 441 0 264 0.60 16,093.82 -

Proposed 30,047 7,680 4,834 344 0 128 0.37 11,117.39 30.92%

!: latency denotes to the number of clock cycles.
0: ADP refers to area-delay product, which is ADP=#LUT×delay (since some of the existing designs do not report the CLB usage).
:ADPR denotes the ADP reduction, where the design of [24] is used as a baseline to calculate the corresponding results.
1: The reported number of CLBs is obtained from the released source code.
2: This design is based on Karatsuba algorithm.
3: This design is based on filtering-based fast algorithm (Fast.4 has smaller latency but with larger resource usage).
∗: These designs use large number of DSPs, which is difficult to calculate the actual ADP here. This is because one DSP typically can be seen as equivalent
to 102.4 slices [25], which indicates that the designs of [12], [23] need at least 8,704 and 6,554 equivalent CLBs (for using DSPs).

proposed multiplier can read two coefficients of polynomial

D from the top two cells in each cycle. The most significant

three bits of each cell are abandoned since each coefficient of

D is 13-bit in length. (c) The output buffer for polynomial W
consists of 64 cells with each cell as 64-bit length. All output

coefficients are loaded into the output buffer in one cycle when

the result is ready. In the following 64 cycles, the data is

shifted into the memory one cell by another. Each output cell

contains only 52 1-bit registers in the actual implementation

since each coefficient is coded in 13-bit.

Meanwhile, the control cell for the polynomial multipli-

cation is also updated to coordinate with the input/output

data transferring. Overall, The proposed architecture of Fig.

1 requires only N/2 cycles of accumulation to generate the

output W , which benefited from the proposed TMVP-based

algorithm. Besides that, the proposed polynomial multiplica-

tion is a unified structure that fits all security levels of Saber.

V. COMPLEXITY & COMPARISON

The proposed polynomial multiplication architecture (in-

cluding the input/output buffer and control cell) is coded

in VHDL with functionality verified. Finally, we have used

Vivado 2020.2 to synthesize and implement it on the targeted

AMD-Xilinx UltraScale+ XCZU9EG-2FFVB1156 FPGA de-

vice. Note that the implemented unified architecture fits well

for all three security levels of KEM Saber with N = 256, and

the detailed performance results are provided as follows.

Complexity. The area usage for the proposed polynomial

multiplier is listed in Table II, where the maximum frequency

reaches to 344MHz. One can notice that the polynomial

multiplier occupies 30,047 LUTs and 7,680 FFs (4,834 CLBs).

Meanwhile, the time-complexity of the proposed hardware

accelerator, in terms of the number of computation cycles and

related computational time, are also listed in Table II.

Comparison With The Existing Implementations. We have

compared the area-time complexities of the proposed archi-

tecture with the existing implementations to demonstrate the

efficiency of the proposed design strategy.

Comparison Consideration. Considering the facts that: (i)

the proposed polynomial multiplication is a unified archi-

tecture for high-performance operations; (ii) the proposed

polynomial multiplication is based on the TMVP fast al-

gorithm; (iii) the polynomial multiplication is implemented

with actual deploying consideration. We thus: (a) compare

our proposed architecture with the existing high-performance

hardware polynomial multipliers for Saber ([11], [12]); (b) also

compare the high-performance hardware designs with practical

setup on input/output processing [23], [24] ([26] and [14] do

not have this setup and hence are not listed for comparison);

(c) we do not include compact designs for KEM Saber (like

[15]) due to the processing style difference.
Comparison Details. The detailed complexities of the pro-

posed architectures are listed in Table II, along with the

available implementations [11], [12], [23], [24].
As seen from Table II, when comparing with the exist-

ing KEM Saber polynomial multiplication implementations,

the proposed accelerator has significantly outperformed the

existing designs of [11], [12], [23], [24]. For instance, the

proposed design has 30.92% less area-delay product (ADP)

than the existing designs. As the proposed accelerator is a

unified architecture, the comparison with the existing unified

design of [24] reflects more precise information on the pro-

posed architecture’s superior performance. It is shown that the

proposed accelerator has slightly larger area usage (because

of the processing three matrix-vector products at the same

time) but with a much shorter time. More detailedly, the

proposed accelerator has 11.77% more LUTs and 47.12%

less FFs (overall 9.4% larger CLBs) than the existing unified

design of [24] while involves 38.33% less latency time. Hence,

the proposed accelerator involves significantly smaller area-

time complexities than the one of [24]. The similar situation

happens to the comparison with [11] and two designs of [23].
Apart from that, when considering the comparison with

[12] and one design of [23] (see Table II), the proposed

polynomial multiplier still obtains much small resource usage

while maintains very efficient time-complexity. This is because

the existing architectures of [12], [23] use very large number

of DSPs, which equivalent to at least 8,704 and 6,554 equiv-

alent CLBs (just for DSPs) based on the estimation standard

proposed in [25].
Overall, due to the benefits brought by the proposed TMVP

design strategy, the proposed polynomial multiplication un-

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 20:28:27 UTC from IEEE Xplore. Restrictions apply.

doubtedly has more balanced performance and is more suitable

for practical application than the existing ones.

Discussion. The proposed TMVP-based polynomial multiplier

features: (i) shorter computational latency; (ii) reduced com-

plexity and resource usage due to the TMVP strategy (three
N
2 -size matrix-vector products); (iii) simple architecture with

efficient implementation. As this is the first TMVP-based

hardware polynomial multiplication for Saber, we expect this

strategy can be extended for other PQC implementation.

Other Works and Future Research. There also exist impor-

tant lattice-based PQC designs includes the Ring-LWE-based

designs of [27], [28]. Though these designs have different

focuses, they represent the major advance in the field. Future

work will focus on side-channel attacks and countermeasures.

VI. CONCLUSION

In this paper, we propose a novel TMVP-based polynomial

multiplication for KEM Saber. Firstly, we have formulated

the polynomial multiplication of KEM Saber into the pro-

posed TMVP-based algorithm. Then, we have transferred the

proposed TMVP-based algorithm into the desired polynomial

multiplication architecture. Finally, detailed implementation

results and complexity analysis have shown that the pro-

posed polynomial multiplication structure has significantly

better area-time complexities than the state-of-the-art solu-

tions. To the authors’ best knowledge, this is the first report

on the hardware implementation of polynomial multiplication

of Saber based on TMVP. The research outcome of this

work is expected to generate significant impacts on efficient

implementation for other PQC schemes.

VII. ACKNOWLEDGEMENT

The work of J. Xie was supported by NIST-60NANB20D20

and in part by NSF SaTC-2020625.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th annual symposium on foundations
of computer science, pp. 124–134, Ieee, 1994.

[2] J. Xie, K. Basu, K. Gaj, and U. Guin, “Special session: The recent
advance in hardware implementation of post-quantum cryptography,” in
2020 IEEE 38th VLSI Test Symposium (VTS), pp. 1–10, IEEE, 2020.

[3] Post quantum cryptography round 3 submissions.
https://csrc.nist.gov/projects/post-quantumcryptography/round-3-
submissions., 2020.

[4] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40,
2009.

[5] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pp. 1–23,
Springer, 2010.

[6] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom functions and
lattices,” in Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pp. 719–737, Springer, 2012.

[7] J.-P. D’Anvers, A. Karmakar, S. S. Roy, F. Vercauteren, J. Mera,
M. Beirendonck, and A. Basso, “SABER: Mod-LWR based KEM
(Round 3 Submission),”

[8] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber:
Module-LWR based key exchange, CPA-secure encryption and CCA-
secure KEM,” in International Conference on Cryptology in Africa,
pp. 282–305, Springer, 2018.

[9] J. M. B. Mera, F. Turan, A. Karmakar, S. S. Roy, and I. Verbauwhede,
“Compact domain-specific co-processor for accelerating module lattice-
based KEM,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC), pp. 1–6, IEEE, 2020.

[10] V. B. Dang, F. Farahmand, M. Andrzejczak, and K. Gaj, “Implement-
ing and benchmarking three lattice-based post-quantum cryptography
algorithms using software/hardware codesign,” in 2019 International
Conference on Field-Programmable Technology (ICFPT), pp. 206–214,
IEEE, 2019.

[11] S. S. Roy and A. Basso, “High-speed instruction-set coprocessor
for lattice-based key encapsulation mechanism: Saber in hardware,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 443–466, 2020.

[12] Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei, and
L. Liu, “LWRpro: An energy-efficient configurable crypto-processor for
Module-LWR,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 68, no. 3, pp. 1146–1159, 2021.

[13] E. Carter, P. He, and J. Xie, “High-performance polynomial multiplica-
tion hardware accelerators for kem saber and ntru,” Cryptology ePrint
Archive, 2022.

[14] A. Basso and S. S. Roy, “Optimized polynomial multiplier architec-
tures for post-quantum KEM Saber,” Design Automation Conference
(DAC)’21, 2021.

[15] P. He, C.-Y. Lee, and J. Xie, “Compact coprocessor for KEM Saber:
Novel scalable matrix originated processing,” The NIST Third Standard-
ization Conference, pp. 1–16, 2021.

[16] V. B. Dang, K. Mohajerani, and K. Gaj, “High-speed hardware architec-
tures and fair FPGA benchmarking of CRYSTALS-Kyber, NTRU, and
Saber,” The NIST Third Standardization Conference, pp. 1–48, 2021.

[17] H. Fan and M. A. Hasan, “A new approach to subquadratic space
complexity parallel multipliers for extended binary fields,” IEEE Trans-
actions on Computers, vol. 56, no. 2, pp. 224–233, 2007.

[18] M. A. Hasan, N. Meloni, A. H. Namin, and C. Negre, “Block recom-
bination approach for subquadratic space complexity binary field multi-
plication based on Toeplitz matrix-vector product,” IEEE Transactions
on Computers, vol. 61, no. 2, pp. 151–163, 2010.

[19] C.-Y. Lee and P. K. Meher, “Area-efficient subquadratic space-
complexity digit-serial multiplier for type-ii optimal normal basis of
GF (2m) using symmetric TMVP and block recombination techniques,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62,
no. 12, pp. 2846–2855, 2015.

[20] C.-Y. Lee and J. Xie, “High capability and low-complexity: Novel fault
detection scheme for finite field multipliers over GF (2m) based on
MSPB,” in 2019 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 21–30, IEEE, 2019.

[21] J.-S. Pan and et al., “Novel systolization of subquadratic space com-
plexity multipliers based on Toeplitz matrix–vector product approach,”
IEEE TVLSI Systems, vol. 27, no. 7, pp. 1614–1622, 2019.

[22] I. K. Paksoy and M. Cenk, “TMVP-based multiplication for polyno-
mial quotient rings and application to Saber on ARM Cortex-M4,”
https://eprint.iacr.org/2020/1302, 2020.

[23] W. Tan, A. Wang, Y. Lao, X. Zhang, and K. K. Parhi, “Low-latency
vlsi architectures for modular polynomial multiplication via fast fil-
tering and applications to lattice-based cryptography,” arXiv preprint
arXiv:2110.12127, 2021.

[24] P. He and et al., “HPMA-Saber: High-performance polynomial multipli-
cation accelerator for kem saber,” International Conference on Computer
Design (ICCD), pp. 1–4, 2022.

[25] Y. Zhang and et al., “An efficient and parallel r-lwe cryptoprocessor,”
IEEE TCAS-II, vol. 67, no. 5, pp. 886–890, 2020.

[26] J. Xie and et al., “Crop: Fpga implementation of high-performance
polynomial multiplication in saber kem based on novel cyclic-row
oriented processing strategy,” in IEEE ICCD, pp. 130–137, IEEE, 2021.

[27] H. Nejatollahi, S. Shahhosseini, R. Cammarota, and N. Dutt, “Exploring
energy efficient quantum-resistant signal processing using array proces-
sors,” in IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1539–1543, IEEE, 2020.

[28] B. J. Lucas and et al., “Lightweight hardware implementation of binary
ring-lwe pqc accelerator,” IEEE Computer Architecture Letters, vol. 21,
no. 1, pp. 17–20, 2022.

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on September 25,2023 at 20:28:27 UTC from IEEE Xplore. Restrictions apply.

