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ABSTRACT

Background and context. “Explain in Plain English” (EiPE)
questions ask students to explain the high-level purpose of code,
requiring them to understand the macrostructure of the program’s
intent. A lot is known about techniques that experts use to compre-
hend code, but less is known about how we should teach novices
to develop this capability.

Objective. Identify techniques that can be taught to students
to assist them in developing their ability to comprehend code and
contribute to the body of knowledge of how novices develop their
code comprehension skills.

Method. We developed interventions that could be taught to
novices motivated by previous research about how experts com-
prehend code: prompting students to identify beacons, identify
the role of variables, tracing, and abstract tracing. We conducted
think-aloud interviews of introductory programming students solv-
ing EiPE questions, varying which interventions each student was
taught. Some participants were interviewed multiple times through-
out the semester to observe any changes in behavior over time.

Findings. Identifying beacons and the name of variable roles
were rarely helpful, as they did not encourage students to inte-
grate their understanding of that piece in relation to other lines
of code. However, prompting students to explain each variable’s
purpose helped them focus on useful subsets of the code, which
helped manage cognitive load. Tracing was helpful when students
incorrectly recognized common programming patterns or made
mistakes comprehending syntax (text-surface). Prompting students
to pick inputs that potentially contradicted their current under-
standing of the code was found to be a simple approach to them
effectively selecting inputs to trace. Abstract tracing helped stu-
dents see high-level, functional relationships between variables. In
addition, we observed student spontaneously sketching algorithmic
visualizations that similarly helped them see relationships between
variables.

Implications. Because students can get stuck at many points
in the process of code comprehension, there seems to be no silver
bullet technique that helps in every circumstance. Instead, effective
instruction for code comprehension will likely involve teaching

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICER °23 V1, August 07-11, 2023, Chicago, IL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9976-0/23/08....$15.00
https://doi.org/10.1145/3568813.3600140

Kathryn Cunningham
University of Illinois
Urbana, United States
katcun@illinois.edu

Craig Zilles
University of Illinois
Urbana, United States
zilles@illinois.edu

a collection of techniques. In addition to these techniques, meta-
knowledge about when to apply each technique will need to be
learned, but that is left for future research. At present, we recom-
mend teaching a bottom-up, concrete-to-abstract approach.
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1 INTRODUCTION

Skill in program comprehension is undoubtedly necessary to be
a strong programmer. “Explain in Plain English” (EiPE) questions
capture an important aspect of students’ program comprehension
ability: the capacity to identify the overall purpose or intent of a
piece of code [18]. This competency to explain code is not only
useful on its own—it also been consistently found to correlate with
other programming skills, like code tracing and writing [9, 23, 25],
suggesting that similar knowledge underlies all of these abilities.

We know a great deal about the various techniques that experts
use when understanding code. Typically programmers apply a mix
of top-down and bottom-up comprehension strategies depending
on what is most beneficial in their situation (e.g., top-down if the
code is familiar) [21, 24, 31, 60]. A wide variety of models have
been proposed for program comprehension [4, 21, 24, 31, 33, 49, 60].
What is common among these comprehension strategies is that
they involve some process of decomposing a large piece of code
into smaller sub-parts alongside the recognition of key code pieces
(known as “beacons”) that allow the programmer to make inferences
throughout the decomposition process.

However, less is known about how novices develop the ability
to understand code. Some observational studies have noted the
techniques novices use when trying to understand code [57]. These
studies found that novices’ ability to trace code became more ab-
stract over time, meaning that novices could describe code in larger
pieces and trace without using specific values. The block model has
been proposed as a means of characterizing a student’s progress
towards developing the ability to relate small pieces of code to the
overall purpose of code [44]. Despite all we know about expert code
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comprehension, few studies have explored what should be taught
to students to help them learn code comprehension.
In this study, we ask:

What techniques can be taught to students to help them
be successful at code comprehension tasks like Explain
in Plain English problems?

To investigate this research question, we designed four inter-
ventions based on the activities that have been observed when
experts and novices successfully understand code. They include:
(1) recognition of beacons, (2) understanding the role of variables,
(3) (concrete) tracing, and (4) abstract tracing. Section 2 describes
the research that motivates these interventions. We did not know a
priori which of these techniques could be learned by novices and
in what circumstances they would aid their understanding of code.

To study these interventions, we conducted a series of “think
aloud” interviews that occurred during and shortly after students
participation in an introductory programming course. The inter-
views were recorded and transcribed and analyzed qualitatively.
Our methods are discussed in Section 3.

Based on our analysis of the data, we found it useful to catego-
rize the interventions into two clusters. The first cluster included
interventions (beacons, role of variables) that primarily helped
novices decompose programs into useful pieces. The second clus-
ter included interventions (concrete tracing, abstract tracing) that
helped novices resolve mistakes from reading syntax and under-
stand relationships between parts of the code. As such, our results
are presented in two sections, Sections 4 and 5, respectively. In
Section 6, we synthesize our findings into suggestions about how
code comprehension should perhaps be taught.

2 BACKGROUND

As noted in the introduction, expert programmers tend to use a
mix of top-down and bottom-up strategies for code comprehension.
The bottom-up model [33] is commonly applied when the code
initially seems unfamiliar to the programmer. This model consists
of a program model and a situation model. The program model
is a control-flow mental representation of the program, made by
grouping chunks of the code and leveraging beacons (discussed
below) throughout this process (e.g., identifiers, comments, cues to
common patterns or plans). Afterward, they build a situation model,
a data-flow mental representation of the program, also built by
grouping chunks, where programmers apply their problem domain
knowledge.

In Brooks’ top-down model [4], the programmer begins with
an initial hypothesis of the purpose of the entire program based
on their domain knowledge (real-world knowledge of the problem
the program aims to solve) and hierarchically creates subsidiary
hypotheses to explore specific, implementation-level details needed
to verify the parent hypothesis leveraging beacons throughout
the process. Meanwhile, Soloway et al’s top-down model involves
recognizing code fragments (common patterns or plans) that seem
familiar [49].

2.1 Plans & Plan Composition

Programming plans are equally important for program compre-
hension and program construction. Plans are ‘canned’ solutions

Mohammed Hassan, Kathryn Cunningham, & Craig Zilles

representing chunks of knowledge that could be incorporated in
various contexts [49]. Various standard elementary plans are well-
known in the literature [37], such as initializing variables, averaging,
swapping, counter-controlled loops, summing, and counting plans.
Expert programmers have extensive knowledge of programming
plans from prior experience and would apply and merge various
plans when they write programs [48]. Experts use their knowl-
edge of plans (or organized schemas of general pattern knowledge)
to help them decompose problems into useful sub-goals. On the
other hand, novices lack plan knowledge and thus do not know
where to start to decompose problems and fail to find useful sub-
goals within programs. Prior work argues that instructors should
teach programming plans explicitly to students [66]. When instruc-
tors taught novices to use programming plans, they applied plans
more often than a control group, performed better solving the code-
writing questions, and were more confident in their understanding
of their code-writing solutions [37].

Applying, nesting, and merging a set of programming plans to
write code can be considered a method toward problem decomposi-
tion [48]. Students often fail to solve problems because they fail to
take a problem description, break it down into sub-problems, imple-
ment the sub-problems, then compose the sub-problems together
to the solution [29]. Issues of problem decomposition are partly
due to students’ poor understanding of programming semantics
[29] and struggles to compose and merge sub-plans [52, 53, 61].
Merging (interleaving) plans introduce element interactivity, which
is cognitively demanding for students [19, 47, 61, 63]. For exam-
ple, a great cognitive burden exists when considering loop plans
within programs and where to place them. Students also struggle
to tailor (modify and adapt) plans to their needs [61]. Sometimes,
students unproductively memorize plans rather than have a deep
understanding of them [61].

2.2 Beacons

Beacons are commonly regarded as information-rich hints toward
understanding the program’s function [4]. Beacons can take on
many forms, such as operations done on variables pertaining to
design patterns [18], informative identifiers like variable names or
function names [10], comments, focal segments such as sub-plans
that serve the central functionality within complex plans [64], and
any surface features that indicate the presence of recognizable op-
erations, structures, or plans [4]. Expert programmers intently look
for beacons when reading code [65]. Conversely, novices tend to
read code more linearly, like natural language text, going from left
to right, top to bottom and are often less successful in comprehend-
ing programs [5].

2.3 Role of Variables

The operations done on variables can pertain to design patterns and
are integral parts of plans [18]. The role of variables are common,
stereotypical operations that often occur in programs [40]. Ten
roles of variables are known to cover 99% of novice-level proce-
dural operations: fixed values, stepper, follower, most-recent holder,
most wanted holder, gatherer, transformation, one-way flag, tempo-
rary, and organizer [39]. Prior work found that explicitly teaching
students the role of variables increased students’ programming
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skills by integrating roles within the code they wrote [6, 42]. In
one study, computer science educators learned the role of variables
within an hour and could correctly identified the role of variables
within code they read [1]. Students who were taught the role of
variables performed better at explaining the lifecycle of the variable
to peers and instructors, scaled by SOLO’s taxonomy [46].

2.4 (Concrete) Tracing

Code tracing is the act of executing code either mentally or through
bookkeeping on some media, which is commonly evaluated through
“find the output” or “find the outcome” of code problems [30]. Being
able to trace code does not necessarily indicate that a student has a
high-level understanding of the purpose of the code [22]. Teague
et al. [55] found that some students use tracing to understand
code through inductive reasoning, where students would trace
code multiple times and identifying patterns in the input-output
pairs [54]. In this paper, we will refer to this technique as concrete
tracing to help distinguish it from abstract tracing.

2.5 Abstract Tracing

Abstractly tracing a program is tracing without specific values but
instead using a symbolic representation, sets, or ranges to repre-
sent multiple possible executions simultaneously. Teague et al. [54]
observed students abstractly tracing code when solving EipE ques-
tions, where they would deductively reason about variables based
on constraints rather than concrete values. These constraints per-
tain to the relationship between variables (e.g.,y = z + 11) and can
be based on conditional statements (e.g., if x > 2). Prior work has
investigated using assertions [3, 8], tracing with symbolic values,
design-by-contract assertions, and loop invariants to get students
to reason about code symbolically [8]. Izu et al. [17] found that
students deductively reason about code when solving reversibility
problems, which ask students if a program’s output can be restored
to its original input state.

2.6 Block Model

The Block Model distinguishes between program comprehension
tasks pertaining to understanding: 1) text-surface (syntactical struc-
ture), 2) execution behavior (algorithmic structure), and 3) purpose
(intent, function) [18]. A program’s intent is concerned with under-
standing why a programmer has written a program (i.e., external
context, domain), which is the extrinsic purpose of the code and is
qualitatively different from understanding execution behavior [32].
An example of a task pertaining to understanding the structural
relationships between subsets of the code in the program execution
dimension of the block model can be tracing code for a particular in-
put to develop an understanding of the execution-state relationship
between caller code and called procedural units. An example of a
task pertaining to understanding the algorithm of the whole pro-
gram at a high level (i.e., the macrostructure of program execution
dimension) can be identifying a comprehensive set of inputs to ac-
cess all control-flow paths of a program [18]. As for understanding
intent, an example of such a task could be selecting suitable variable
names within a program. This process involves understanding the
functional relationship between (purposeful) sub-goals within the
code. These relationships come together to establish the program’s

overarching goal or intent of the program. Choosing an appropri-
ate name for the whole program pertains to understanding the
macrostructure of the program’s intent [18].

3 METHODS
3.1 Participants & Data Collection

The first author conducted and recorded 42 think-aloud interviews
of introductory programming students solving EiPE questions over
Zoom. These participants were undergraduate students who had
taken or were in the process of taking a Python-based introductory
programming course for non-technical majors at a large public
U.S. university. These participants were 20 men and 22 women of
traditional college age. With the institutional review board (IRB)
and the course instructor’s permission, we emailed the class roster
during the Fall 2022 semester to recruit participants. The authors
were not instructors or teaching assistants of the class and had no
relationship to the participants. Fourteen of these participants were
interviewed multiple times throughout the semester to observe any
changes in behavior over time. These longitudinal participants were
interviewed once near the beginning of the semester (3rd week),
once during the middle of the semester (7th-9th week), and once
toward the end of the semester (14th+ week).

During the interviews, participants were asked to complete mul-
tiple EiPE questions. These EiPE questions were written based on
combinations of common patterns [16]. The EiPE questions did not
have meaningful identifiers (e.g., meaningful variable or function
names), as we wanted the students to infer the purpose of code
based on execution behavior rather than simply reading the identi-
fiers. Students were prompted to use an intervention strategy only
when they were stuck solving the problem independently. Each
participant was assigned to one of the four intervention conditions,
discussed in Section 3.3 and below. In cases where the intervention
was ineffective, an alternative intervention was sometimes used on
the same problem, or the interviewer attempted a newly invented
intervention.

3.2 Analysis Process

The think-aloud interviews were transcribed and analyzed in con-
junction with video footage using an inductive coding approach.
Our study focused on instances where interventions appeared to
aid students in correctly explaining the code. Even in cases where
interventions seemed ineffective, we observed additional actions
by participants or the interviewer that facilitated correct code ex-
planations.

First, the first author identified relevant areas of the 42 transcripts
for later analysis. This was done by segmenting the instances when
an intervention was used during the interviews and labeling that
use of the intervention as successful or unsuccessful. Categories like
‘beacons fail, ‘role of variables success, ‘tracing fail, and ‘tracing
success’ were used. Newly emerged interventions were also coded
by the first author based on whether they successfully aided the
students’ code explanation. These segments of the transcripts were
then organized into categories of each intervention’s successful
and unsuccessful uses.
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Next, the first author conducted line-by-line inductive open cod-
ing of each intervention’s successful instances. Since beacons con-
sistently failed to aid problem-solving, the first author additionally
coded its unsuccessful instances. This involved coding each tran-
script line to describe the action performed by the student, chunks
of the code the student appeared to understand, and potentially
the relationships between them. For example, codes included ‘trac-
ing with a focus on one variable’ for the role of variables, ‘resolve
incorrect comprehension of syntax’ or ‘choose input to confirm
false assumptions’ for tracing, ‘describe the range of all possible
values of variable x’ for abstract tracing, and ‘describe dependency
between variable x and y’ for visualization and abstract tracing.

After the first author independently analyzed the entire dataset,
he selected specific interview segments from each intervention for
further discussion with the second and third authors, due to the
sheer amount of data (42 interviews). All three authors reviewed
these instances across 10 weeks.

To ensure the reliability of interpretations, the third author in-
dependently and inductively coded the selected data subset using
transcriptions and video footage for his analysis. The 3rd author
analyzed this subset blind to the 1st author’s interpretation, in-
dependently generating his interpretations. Subsequently, all au-
thors convened to reconcile their interpretations, discuss emerging
themes, and agree on grouping interventions based on how they
helped students solve the problem. For example, ‘beacons’ and ‘role
of variables’ were grouped based on their effectiveness in dividing
code into sub-problems.

3.3 Beacons Intervention

In this intervention condition (n = 11), we aimed to get students
to try to read code more like experts by focusing on lines of code
central to the program’s functionality. To do this, we asked students
to identify and explain a line that is “most important to the code.” In
our problems, the most information-rich lines are typically integral
parts of a sub-plan occurring within the code (e.g., if-statement
within a filter plan), where the sub-plan performs an operation
central to the code’s purpose [64]. We asked students to identify
one line of code because our problems are short (e.g., only 4-20 lines).
The hope was that students would independently integrate their
understanding of that identified line into the sub-plan it pertains
to and then the whole program.

3.4 Role of Variables Intervention

In this intervention condition (n = 11), we asked students about the
roles of individual variables in the program. This was done in two
ways. At the beginning of each session, longitudinal participants
were taught the roles of variables [20, 40] that they had sufficient
syntactic knowledge to understand. The order the roles were taught
was similar to the best practices described by Kuittinen et al. [20]: In
the first interview, we began with the simpler roles fixed value, most
recent holder, and temporary. In the second interview, which was
after the instructor of the course introduced loops, we taught stepper,
gatherer, and the remaining roles. Whenever these participants
struggled to understand the program, we asked them to identify
the role of variables and then re-attempt the problem.
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Later in our study, based on our observations of this first ap-
proach, we switched our intervention to ask participants to explain
“the purpose of every variable,” in addition to identifying the role of
every variable, as we found this to increase the benefit of the inter-
vention. For non-longitudinal participants in this condition, we did
not teach roles of variables and, instead, simply asked participants
to explain the purpose of every variable in the program.

3.5 Concrete Tracing Intervention

In this intervention condition (n = 10), we asked students to per-
form a concrete trace of the program when they appeared stuck
solving the problem or repeatedly solved it incorrectly. We asked
students to “try inputs into the program”. If students did not choose
inputs that sufficiently helped them understand the problem, the
interviewer would guide them to select helpful inputs. Students
were directed to bookkeep on paper or on the computer and not
attempt to perform the trace in their head.

3.6 Abstract Tracing Intervention

In this intervention condition (n = 10), we taught students an
abstract tracing approach where they note down the value of any
unknown variable as a symbol. Each symbol has a corresponding
data type (e.g., integer) and a range of values (e.g., any integer from
negative to positive infinity). Arithmetic operations performed on
these symbols are represented by arithmetic expressions rather
than accumulated values (e.g., E1 + E2 + E3 for the sum of three
integers).

In some cases, we prompted students to abstractly trace with a
narrow range of inputs (1-3 for values from 1 to 3) rather than a
representation for all possible values. Like the symbolic approach,
they were directed to not simplify arithmetic expressions involving
concrete values (e.g., 1 + 2 + 3 rather than 6). In both approaches,
students were directed to bookkeep on paper or on the computer
and not attempt to perform the trace in their head.

4 RESULTS: HOW INTERVENTIONS
SUPPORTED NOVICES’ PROBLEM
DECOMPOSITION

When solving EiPE problems, we noticed that many of our partici-
pants initially attempted to comprehend the entire code without
breaking up the problem into sub-problems. These participants
appeared overwhelmed, likely due to the excessive cognitive load,
as one student noted:

It was a lot to try and wrap my head around with just
looking at it, mentally I was trying to think about too
much at once.

These participants appeared to struggle to understand the code
by reading linearly, from top to bottom, left to right, likely because
most arbitrary groups of adjacent lines of code do not have a com-
plete purpose. As a result, an attempt to make sense of the code a
few contiguous lines at a time, working from top to bottom, would
be unlikely to reduce cognitive load because adjacent lines cannot
always be effectively chunked together.

We found that two interventions, the beacons intervention and
the role of variables intervention, sometimes helped participants
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Assume that the variable x is a string.
def f3(x):
e = "aeiou"
for c in e:
if ¢ not in x:
return False
return True

Figure 1: An example EiPE question with the high-level de-
scription of “Returns whether a given string contains all
vowel letters.”

to initially focus on specific, functional subsets of the code, akin to
expert comprehension strategies like the bottom-up approach. The
modified role of variables intervention, in particular, appeared to
promote a more effective chunking strategy, which we will detail
in Section 4.2.2.

4.1 Students Could Identify Beacons but it
Rarely Helped Them

When responding to the beacon intervention prompt, where they
were asked to identify and describe the most informative line of
code in the program, students identified the same line of code the
interviewer believed was the most important line. However, while
the students could explain what these lines did in isolation, they
struggled to comprehend the relationship between the identified
line and other lines in the code.

For instance, participant 5 selected a filtering conditional line
within a loop-count plan (see Figure 1, line 4) as the most important
line, a line that could potentially give insight into the program’s
purpose.

Participant 5: (provides an incorrect description)
Return True if the vowel number is presented in the
input, otherwise return False

Interviewer: Which line of code do you think is the
most important?

Participant 5: Uh, if C not in X?

However, this participant could only provide an explanation in the
context of the immediate subsequent line.

Interviewer: What do you think that line of code is
doing?

Participant 5: So, x is the given string and c is part
of this another string. If its not in there. If- So C is
like a vowel character. If the character is not in the
given string, then return false.

Participant 5: return false if it’s not in the input
otherwise return true if this, (pointing at ¢ in for ¢ in
e line) If Cin E, if X not in C.

Interviewer: So what are you thinking right now?
Participant 5: So it tells that for each vowel character,
if that character is in the inputs or not.

This participant was not able to reach a high-level understanding
of this piece of code, even as they attempted to relate that line to

Assume that the variable x is a list of ints.
def f7(x):

k = x[o]

x[0] = x[1]

x[1] = x[2]

x[2] = x[3]

x[3] = k

print(x)

Figure 2: An example EiPE question with the high-level de-
scription of “Moves the first element of an input list to the
end”

the following line. In this example, as we observed generally, the
beacons intervention does not assist students in relating the beacon
to the rest of the code.

4.2 Role of Variable Intervention:
Inter-connected, Helpful Subsets

The Role of Variables intervention ended up proving effective in
some cases. Interestingly, prompting students to identify the roles
of variables using their given names did not seem to contribute to
their understanding of the code, even if they correctly identified the
name. Modifying the intervention to prompt students to explain
“the purpose of” each variable in the program helped students focus
on useful subsets of the code at a time.

4.2.1 The name of the role is unhelpful. Identifying the name of
the variable role did not help them understand the variable in
the context of the specific problem, as students could identify the
name based on familiar text-surface features without making an
attempt to relate it to the code’s execution behavior. In the following
excerpt, a student expresses exactly the sentiment that we observed
while solving the problem in Figure 2, that recalling the role name
typically did not help.

Participant 22: (provides an incorrect description)

Shifts a four element list over one place to left

Participant 22: (continues) For the use of the [in-

tervention] method, I don’t think it really helps for

this problem. I guess knowing that k— is it temporary

holder? is the only thing that I can see here. It’s a tem-

porary variable and that’s the only use I can see of it.

... So I would say it’s a temporary variable [but] I'm

not sure how that would help me in my [explanation].

Like I don’t know how [to] include that information

in my explanation

Identifying the name does not get students to explain the vari-

able’s purpose in the specific problem’s context. When we prompt
students to explain the purpose of the variable, participants respond
with a correct purpose that brings them closer to understanding
the purpose of the code as a whole, as in this excerpt from the same
interview as above.

Interviewer: Describe what the temporary variable
does in this case.
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Participant 22: Oh so it holds the first one. Uh, wait,
it just— it makes the first element of the list the last
one. Yeah. So that that would be the explanation.
Participant 22: (provides an acceptable description
of the code) Takes the first element of a list and makes
it the last element

Students expressed frustration at recalling the names of the roles
that we taught them and how it did not help them understand the
problem.

Participant 14: Honestly, it’s just too much more to
think about. It was annoying to have to recall back
to the actual name. I wasn’t a fan of the strict names
and the definitions, I guess. I don’t think it really
mattered. My understanding of what the variable did
was not going to change based on the name of what
the variable is. So it’s, like, the understanding of what
the variable does is helpful, but it’s just the naming
convention is too much extra work. And you’re going
to know what— like, what the variable does, whether
or not you call it a fixed variable.

4.2.2 Dividing program into helpful subsets by variable. Prompting
participants to explain the ‘purpose’ of each variable before the
entire program helped students comprehend the program. They
expressed that it was easier to understand each variable individually
before trying to understand the entire program.

Participant 18: I think the purpose of having the
variables is so you can differentiate what aspects of
the question you’re supposed to look at, and then
you can kind of use the variables to break up the
question in different segments and think about each
part. So you kind of just see all the variables, see all
the individual parts and break it down and then go
through it. And see the outcome.

Participant 9: I like the idea of like focusing on what
the variables mean. Because it gives some grounding
in like how to like approach the problem rather than
just like throwing you into some code and like trying
to like work through it. It’s nice to start somewhere,
like, you can to tell students to start with the variables
and, like, what do the variables mean and how we
defined them and then from there, like, how do we
affect the variables.

Prompting students to explain the purpose of a variable resulted
in them focusing primarily on lines containing operations involving
the variable, thereby identifying a functional, coherent subset of
the program. These pieces were sufficiently smaller than the whole,
that the student was more likely to be successful in comprehending
them even when they could not comprehend the whole program at
once. Because these subsets had a coherent purpose, we suspect that
students could effectively chunk them after they comprehended
them, reducing cognitive load when they later attempted to com-
prehend the code as a whole.

For example, participant 33 failed to trace the entire code (Figure
3).
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Assume that the variable x is a list of strings.

def Rf12(x):

0=20
g =20
for i, w in enumerate(x):
h=20
for ¢ in "aeiou":
if ¢ in w:
h +=1
if h > g:
g=nh
o=1

return o

Figure 3: An example EiPE question with the high-level de-
scription of “Returns the index of the string with the greatest
amount of distinct vowels.”

Participant 33: Okay, I'm going to mentally use an
example, “apple” ... (provides an incorrect description)
is it returning the index of, like, the last vowel in a
word?

The interviewer prompted them to explain the purpose of the
variable h, and they correctly explained it (highlighted in Figure 3).

Interviewer: Can you explain to me the purpose of
the variable h?

Participant 33: h is the counter of how many vowels
... how many of each type. Like if ‘a’ appears, we’re
going to add one. It doesn’t matter how many times
‘a’ appears and it’s just going to add one. how many
different vowels are in the word?

The interviewer then prompted them to explain variable g, which
is dependent on the variable h. They successfully applied their
understanding of h to help them explain the variable g.

Interviewer: Now explain to me the purpose of the
variable g.

Participant 33: (applying understanding of h) Okay,
and so if we run on, if h is greater than g, so right now
g is at zero. And if we’re using “apple”, ... because it
has two different vowels in it, ... if two is greater
than g which is zero, g is now two ... 'm ignoring
[variable] o because, I'm not really sure yet- we do it
again with the word “sit” i is the only vowel that
appears once and then 4 is in this loop is going
to be one and one is not greater than g so g is going
to stay two because

Participant 33: (gives an acceptable description of g)
it’s the highest number of different vowels given
a word inside of x

Understanding the variable g was facilitated by already understand-
ing the variable h, which it depended on.
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As another example, participant 15 initially misunderstood the
function (Figure 3) when attempting to comprehend the entire code
at once.

Participant 15: (Provides an incorrect description)
Returns the index of the last string of the order in a
list because it checks for vowels inside each string.
Then the end result is o, which is just the index of the
string that they’re currently checking.

The interviewer prompts the participant to explain the purpose
of each variable, and the participant performs an abstract trace
focusing on the operations performed on the variable h.

Interviewer: Could you explain to me what the pur-
pose of every single variable in this function is?
Participant 15: ... so I realized that for ¢ in AEIOU, if
c is in w, so basically w in this case, is still the same
string.

Participant 15: (comprehending h) So basically it
counted how many distinct vowels were in this
string, and h was the counter of that.

They comprehend that h is a counter and apply this understand-
ing to comprehend the variable g, which is dependent on the vari-
able h. Finally, they apply their understanding of g to comprehend
o.

Participant 15: If h is greater than g, which initially
g is zero, so if there’s any vowels, this would be the
new assigned string. A new assigned value, I should
say. o was tracking the index of that number. So it
basically went through every—

Participant 15: (restating purpose of h) every string
in this list of strings checked how many vowels it
was, and

Participant 15: (comprehended g and o) every time
that there was a string with more vowels than the
previous record holder, it would record the index
of that string.

4.2.3 Longitudinal: students no longer need prompting later in the
semester. Earlier in the semester (Oct), this longitudinal partici-
pant struggled to understand the entire code (Figure 1) without
considering subsets first.

Participant 4: (provides an incorrect description)
Determines whether there is a vowel in a given string.
We’re using our for loop to kind of accumulate to test
all of the vowels in the string. Testing out the vowels
in the string here. And if it’s not? If the vowel is not,
if any of the vowels are not in x, it’s false. So True
means that there is at least a vowel in x.

After the interviewer prompted them to explain each variable, they
solved the problem correctly.

Interviewer: Could you explain to me the role of the
variable ¢?

Participant 4: It’s probably the most recent holder.
It’s like holding the value a single vowel, so— ohh
its a stepper. Interesting. Or. That’s looking. OK. So I
guess it’s a stepper. And then it’s just at each for loop

[iteration], it’s just taking a new step in the vowel
progression.

Interviewer: Do you think that might change your
explanation?

Participant 4: ¢ now will be. So if a vowel. So if “a”
return False. Is it gonna? But if it returns false, it won’t
go back to the return. It won’t go back to the loop. Oh,
is it? If there is every vowel. Yes. Yeah. That makes
more sense.

Participant 4: (provides a correct description) Deter-
mines whether there is every vowel in a given string

Later in the semester, the participant would independently ex-
plain the purpose of each variable, finding and comprehending
meaningful subsets within the program (Figure 3) without needing
any prompting from the interviewer.

Participant 4: (comprehended h) A is acting as a
counting variable. And but that’s going to go through
each of the vowels, so it’s going to count how many
of the vowels are in a word. Okay, so that’s what
the for loop is going to do.

Participant 4: (comprehended g) And then with that,
if h is greater than g— it’ll define g is 0. If h is greater
than g, g = h. And then o equals i. OK, so. It looks
like— And then, o will hold the place of the index
value for... the word, so it counts how many of the
vowels are in one of the strings and then... And then,
whichever string has the most vowels, it holds—
Participant 4: (comprehended o) With the number
of vowels— it holds the number of vowels in that
string and the index place for.

However, they sometimes identified the name of the role of
variables incorrectly, further showing that recalling the name of
variable roles were sometimes unhelpful and unnecessary.

Participant 4: g would be a most recent holder. (should
be “most wanted holder”) Because we’re— that’s what
we’re going to be comparing to.

5 RESULTS: COMPREHENSION VIA
CONCRETE TRACING VS MORE ABSTRACT
METHODS

Our concrete and abstract tracing interventions helped students
make sense of code, but in different ways. Concrete tracing was
primarily useful for correcting mistakes students make from reading
the code’s text-surface features alone. Abstract tracing was useful
for identifying relationships between parts of the code and raising
an algorithmic understanding of a piece of code to a purpose-level
understanding of the code.

5.1 Tracing Maps Text-Surface to Execution

Some students initially misunderstood a program’s purpose
when only reading its text surface. For example, some students
made mistakes when attempting to recognize common patterns
based on text-surface. Others made careless mistakes relating to
the execution behavior of the code. In a number of these cases,
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def f1():
c=20
X =0
z =1
while z != 0:
z = int(input("Give me a number: "))
X += z
if z 1= 0@:
c +=1
return x / ¢

Figure 4: An example EiPE question with the high-level de-
scription of “Returns the average of all input numbers.”

performing a concrete trace of the code enabled them to correct
their understanding.

For example, participant 16 read the code’s text-surface and,
as a result, falsely assumed the code exits the while loop after the
first iteration (Figure 4).

Participant 16: (gives an incorrect description) So
then it basically divides the number represented by
x, which is essentially zero added to the number that
was in the input, and then it divides that input by one,
which is just going to be the input. So it asks the user
for an input and then essentially returns that number.

Performing a concrete trace allowed them to identify the mistake,
which enabled them to progress to a correct understanding of the
code.

Interviewer: So could you try inputting like a bunch
of numbers for z?

Participant 16: (performs concrete trace) So for ex-
ample, if you have like 4, for example, as z, then while
z, or so then x plus or equals z. Then x becomes 4.
And then if z doesn’t equal 0, which it doesn’t, then ¢
plus or equals 1. So then ¢ becomes 1. And then, for
example, if you have like 6 ...

Participant 16: (explains algorithm) Oh, so then it
would go— So it essentially, like, goes one by one—
like, based on how many times the function runs it—
like, divides the new x by that number and then re-
turns it. After I put in a series of numbers and my
output was— I realized that the outputted numbers
were coming from essentially, like, a total that was
divided by the count of how many times the function
had run and then the total was divided by the count
Interviewer: Do you think you have an even, like,
shorter way of explaining that to me now?
Participant 16: (gives acceptable answer) returns a
total divided by the number of times a function
has run.

While we have misgivings about the student’s use of vocabulary
in their final answer, it is clear they are referencing the computation
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of an average.

When prompted to trace, participants commonly realize their
mistake in misrecognizing patterns. For example, when participant
20 traced the “count distinct occurrences” pattern (the purpose
of variable h, Figure 3), they realized it did not count duplicate
occurrences, correcting their misunderstanding.

Participant 20: (gives an incorrect description) so I
think it’s counting the amount of vowels in each word
in list x. And I'm pretty sure it’s returning the word,
the index of the word that has the most vowels.
Interviewer: Can you explain to me the variable h
again, please?

Participant 20: (gives an incorrect description) I'm
pretty sure h is like a counter for the vowels. Well, for
the, for the, well, how many vowels are in w, which
is the word, which is the string in this x. I think that’s
what h is. Kind of like a, you know, counter. It counts
for each word. No, for each string in this x, it counts
how many vowels there are in there. 'm guessing.
Interviewer: (prompts to trace)

Participant 20: (traces line-by-line) ... Then h equals
3. Oh wait, there’s... it’s coming twice. There’s four.
I'm so confused. Ah, is it? Let’s say c is ‘a’ now. ‘a’
appears. h is 1. Then we have ‘e’. That appears. We
have 2. Then we have ‘i’. That doesn’t appear. We
have ‘0. That appears twice. Does that mean we just
count? it once or twice? Does it count the word that
has all the vowels in there? No, this is. Yeah, so I'm
thinking ... it counts the word has, not the most
vowels, like number wise, but like, it has most
vowels singularly. And then return the index of
that.

We observed multiple instances (including the above) where stu-
dents misrecognized patterns, which could be attributed to students
aggressively pattern matching to the patterns taught in the course
(e.g., a simple counting pattern).

Participant 42: So I think it’s just the fact that, like,
from last semester, [ was just accustomed to the fact
that these type of functions where it’s counting, it’s
looking for the total amount of something rather than,
like, the unique amount.

5.2 Tracing Pitfall: Students Choose a Limited
Set of Inputs Confirming False Hypotheses

Some students attempted to understand code through inductive
reasoning, by looking for patterns in multiple input-output pairs.
Students who successfully used inductive reasoning chose a diverse
set of inputs that exposed the full functionality of the code. In
contrast, unsuccessful students seemed to make false assumptions
based on their read of the code’s text-surface (syntax) or their first
few inputs, then chose a limited set of inputs to confirm their false
assumptions. To help students choose appropriate inputs, the inter-
viewer asked them to find additional inputs that could contradict
their current (incorrect) belief of what the code did, which seemed
to encourage them to choose more diverse inputs.
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Assume that the variable x is an int.

def f19(x):
0=20
while x > @:
if (x %10) % 2 == 0:
o +=1
x //= 10
return o

Figure 5: An example EiPE question with the high-level de-
scription of “Returns the number of even digits in a given
input integer.”

5.2.1  Successful students choose additional inputs of new charac-
teristics to contradict their explanation. For example, participant 39
incorrectly explained the code in Figure 5 after appearing to read
its syntax and chose a limited set of inputs consisting of mostly 0
digits, confirming their incorrect explanation repeatedly.

Participant 39: I don’t know the full purpose, but
... (reads code verbatim) returning how many times
the iteration or each division makes the number even
maybe?

Interviewer: Would you like to try an input?

Participant 39: (tries input 100) I still have the same
idea that I did in the beginning.

Interviewer: Would you like to try another input?
Participant 39: (tries input 1000) I still have the same
idea as before. It hasn’t changed.

Upon prompting from the interviewer, the participant chose a
more diverse set of inputs that now contained odd numbers and
then understood the code correctly, refuting their initial incorrect
explanation.

Interviewer: So now can you try out an input that
might make you change your explanation to make
it better. Like, think of an input. that could help you
better to change your explanation.

Participant 39: Yeah, I could probably choose like
an odd number or something.

Participant 39: (tries input 55) Odd numbers so we
don’t increment. For some reason now I'm thinking
it has something to do with digits. It was 55 and then
five. I think it has something to do with digits just
because like what I've seen with the even inputs in
this, but— Could it be that we’re checking if each
digit is even? So every time a digit is even, we’re
adding one to o. The digits, like, 55 over 10 would
give us like 5. We’re checking, we’re incrementing o
every time, each digit from right to left is even.

The prompt from the interviewer to try inputs that could add to
their understanding of the problem seemed to get the student to
try inputs of more varying characteristics (e.g., odd numbers rather

Assume that the variable x is an int.

def f4(x):
for i in range(2,int(x/2)+1):
if x %1 ==0:

return False
return True

Figure 6: An example EiPE question with the high-level de-
scription of “Returns whether the given input is a prime
number.”

than numbers ending with 0s).

As another example, participant 32 traced two inputs of odd num-
bers, falsely assuming the function (Figure 6) would return true for
all odd numbers.

Participant 32: (tries inputs 3 and 5) If the number is

odd— Would it just return true if the number is odd?

They try even numbers, which confirms their incorrect hypothesis.

Participant 32: (tries inputs 4 and 6) So if we input
an even number, Then it’s gonna return false for any
even number input. If it’s odd it’s going to return true.

The interviewer prompts them to find an input that could invali-
date their explanation. They initially consider trying another even
number, hesitate, and then decide to try an odd number (9) instead,
leading them to realize their previous explanation was incorrect
and that they must try more odd numbers to understand the code.

Interviewer: Now try out another input that you
think might disprove this hypothesis that you have.
Participant 32: Um, maybe, okay, if I put in 10, no, an
odd number. If I put in 9. then it’s going to return false.
So it’s not going to return true for all odd numbers.
So it’s going to return true for some odd numbers, but
I’'m not sure which ones without just like testing all
of them. Three is going to return true. Five is going to
return true. 7, ... oh, is it? No, wait. ... So that would
return.

Participant 32: (gives a correct description) Oh, is it
checking if the odd numbers have any multiples? Is it
a prime number? Is it returning true if the number is
a prime number?

After trying some more odd inputs, the participant then under-
stands the code correctly. Asking students to attempt to disprove
their hypotheses about the code’s purpose seemed to guide the stu-
dent to select inputs that helped to resolve their misunderstanding.

5.3 Abstract Tracing Shows the Functional
Relationships Between Variables

Some students, who relied on inductive reasoning (i.e., generat-
ing input/output pairs without deducing relationships between
lines), failed to recognize input-output patterns. The abstract trac-
ing intervention enabled some of these students to understand
the functional relationships (intent-dimension) between variables.
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It demonstrates how the action performed by each variable col-
lectively contributes to the code’s overall functionality, such as
how variable dependencies constrain actions and how independent
relationships allow actions to complement each other. With this
approach, the structural relations (execution-dimension) between
variables can be understood not just for specific input-output cases
but for any conceivable inputs.

In the excerpt below, the interviewer attempted to correct a
participant’s misunderstanding of the code in Figure 4. Prompting
the student to explain the purpose of each variable and perform
concrete tracing was unsuccessful.

Interviewer: So what is your high-level explanation?
How do you explain its purpose?

Participant 41: The purpose is to return numbers but
to ensure that you don’t get any undefined numbers
at the end because it does make you return a division
of some sort.

Interviewer: So could you explain to me the purpose
of the variable z, x, and k?

Participant 41: (responds with a line-by-line expla-
nation)

Interviewer: (prompts to concretely trace)
(pre-loop code)  (first iteration) (second iteration)

c =20 c=1 c=2
X =0 X =2 x =5
z =1 z =2 z =3

2.5 (return value)
Participant 41: I'm trying to figure out if I see some
sort of trend, but I really don’t

However, after performing the abstract trace intervention, where
the sum variable was noted as a list of separate symbols, the partic-
ipant gained a key insight. They realized that the total number
of integers added would always equal the counter variable,
regardless of the specific integer inputs. This demonstrated the func-
tional, independent relationship between the sum and counter vari-
ables and consequently revealed the overarching computation of
calculating the average.

(Interviewer prompts to use abstract tracing inter-

vention)

(pre-) (first)  (second) (third)

c=0 c=1 c=2 c=3

Xx=0 x=S1 x=S1+S2 x=S1+8S2+S3

z=12z=S1 z=2S2

Participant 41: (gives a correct description) is it an
average of the values?

Participant 41: because... $2. And then the c is also
two. And then I tried it with $3 then made ¢ 3. And
T kind of was able to actually see the trend of it being
an average.

Noting un-collapsed expressions demonstrated how the action
of taking the sum complemented the action of the counter to make
the average. When viewing the total accumulated as one value
initially, they found it unclear how the counter variable c relates to
the summing variable x.
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Assume that the variable inputList is a list of ints.
Assume that the variable k is an int.
def f(inputlList, k):
X =0
y =0
for i in range(len(inputList)):
X += inputList[i]
if i >= k-1:
if x > y:
y = X
X -= inputlList[i-k+1]
return y

Figure 7: An example EiPE question with the high-level de-
scription of “Returns the sum of the largest k consecutive
elements.”

When I did it the first time, I actually physically added
the numbers together. So I wasn’t able to notice it be-
ing an average.

As another example, participant 36 seemed to struggle to under-
stand the code in Figure 7, even after tracing with multiple inputs.

Participant 36: (performs concrete tracing with in-
putList as [4,3,5,7,1] and K as 1 and 2, not shown)
Participant 36: (gives an incorrect description) Re-
turn the maximum integer in the list + the sum of each
integer in the list positioned before a user provided
index.

Participant 36: (traces with inputList [4,3,5,7,1],
and K as 3, shown below, read left-to-right)

i=0 i=0 i=1 i=2 i=2 1i=2
Xx=0 x=4 x=7 x=12x=12 x=38
y=0 y=0 y=0 y=0 y=12y =12

i=3 i=3 i=4 i=4
X = 15 X = 12 X =13 X =8
Y =15 Y =15 Y =15 Y =15

Participant 36: It’s still hard to see what exactly it’s
doing. Because the way my brain is processing this
is more like a math problem. Where it’s like you do
a series of steps and you get an answer. How do you
get from A to B without describing every single step
in between.

When they perform the abstract tracing intervention, they be-
gin to understand the action performed by the variable x (move
forward/right, check every 3 numbers) and its functional, depen-
dent relationship with the max variable y (all add to the highest
value).

Interviewer: (suggests to use intervention, uses con-
crete numbers but does not simplify expressions)
inputList = [4,3,5,7,1]
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K =2
X=4+3 X=3+5 X=5+7
Y=17 Y =28 Y =12

Participant 36: X starts at 7 and then well this would
move right. So 8. X would continuously just update
to equal the sum of every pair.

inputList = [4,3,5,7,1]

K=3
X=4+3+5 X=3+5+7 X=5+7H+1
Y =12 Y =15 Y =15

Participant 36: You go forward. And then you
go back. It checks every three numbers. the sur-
rounding numbers all add to the highest value
(B+5+7=15).

Displaying the sum as un-collapsed expressions demonstrated
the action of x (move forward, back, every 3 numbers) and its func-
tional, dependent relationship to the max variable y (surrounding
three numbers 3 + 5 + 7 all add to the highest value). They continue
the same strategy now with K = 4 to understand the functional,
dependent relationship between all possible input cases of variable
k (‘if I change k, what changes?’), x, and y.

Participant 36: So what is it actually returning?
What does K have to do with it? Because if I change
K, what changes? If I change K to 4, the same pattern
would hold true, only it wouldn’t start subtracting un-
til here. Because it’s the fourth value.

inputList = [4,3,5,7,1]

K =4
X=4+3+5+7 X=3+5+7+1
Y =19 Y =19

Participant 36: So would y return the highest set
of numbers in a row equal to the length of k.
Interviewer: So how did you manage to reach your
explanation?

Participant 36: ... if it’s adding a value, then remov-
ing it, that it’s like the values that track in, just
moves an index over each time. And so once I saw
that, I was like, oh, okay, so it’s adding three numbers
and Y is incrementally— is just going to increase
if every three would be higher. And then, so after
figuring out what, Y was actually like being, I guess
after noticing that pattern of like threes, I con-
nected it. I was like, okay, what, where does K has
something to do with that? So then K is three. I
then tested it with four.

They mention the general action of variable x, which is how
it acts as a “track” that adds and removes (instead of “subtracts”)
values. They explain the functional relationship between the “track”
sum, the max variable y (highest set of numbers in the “track”), and
input k (“track” length of k). Un-collapsed expressions demonstrate
how k constrains x (“track” length k is the number of added items
x) and how the max y depends on (is constrained by) the largest
possible sum x of k items.

5.3.1 Longitudinal: students independently use intervention, no need
for prompting. At earlier points during the semester, participant
13 initially misunderstood some variables in the code in Figure 3.
After the interviewer prompted them to use the intervention, they
corrected their understanding, correctly explaining the functional,
dependent relationship between the variables h and g in every input
case.

Participant 13: G is the greatest number of vowels.
Returns the index of the one with the greatest number

of vowels

Interviewer: (prompts to use strategy)
0=20

g=20

h=0

C = Vx “aeiou”

H=1-5

G =1-5

0 = index

Participant 13: So I guess it’s not the greatest number
of vowels total. No varying. No. Different types of
vowels. Since I had with the most number of vowels
period, that number could exceed 5. So when I had it
written out, I saw that it has to be between one and
five. So it’s not number, it’s variety.

Participant 13’s behavior changed in the later part of the semester,
as they started using the intervention independently when they
seemed to lack confidence, in contrast to earlier instances when
they displayed overconfidence and required prompting from the
interviewer to use the intervention.

Participant 13: 'm going to use the strategy because
I'm stuck

Additionally, participant 13 demonstrated the ability to mentally
perform abstract traces and comprehend variable relationships with-
out note-taking in their solution to the code in Figure 8. This may
demonstrate the participant has advanced as a programmer, capable
of “chunking” or fitting more items in their working memory per
the cognitive load theory [48].

Participant 13: If string 1 count of the letter i is lower.
x plus string count i. Why would they do the lower
more? OK, I think I get it. It’s the amount of letters
that the strings have in common. When I realized that
it was the lowest count. And since we’re returning,
it was easier because I didn’t have to focus on all
the other parts of the code. I was mainly focusing
on X and I could see that like X was an integer, so
it’s counting something. So because they said it as
zero, so as a counter. And then they were counting the
smaller one ... the smaller one has the max amount of
similar letters. If you did the greater one, that wasn’t
all the ones they have in common, but if you go with
the smaller ones, it’s all the letters that they have in
common.
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Assume that the variables s1 and s2 are strings.
def f(s1, s2):
X =0
y =[]
for i in s1:
for j in s2:
if i == j and i not in y:
if sl.count(i) < s2.count(i):
x += sl.count(i)
else:
X += s2.count(i)
y.append(i)
return x

Figure 8: An example EiPE question with the high-level de-
scription of “Returns the number of common characters
between two strings.”

5.4 Algorithmic Visualizations Show Variable
Actions & their Functional Relationships

We observed cases where participants correctly traced or abstractly
traced but could not explain the program’s purpose. When the
participant performed a note-taking technique resembling an al-
gorithmic visualization (e.g., highlighting, pointing, and gesturing
on inputs), they successfully explained the purpose of the code.
Their drawn visualization demonstrated the action performed by
each (role of) variable using gesture-like techniques. Similar to the
abstract tracing intervention, it also demonstrates how their func-
tional relationships make up the program’s intent.

For example, participant 29 correctly traced the code (Figure 8)
with inputs but could not understand the purpose.

Interviewer: (suggests to concretely trace)
Participant 29: (tries “123456789”, “133444564”,
“1234456789”, “ 133444564”)

Participant 29: This is stupid, right? If I did that, that
would be six. four, five, six. How could this be useful?
(tries “Helloworld”, “Hellothere”)

Participant 29: I'm trying with letters. 'm not seeing
any pattern here. I'm trying to find a pattern between
the letter and the numbers. Well, I'm not really seeing
anything here.

They used a note-taking technique to visualize the algorithm,
highlighting common characters between two strings, helping them
realize that the sum variable x was counting the common set of
characters between two strings.

(Begins to highlight inputs and gesture)

“1234456789” “Helloworld”
“133444564” “Hellothere”
134456 Hello r

Participant 29: So it’s whatever they have in com-
mon. Returns the amount of same letters or numbers
in the string.
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The variable y prevents duplicate characters from being counted,
which constrains the action done by x to count only the common
characters. The drawn visualization demonstrates this constraint
by showing how some occurrences of the numbers 3 and 4 are not
highlighted in the first string. Thus, highlighting demonstrated the
overarching action of counting the common set of characters based
on the functional relationship between the sum variable x and the
gatherer variable y.

As another example, participant 9 incorrectly explains the function
(Figure 7), not taking into account the “most wanted holder” (max)
variable y correctly (highlighted in Figure 7).

(traces below)

K=2

[1, 2, 3, -3, 4]

Participant 9: So its the sum of the last positive K
terms.

Afterward, they use a note-taking strategy that resembles an
algorithmic visualization. This technique demonstrates the func-
tional relationship between the most wanted (max) holder y and the
sum variable x, showing the current set of k contiguous elements
checked against the current maximum sum. The visualization tech-
nique highlights when the most wanted holder does not update
due to a negative number, demonstrating the constraint of when
the maximum value (find the best) does not update. The participant
then correctly integrates their understanding of the find the best
(maximum) variable to their explanation.

(Interviewer asks to try again)

K=2

1, 2, 3, -3, 4]

[1, 2, 3, -3, 4]

[1, 2, 3, -3, 4]

Participant 9: So I guess that does change how I
think of it. It would still be five,

[1, 2, 3, -3, 4]

Participant 9: But yet we’re all the way here. What
does that mean? [pause] So, like, essentially it’s gonna
find the largest, like, streak of a number of numbers.
This function finds the largest sum of k number of
elements in succession.

6 DISCUSSION / CONCLUSION

Based on our analysis of the interviews, we make the following
suggestions as to how we might go about teaching novices to com-
prehend code. The following should be considered as no more than
conjecture and will need to be validated through experimental or
quasi-experimental study.

6.1 Teach Students a Collection of Tools

Students failed to comprehend code for a wide variety of reasons
ranging from incorrectly recognizing patterns to failing to abstract
relationships between lines of code. It is our belief from our ob-
servations that these different kinds of failures have different root
causes and that no single intervention can address all of them. As
such, it will be useful to our students to teach them a collection of
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techniques so that whatever the issue, they will have a technique
that can address it.

6.2 Teach Students to Analyze the Code One
Variable at a Time

Our participants often attempted to comprehend the entire program
at once, reading code linearly top-to-bottom, left-to-right, similar to
novices in prior eye-tracking studies [14], and frequently struggled
to do so, by what appeared to be cognitive overload. They would
make careless mistakes tracing and misrecognizing patterns. Since
novices lack extensive plan knowledge, they do not automatically
‘chunk’ code into useful sub-goals like experts [48].

Prompting students to explain the purpose of each variable pro-
vided them a straightforward way to focus on a useful subset of the
code at a time, with each subset appearing to represent a functional,
purposeful sub-goal [44] of the program. We did not have to teach
them how to perform program slicing [62] by variable, they just
seemed to do it naturally, at least for these small programs. Our
participants used concrete or abstract tracing on these subsets to
comprehend them and effectively used the identified purpose of
one variable in the comprehension of dependent variables. Often,
when directed to “explain the purpose of every single variable in
this function,” our students visited the variables in a useful order
(i.e., dependent variables after the variables they depend on), but
we have not explored this enough to understand if this is an ability
that also comes naturally to novices or if some aspect of our code
fragments facilitated this result.

Although variables may not universally correspond to sub-goals,
we found thinking of this strategy as a way of extracting the sub-
goals of a piece of code and then naming them, as a useful metaphor.
Further study to reconcile existing findings related to sub-goals [27,
28] and these findings is likely profitable.

That identifying the names of the role of variables rarely helped
students understand the purpose of code is consistent with the
Block Model [18]. Naming the role of a variable is an activity at
the structural level of the program, which is one level removed
from the purpose of the program. In contrast, asking students the
purpose of the variable in the context of a given program is in the
correct dimension, just smaller in granularity than the program as
a whole.

6.3 Teach Students to Try to Disprove Their
Hypothesis of What the Code Does

Participants who read syntax (text-surface) without tracing were
more likely to make false assumptions about execution behavior.
Novices make false assumptions and stick to their incorrect mental
models [11, 36, 59], unlike experts. Thus, caution is necessary for
novices when attempting to recognize code based on its text sur-
face. Novices should be encouraged to perform a concrete trace of
code to check their hypothesis. (We assume that most introductory
programming courses teach tracing as a means of internalizing a
language’s semantics.)

We observed intriguing transformations in student behavior
through our longitudinal studies. At earlier points in the semester,
one longitudinal participant (13) would appear to display over-
confidence, immediately answering the problem incorrectly and

needing prompting to use the intervention. Later in the semester,
they seemed to display caution and would independently decide to
use the intervention. We speculate that their self-awareness of their
lack of understanding and that they needed to switch strategies (use
the intervention) is a sign of “monitoring your own understanding,”
one of the signs of metacognition [7]. We propose that such cau-
tion could be beneficial for novices as it may encourage rigorous
verification of understanding and a readiness to refute questionable
hypotheses [11, 36, 59]. This caution should specifically target their
intermediary hypotheses of the problem, not their belief in their
abilities or confidence in eventually solving the problem correctly.

Some students rely on inductive reasoning (concrete tracing of
multiple inputs) to understand code. When tracing to understand
code, students must choose a diverse set of inputs to expose the
general behavior of the code [15]. Like prior work [15], we found
that students may choose a narrow set of inputs to confirm their
false assumptions, demonstrating confirmation bias [34]. We found
a potential solution to such a problem: prompting them to “choose
an input to prove yourself wrong” seems to encourage them to
select more diverse inputs, refuting their incorrect assumptions
and correcting their understanding of the problem. This finding is
in-line with the literature on falsification-driven verification and
unit testing [13], which follows Popper’s theory that we must seek
to repeatedly falsify claims and that science must be grounded in a
constant search for counterexamples [35]. We should teach students
to be skeptical of their hypotheses, testing multiple inputs to refute
faulty intermediary hypotheses.

Besides confirmation bias, another issue students had with in-
ductive reasoning was not recognizing input-output patterns. We
found that abstract tracing and algorithmic visualizations, which
helped them understand relationships between variables, may serve
as a potential solution. Additionally, when we prompted them to
explain “the purpose of each variable in this code,” we did not have
to explicitly teach our students the concepts of code coverage and
boundary conditions to have them select a more diverse set of in-
puts. This framing alone seemed to help them identify more diverse
and profitable inputs.

6.4 Teach Students to Perform Abstract Tracing

Some participants do not understand the purpose of a piece of
code despite tracing it correctly, like the “neglected middle novice”
[22]. While the “neglected middle novice” can trace correctly, they
struggle to abstract meaningful relationships between lines of code,
solely relying on input-output inference [54-56]. Bennedsen et
al. [2] observed no significant differences in novices’ code tracing
performance using a debugger versus manual tracing, speculating
that the debugger is only useful for identifying execution errors
and not for understanding object interaction. Our results are con-
sistent with their findings and suggest the need for more abstract
strategies, such as abstract tracing or algorithmic visualizations, to
comprehend the relationship between variables / lines of code.

As such, we suggest that students be taught to trace symbolically.
In our observations, a key feature of successful uses of abstract
tracing was not collapasing / simplifying arithmetic expressions.
Simplified expressions can obfuscate the evolution of variables and
their relationships in ways that the unsimplified expressions do not.
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Abstract tracing can be employed when a student has confirmed
their understanding of the behavior of a piece of code (ie., the
structure dimension in the Block model) but is struggling to identify
its purpose.

Prior research suggests that programmers develop the skill to
symbolically reason about code as they gain a deeper understand-
ing of semantics [50, 55]. We found our participants incorrectly
explaining the semantics of a program initially, then tracing, then
correctly abstract tracing to correct their understanding of the
purpose of the program. This suggests that our participants had a
correct understanding of the operational semantics of our programs
if tracing and abstractly tracing resolved their misunderstanding,
demonstrating that students fail to mentally abstractly trace or
recognize code primarily due to their false assumptions they make
based on reading the text-surface. We could potentially teach stu-
dents to practice abstract tracing with no need for a tool [8] by first
tracing code with multiple inputs, then after developing a sufficient
understanding of the code, abstractly trace the same code by trac-
ing using symbols. This also further supports that students should
consider code execution behavior until they develop sufficient plan
and semantic knowledge.

In some cases, students required more abstract strategies to dis-
cern and comprehend the functional relationships between key
actions within the code. This observation aligns with previous stud-
ies, which suggested that experts know when and how to reason
about code at the appropriate level of abstraction for a given prob-
lem [58], focusing on key actions, their structural relationships, and
constraints [38]. When the level of abstraction is too low for both
the problem and the learner, the learner may become excessively
fixated on specific, irrelevant surface features, thereby obscuring
the underlying structural relationships. In our study, certain par-
ticipants who engaged in concrete tracing may have been overly
occupied with computing mathematical operations on only one
input case, thus preventing them from recognizing broader, key
relationships within the code. The abstract tracing intervention,
which used un-collapsed expressions and symbols representing
broader ranges of inputs, enabled them to focus on higher-level
actions done by each variable and their relationships.

Analogy recognition [38], a cognitive process integral to learn-
ing and knowledge transfer, involves discerning common structural
patterns and relations between distinct problems or contexts. Prior
research on cognition found that having a more abstract under-
standing of problems promotes analogical transfer [26, 43, 45]. We
speculate that more abstract strategies (abstract tracing and visual-
ization) promoted such a type of recognition of concepts. Addition-
ally, prior work found that demonstrating mathematical concepts
through actions and gestures promoted learning [12], consistent
with our findings of students performing gesture-like actions in
their drawn visualization to help them recognize key actions done
by variables and their relations within their concrete trace.

While we saw instances of students using algorithmic visual-
izations to understand the purpose of code, we are not ready to
recommend that we attempt to teach students this approach. Previ-
ous research [41, 50] has found that animations illustrating variable
roles can improve students’ understanding, and allowing them to
control the animations can enhance their mental model of the no-
tional machine. Our key concern is that we have not yet identified

Mohammed Hassan, Kathryn Cunningham, & Craig Zilles

a structured process students could undertake to reliably produce
useful visualizations. Suggesting students “draw something to help
them understand the code” is likely too vague to be useful for
novices [50, 58]. Furthermore, novices may struggle with finding
the appropriate level of abstraction to solve problems [51]. When
our participants successfully used abstract visualization methods,
they did so after tracing the program accurately, indicating that
tracing may serve as a stepping stone to visualizing abstract repre-
sentations. We think that this is exciting area for future study, but
we do not yet have suggestions of how to actualize our findings in
this area.
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