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Some infections diseases produce lifelong immunity while others only produce temporary
immunity. In the case of short-lived immunity, the level of protection wanes over time and
may be hoosted npon re-exposure, via infection or vaccination, Previous work developed
a simple model capturing waning and boosting immunity, known as the Susceptible-
Infectious- Recovered- Waned-Susceptible {STRWS) model, which exhibits rich dynamical
behavior including supercritical and subcritical Hopf bifurcations among other struc-
tures. Here, we extend the bifurcation analvses of the SIRWS model to examine the
influence of all parameters on these bifurcation structures, We show that the histable
region, involving both a stable fixed point and a stable limit cyele, exists only for a small
region of biologically realistic parameter space. Furthermore, we contrast the SIHWS
model with a moedified version, where Immune bocosting may involve the occurrence of a
secondary infection. Analysis of this extended model shows that oscillations and bistabil-
ity, as found in the SIRWS model, depend on strong assumptions about infectivity and
recovery tate from secomdary infection. Understanding the dynamics of models of waning
and boosting immunity s important for accurately aszessing epidemiological data.

Keywords: Infectious Diseaze Dynamics; Waning Immunity; Boosting Immunity; Bifur-
cation Analysis; Hopl Bifurcation.

1. Introduction

Fxposure to pathogenic agents typleally induces an immune response that clears
immediate infection and may provide future protection. For some infections, such as

* Corresponding author.
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measles, this response 1s strongly protective and persists for long periods, perhaps
even up to the lifetime of the host."® For other pathogens, such as the causative
agent of pertussis, protection is only temporary and immunity to these pathogens
wanes over time. ™" This transient immunity at the individual level can lead to the
resurgence of disease in the population and complicated epidemiological dynamies
such as multi-year outbreak oscillations.”®

As complex infectious disease dypamics may have serious public health conse-
quences, the underlying cause of these complexities has been the subject of much
research both mathematically and in an applied context. Historically, compart-
mental models have played an important role in understanding the population
dynamics of disease. In the classic Susceptible-Infectious-Recovered (SIR) model
framework, individuals are classified into compartments based on their salient dis-
ease characteristics.” Codified through a coupled system of nonlinear ordinary differ-
ential equations (ODEs), this framework describes dynamics of the infection in the
population.

An extension of the SIR framework adds a connection between the recovered
class and susceptible class to represent the loss of immunity. The resulting system is
known as the Susceptible-Infections Recovered-Susceptible (STRS) model .1 While
the simple SIRS model is able to capture persistence of disease in a population,
it is unable to reproduce oscillatory infection outhreaks ' However, when certain
assumptions of the STRS maodel are relaxed, such as through non-standard force of
infection, oscillations in the level of infection in the population are possible '+!2
Periodic behavior, however, can be recovered with simple models if both loss and
regain of immunity are considered. Immunity against a pathogen may increase
following re-exposure, and this boosting can be caused by either infection or vacei-
nation. The resulting increase in immunity may occour with or without experiencing
a secondary episode of the disease, i.e., potentially without visible symptoms or
infectivity.

Describing waning immunity with compartmental models introduces new chal-
lenges. In particular, modelers must decide how to delineate and quantify lev-
els of immunity.!%!? Typically, these have been via discrete categories, although,

more recently, immunity has been considered as a continuous parameter.!* 17

One exemplary model, the Susceptible-Infectious-Recovered-Waned-Susceptible
(SIRWS) model incorporates waning and boosting immunity through the addi-
tion of a W compartment.'® This compartment describes a waned state in which
individuals are less immune than the recovered class, but more immune than the
fully susceptible class. Initial analyses showed that the system exhibits three dis-
tinct dynamics depending on the degree of boosting — fixed points, limit cycles and
bistability between the two.'® Dafilis ef al.'® examined the influence of infectivity
and natural mortality on the bifurcation structure of the SIRWS model and con-
cluded that all three types of dynamical behavior are possible, but only if immune
boosting is stronger than infection.
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Other authors have extended the SIHWS model to explore additional questions
such as the role of age structure, vaccination, seasonal forcing, strain dynamics,

and more. Lavine ef al'®

examined the resurgence of pertussis by extending the
SIRWS model to include age-structure and vaccination. They also performed a
bifurcation analysis to determine the role of vaccination and immunity boosting
on the structure of the system. Leung ef al.?" showed that the relative duration of
vaccine-induced immunity and infection-induced immunity plays a significant role
in determining epidemiological dynamics. Epidemiological patterns were found to
be guite different when the duration of immunity varied widely between the two
routes of infection, which is believed to be the case for pertussis.?! Extensions
in Dafilis ef al.?** considered seasonal forcing of disease transmission and found
highly unpredictable behavior. Further work considered the interaction of similar
pathogens®* and demonstrated that much weaker boosting is necessary for periodic
solutions in the context of cross-immunity. This highlights the interesting hehavior
when two phenomena that can canse oscillations — strain dynamics with cross-
immunity?*?® and waning/boosting of immunity!® — are conpled. Recent work
has examined the basic SIRWS model in more detail analytically, although open
questions remain.

In this paper, we extend the analyses of the SIRWS model. In particular, we
determine an analytical condition for when the endemic equilibrinm is stable. We
also extend the numerical bifurcation analysis of the SIRWS model to all model
parameters and determine the parameter regimes in which fixed points, limit cycles,
and histahility oceur. We show that the region of histability is relatively small for
biologically realistic parameters, despite its range mathematically. Furthermore,
we introduce a modification of the SIRWS model that includes the potential for
secondary infection en route to boosting of immunity. We compare the dynamics
exhibited under the SIEWS and modified models to show that secondary infection
must he very short or with extremely low infectivity to recover periodic hehavior.
Thus, nearly “silent” secondary infections are necessary for biologically realistic
dynamics. This demonstrates a need for full understanding of the immune charac-
teristics when evaluating the epidemiclogical course of infectious diseases,

The structure of the paper is as follows. In Sec. 2, we introduce the SIHWS
model and our modification that includes secondary infection. In Sec. 3, we define
an analytical condition for stability of the endemic equilibrium of the SIRWS model.
In Sec. 4.1, we examine the bifurcation structure and dynamical properties of the
SIRWS model, and in Sec. 4.2 those of the modified model. Finally, in Secs. 5
and 6, we place our results in a biological context and discuss the implications of
our fndings.

2. Model Formulation
In this section, we introduce the original SIRWS model and our extension that

includes the possibility of immune boosting via secondary infection.
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2.1. SIRWS model

The classic SIRWS model describes the population of individuals in susceptible (5,

infections (1), recovered (1), and waned immune (W) compartments and is defined
18,24,

by the following system
= p(l — 5} — A5 + 2&WW,
= A5 — =0 —pl,

=l —26R+ AW — uR,

RN

= 2R — 2eW — AW — uW)

where A = 37 is the force of infection, # is the infectivity, 4 is the recovery rate,
gt is the natural birth/death rate, % is the immunity waning rate, and 1 is the
relative boost in immunity due to re-exposure. Parameter descriptions and haseline
values are shown in Table 1. A flow diagram describing the movement of individuals
throngh the population eompartments is shown in Fig. 1(a).

2.2, Modified SIRWS model

We extend the SIRWS model to include an additional compartment, I, for sec-
ondary infection. This revises the assumption that re-exposure to a pathogen boosts
immunity back into the recovered state by instead allowing for a secondary infection

2w 25
A ¥ 2 A e 2
5 o 1 > 7w 5 > 7 M7 L e
T4
v T2 \(\-_._.].I-Ly
I e
(a) STRWS model (b) Modified STRWS model

Fig. 1. Schematic representation of the standard and modified STEWS models, ignoring demogra-
phy. 5, I, i, and W represent the susceptible, infected, recovered, and waned immune populations,
respectively. The foree of infection is given by A, where in (a) A = 87 and in (b} A = 8{T + af2).
In hoth (a) and (b), A is the infectivity, v is the recovery rate, x is the waning rate, and 1 is
the relative boost in immunity upon re-exposure. In (), f2 Is the class of individuals with sec-
ondary infection, o is the relative rate of infectivity, & is the fraction of individuals that experience
secondary infection, and 2 i3 the recovery rate of secondary infected individuals,
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Table 1. Parameter descriptions and baseline values, The first five parameters appear in both
original and modified STRWS models, while the final three parameters only appear in the modified
model. Parameter values for the SIRWS model are from Leung el ol*! and new parameters are
chosen to produce a scenario that recoups dynamics exhibited when using the original parameter

get, ) = ¥ear, p = persomn.

Symbol Dreseription Value Unit
m Birth and death rate 1/800  y~

-+ Recovery rate 17 T

K Waning Immunity rate 110yt

v Immune boosting strength 1 —

8 Transmission rate 260  ply?
i Relative infectivity of secondary infection 1 —

2 Recovery rate of secondary infection 17 T

] Fraction of exposures that lead to secondary infection 0 —

of potentially diminished length and infectivity. A How diagram describing the
movement of individuals through the compartments is shown in Fig. 1(b).
The modified system of equations including secondary infection, Is, is given by:

ds
0 =pu(l—8) — AS + 2sW,
dl
C NS Al ol
i W — pl,
dR
= W+ yals + (1 — d)eAW — 2R — pR,
% — IR — W — vAW — W,
dr.
_d: = AW — 2l — ply,

where A = 3{I +als) is the force of infection. 3, «, &, pt, and 1 are defined as in the
SIRWS model (Table 1). Here, we introduce three new parameters: o, the relative
infectivity of secondary infections to primary infections, 4, the fraction of exposures
that lead to secondary infection, and <, the recovery rate of secondary infections
(Table 1). Note that for either § = 0, or & = 0 with 43 — oo, we recover a model
nearly identical to the original STRW S model. In the former case, this is becanse
when § = 0 no individuals experience secondary infection. In the latter case, when
a = 0 the Is class acts as additional recovered class and as 42 — o0 individoals
spend almost no time in the f5 class before passing into the recovered class,

3. Analytical Results

In this section, we determine the equilibria of the SIRWS model and the modi-
fied SIRWS model. We also derive an analytical condition for the stability of the
equilibria.
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3.1. SIRWS equilibria

As the SIHWS model is a closed system, we only have three independent variables.
We choose toset R=1—-5 —1 — W and consider the following system:

% — p(1 = S) — BST + 26 W,
ji—‘r = BSI — I — pl, (3.1)
%=2m{1-S—I—W}—anw—umw—#m

There are three equilibria: the trivial, disease-free equilibrium (5, I, W™*) =
(1,0,0), and a pair of endemic equilibria
THH
8= —
8
e BBy —p)  2sWT
I" = .
Bly+p)  vtne

e _1
w* = ‘m—'wmi vB),

where
A=((26+p)* + (48 + p)) + pr(f — v — p),
B = (45® + dsp + (4 + p— p) + plp + B — ) + 16967 (8 — v — p)v.

Notice that 5% is the same for both endemic equilibria but I and W™ differ.
For ;‘f—p = 1, I* and W* are either both positive or both negative. Thus, the
system exhibits two biologically relevant equilibria: the disease-free equilibrium and
a positive endemic equilibrinm.

3.2. Stability of SIRWS equilibria

Using our simplified system (3.1), we examine when each equilibrium is stable. We
compute the Jacobian

—BI" — —35" 2K
g2 o wey = | BI* BS* —7y—p 0 ;
—2kK —vAW* — 2k —pAI* —4dk —p

where (5%, I'",W") is the equilibrium point of interest, to determine its stability.
At the disease-free equilibrium, (5%, 7", W*) = (1,0, 0), the Jacchian has eigen-

values Ay = F— ey —p, Ao = =2k — pu, and Az = —2x — ;1. For biologically realistic,

non-negative parameters, the three eigenvalues are negative and the disease-free

equilibrium is stable when 3 < v+ p or Ry = % < L
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The stability of the endemic equilibrium is more complicated, and has not been
analytically shown to our knowledge, although it has been examined extensively
mumerically. '8 20222437 Iy line with unpublished work,?” we examine the charac-
teristic polynomial of the Jacobian evaluated at the endemic equilibrium expressed
as ©° + asr® + ayx + ap where

az = A1+ )" + 226 + ),

a; = Pl + 8(y + 46+ p(2+ )" + (26 + p)?,

ag = A (4% + dkp + p? + 280 W™ 4 Bue I + +(Fel* + 4k + p)).
Employing the Routh-Hurwitz criterion,”™ ™ we require that az > 0, ap > 0, and
agay > ag. For any solution where I and W exist, L.e., are real and positive given

binlogically realistic, non-negative parameters, then all the coefficients are clearly
positive. Rearranging the last condition we see

agay —ag = — A (y(vAT* + 4k + p) + Bped* + 28k W* + 462 + dep + p®)
+ (B + )" + 2026+ p)) (26 + ) + 0T
+ B (v + Ak + p(2 +v))),

which can achieve hoth positive and negative values depending on the parameters.
It can be shown numerically that loss of stability of the positive endemic equilibrium
requires > 1. Furthermore, in Leung,?” the anthor examines the limits of » and
shows that as v — 0, STRS dynamics are recovered, and when v — ~o, STR dynamics
are recovered.

1.3. Modified STRWS equilibria

As the modified STRWS model is a closed system, it contains only four independent
variables. Thus, weset R =1—5— T — W — I; and consider the following system:

s =pu(l— 8) — AS + 2xW,

dt

dl

= = A~ — ul,
w (3.2)
—p = 21 =8 =T =W — D) = 26W — AW — W,

dl

d_: = duw AW —’:rzfz - ;_II:,

where A = 8( + alz) is the force of infection. There are three equilibria: the
trivial, disease-free equilibrinm (5%, I'*, W=, 17} = (1,0,0,0), and a pair of endemic
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equilibria
5% = % — oy
o8-y p) 2kt adpr)W”
= =+ .
Bly +p) T+p
= dvW™ (#{ﬂ—'r—#} + (2ﬂ=+ﬂﬁwlﬂw*)
2Tyt p—afWr \ By +p) Y+p ’

where

A =48+ + 43y5% + B2 + 8Bk + 4862 + 28y + 48kp® + Fp® + 2042
x yorw — dafy dre + Fypr — Gy pr + 288 kpw — 2Bydrpr — dafydrpr
+ Pty — 28yptv — 2Bbrptv — By,

B = °[~8yk(y + p)(v + p — Blv(—4(a — 1)dk” + 2k — dadkp + aydp(v — 1)
+ adp (v — 1) + 208 kpw + 2yx(1 — 208 + o8%0))
+ (Vi — pv + K4 — dadv)) + pldr® + plp + B — ) + w(dp + 2560
— 26u)) + v(46® — 2u* (v — 1) + 2088k + Buv — 2ep(d(v + 2a0) — 4)))7],

C =26%(—4(a — 1) + 6r* + 2rp — dadrp + aydp(y — 1)

+adp? (v — 1) + 208k + 2751 — 2ad + o?6%).

3.4. Stability of modified STRWS equilibria

Using our simplified system (3.2), we examine when the equilibria are stable. We
compute the Jacobian

—B(I* +al}) —p — 38" 2 —afS*
AI* +al})  BS —q—p 0 oS
J= —2k —vBW* — 26 —vB(I* +ali) —vefW* -2
—dr—p
0 v FW vd3I* +ali) afbW* —y—p

at (5%, 1%, W*, I3) to determine the stability of an equilibrium.

At the disease-free equilibrium, (5%, I*, W=, 17) = (1,0,0,0), the Jacobian has
elgenvalues Ay = F— v —p, Ao = 20 —p, Ag = -2k — p, and Ay = 7 — p. For
biologically realistic, non-negative parameters, the four eigenvalues are negative and
the disease-free equilibrium is stable when 3 < v+ p or Hy = ;"_E—P < 1. This is
an identical condition as seen for the classic SIRWS model. As system (3.2) is four
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dimensional, an analytical solution for the stability of the endemic equilibria is not
tractable. We can however, consider the eigenvalues of the Jacobian numerically to
determine stability.

4. Numerical Bifurcation Results

Models that include both waning and boosting immunity, such as the SIRWS model
and our modified version, produce a rich set of dynamical behavior. Depending on
the degree of immune boosting () they may exhibit fixed points, limit cycles, or
regions of bistability characterized by a stable limit cycle and a stable fixed point
separated by an unstable limit cycle. Previous work demonstrated that values of
v greater than one allow for the existence of oscillatory behavior when using a
standard set of parameters in the SIRWS model (Table 1).'"?7 Here, we perform a
full two-parameter hifurcation analysis to examine the effect of each of the param-
eters on the capahility of v to produce oscillations. We also include multiple series
of one-parameter bifurcation diagrams to demonstrate the influence of &, ~, a,
and 4 on the amplitude of outhreak oscillations for a range of hoosting strengths
(). Bifurcation analysis was performed with Runge-Kutta integration in XPP 8.0
and contimation in XPPAUT?! with data processing in MATLAB. Details of all
numerical conditions for continuation are available npon request.

Previous analysis of the STRWS model'®1%27 (reviewed here for clarity) deter-
mined the progression of dynamics as 1 is increased under the standard model
parameterization (Table 1). For small v, the system exhibits a stable fixed point
that decreases as v increases. When v = 2.06, a supercritical Hopf oceurs, producing
a stable limit cycle and flipping the stahility of the fixed point (Fig. 2(a)). Contin-
ued increase of v canszes the amplitude of the limit cycle to rise sharply followed by
a gradual decline as v approaches 13.61. At » = 13.61 a subcritical Hopf oceurs,
replacing the unstable fixed-point with a region of bistahility. In the histable region,
the fixed point regains stahility and is separated from the stable limit cycle by an
unstable limit cycle. With further increases of v, the unstable limit cycle grows in
amplitude to meet the shrinking stable limit cycle in a saddle node of limit cyeles
(Bautin point), leaving only a stable equilibrium for = 14.94,

This one-parameter bifurcation structure of the infections population, I, with
respect to v in which the system transitions from a stable fixed point, to a sta-
ble limit cyele, to a bistable regime, and back to a fixed point is observed for a
range of parameter values, Parameters outside this range produce either a system
that exhibits only fixed points (Fig. 2(c)), or a system in which the suberitical
Hopf bifurcation is replaced with a supercritical Hopf bifurcation such that bista-
bility is absent and amplitude of the stable limit cycle changes continnously with v
(Fig. 2(b)).

Curves in the two-parameter bifurcation diagrams represent four types of bifur-
cation polnts: supercritical Hopf, suberitical Hopf, saddle node of limit cycles, and
transcritical bifurcations (Fig. 3). The supercritical and suberitical Hopf curves are
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Fig. 2. One-parameter bifurcation structure of the STHWS maodel using the baseline parameter
values and varying mortality. (a) For standard parameter, g = 0.0125, the system produces four
dynamic regimes: a stable fixed point regime (i < 2.06), a stable limit cyvele regime (2.06 < 1 <
13.61), a histable regime (13.61 < ¢ < 14.94), and a second fixed point regime (i@ > 14.94]. (b)
For u = 0.016 the right subcritical Hopl bifurcation in (a) is replaced by a supercritical Hopf
bifureation, (¢} For p = 0,02, the system exhibits only a stable fixed point, Values of v at the
bifurcation points are approximations. All parameters are at values from Table 1 unless otherwise
indicated,
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Fig. 3. Two-parameter bifurcation diagrams of SIEWS model with boosting immunity as (a)
natural mortality, (b) infectivity, (¢] waning immunity, and (d) recovery rate vary. The different
dynamical regimes — fixed point, limit cycle, or histahility — are labeled, Insets to panels (b) and
(d) show zoomed in portions of the full bifurcation diagram. All parameters are at values from
Table 1 unless otherwise indicated.
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joined by the saddle node of limit cveles at a generalized Hopf point {also known as a
Bautin point). This phenomenon was noted in Dafilis et al.'® Two such generalized
Hopf points are found when varving &, 4, and ~ as the curves come together, closing
the region of bistability. In the case of & (Fig. 3(c)), the region is quite small, while
for # and + it extends to large levels boosting, i.e., v = 1000 (Figs. 3(h) and 3(d)).

4.1. STRWS maodel

While the SIHWS model can exhibit all of the dynamics described above, the
histable region, in which a stable limit cycle and stable fixed point coexist, is
observed primarily in biclogically unrealistic parameter space. Interestingly, for
some parameters, such as waning immunity (x), the range of values that produces
histability is quite small, in regards to changes in hoth v and & (Fig. 3(c)). While
for other parameters, such as g, 3 and +, the range of values is wide (Figs. 3(a), 3b
and 3(d)). It is important to note, however, that large bistable regions ocour at
guite large values of immune boosting (), that is, a value hundreds to thousands
of times more effective than the initial infection. Biologically, there is no evidence
of immune boosting of this magnitude.

4.1.1. Waning immunity

Changes in the waning rate, k, produce a cualitatively different two-parameter
bifurcation diagram from that seen when comparing natural mortality, g, and
immune boosting, . While limit cycles and bistability persist as g decreases
(Fig. 3(a)), bistahility is lost if the average length of immunity (1/x) moves outside
a range of 7-20 yvears (Figs. 3(c) and 4, left). Similarly, limit cycles are lost if the
average length of immunity moves outside a range of five to thirty-five years.

Both small increaszes and decreases in & maintain the capacity for bistability,
as long as the average time of immunity lasts from approxdimately 7 to 20 years
(Figs. 3(c) and 4, left column). The loss and appearance of limit cycles induced by
changes in & occur via supercritical Hopf hifurcations (Figs. 3(c) and 4, left). Sur-
prisingly, unlike for changes other model parameters, intermediate levels of boosting
(1 = 17) abrogate oscillatory behavior for any level of waning immunity. Addi-
tionally, for very short (<5 years) or very long (=35 years) periods of immunity,
oscillatory behavior is not possible,

It is, however, important to note that the influence of & on the system is not
restricted to the presence or absence of limit cyeles, It also plays a role in determin-
ing the effect of immune boosting, 1, on the level of the infected individuals in the
stable-steady state (Fig. 4, left column, top and bottom panels). When immunity
lasts a long time, i.e., & is small, the equilibrium level of the infectious population
is low for all levels of boosting (). When immunity only lasts a short period, ie.,
# is large, the equilibrium level of the infectious population is highly dependent on
the value of v, with lower i values associated with high levels of infection (Fig. 4,
left column, top and bottom panels).
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4.1.2. Rerovery rale

The recovery rate, v, differs from other parameters by several orders of magnitude,
with the infectious period on the order of weeks rather than years. For v = 17,
the system exhibits the same dynamic regions discussed above. As + decreases, the
bistable region is abruptly lost, followed by the disappearance of oscillatory behav-
ior, leaving only a single fixed point that is highly sensitive to levels of boosting, v
(Fig. 4, right column top panel). Interestingly, this pattern, where the level of the
infectious population is sensitive to i at low v and insensitive to v at high + is the
inverse of pattern observed when varying the waning immunity rate, s (Fig. 4, top
and bottom panels). Biologically, low values of ~ are unlikely, as they indicate an
infectious period much longer than what is currently estimated.

In contrast, shortening the infectious period, i.e., increasing v, as may be the
result of treatment, leads to wide regions of oscillatory behavior. With increasing
%, the region with only a stable limit cycle grows to encompass larger and larger
v (Fig. 3(d)). Similarly, the bistable region includes extremely large v values as
% increases. Indeed, the bistable region stretches to values of hoosting as wide as
v == 10°% hefore abruptly disappearing. Although numerically difficult to obtain,
we expect that the region of bistahility closes with a generalized Hopf point, near
v == 3T00 and « = 260. However, we are not able to confirm this with numerical
continuation of the Hopf curve and thus omit this line from Fig. 3(d). Above the
regions of oscillations and bistability, as 5 increases, there is a small region where
the endemic equilibrinum is stable (Fig. 3(d), inset). For very fast recovery, eg..
4 = 200, akin to an infections period of about 1.5 days, the system undergoes a
transcritical bifurcation and the infection-free state becomes stable (Fig. 4, hottom
right panel). In other words, with very short infections periods, the diseaze can no
longer persist.

4.1.3. Infectivity

Bifurcation analysis of infectivity, 3, with immune boosting, v, produces a bifurca-
tion diagram of similar structure to that of g and v for large values of @ (Fig. 3(b)).
Currently estimated at & = 260 (Table 1), if infectivity were higher than considered,
there would be a progressive loss of bistability followed by loss of oscillations with
the size of the infections population at equilibrinm highly dependent on assumptions
on hoosting (not shown). However, parallels between qualitative similarities of  and
p diverge for very small 4. In this case, instead of a continuous increase in the widih
of the oscillatory region, near 3 = 20 the distance between Hopf bifurcation points
continuously but abruptly decreases until both points disappear. (Fig. 3(b), inset).
When 3 = 17, the system exhibits another change in dynamics (Fig. 3(b), inset).
Here the stable positive infection fixed point loses stability and the disease becomes
extinet. In this case, the level of infectivity is not large enough to sustain disease
transmission. Decreases in & could be thought to be due to pon-pharmaceutical
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interventions such as soclal distancing or isolation. Interestingly, decreases in 3
show the possibility of bistability for intermediate values of boosting. Decreases in
infectivity do not elicit the same dynamical behaviors as decreases in the infections
period, 7, where bistability rapidly becomes possible only for very large levels of
boosting.

4.2. Modified SIRWS

The modified SIRWS model includes potential boosting of immunity through sec-
ondary infection. Not all individuals experience active secondary infection for boost-
ing of immunity. The fraction of individuals experiencing active secondary infection
is given by 4; relative infectivity of individuals with a secondary infection is deter-
mined by o; and the recovery rate of secondary infection is tuned by 2. Individuals
infected for a second time may recover faster (42 > <) or may contribute less to
transmission (@ < 1) than individuals infected for the first time.

4.2.1. Role of relative infectivity of secondary infections

We begin with the assumption that secondary infections and primary infections
are equally infectious, both in infectivity (o = 1) and length of infection (2 = =),
and that all individuals experience secondary infection (& = 1). In this case, only
the stable fixed point is observed and the secondary infection class contains more
individuals than the primary infection class. (Fig. 5, top panels).

The equilibrinm level of infection in the population is highly dependent on the
strength of hoosting, with lower values of v producing higher levels of primary
infection but lower levels of secondary infection (Fig. 5). The equilibrium level of
secondary infection in the population is largely unchanged as the relative infectiv-
ity, o, decreases (Fig. 5, right column, top to bottom), while the level of primary
infection significantly drops (Fig. 5, left column, top to bottom). As the equilibrinm
level of secondary infection in the population is generally two to five times higher
than primary infection, the level of total infections individuals does not appreciably
decrease (Fig. 5). Increases in v, apart from very small values, have limited influence
om the equilibrium level of secondary infection (Fig. 5, right column).

The initial assumption of our modified model that both primary and secondary
infection exhibit the same infectivity, i.e., o = 1, strays considerably from the idea
behind the original SIRWS model, where boosting of immunity does not require
the ocourrence of an infection. If we shift this assumption to the opposite extreme,
and consider the case where individuals in the [3 class are not at all infectious,
ie, @ = 0, we recover behavior nearly identical to the standard SIRWS model
{Fig. 6(a)). In other words, the system exhibits a supercritical Hopf for low & values,
a subcritical Hopf for intermediate v values, and a saddle node of limit cycles so
that only a single stable equilibrium remains for large . The recovery of the SIRWS
model bifurcation structure at o = 0 is due to the fact that Is individuals do not
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Fig. 5. One-parameter bifurcation diagrams of infectious population with respect to lmmune
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contribute to onward infection. The Is class merely acts as a delay between the W
and K classes.

If we consider intermediate values of relative infectivity, o, we see that both the
existence of a bistable region and the level of infection at the equilibrivm depend
on . At oo = 00001, the bifurcation structure is similar to the o = 0 case, exhibit-
ing the two Hopf bifurcation points and the Bautin point (Fig. 5, bottom panel).
But, if & is increased to 0.001, the Bautin point disappears and the bistable region
is lost so that only the Hopf bifurcation points remain. Further increase in o to
o 7= (0L005 causes a complete loss of oscillatory behavior so that only the stable
fixed point remains. Importantly, when o = 0.005, a primary infection is assumed
to be 200 times more infectious than a secondary infection, while when o = 0.0001, a
primary infection is 10,000 times more infectious. Thus understanding the true con-
tribution of secondary infection is important for determining the type of dynamics
expected.

4.2.2. Role of probability of secondary infection on dynemic regimes

The standard STRWS model assumes that individuals with partial immunity can
be boosted back to full immunity following exposure to infections individuals. Our
revised model includes the possibility of secondary infection, and shows that if val-
ues of relative infectivity, a, are small hifurcation analysis produces similar dynam-
ics regimes to the SIRWS maodel (Fig. 6(a)).

The range of relative infectivity, o, for which oscillations and bistahbility are
present grows as the fraction of individuals experiencing a second infection, 4,
shrinks. Thus, when the fraction of individuals acquiring full immunity through
a secondary infection is low, oscillations and bistability are possible even if those
individuals experiencing the second infection are highly infections. This relationship
hetween relative infectivity, «, and fraction of individuals experiencing secondary
infections, 4, is symmetric, in that oscillations are also present for a large range of
d when o is low (not shown).

The effect of the fraction of individuals experiencing secondary infection, 4, on
the @ versus ¢ bifurcation structures is more nuanced. When all boosting results in
secondary infection (§ = 1), oscillations can ocour for significant portion of (3-)
parameter space; however, bistability is only observed for a verv narrow region
{Fig. fi(b)). As the fraction of individuals experiencing secondary infection decreases
the region of bistability grows, Further decreases in § lead to further expansion of
the histable region while the limit cyele region only increases slightly, Thus, when
secondary infection is unlikely, i.e., § is low, the standard parameter set sits well
within the limit cycle regime.

A similar pattern is observed for the influence of fraction of individuals expe-
riencing secondary infection, 4, on the o versus » bifurcation structure. When
secondary infection is likely, ie., & is large, bistability 1s only possible for a nar-
row region (Fig. 6(c)). The region of bistability grows as the fraction of individuals
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Fig. 6. Two-parameter bifurcation diagrams of modified SIBWS model with respect to boosting
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labeled, Note that the p-axis scale in the third panel of (a) and the z-axis scale in the third panel
of (b} are wider than in other panels. All parameters are at values from Table 1 unless otherwise
indicated.

experiencing secondary infection decreases. In contrast to observations with 3, the
region of bistahility only grows slightly with decreasing , but an expansion of the
limit cycle region is apparent, especially for low recovery rate values. This indicates
that extended infectious periods can still create oscillations. Additionally, regard-
less of the relative infectivity of secondary infections to primary infections, we can
still recover behavior analogous to the standard SIRWS model, but for large q
(Fig. 6({c)). It appears that the system asymptotes to the bifurcation structure
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observed in the SIRWS model as v2 — oo, which indicates boosting directly into

the recovered class.

4.2.3. Influence of secondary infection probability § on the amplitude

of infection oscillations
The modified STHWS model is capahle of producing stable limit cycles for a range
of 4, e, fraction of individuals experiencing secondary infection, as infectivity, 3,
and immune boosting, , are varied (Fig. 6(h)). In fact, the fraction of individuals
experiencing secondary infection has limited influence on the (3, 1#) coordinates of
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Fig. 7. One-parameter bifurcation diagram of infectious population with rezpect (o lmmume
boosting as the fraction of individuals experiencing secondary infections for immune boosting
varies. A fixed relative infectivity, o« = 0,001, is assumed. The left column is primary infection, f,
and the right column ks secondary infection, f2. From top to bottom the fraction of individuals
experiencing secondary infection with boosting, 4, ranges 1.0, 0.5, 0,1, Long term hehavior: stahle
fixed point {red line), unstable fived point (black line), stable lmit cyele (green dots), unstable
limit cycles (blue dots). Note that the y-axis scale for Iy is dooble that for 7. All parameters are
at values from Table 1 unless otherwise indicated.
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the Hopf bifurcation points when o = 0.001. However, while these boundaries of
the stable limit cycle regime in (3, v)-space are relatively constant as § varies, &
does influence the amplitude of oscillations n the infectious population (Fig. 7).
Indeed, one-parameter bifurcation analysis of the primary infectious population,
I, versus immune boosting, v, shows that the amplitude of oscillations at the left
Hopf bifurcation point is relatively fixed while the amplitude at the right Hopf
bifurcation point and at intermediate values of v increases as § decreases (Fig. 7,
left). In contrast, 4 influences the amplitude of the stable Is limit cycles across
the relevant v domain. Thus, while the probability of secondary infection does not
influence combinations of infectivity and boosting (3, 1) required to produce limit
cycles, it does determine the magnitude of outbreaks within the oscillatory regime.

5. Discussion

In this paper, we examine waning and hoosting immunity in the context of simple
ODE models. We compare the classic STHRWS model with an extension in which
boosting of immunity may involve secondary infection. Analytically, we extend the
understanding of dynamics of the SIRWS model by deriving a condition for the sta-
hility of the endemic equilibrium. We also caleulate the endemic equilibrium for our
extended model. Numerically, we provide full two-parameter hifurcation curves for
each parameter paired with the boosting of immunity for both models. Finally, we
show how biological assnmptions abont the manner of boosting immunity — direct
or via secondary infection — affect our understanding of possible disease dynamics.

The presence of histahility is important for understanding the role of hoth the
intervention against infection and the importation of infection. In the former case,
if the population currently harbors low but persistent levels of infection, large-scale,
nearly instantaneons changes, such as mass drug administration, may shift the level
of infection in the population low enongh to enter an oscillatory regime. This would
result in epidemic-like disease expansion with increased burden of infection. In the
latter case, the arrival of infected travelers could raise the infection level out of
the basin of attraction of the fixed point, cansing large oscillations. Each of these
scenarios could vastly change the observed burden of infection, particularly over
short time periods.

As different rates of waning immunity (&) suggest qualitatively different dynami-
cal regimes, detailed information of the biology of a disease is essential to understand
epidemiological patterns. Immunity that persists for an intermediate length of time
(~5 to 35 vears) is necessary for the appearance of oscillatory behavior (Fig. 6(c)).
While this range is wide, it is still substantially shorter than the average life span,
indicating the potential for re-infection. Furthermore, in the case of pertussis, there
is considerable debate of the length of protection,® with thoughts that the length
of immunity may vary by route: natural infection versus vaccination,*1%:41

At times the dynamical structures found in our one-parameter bifurcation dia-
grams are situated very close together. In Fig. 4 [+ = 22), the lower branches of the
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unstable and stable limit cycles are nearly indistinguishable and just above zero.
Although separate in the deterministic system, a stochastic version would likely
result in behavior settling to the stable fixed point. In other words, if a trajectory
oacillated toward the lower bound of the stable limit cycle any small stochastic
perturbation would throw it into the basin of attraction for the unstable cycle such
that the trajectory would be driven toward the stable fixed point. While mathemat-
ically we observe oscillations in the deterministic system, the oscillatory nature of
the system is, perhaps, practically lost at some point. Similarly, as the lower branch
of many of the limit cycles sits just above zero, it is possible that stochastic pertur-
bations would result in extinction rather than a return to a high level of infection.

Our analyses indicate that policy-relevant changes will impact the dynamics
in non-intuitive ways. While large decreases in infectivity (3) or large increases in
recovery rate () both lead to extinction of the disease, the dynamics to get there
differ. As seen in Fig. 3, the region of bistability is much broader with changes in
recovery rate, but does not appear unless under high levels of hoosting. In addition,
changes to disease characteristics, such as the length of immunity generated follow-
ing infection {k), lead to a stable fixed point when immunity is both very short
and very long. A more complete understanding of the expected dynamical changes
with interventions such as drugs, which would speed up recovery rate, or social
distancing, which would reduce infectivity, will enhance our ability to monitor and
respond to infections disease outhreaks.

The STERWS model exhibits rich dynamical behavior, for which the details of
transitions are, as yet, not fully understond. Here, we have forused on broad regimes
of behavior exhibited when varying each of the model parameters. The hifurcation
structure of the system demonstrates the parameter regimes in which limit cycles
arise as well as the amplitude of these oscillations. We have not, however, explored
the period of the oscillations. A short discussion of the influence of boosting on
oscillation periods can be found in Dafilis et al.!® As the period indicates when we
expect to see large peaks in transmission, an understanding of these dynamics would
assist in policy recommendations, Furthermore, we have considered variation in
combinations of two parameters, but always centered around a standard parameter
set (Table 1). The bifurcation structure away from this parameter regime is, as yet,
undetermined.

6. Conclusion

Despite its simplicity, the SIRWS model of waning and boosting immunity demon-
strates rich dynamical behavior. It is a foundation for policy-relevant models of
waning and boosting immunity, and a complete understanding of the details of the
dynamics and their biclogical underpinning will be essential to help guide recom-
mendations for combating the spread of infectious diseases, such as pertussis.
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