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A B S T R A C T

In this survey, we describe controlled interacting particle systems (CIPS) to approximate the solution of the
optimal filtering and the optimal control problems. Part I of the survey is focussed on the feedback particle filter
(FPF) algorithm, its derivation based on optimal transportation theory, and its relationship to the ensemble
Kalman filter (EnKF) and the conventional sequential importance sampling–resampling (SIR) particle filters.
The central numerical problem of FPF—to approximate the solution of the Poisson equation—is described
together with the main solution approaches. An analytical and numerical comparison with the SIR particle
filter is given to illustrate the advantages of the CIPS approach. Part II of the survey is focussed on adapting
these algorithms for the problem of reinforcement learning. The survey includes several remarks that describe
extensions as well as open problems in this subject.
1. Introduction

In many applications, dynamic models exist only in the form of a
simulator. Our aim is to provide a survey of a class of algorithms, that
use only a model simulator, to solve the two canonical problems of
Control Theory:

• Design of optimal filter (in the sense of estimation);
• Design of optimal control law.

In this survey, such simulation-based algorithms are broadly referred
to as controlled interacting particle systems (CIPS). Our research group’s
most well known contribution to CIPS is the feedback particle filter
(FPF), which is also the main focus of this survey. The FPF algorithm
is useful to approximate the optimal (nonlinear) filter. By making use
of the duality between optimal control and filtering, the FPF algorithm
is extended to approximate the solution of an optimal control problem.

We begin by describing the high-level idea for the two problems of
optimal filtering and optimal control.
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1.1. CIPS in optimal filtering

Mathematical problem: In continuous-time and continuous-space set-
tings of the problem, the standard model of nonlinear (or stochastic)
filtering is the following Itô stochastic differential equations (SDEs):

State: d𝑋𝑡 = 𝑎(𝑋𝑡)d𝑡 + 𝜎𝐵(𝑋𝑡)d𝐵𝑡, 𝑋0 ∼ 𝑝0, (1a)

Observation: d𝑍𝑡 = ℎ(𝑋𝑡)d𝑡 + d𝑊𝑡, (1b)

where 𝑋𝑡 ∈ R𝑑 and 𝑍𝑡 ∈ R𝑚 are the state and observation, respectively,
at time 𝑡, 𝑝0 is the probability density function (PDF) at the initial time
𝑡 = 0 (𝑝0 is referred to as the prior density), and {𝐵𝑡}𝑡≥0, {𝑊𝑡}𝑡≥0 are
mutually independent standard Wiener processes (W.P.) taking values
in R𝑞 and R𝑚, respectively. The mappings 𝑎(⋅), ℎ(⋅), 𝜎𝐵(⋅), and the
density 𝑝0(⋅) are smooth (continuously differentiable) functions. The
linear Gaussian model is obtained when the drift terms 𝑎(⋅), and ℎ(⋅)
are linear functions, 𝜎𝐵(⋅) is a constant matrix, and 𝑝0 is a Gaussian
density.
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The filtering problem is to compute the conditional PDF of the state
𝑋𝑡 given the time–history (filtration) of observations up to time 𝑡. The
conditional PDF is denoted by 𝑝𝑡 and is referred to as the posterior
density.

CIPS algorithm: involves construction of 𝑁 stochastic processes {𝑋𝑖
𝑡 ∈

R𝑑 ∶ 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑁} where the 𝑖th process (particle) evolves according
to the SDE:

d𝑋𝑖
𝑡 = 𝑎(𝑋𝑖

𝑡 )d𝑡 + 𝜎𝐵(𝑋
𝑖
𝑡 )d𝐵

𝑖
𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑖th copy of model (1a)

+ d𝑈 𝑖
𝑡 , 𝑋

𝑖
0
i.i.d.∼ 𝑝0, (2)

where 𝑈 ∶= {𝑈 𝑖
𝑡 ∶ 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑁} is referred to as the coupling

(with 𝑈 = 0, the 𝑁 processes are un-coupled). The goal is to design the
coupling 𝑈 so that the empirical distribution of the 𝑁 particles at any
time 𝑡 approximates the posterior 𝑝𝑡:

1
𝑁

𝑁
∑

𝑖=1
𝑓 (𝑋𝑖

𝑡 ) ≈ ∫R𝑑
𝑓 (𝑥)𝑝𝑡(𝑥)d𝑥, ∀ 𝑓 ∈ 𝐶𝑏(R𝑑 ), (3)

where ‘‘≈’’ means that the approximation error goes to zero (in a
suitable sense) as 𝑁 → ∞ (𝐶𝑏(R𝑑 ) is the space of continuous and
bounded functions on R𝑑).

A key breakthrough, that appeared around 2010, is that 𝑈 can
be realized as a mean-field type feedback control law (‘‘mean-field
type’’ means that the control law depends also on the statistics of the
stochastic process). Feedback particle filter (FPF) is one such example
of a mean-field type control law. In this paper, we describe the FPF,
relate it to its historical precursor, the ensemble Kalman filter (EnKF)
algorithm, and summarize the important developments in this area.

For the filtering model (1), the idea of controlling the particles to
approximate the posterior appears in the work of three groups working
independently: the first example of such a control law appears in Crisan
and Xiong (2010) using a certain smoothed form of observations. The
FPF formula appears in Yang, Mehta, and Meyn (2011a, 2011b) and its
special case for the linear Gaussian model is described in Bergemann
and Reich (2012) and Reich (2011). A comparison of these three
early works can be found in Pathiraja, Reich, and Stannat (2021). For
the discrete-time filtering models, closely related ideas and algorithms
were proposed, also around the same time-frame, by Daum and Huang
(2008), El Moselhy and Marzouk (2012), Reich (2013) and Yang, Blom,
nd Mehta (2014) (see Spantini, Baptista, & Marzouk, 2022 for a recent
eview of this literature).
Our early work on FPF was closely inspired by the pioneering

evelopments in mean-field games (Huang, Caines, & Malhame, 2007;
uang, Malhame, & Caines, 2006). The topic of mean-field games
nd mean-field type optimal control is concerned with control and
ecision problems arising in interacting particle systems. Over the
ast decade, this topic has grown in significance with theory and
pplications described in several monographs (Bensoussan et al., 2013;
armona et al., 2018; Gomes, Pimentel, & Voskanyan, 2016). In the
hysics literature, the study of interacting particle systems is a classical
ubject (Liggett, 1985). A canonical example of an interacting particle
ystem is the coupled oscillators model of Kuramoto (Dörfler & Bullo,
014; Kuramoto, 1975; Strogatz, 2000). Extensions of the classical
uramoto model to mean-field games appears in Carmona and Graves
2020) and Yin, Mehta, Meyn, and Shanbhag (2011) and to FPF is given
n Tilton, Hsiao-Wecksler, and Mehta (2012).
Design of CIPS to approximate the optimal control law is a more

ecent development. The idea is described next.

.2. CIPS in optimal control

athematical problem: Consider a finite-horizon deterministic opti-
al control problem:

min 𝐽 (𝑢) =
𝑇 (

1
|𝑐(𝑥𝑡)|

2 + 1 𝑢T𝑅𝑢𝑡
)

d𝑡 + 𝑔(𝑥𝑇 ), (4a)
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𝑢 ∫0 2 2 𝑡
subject to: 𝑥̇𝑡 = 𝑎(𝑥𝑡) + 𝑏(𝑥𝑡)𝑢𝑡, 𝑥0 = 𝑥. (4b)

where 𝑥𝑡 ∈ R𝑑 is the state at time 𝑡 and 𝑢 ∶= {𝑢𝑡 ∈ R𝑚 ∶ 0 ≤ 𝑡 ≤ 𝑇 } is the
control input. The mappings 𝑎(⋅), 𝑏(⋅), 𝑐(⋅), 𝑔(⋅) are smooth functions and
𝑅 is a strictly positive-definite matrix (henceforth denoted as 𝑅 ≻ 0).
The linear quadratic (LQ) model is obtained when 𝑎(𝑥) = 𝐴𝑥, 𝑏(𝑥) = 𝐵,
𝑐(𝑥) = 𝐶𝑥, and 𝑔(𝑥) = 𝑥T𝑃𝑇 𝑥. The infinite-time horizon (𝑇 = ∞) case is
referred to as the linear quadratic regulator (LQR) problem.

CIPS algorithm: involves construction of 𝑁 stochastic processes {𝑌 𝑖𝑡 ∈
R𝑑 ∶ 0 ≤ 𝑡 ≤ 𝑇 , 1 ≤ 𝑖 ≤ 𝑁} where the 𝑖th particle evolves according to
an SDE

d𝑌 𝑖𝑡 = 𝑎(𝑌 𝑖𝑡 )d𝑡 + 𝑏(𝑌
𝑖
𝑡 )d𝑣

𝑖
𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑖th copy of model (4b)

+ 𝑈 𝑖
𝑡 d𝑡, 0 ≤ 𝑡 ≤ 𝑇 , (5a)

where the input 𝑣 ∶= {𝑣𝑖𝑡 ∈ R𝑚 ∶ 0 ≤ 𝑡 ≤ 𝑇 } and the coupling
𝑈 ∶= {𝑈 𝑖

𝑡 ∈ R𝑑 ∶ 0 ≤ 𝑡 ≤ 𝑇 } are obtained as part of the design. The goal
is to design 𝑣 and 𝑈 so that the empirical distribution of the 𝑁 particles
at time 𝑡 approximates a smooth density 𝑝𝑡 encoding the optimal control
law 𝑢𝑡 = ϕ∗

𝑡 (𝑥𝑡) where

ϕ∗
𝑡 (𝑥) = 𝑅−1𝑏T(𝑥)∇ log 𝑝𝑡(𝑥), 0 ≤ 𝑡 ≤ 𝑇 , (5b)

and ∇ denotes the gradient operator. In the infinite-horizon case, a
stationary policy is obtained by letting 𝑇 → ∞.

The righthand-side of the formula (5b) is a consequence of the log
transformation. The transformation relates the value function of an
optimal control problem to the posterior density of the dual optimal
filtering problem (Fleming & Mitter, 1982; Mitter & Newton, 2003).
This manner of converting an optimal control problem into an optimal
filtering problem (and vice-versa) is referred to as the minimum energy
duality (Hijab, 1980; Mortensen, 1968). The use of this duality to
express and solve an estimation problem as an optimal control problem
is a standard approach in model predictive control (Rawlings, Mayne,
& Diehl, 2017, Ch. 4). The CIPS (5a) comes about from the use of
duality in the opposite direction whereby an optimal control prob-
lem (4) is solved using a filtering-type algorithm. Related constructions,
based on somewhat different algorithmic approaches, is an important
theme in the Robotics literature (Hoffmann & Rostalski, 2017; Kappen,
2005a, 2005b; Todorov, 2007; Toussaint, 2009; Vijayakumar, Rawlik,
& Toussaint, 2013) (see Levine, 2018 for a recent review).

Both (2) and (5) are examples of a ‘‘simulation-based’’ algorithm
because multiple copies—of the model (1a) and (4b), respectively—
are run in a Monte-Carlo manner. The main message of our paper is
that through a suitable design of interactions between simulations—referred
to as coupling—yields powerful algorithms for solving optimal filtering and
optimal control problems.

1.3. Relationship to other simulation-based algorithms

For the two problems of filtering and control, related simulation-
based solution approaches are considered in the data assimilation
(DA) and reinforcement learning (RL) communities, respectively. These
relationships are discussed next.

Data assimilation (DA). The term ‘‘Data Assimilation’’ means assimilat-
ing real-time observations (‘‘data’’) into models—which typically exist
only as a software code. The term is used by a community of researchers
working in geophysical and atmospheric sciences (Evensen, 2006;
Houtekamer & Mitchell, 2001; Reich & Cotter, 2015; Van Leeuwen &
Evensen, 1996). The most celebrated application is weather prediction
and forecast. For the abstract mathematical model, the nonlinear filter
gives the optimal solution. In practice, the filter must be approximated
in a computationally tractable form. For this purpose, the EnKF algo-
rithm was first introduced in Evensen (1994) as an alternative to the
extended Kalman filter (EKF). In geophysical applications, there are two
issues that adversely affect the implementation of an extended Kalman

filter:
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1. In high-dimensions, it is a challenge to compute the Kalman
gain. This is because the formula for the Kalman gain is based
on the solution of a certain differential Riccati equation (DRE).
The matrix-valued nature of the DRE means that any algorithm
is (𝑑2) in the dimension 𝑑 of the state–space.

2. The model parameters are not explicitly available to write down
the DRE let alone solve it. This is a concern whenever the model
exists only in the form of a black-box numerical simulator.

In an EnKF implementation, 𝑁 processes are simulated (same
as (2)). In order to compute the Kalman gain, the solution of the DRE
at time 𝑡 is approximated by the empirical covariance of the ensemble
{𝑋𝑖

𝑡}
𝑁
𝑖=1. Because an explicit solution of the DRE is avoided, an EnKF

can be implemented using only a model simulator. This property has
historically proved to be an important factor in applications. Notably,
the EnKF algorithm is a workhorse for the weather prediction applica-
tion (Evensen, 2003; Houtekamer & Zhang, 2016). The computational
complexity of the EnKF is (𝑁𝑑) and in high-dimensions, 𝑁 is chosen
to be much smaller than 𝑑.

The historical significance of the FPF is that it represents a
simulation-based solution of the nonlinear filtering problem (1), for
arbitrary types of non-Gaussian posterior density 𝑝𝑡 (under some mild
technical conditions). Moreover, the EnKF was shown to arise as a
special case in the linear Gaussian setting of the problem. Like the
Kalman filter, the FPF formula has a ‘‘gain times error’’ feedback
structure which is useful in several ways, e.g., to handle additional
uncertainty in signal and measurement models. For these reasons, FPF
can be viewed as a modern extension to the Kalman filter, a viewpoint
stressed in a prior review paper (Taghvaei, De Wiljes, Mehta, & Reich,
2018).

For the nonlinear filtering problem (1), the FPF represents an al-
ternative solution approach to the sequential importance sampling–
resampling (SIR) particle filters and its many variants (Bain & Crisan,
2009; Del Moral, 2004; Doucet & Johansen, 2009; Gordon, Salmond,
Smith, 1993). In an SIR filter, the posterior is approximated as

compare with (3))

R𝑑
𝑓 (𝑥)𝑝𝑡(𝑥)d𝑥 ≈

𝑁
∑

𝑖=1
𝑊 𝑖
𝑡 𝑓 (𝑋

𝑖
𝑡 ), ∀ 𝑓 ∈ 𝐶𝑏(R𝑑 ),

here 𝑋𝑖
𝑡 is a copy of the hidden state 𝑋𝑡 and {𝑊 𝑖

𝑡 }
𝑁
𝑖=1 are the im-

ortance weights obtained from the Bayes’ formula. In practice, all
ut a few weights can become very small—an issue known as particle
egeneracy. This issue is ameliorated using a re-sampling procedure.
he salient feature of the FPF, compared to the conventional particle
ilters, is that the weights are uniform (= 1

𝑁 ) by construction. Because
of this difference, FPF does not suffer from the particle degeneracy issue
and does not require re-sampling. In several independent numerical
evaluations and comparisons, it has been observed that FPF exhibits
smaller simulation variance (Berntorp, 2015; Stano, Tilton, & Babuska,
014; Tilton, Ghiotto, & Mehta, 2013; Yang, Mehta, & Meyn, 2013)
and better scaling properties with the problem dimension compared
to particle filters (Surace, Kutschireiter, & Pfister, 2019; Yang, Lauge-
sen, Mehta, & Meyn, 2016). Some of these analytical and numerical
comparisons are highlighted in the paper.

Reinforcement learning (RL). RL is concerned with solving optimal
control problems, such as (4) and its extensions. All of the standard
choices are treated in the literature: continuous and discrete state–
space and time, deterministic and stochastic dynamics, discounted and
average cost structures, and finite and infinite time-horizon (Bertsekas
& Tsitsiklis, 1996; Meyn, 2022). What makes the RL paradigm so
different from optimal control as formalized by Bellman and Pontryagin
in the 1950s is that in RL the system identification step is usually
avoided. Instead, the optimal policy is approximated (‘‘learned’’) based
on input–output measurements.
358
In popular media, RL is described as an ‘‘agent’’ that learns an
approximately optimal policy based on interactions with the environ-
ment. Important examples of this idea include advertising, where there
is no scarcity of real-time data. In the vast majority of applications
we are not so fortunate, which is why successful implementation usu-
ally requires simulation of the physical system for the purposes of
training. For example, DeepMind’s success story with Go and Chess
required weeks of simulation for training on a massive collection of
super-computers (Schrittwieser et al., 2020).

These success stories are largely empirical. In order to better un-
derstand the theoretical foundations of RL, there has been a concerted
recent interest, in the Control community, to revisit the classical linear
quadratic (LQ) optimal control problem (Dean, Mania, Matni, Recht,
& Tu, 2020; Fazel, Ge, Kakade, & Mesbahi, 2018; Malik et al., 2020;
Mohammadi, Zare, Soltanolkotabi, & Jovanović, 2022; Tu & Recht,
2019). The two issues discussed as part of DA are relevant also to this
problem: In high-dimensions, it is a challenge to solve the Riccati equa-
tion, and typically the model parameters are not explicitly available in
RL settings of the problem.

An outgrowth of this recent work is a class of simulation-based
algorithms where multiple copies of the simulator are run in parallel
to learn and iteratively improve the solution of the DRE. The CIPS
algorithm (5a) has the same structure where the important distinction
is that the simulations are now coupled with a coupling term. We
include comparisons on a benchmark problem to show how coupling
helps improve performance over state-of-the-art.

1.4. Structure of the paper and outline

This paper is divided into two parts as follows:

• Part I on CIPS for the optimal filtering problem (1). It com-
prises Section 2 - Section 5.

• Part II on CIPS for the optimal control problem (4). It com-
prises Section 6.

The paper is written so that the key ideas are easily accessible
together with an understanding of the main computational problems
and algorithms for the same. For example, a reader should to be able
to implement the FPF and EnKF algorithms after reading Section 3
and Section 4. The more theoretical aspects related to optimal trans-
portation theory appear in a self-contained manner in Section 5.
The other significant aspect of this survey is analytical and numerical
comparison against competing approaches. These appear in Section 3.4
for part I where a comparison with the SIR filter is discussed; and
in Section 6.6 for part II where a comparison with RL algorithms for
the LQR problem is described.

In writing any survey or review paper, one must make a choice
of not only the topics to include but also the ones to leave out. Our
choice is guided by our own area of expertise and by the intended
audience in the Control community (where most of our own prior work
has been published). We have stressed the interpretation of coupling
as a mean-field feedback control law and highlighted its connection
to optimal transportation. Both of these are important research themes
in the community with related work on mean-field optimal control.
The mathematics is most elegant in the continuous-time settings of the
problem which is also the setting of this paper. A number of important
aspects have not been covered in detail: On the theoretical side, the
well-posedness of the mean-field model and justification of the mean-
field limit are both hard mathematical topics. For a reader interested
in some of these topics, we have included some high level remarks
with references where additional details can be found. On the practical
side, important issues arise on account of numerical discretization of
the SDEs. Such numerical aspects have been entirely left out of this
paper.

We make note of two final points: (i) While the paper presents some
relatively novel ideas that are closely inspired by and connected to
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the work in mean-field modeling and control, and therefore of interest
to the Control community, these algorithms have older roots (EnKF)
in the DA community. Along with the discussion in the Introduction,
several remarks are included to highlight these roots and connections.
(ii) While the CIPS algorithms solve some problems (such as particle
degeneracy), they also create new ones. This informs the structure
of the paper with a dedicated Section 4 on the central numerical
problem of FPF. In particular, the discussion of the bias–variance trade-
off in Section 4.3 is helpful to understand some of the key limitations
in high dimensions.

PART I

2. Background on optimal filtering

Consider the filtering problem for the model (1). The sigma-algebra
(on the time–history) of observations up to time 𝑡 is denoted by 𝑡 ∶=
𝜎(𝑍𝑠 ∶ 0 ≤ 𝑠 ≤ 𝑡). The posterior density 𝑝𝑡 is defined as follows:

∫R𝑑
𝑓 (𝑥)𝑝𝑡(𝑥)d𝑥∶=E[𝑓 (𝑋𝑡)|𝑡], ∀ 𝑓 ∈ 𝐶𝑏(R𝑑 ),

where the conditional expectation on the righthand-side is referred to
as the nonlinear filter. The integral on the lefthand-side is denoted by
⟨𝑝𝑡, 𝑓⟩.

The posterior 𝑝𝑡 is optimal in the sense that, among all 𝑡-
measurable random variables, ⟨𝑝𝑡, 𝑓⟩ represents the best mean-squared
error (MSE) estimate of the random variable 𝑓 (𝑋𝑡):

⟨𝑝𝑡, 𝑓⟩ = argmin
𝑆∈𝑡

E[|𝑓 (𝑋𝑡) − 𝑆|
2], (6)

where the notation ‘‘𝑆 ∈ 𝑡’’ means 𝑆 is allowed to be 𝑡-measurable,
i.e., an arbitrary measurable function of observations up to time 𝑡.

For the model (1), the evolution of the posterior 𝑝𝑡 is given by the
Kushner–Stratonovich stochastic partial differential equation (Xiong,
2008, Ch. 5). In the special linear Gaussian setting of the problem,
the equation admits a finite-dimensional representation given by the
Kalman–Bucy filter.

2.1. Linear Gaussian model and the Kalman-Bucy filter

The linear Gaussian model is a special case of (1a)–(1b) and takes
the following form:

d𝑋𝑡 = 𝐴𝑋𝑡 + 𝜎𝐵d𝐵𝑡, 𝑋0 ∼  (𝑚0, 𝛴0), (7a)

d𝑍𝑡 = 𝐻𝑋𝑡d𝑡 + d𝑊𝑡, (7b)

where 𝐴,𝐻, 𝜎𝐵 are matrices of appropriate dimensions and the prior
is a Gaussian density with mean 𝑚0 and variance 𝛴0. It is denoted by
 (𝑚0, 𝛴0).

For the linear Gaussian model (7), it can be shown that the posterior
𝑝𝑡 is a Gaussian density. It is denoted by  (𝑚𝑡, 𝛴𝑡), where 𝑚𝑡 and 𝛴𝑡
are conditional mean and covariance, respectively. Their evolution is
described by the Kalman–Bucy filter (Kalman & Bucy, 1961):

d𝑚𝑡 = 𝐴𝑚𝑡 + 𝖪𝑡(d𝑍𝑡 −𝐻𝑚𝑡d𝑡), 𝑚0 (given) (8a)
d
d𝑡
𝛴𝑡 = Ricc(𝛴𝑡), 𝛴0 (given) (8b)

where 𝖪𝑡∶=𝛴𝑡𝐻T is referred to as the Kalman gain, and the Riccati
function

Ricc(𝛴)∶=𝐴𝛴 + 𝛴𝐴T + 𝛴𝐵 − 𝛴𝐻T𝐻𝛴

with 𝛴𝐵∶=𝜎𝐵𝜎T𝐵 .
Apart from the linear Gaussian model, there are very few examples

where the equation for the posterior 𝑝𝑡 admits a finite-dimensional
representation (Beneš, 1981). In the general setting of the nonlinear
model (1) with a non-Gaussian posterior, 𝑝𝑡 is numerically approxi-
ated.
359
. Feedback particle filter

Feedback particle filter (FPF) is a numerical algorithm to approxi-
ate the posterior 𝑝𝑡 for the filtering model (1). Before describing the
PF, it is helpful to consider a simpler static problem.

.1. Intuitive explanation with a simpler example

Suppose the state 𝑋 and the observation 𝑌 are vector-valued ran-
om variables of dimension 𝑑 and 𝑚, respectively. The probability
istribution (prior) of 𝑋 is denoted by 𝖯𝑋 and the joint distribution
f (𝑋, 𝑌 ) is denoted by 𝖯𝑋𝑌 . For any given function 𝑓 ∈ 𝐶𝑏(R𝑑 ), the
roblem is to obtain an MSE. estimate of the unknown 𝑓 (𝑋) from a
ingle observation of 𝑌 . Adapting (6) to the simple case,
∗
𝑓 (𝑌 ) = argmin

𝑆𝑓 (⋅)
E[|𝑓 (𝑋) − 𝑆𝑓 (𝑌 )|

2], (9)

here on the righthand-side 𝑆𝑓 ∶ R𝑚 → R is allowed to be an arbitrary
unction of the R𝑚-valued observation (the sub-script means that the
unction may depend also upon 𝑓 ). The optimal estimator gives the
onditional expectation, i.e., E[𝑓 (𝑋)|𝑌 ] = 𝑆∗

𝑓 (𝑌 ).

xample 3.1 (Linear Estimation and the Update Formula for Kalman
ilter). Consider the case where 𝑓 is linear, 𝑓 (𝑥) = 𝑎T𝑥, and 𝑆𝑓 (⋅) is
estricted to be an affine function of its argument:

𝑓 (𝑦) = 𝑢T𝑦 + 𝑏,

here 𝑢 ∈ R𝑚 and 𝑏 ∈ R parametrize the estimator. With such a choice,
he optimization problem (9) is finite-dimensional whose solution is
eadily obtained as
∗
𝑓 (𝑌 ) = 𝑎T(E[𝑋] +𝐾(𝑌 − E[𝑌 ])),

here 𝐾 = 𝛴𝑋𝑌𝛴−1
𝑌 , 𝛴𝑋𝑌 = E[(𝑋 − E[𝑋])(𝑌 − E[𝑌 ])T], 𝛴𝑌 =

[(𝑌 − E[𝑌 ])(𝑌 − E[𝑌 ])T], and it is assumed that 𝛴𝑌 is invertible with
nverse 𝛴−1

𝑌 . Because the vector 𝑎 is arbitrary, this also shows that the
ptimal linear estimate of 𝑋 is E[𝑋] +𝐾(𝑌 −E[𝑌 ]). Under the stronger
ssumption that 𝑋 and 𝑌 are jointly Gaussian, it can be shown that
his is in fact the optimal estimate of 𝑋 among all functions 𝑆𝑓 (⋅) (not
ecessarily affine) (Hajek, 2015, Prop. 3.9). Therefore, in the Gaussian
ase

[𝑋|𝑌 ] = E[𝑋] +𝐾(𝑌 − E[𝑌 ]).

he righthand-side is the update formula for the discrete-time Kalman
ilter. Note that the interpretation of the formula as the conditional
xpectation works only in the Gaussian case. In general, the formula
ives only the best linear estimator.

The example above illustrates the special and important case of
btaining optimal linear estimators. The question is how to extend
he procedure to the nonlinear setting, i.e., the setting where both
he function 𝑓 (⋅) and the estimator 𝑆𝑓 (⋅) are allowed to be nonlinear
unctions of their arguments. This is achieved through the concept of
IPS whose construction proceeds in two steps:

tep 1: Let 𝑋̄0 be an independent copy of 𝑋. Design a control 𝑈 such
hat, upon setting 𝑋̄1 = 𝑋̄0 + 𝑈 ,
∗
𝑓 (𝑌 ) = E[𝑓 (𝑋̄1)|𝑌 ], ∀ 𝑓 ∈ 𝐶𝑏(R𝑑 ),

ote that the control is not allowed to depend on the function 𝑓 . It
s designed to give the best estimate for any choice of function 𝑓 . It
s not yet clear that such a control exists. But for now, let us assume
hat it exists and moreover takes the form 𝑈 = 𝑢(𝑋̄0, 𝑌 ). (Typically, the
apping 𝑢(⋅, ⋅) is designed to be a deterministic function but may in
eneral also be random.)

tep 2: Generate 𝑁 independent samples (particles) {𝑋1
0 ,… , 𝑋𝑁

0 } from
𝑋 , update each particle according to
𝑖 = 𝑋𝑖 + 𝑢(𝑋𝑖 , 𝑌 ), 𝑖 = 1, 2,… , 𝑁,
1 0 0
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and form a Monte-Carlo approximation of the estimate:

𝑆∗
𝑓 (𝑌 ) ≈

1
𝑁

𝑁
∑

𝑖=1
𝑓 (𝑋𝑖

1).

Example 3.2 (CIPS and the Update Formula for EnKF). Continuing with
Example 3.1 where 𝖯𝑋𝑌 is assumed to be Gaussian, two formulae are
escribed for the transformation 𝑋̄0 ↦ 𝑋̄1. The first of these formulae
is based on optimal transportation theory. The second formula is based
on the perturbed form of the discrete-time EnKF algorithm.

• Optimal transport formula is given by a deterministic affine map-
ping

𝑋̄1 = 𝐴(𝑋̄0 − E[𝑋̄0]) +𝐾(𝑌 − E[𝑌 ]) + E[𝑋̄0],

where 𝐴 is the unique such symmetric positive-definite solution
to a Lyapunov equation

𝐴𝛴𝑋𝐴 = 𝛴𝑋 − 𝛴𝑋𝑌𝛴−1
𝑌 𝛴𝑌 𝑋 .

• Perturbed EnKF formula. Let (𝑋̄0, 𝑌0) be an independent copy of
(𝑋, 𝑌 ) then

𝑋̄1 = 𝑋̄0 +𝐾(𝑌 − 𝑌0),

where the formula for 𝐾 is same as in Example 3.1.

It is readily verified that, in either case, 𝑋̄1 is a Gaussian random
variable whose conditional mean and variance equals the conditional
mean and variance of 𝑋.

We defer the details on how these formulae came about to Sec-
tion 5.3 instead remarking here on several features which apply also to
more general settings:

1. The transformation 𝑋̄0 ↦ 𝑋̄1 is not unique.
2. Both the transformations are of ‘‘mean-field type’’ whereby the
transformation depends also on statistics, e.g., E[𝑋] and E[𝑌 ], of
(𝑋, 𝑌 ).

3. In the optimal transport formula, 𝑢(⋅, ⋅) is a deterministic func-
tion. In the EnKF formula, 𝑢(𝑥, 𝑦) = 𝐾(𝑦 − 𝑌0) is a random map
because 𝑌0 is a random variable.

These considerations provide the background for the feedback par-
ticle filter algorithm which is described next.

3.2. Feedback particle filter

Just like the static example, the construction of FPF proceeds in two
steps.

Step 1: Construct a stochastic process, denoted by 𝑋̄ = {𝑋̄𝑡}𝑡≥0,
according to a controlled SDE:

d𝑋̄𝑡 = 𝑎(𝑋̄𝑡)d𝑡 + 𝜎𝐵(𝑋̄𝑡)d𝐵𝑡 + 𝑢𝑡d𝑡 + 𝖪𝑡d𝑍𝑡, 𝑋̄0 ∼ 𝑝0, (10)

where the controls 𝑢𝑡 and 𝖪𝑡 are designed so that the conditional density
of 𝑋̄𝑡 equals the posterior density 𝑝𝑡.

Step 2: Simulate 𝑁 stochastic processes, denoted by 𝑋𝑖 = {𝑋𝑖
𝑡}𝑡≥0 for

𝑖 = 1, 2,… , 𝑁 , according to (10).
The two steps are summarized below:

⟨𝑝𝑡, 𝑓⟩
Step 1
= E[𝑓 (𝑋̄𝑡)|𝑡]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
exactness condition

Step 2
≈ 1

𝑁

𝑁
∑

𝑖=1
𝑓 (𝑋𝑖

𝑡 ).

The exactness condition refers to the fact that 𝑋̄𝑡 has the same con-
ditional density as 𝑋𝑡. The 𝑁 processes {𝑋𝑖}𝑁𝑖=1 are referred to as
particles.

At this point, the first of these two steps appears to be aspirational.
Even in the case of the static example, it is not at all clear that the
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function 𝑢(⋅, ⋅) exists in the general non-Gaussian case, and even if (
it does, it can be computed in a tractable manner. The case of the
stochastic process where 𝑢𝑡 and 𝖪𝑡 are allowed to be measurable with
respect to the past values of observations 𝑍 and state 𝑋̄ appears, at the
first glance, to be entirely hopeless.

The surprising (at least at the time of its discovery) breakthrough
of the FPF is that the control terms 𝑢𝑡 and 𝐾𝑡 are given by a simple
feedback control law where the computation reduces to solving a linear
Poisson equation at each time-step.

FPF: The process 𝑋̄ is defined according to the SDE

d𝑋̄𝑡 = 𝑎(𝑋̄𝑡)d𝑡 + 𝜎𝐵(𝑋̄𝑡)d𝐵̄𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
copy of model (1a)

+ 𝖪𝑡(𝑋̄𝑡)◦(d𝑍𝑡 −
ℎ(𝑋̄𝑡) + ℎ̄𝑡

2
d𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
FPF feedback control law

, 𝑋̄0 ∼ 𝑝0 (11)

here {𝐵̄𝑡}𝑡≥0 is a copy of the process noise {𝐵𝑡}𝑡≥0, and ℎ̄𝑡 ∶=
[ℎ(𝑋̄𝑡)|𝑡]. The ◦ indicates that the SDE is expressed in its Stratonovich
orm. At any fixed time 𝑡, the gain 𝖪𝑡(⋅) is a 𝑑×𝑚 matrix-valued function
btained by solving 𝑚 partial differential equations: for 𝑗 = 1, 2,…𝑚,
the 𝑗th column 𝖪(𝑗)

𝑡 ∶= ∇𝜙(𝑗) where 𝜙(𝑗) is the solution of the Poisson
equation:

− 1
𝜌(𝑥)

∇ ⋅ (𝜌(𝑥)∇𝜙(𝑗)(𝑥)) = (ℎ(𝑗)(𝑥) − ℎ̄(𝑗)), 𝑥 ∈ R𝑑 (12)

where the density 𝜌 = 𝑝̄𝑡 (the conditional density of 𝑋̄𝑡 at time 𝑡), ℎ(𝑗) is
the 𝑗th component of the observation function ℎ, ℎ̄(𝑗) = ∫ ℎ(𝑗)(𝑥)𝜌(𝑥)d𝑥,
and ∇ and ∇⋅ denote the gradient and the divergence operators, respec-
tively. For a succinct presentation, the functions {𝜙(𝑗)}𝑚𝑗=1 are collected
to form the vector-valued function 𝜙 = [𝜙(1),… , 𝜙(𝑚)]. With such a
notation, the gain function 𝖪𝑡 is the Jacobian ∇𝜙 = [∇𝜙(1),… ,∇𝜙(𝑚)].

The process 𝑋̄ is an example of a mean-field process because its
volution depends upon its own statistics. An SDE of this type is called a
cKean–Vlasov SDE or a mean-field SDE. Accordingly, (11) is referred
o as the mean-field FPF.
The main result, first proved in Yang, Mehta, and Meyn (2013), is

hat the mean-field process thus defined is exact.

heorem 3.3 (Thm 3.3, Yang, Mehta, & Meyn, 2013). Consider the filter-
ng model (1). Suppose {𝑝𝑡}𝑡≥0 denotes the conditional density of the process
𝑋𝑡}𝑡≥0. Suppose the mean-field process {𝑋̄𝑡}𝑡≥0 defined by (11)–(12) is
ell-posed with conditional density denoted by {𝑝̄𝑡}𝑡≥0. Then, provided 𝑝̄0 =
0,

𝑝̄𝑡 = 𝑝𝑡, ∀ 𝑡 > 0.

emark 3.4 (Well-Posedness and Poincaré Inequality). The well-
osedness of (11)–(12) means that a strong solution 𝑋̄ exists with a
ell-defined density {𝑝̄𝑡}𝑡≥0. To show well-posedness, apart from the
tandard Lipschitz condition on the drift terms 𝑎(⋅) and 𝜎𝐵(⋅), the main
echnical condition is that the posterior density 𝑝𝑡 (of 𝑋𝑡) satisfies the
oincaré inequality (PI), and ∫ |ℎ(𝑥)|2𝑝𝑡(𝑥)d𝑥 < ∞ (Laugesen, Mehta,
eyn, & Raginsky, 2015, Theorem 2.2). (A probability density 𝜌 = 𝑒−𝑉

atisfies the PI if 𝑥T∇𝑉 (𝑥) ≥ 𝛼|𝑥| for |𝑥| ≥ 𝑅 where 𝛼 and 𝑅 are positive
onstants (Bakry, Barthe, Cattiaux, & Guillin, 2008, Cor. 1.6). This
ondition is true, e.g., whenever 𝜌 has a Gaussian tail.) An explanation
f the relevance of the PI for the well-posedness (existence, uniqueness,
nd regularity) of the solution 𝜙 of the Poisson equation (12) is
eferred to Section 4, where algorithms for its approximation are
lso described. Once a solution 𝜙 of the Poisson equation is obtained
ogether with necessary apriori estimates, well posedness of 𝑋̄ follows
rom the standard theory of mean-field SDEs (Carmona et al., 2018).
lthough the general case remains open, it has been possible to prove
he PI under certain additional conditions on the filtering model (1)
Pathiraja et al., 2021, Lemma 5.1), (Laugesen et al., 2015, Prop 2.1).
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We next describe the finite-𝑁 algorithm which is how the FPF is
implemented in practice.

CIPS: The particles {𝑋𝑖
𝑡 ∶ 𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑁} evolve according to:

d𝑋𝑖
𝑡 = 𝑎(𝑋𝑖

𝑡 )d𝑡 + 𝜎(𝑋
𝑖
𝑡 )d𝐵

𝑖
𝑡

+ 𝖪(𝑁)
𝑡 (𝑋𝑖

𝑡 )◦(d𝑍𝑡 −
ℎ(𝑋𝑖

𝑡 ) + ℎ
(𝑁)
𝑡

2
d𝑡),

𝑋𝑖
0
i.i.d∼ 𝑝0, 𝑖 = 1,… , 𝑁,

(13)

where {𝐵𝑖𝑡}𝑡≥, for 𝑖 = 1, 2,… , 𝑁 , are mutually independent W.P.,
(𝑁)
𝑡 ∶= 𝑁−1 ∑𝑁

𝑖=1 ℎ(𝑋
𝑖
𝑡 ), and 𝖪(𝑁)

𝑡 is the output of an algorithm that
s used to approximates the solution to the Poisson equation (12):
(𝑁)
𝑡 ∶= Algorithm({𝑋𝑖

𝑡}
𝑁
𝑖=1;ℎ).

he notation is suggestive of the fact that algorithm is adapted to the
nsemble {𝑋𝑖

𝑡}
𝑁
𝑖=1 and the function ℎ; the density 𝑝̄𝑡 is not known in

n explicit form. Before describing the algorithms for gain function
pproximation in (the following) Section 4, we discuss the linear
aussian case.
The main computational challenge to simulate the finite-𝑁 FPF (13)

s the computation of the gain function. The difficulty arises because,
or a general nonlinear observation function ℎ and a non-Gaussian
ensity 𝜌, there are no known closed-form solutions of the Poisson
quation (12). In the linear Gaussian special case, with a linear obser-
ation function ℎ(𝑥) = 𝐻𝑥 and a Gaussian density, the Poisson equation
dmits an explicit solution whereby the gain function is given by the
alman gain:

roposition 3.5 (Lem. 3.4, Yang, Mehta, & Meyn, 2013). Consider the
Poisson equation (12). Suppose 𝜌 is a Gaussian density  (𝑚,𝛴) and
ℎ(𝑥) = 𝐻𝑥. Then its unique solution is given by:

𝜙(𝑥) = (𝐻𝛴)(𝑥 − 𝑚), 𝑥 ∈ R𝑑 .

Consequently, the gain function ∇𝜙(𝑥) = 𝛴𝐻T is the Kalman gain.

Using the Kalman gain, the FPF algorithm simplifies to a square-root
form of the ensemble Kalman filter (EnKF) algorithm. This is described
next.

3.3. Ensemble Kalman filter

In the linear Gaussian case, upon replacing the gain function with
the Kalman gain, the mean-field FPF (11) is the Itô-SDE

d𝑋̄𝑡 = 𝐴𝑋̄𝑡d𝑡 + 𝜎𝐵d𝐵̄𝑡 + 𝛴̄𝑡𝐻T(d𝑍𝑡 −
𝐻𝑋̄𝑡 +𝐻𝑚̄𝑡

2
d𝑡), (14)

where

𝑚̄𝑡 = E[𝑋̄𝑡|𝑡],

𝛴̄𝑡 = E[(𝑋̄𝑡 − 𝑚̄𝑡)(𝑋̄𝑡 − 𝑚̄𝑡)T|𝑡].

As a corollary of Theorem 3.3, the mean-field process 𝑋̄ is exact which,
in the linear Gaussian case, means that the conditional density of 𝑋̄𝑡 is
Gaussian whose mean 𝑚̄𝑡 and the covariance matrix 𝛴̄𝑡 evolve according
to the Kalman filter (8). A direct proof showing (14) is exact appears
in Section 5.1.

The finite-𝑁 FPF is obtained as follows:

d𝑋𝑖
𝑡 = 𝐴𝑋𝑖

𝑡d𝑡 + 𝜎𝐵d𝐵
𝑖
𝑡 + 𝛴

(𝑁)
𝑡 𝐻T(d𝑍𝑡 −

𝐻𝑋𝑖
𝑡 +𝐻𝑚

(𝑁)
𝑡

2
d𝑡), (15a)

where the mean-field terms in (14) are approximated empirically as
follows:

𝑚(𝑁)
𝑡 ∶= 1

𝑁

𝑁
∑

𝑗=1
𝑋𝑖
𝑡 , (15b)

(𝑁)
𝑡 ∶= 1

𝑁 − 1

𝑁
∑

(𝑋𝑖
𝑡 − 𝑚

(𝑁)
𝑡 )(𝑋𝑖

𝑡 − 𝑚
(𝑁)
𝑡 )T. (15c)
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𝑗=1
The linear Gaussian FPF (15) is identical to the square-root form of the
ensemble Kalman filter (Bergemann & Reich, 2012, Eq. 3.3).

Remark 3.6 (Historical Context for EnKF). The EnKF algorithm was
first introduced in Evensen (1994), in the discrete-time setting of
the filtering problem. At the time, the algorithm was introduced as
an alternative to the extended Kalman filter (EKF). As already men-
tioned in Section 1, a major reason for using an EnKF is that, unlike
EKF, it does not require an explicit solution of the DRE (Burgers,
Van Leeuwen, & Evensen, 1998; Houtekamer & Mitchell, 1998; Van
Leeuwen & Evensen, 1996). Since its introduction, a number of distinct
types of EnKF algorithms have appeared in the literature. Amongst
these, the most well-known types are as follows: (i) EnKF based on per-
turbed observation (Evensen, 2003); and (ii) The square root EnKF (An-
derson, 2001; Bishop, Etherton, & Majumdar, 2001; Whitaker & Hamill,
2002). The details for these algorithms can be found in Reich and Cotter
(2015, Ch. 6-7). The two aforementioned types of the EnKF algorithm
have also been extended to the continuous-time setting (Bergemann &
Reich, 2012). In these settings, the EnKF is usually referred to as the
ensemble Kalman–Bucy filter (EnKBF). A review of the EnKBF algo-
rithm and its connection to the FPF algorithm can be found in Taghvaei
et al. (2018). The EnKBF algorithm and the linear FPF admits several
extensions: (i) EnKBF with perturbed observation (Bergemann & Reich,
2012; Del Moral & Tugaut, 2018); (ii) Stochastic linear FPF (Yang et al.,
2016, Eq. (26)) which is same as the square root EnKBF (Bergemann &
Reich, 2012);(iii) Deterministic linear FPF (Taghvaei & Mehta, 2016,
Eq. (15)) (de Wiljes, Reich, & Stannat, 2018). EnKF was recently
extended to the case with correlated observation noise (Ertel & Stannat,
2022). An excellent recent survey on this topic appears in Calvello,
Reich, and Stuart (2022).

Remark 3.7 (Current Research on EnKF). Error analysis of the EnKF
algorithm remains an active area of research. For the discrete-time
EnKF algorithm, these results appear in Kelly, Law, and Stuart (2014),
Kwiatkowski and Mandel (2015), Le Gland, Monbet, and Tran (2009),
Mandel, Cobb, and Beezley (2011) and Tong, Majda, and Kelly (2016).
The analysis for continuous-time EnKF is more recent (Bishop & Del
Moral, 2018, 2020; Chen, Luo, Shi, & Yau, 2021; de Wiljes et al., 2018;
Del Moral, Kurtzmann, & Tugaut, 2017; Del Moral & Tugaut, 2018;
Taghvaei & Mehta, 2018). Typically, one is interested in obtaining a
uniform error bound as follows:

E[‖𝑚(𝑁)
𝑡 − 𝑚𝑡‖2] + E[‖𝛴(𝑁)

𝑡 − 𝛴𝑡‖2] ≤
𝐶

√

𝑁
, (16)

where (𝑚𝑡, 𝛴𝑡) are the solutions of the Kalman filter (8) and (𝑚(𝑁)
𝑡 , 𝛴(𝑁)

𝑡 )
re obtained from simulating an EnKF; and 𝐶 > 0 is a time-independent
onstant. In the most recent result (Bishop & Del Moral, 2020), (16) is
hown under the assumption that 𝐻T𝐻 is a positive-definite matrix.
t is expected that (16) also holds under the weaker condition of the
air (𝐴,𝐻) being detectable, which is the condition for the stability
f the Kalman filter. However, a complete resolution is still open. A
omprehensive review of recent developments in this area can be found
n Bishop and Del Moral (2020).

.4. Comparison with importance sampling

In this section, we provide an analytical comparison of the FPF
ith the importance sampling-based particle filter. For this purpose,
onsider a parameter estimation example with a fully observed model
s follows:
𝑋𝑡 = 0, 𝑋0 ∼  (0, 𝜎20𝐼𝑑 ) = 𝑝0,

d𝑍𝑡 = 𝑋𝑡d𝑡 + 𝜎𝑤d𝑊𝑡,
(17)

here the time 𝑡 ∈ [0, 1], 𝜎𝑊 , 𝜎0 > 0, and 𝐼𝑑 is the 𝑑 × 𝑑 identity
atrix. The posterior 𝑝1 at time 𝑡 = 1 is a Gaussian  (𝑚1, 𝛴1) with

1 =
𝜎20

2 2 𝑍1 and 𝛴1 =
𝜎20𝜎

2
𝑤

2 2 𝐼𝑑 .
𝜎0+𝜎𝑊 𝜎0+𝜎𝑤
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Fig. 1. Numerical comparison for the filtering model (17). Level sets of the MSE. using: (a) importance sampling-based algorithm (18) and (b) the FPF (19). As the state dimension
grows, in order to have same performance (MSE), the number of particles 𝑁 must increase as 2𝑑 for (18) while they increase as 𝑑 1

2 for (19).
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s
2

t

Let {𝑋𝑖
0}
𝑁
𝑖=1 be 𝑁 i.i.d samples from the prior 𝑝0. The importance

sampling-based particle filter yields an empirical approximation of the
posterior 𝑝1 as follows:

𝜋(𝑁)
PF (𝑓 ) ∶=

𝑁
∑

𝑖=1
𝑊 𝑖

1𝑓 (𝑋
𝑖
0), 𝑊 𝑖

1 = 𝑒
−

|𝑍1−𝑋
𝑖
0 |
2

2𝜎2𝑤

∑𝑁
𝑖=1 𝑒

−
|𝑍1−𝑋

𝑖
0 |
2

2𝜎2𝑤

. (18)

In contrast, given the initial samples {𝑋𝑖
0}
𝑁
𝑖=1, the FPF approximates the

posterior by implementing a feedback control law as follows:

𝜋(𝑁)
FPF(𝑓 ) ∶=

1
𝑁

𝑁
∑

𝑖=1
𝑓 (𝑋𝑖

1), d𝑋
𝑖
𝑡 =

𝛴(𝑁)
𝑡

𝜎2𝑤
(d𝑍𝑡 −

𝑋𝑖
𝑡 + 𝑚

(𝑁)
𝑡

2
d𝑡), (19)

where the mean 𝑚(𝑁)
𝑡 and covariance 𝛴(𝑁)

𝑡 are empirically approxi-
mated using (15b) and (15c), respectively.

The MSE in estimating the conditional expectation of a given func-
tion 𝑓 is defined as follows:

MSE∗(𝑓 ) ∶= E[|𝜋(𝑁)
∗ (𝑓 ) − ⟨𝑝1, 𝑓⟩|

2],

where the subscript ∗ is either the PF or the FPF.
For 𝑓 (𝑥) = 1

√

𝑑
1T𝑥, a numerically computed plot of the level-

sets of MSE, as a function of 𝑁 and 𝑑, is depicted in Fig. 1-(a)–(b).
The expectation is approximated by averaging over 𝑀 = 1000 inde-
pendent simulations. It is observed that, in order to have the same
error, the importance sampling-based approach requires the number
of samples 𝑁 to grow exponentially with the dimension 𝑑, whereas
he growth using the FPF for this numerical example is 𝑂(𝑑

1
2 ). This

conclusion is consistent with other numerical studies reported in the
literature (Berntorp, 2015; Stano et al., 2014; Surace et al., 2019).

For the purposes of the analysis, a modified form of the particle
ilter is considered whereby the denominator is replaced by its exact
orm:

(𝑁)
PF

(𝑓 ) ∶=
𝑁
∑

𝑖=1
𝑊̄ 𝑖

1𝑓 (𝑋
𝑖
0), 𝑊̄ 𝑖

1 = 𝑒
−

|𝑍1−𝑋
𝑖
0 |
2

2𝜎2𝑤

𝑁E[𝑒
− |𝑍1−𝑋0 |2

2𝜎2𝑤
|1]

. (20)

Proposition 3.8 (Prop. 4 in Taghvaei & Mehta, 2020). Consider the
filtering problem (17) with state dimension 𝑑. Suppose 𝜎0 = 𝜎𝑤 = 𝜎 > 0
and 𝑓 (𝑥) = 𝑎T𝑥 where 𝑎 ∈ R𝑑 with |𝑎| = 1. Then:

1. The MSE. for the modified importance sampling estimator (20)
is given by

MSE (𝑓 ) = 𝜎2 (

3(2𝑑 ) − 1) ≥ 𝜎2 2𝑑+1.
362

PF 𝑁 2 𝑁
2. The MSE for the FPF estimator (19) is bounded as

MSEFPF(𝑓 ) ≤
𝜎2

𝑁
(3𝑑2 + 2𝑑). (21)

emark 3.9 (Curse of Dimensionality (CoD)). In the limit as 𝑑 → ∞,
he performance of the importance sampling-based particle filters is
tudied in the literature (Bengtsson, Bickel, & Li, 2008; Bickel et al.,
008; Rebeschini et al., 2015; Snyder, Bengtsson, Bickel, & Anderson,
2008). The main focus of these studies is on the particle degeneracy
(or the weight collapse) issue: it is shown that if log𝑁 log 𝑑

𝑑 → 0 then
he largest weight max1≤𝑖≤𝑁 𝑊 𝑖

𝑡 → 1 in probability. Consequently, in
order to prevent the weight collapse, the number of particles must
grow exponentially with the dimension. This phenomenon is referred
to as the curse of dimensionality for the particle filters. In contrast,
the weights in an FPF are uniform by design (see (19)). Therefore, the
FPF does not suffer from the weight collapse issue and, in particular,
does not require resampling. A complete comparison of the two types
of particle filters remains open (see Abedi, Surace, & Pfister, 2022 for
recent progress on this topic).

Remark 3.10 (Scaling with the Dimension). The scaling with dimension
depicted in Fig. 1 (b) suggests that the 𝑂(𝑑2) bound in (21) is loose.
This is the case because, in deriving the bound, the inequality ‖ ⋅
‖2 ≤ ‖ ⋅ ‖𝐹 is used, where ‖ ⋅ ‖ and ‖ ⋅ ‖𝐹 denote the induced and
Frobenius norms, respectively (Taghvaei & Mehta, 2020, Appendix E).
The inequality is loose particularly so as the dimension grows. Also, it is
observed that the MSE for the particle filter grows slightly slower than
the lower-bound 2𝑑 . This is because the lower-bound is obtained for the
modified particle filter (20), while the MSE is numerically evaluated for
the standard particle filter (18). The correlation between the numerator
and denominator in (18) reduces the MSE.

3.5. Extensions of FPF

In deriving the FPF, the main modeling assumption is the nature
of observation model (1b). (Such a model is referred to as the white
noise observation model.) In several follow on works, the basic FPF is
extended to handle more general types of models for the state process.
These extensions are briefly described next.

FPF on Riemannian manifolds. The feedback control form of the FPF
formula (11) holds not only for the Euclidean state–space but also for
the cases where the state {𝑋𝑡}𝑡≥0 evolves on a Riemannian manifold,
such as the matrix Lie groups. These extensions are described in Zhang,

Taghvaei, and Mehta (2016a, 2016b, 2017a, 2017b). In these papers,
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the FPF is shown to provide an intrinsic description of the filter that
automatically satisfies the geometric constraints of the manifold. The
gain is expressed as grad 𝜙 and obtained as a solution of the Poisson
equation. It is shown that the gain is also intrinsic that furthermore
does not depend upon the choice of the Riemannian metric. For the
special case when the manifold is a matrix Lie group, explicit formulae
for the filter are derived, using the matrix coordinates. Filters for two
example problems are presented: the attitude estimation problem on
𝑆𝑂(3) and the robot localization problem in 𝑆𝐸(3). Comparisons are
lso provided between the FPF and popular algorithms for attitude
stimation, namely the multiplicative EKF, the invariant EKF, the un-
cented quaternion estimator, the invariant ensemble Kalman filter, and
he bootstrap particle filter. Specifically, under a certain assumption
f a ‘‘concentrated distribution’’, the evolution equations for the mean
nd the covariance are shown to be identical to the left invariant EKF
lgorithm.

PF on discrete state–space. In Yang, Mehta, and Meyn (2015), FPF is
extended to the filtering problem where the hidden state {𝑋𝑡}𝑡≥0 is a
continuous-time Markov process that evolves on a finite state–space.
(For this model, the optimal nonlinear filter is called the Wonham fil-
ter.) A standard algorithm to simulate a Markov process is based on the
use of Poisson counters to simulate transitions between discrete states.
In order to define the process 𝑋̄, a control process 𝑈 is introduced
that serves to modulate the rates of these counters based on causal
observations of data 𝑍. An explicit formula for the FPF feedback control
law is derived and shown to be exact. Similar to (11), the formula is
in the form of ‘‘gain times error’’ where the gain is now obtained by
solving a certain linear matrix problem. The linear matrix problem is
the finite state–space counterpart of the Poisson equation (12).

FPF with data association and model uncertainty. In applications such
as multiple target tracking, the filtering problem often involves ad-
ditional uncertainties in the state model (1a) and the observation
model (1b). In the classical linear Gaussian settings, algorithms based
on the Kalman filter have been developed to provide a solution to
these problems. These algorithms are referred to as the interacting
multiple model (IMM) filter (Blom, 2013) and the probabilistic data
association (PDA) filter (Bar-Shalom, Daum, & Huang, 2009). In the
PDA filter, the Kalman gain is allowed to vary based on an estimate
of the instantaneous uncertainty in the observations. In the IMM filter,
multiple Kalman filters are run in parallel and their outputs combined
to form an estimate.

Like the Kalman filter, the FPF is easily extended to handle ad-
ditional uncertainties in the observation and signal models: These
extensions, namely, the probabilistic data association (PDA)-FPF and
the interacting multiple model (IMM)-FPF are derived in our prior
works (Yang, Blom, & Mehta, 2013; Yang, Huang, & Mehta, 2012;
Yang & Mehta, 2018). Structurally, the FPF based implementations are
similar to the classical algorithms based on the Kalman filter. In the
linear Gaussian settings, the equations for the mean and the variance
of the FPF-based filters evolve according the classical PDA and IMM
filters.

Collective inference FPF. The term ‘‘collective inference’’ is used to
describe filtering problems with a large number of aggregate and
anonymized data (Sheldon & Dietterich, 2011; Singh, Haasler, Zhang,
Karlsson, & Chen, 2020). Some of these problems have gained in impor-
tance recently because of COVID-19. Indeed, the spread of COVID-19
involves dynamically evolving hidden processes (e.g., number of in-
fected, number of asymptomatic etc.) that must be deduced from noisy
and partially observed data (e.g., number of tested positive, number of
deaths, number of hospitalized etc.). In carrying out data assimilation
for such problems, one typically only has aggregate observations. For
example, while the number of daily tested positives is available, the in-
formation on the disease status of any particular agent in the population
is not known.
363
In Kim, Taghvaei, Chen, and Mehta (2021), the FPF algorithm is
extended for a model with 𝑀 agents and 𝑀 observations. The 𝑀
observations are non-agent specific. Therefore, in its basic form, the
problem is characterized by data association uncertainty whereby the
association between the observations and agents must be deduced in
addition to the agent state. In Kim, Taghvaei, et al. (2021), the large-𝑀
limit is interpreted as a problem of collective inference. This viewpoint
is used to derive the equation for the empirical distribution of the
hidden agent states. An FPF algorithm for this problem is presented
and illustrated via numerical simulations. Formulae are described for
both the Euclidean and the finite state–space case. The classical FPF
algorithm is shown to be the special case (with 𝑀 = 1) of these
more general results. The simulations help show that the algorithm well
approximates the empirical distribution of the hidden states for large
𝑀 .

Before closing this section, we remark on the Stratonovich form of
the mean-field FPF SDE (11). The FPF is expressed in this form because
of two reasons:

1. The feedback control law is ‘‘gain times error’’ which is appeal-
ing to control engineers, and structurally similar to the update
formula in a Kalman filter. Moreover, for the linear Gaussian
model, the gain is the Kalman gain.

2. Expressed in its Stratonovich form, the gain times error formula
carries over to the Riemannian manifolds settings. This is be-
cause of the intrinsic nature of the Stratonovich form (Zhang
et al., 2017b, Remark 1).

Notably, for the linear Gaussian model, the gain function is a constant
(i.e., does not depend upon 𝑥) and therefore the Stratonovich form and
the Itô form are the same. For the general case, the Itô form involves a
Wong–Zakai correction term as described in the following remark.

Remark 3.11 (Itô Form of FPF). In its Itô form, the mean-field FPF (11)
s expressed as

𝑋̄𝑡 =𝑎(𝑋̄𝑡)d𝑡 + 𝜎(𝑋̄𝑡)d𝐵̄𝑡 + 𝖪𝑡(𝑋̄𝑡)(d𝑍𝑡 −
ℎ(𝑋̄𝑡) + ℎ̄𝑡

2
d𝑡)

+ 1
4

𝑚
∑

𝑗=1
∇|𝖪(𝑗)

𝑡 (𝑋̄𝑡)|
2
d𝑡,

where 1
4
∑𝑚
𝑗=1 ∇|𝖪

(𝑗)
𝑡 (𝑋̄𝑡)|

2
is the Wong–Zakai correction term. The Itô–

tratonovich relationship discussed here is based on interpreting 𝖪𝑡(𝑥)
s a function of space 𝑥 and time 𝑡, and interpreting the ◦ in the
tratonovich form only with respect to the space 𝑥. In a recent pa-
er (Pathiraja et al., 2021, Sec. 3), the gain function is defined and
nterpreted as a function of space 𝑥 and the density. This is natural
ecause the dependence upon time 𝑡 comes because of the changes in
ensity (𝑝̄𝑡) as the time evolves. Because the density is a stochastic
rocess, it is argued that the appropriate interpretation of ◦ in the
tratonovich form should involve both space 𝑥 and the density. Using
uch an interpretation, the Stratonovich form involves extra-terms that
re solutions to accompanying Poisson equations.

. Algorithms for gain function approximation

The exact gain 𝖪 is a 𝑑 × 𝑚 matrix-valued function, where the 𝑗th
olumn of 𝖪 is the solution of the Poisson equation (12) for 𝑗 = 1,… , 𝑚.
For the ease of presentation, the exposition in this section is restricted
to the scalar-valued observation setting, i.e. 𝑚 = 1, so that 𝖪 becomes a
𝑑-dimensional vector-valued function and the superscript 𝑗 is dropped
from the Poisson equation (12).

In practice, the Poisson equation must be solved numerically. The
numerical gain function approximation problem is as follows:

input: samples {𝑋𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑁} i.i.d.∼ 𝜌, ℎ(⋅)
output: gain function {𝖪𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑁}
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Fig. 2. Gain function approximation problem in the feedback particle filter. The exact
gain function 𝖪(𝑥) = ∇𝜙(𝑥) where 𝜙 solves the Poisson equation (12). The numerical
problem is to approximate 𝖪𝑖 = ∇𝜙(𝑥)|𝑥=𝑋𝑖 using only the particles {𝑋𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑁}
ampled from density 𝜌 (depicted as shaded region). The dashed line indicates the
onstant gain approximation, where the gain function is approximated by its expected
alue according to (26).

here 𝜌 is the (posterior) density and 𝖪𝑖 ∶= 𝖪(𝑋𝑖). The explicit
ependence on time 𝑡 is suppressed in this section. An illustration of
he gain function approximation problem appears in Fig. 2.

.1. Motivation and overview of approaches

The Poisson equation is a linear PDE. In order to motivate the
arious solution approaches, it is useful to first consider a finite-
imensional counterpart

𝑥 = 𝑏, (22)

here 𝐴 is a 𝑛 × 𝑛 (strictly) positive-definite symmetric matrix and the
ighthand-side 𝑏 is a given 𝑛 × 1 vector. The problem is to compute
he unknown 𝑛 × 1 vector 𝑥. For this purpose, the following equivalent
ormulations of the finite-dimensional problem are first introduced:

1. 𝑥 is the solution of the weak form

𝑦T𝐴𝑥 = 𝑦T𝑏, ∀ 𝑦 ∈ R𝑛.

2. For some chosen positive 𝜖, 𝑥 is the solution to the fixed-point
equation

𝑥 = 𝑒−𝜖𝐴𝑥 + ∫

𝜖

0
𝑒−𝑠𝐴𝑏 d𝑠.

3. 𝑥 is the solution of an optimization problem

𝑥 = argmin
𝑧∈R𝑛

1
2 𝑧

T𝐴𝑧 − 𝑧T𝑏.

When 𝑛 is large, these formulations are useful to numerically approxi-
mate the solution of (22):

1. For each fixed 𝑦 ∈ R𝑛, the weak form is a single equation. By
restricting 𝑦 to a suitable low-dimensional subspace 𝑆 ⊂ R𝑛,
the number of linear equations is reduced for the purposes of
obtaining an approximate solution (possibly also in 𝑆).

2. The fixed-point equation is useful because 𝑒−𝜖𝐴 is a strict con-
traction for 𝜖 > 0 (because 𝐴 is strictly positive-definite). So, a
good initial guess for 𝑥 can readily be improved by using the
Banach iteration.

3. The optimization form is useful to develop alternate (e.g., search
type) algorithms to obtain the solution.

With this background, we turn our attention to the Poisson equa-
ion (12) expressed succinctly as

𝛥𝜌𝜙 = (ℎ − ℎ̄),

here ℎ̄ ∶= ∫ ℎ(𝑥)𝜌(𝑥)d𝑥 and 𝛥𝜌 ∶= 1
𝜌∇ ⋅ (𝜌∇). The linear operator

𝛥𝜌 is referred to as the probability weighted Laplacian. Functional
analytic considerations require introduction of the function spaces:
364
𝐿2(𝜌) is the space of square integrable functions with respect to 𝜌 with
inner product ⟨𝑓, 𝑔⟩ ∶= ∫ 𝑓 (𝑥)𝑔(𝑥)𝜌(𝑥)d𝑥; 𝐻1(𝜌) is the Hilbert space of
unctions in 𝐿2(𝜌) whose first derivative, defined in the weak sense, is
the also in 𝐿2(𝜌); and 𝐻1

0 (𝜌) = {𝜓 ∈ 𝐻1(𝜌)| ∫ 𝜓(𝑥)𝜌(𝑥)d𝑥 = 0}.
These definitions are important because 𝐻1

0 (𝜌) is the natural space
for the solution 𝜙 of the Poisson equation (12). The operator −𝛥𝜌 is
symmetric (self-adjoint) and positive definite because

−⟨𝑓, 𝛥𝜌𝑔⟩ = ⟨∇𝑓,∇𝑔⟩ = −⟨𝛥𝜌𝑓, 𝑔⟩, ∀𝑓, 𝑔 ∈ 𝐻1
0 (𝜌).

In the infinite-dimensional settings, one requires an additional technical
condition—the Poincaré inequality (PI)—to conclude that the operator
is in fact strictly positive-definite (Taghvaei, Mehta, & Meyn, 2020,
Sec. 2.2). Assuming the PI holds, it is also readily shown that 𝛥−1𝜌 is
well defined, i.e., a unique solution 𝜙 ∈ 𝐻1

0 (𝜌) exists for any given
ℎ ∈ 𝐿2(𝜌) (Yang et al., 2016, Thm. 2).

For the purposes of numerical approximation, entirely analogous to
he finite-dimensional case, the following equivalent formulations of
he Poisson equation are introduced:

1. 𝜙 is a solution of the weak form

⟨∇𝜓,∇𝜙⟩ = ⟨𝜓, ℎ − ℎ̄⟩ ∀ 𝜓 ∈ 𝐻1
0 (𝜌). (23)

2. For some chosen positive 𝜖, 𝜙 is a solution of the fixed-point
equation

𝜙 = 𝑒𝜖𝛥𝜌𝜙 + ∫

𝜖

0
𝑒𝑠𝛥𝜌 (ℎ − ℎ̄)d𝑠. (24)

The notation 𝑒𝜖𝛥𝜌 is used to denote the semigroup associated
with 𝛥𝜌 (Bakry, Gentil, & Ledoux, 2013). The semigroup is
readily shown to be a Markov operator.

3. 𝜙 is the solution of an optimization problem

𝜙 = argmin
𝑓∈𝐻1

0 (𝜌)

1
2 ⟨∇𝑓,∇𝑓 ⟩ + ⟨𝑓, ℎ − ℎ̄⟩. (25)

Each of the three formulations has been used to develop numerical
algorithms for gain function approximation. A review of the resulting
constructions appears in the following three subsections:

4.2. Galerkin and constant gain approximation

The starting point is the weak form (23). A relaxation is considered
whereby 𝜓 ∈ 𝑆 = span{𝜓1,… , 𝜓𝑀}, a finite-dimensional subspace of
𝐻1

0 (𝜌). The functions 𝜓1,… , 𝜓𝑀 need to be picked and are referred
to as the basis functions. The resulting algorithm is referred to as the
Galerkin algorithm (Yang et al., 2016, Sec 3.3). The algorithm is given
in Algorithm 4.2.

Algorithm 1 Synthesis of the gain function: Galerkin approximation

Input: {𝑋𝑖}𝑁𝑖=1, {ℎ(𝑋
𝑖)}𝑁𝑖=1, basis functions {𝜓𝑙(𝑥)}

𝐿
𝑙=1.

utput: {𝖪𝑖}𝑁𝑖=1.

1: Calculate ℎ(𝑁) = 1
𝑁

∑𝑁
𝑖=1 ℎ(𝑋

𝑖
𝑡 ).

2: Calculate 𝑏𝑘 =
1
𝑁

∑𝑁
𝑖=1(ℎ(𝑋

𝑖
𝑡 ) − ℎ

(𝑁))𝜓𝑘(𝑋𝑖
𝑡 ).

3: Calculate 𝐴𝑘𝑙 =
1
𝑁

∑𝑁
𝑖=1 ∇𝜓𝑙(𝑋

𝑖
𝑡 )
T∇𝜓𝑘(𝑋𝑖

𝑡 ).
4: Solve the linear matrix equation 𝐴𝜅 = 𝑏 for 𝜅, where 𝐴 = [𝐴𝑘𝑙] and
𝑏 = [𝑏𝑘].

5: 𝖪𝑖 =
∑𝐿
𝑙=1 𝜅𝑙∇𝜓𝑙(𝑋

𝑖
𝑡 ).

The most important special case of the Galerkin algorithm is ob-
tained upon picking 𝑆 to be the subspace spanned by the 𝑑 coordi-
nate functions {𝑥1, 𝑥2,… , 𝑥𝑑}. The special case yields the constant gain

approximation of the gain 𝖪 as its expected value. Remarkably, the
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Algorithm 2 Synthesis of the gain function: constant gain approxima-
tion
Input: {𝑋𝑖}𝑁𝑖=1, {ℎ(𝑋

𝑖)}𝑁𝑖=1.
Output: {𝖪𝑖}𝑁𝑖=1.

1: Calculate ℎ̂(𝑁) = 1
𝑁

∑𝑁
𝑖=1 ℎ(𝑋

𝑖
𝑡 ).

2: 𝖪𝑖 = 1
𝑁

∑𝑁
𝑗=1𝑋

𝑗
𝑡

(

ℎ(𝑋𝑗
𝑡 ) − ℎ̂

(𝑁)
)

expected value admits a closed-form expression which is then readily
approximated empirically using the particles:

𝖪(cnst. apprx.) ∶= ∫ ∇𝜙(𝑥)𝜌(𝑥)d𝑥 = ∫ (ℎ(𝑥) − ℎ̄)𝑥𝜌(𝑥)d𝑥

≈ 1
𝑁

𝑁
∑

𝑖=1
(ℎ(𝑋𝑖) − ℎ(𝑁))𝑋𝑖,

(26)

here ℎ(𝑁) ∶= 𝑁−1 ∑
𝑖 ℎ(𝑋𝑖). (See Fig. 2 for an illustration of the con-

stant gain approximation.) With the constant gain approximation, the
FPF algorithm is a nonlinear EnKF algorithm (Taghvaei et al., 2018).
While its derivation starting from an FPF is novel, the formula (26) has
been used as a heuristic in the EnKF literature (Bergemann & Reich,
2012; Evensen, 2006).

The main issue with the Galerkin approximation is that it is in gen-
ral very difficult to pick the basis functions. There have been a number
f studies to refine and improve upon this formula (Berntorp, 2018;
erntorp & Grover, 2016; Matsuura, Ohata, Nakakuki, & Hirokawa,
016; Radhakrishnan, Devraj, & Meyn, 2016; Radhakrishnan & Meyn,
2018; Yang et al., 2016; Yang, Mehta, & Meyn, 2013). In the following
wo subsections, we describe two approximations which appear to be
ore promising approaches in general settings.

.3. Diffusion map-based algorithm

The starting point is the fixed-point equation (24) based on the
arkov semigroup 𝑒𝜖𝛥𝜌 . For small values of 𝜖, there is a well known
pproximation of 𝑒𝜖𝛥𝜌 in terms of the so-called diffusion map (which
oo is a Markov operator):

𝑇𝜖𝑓 )(𝑥) ∶=
1

𝑛𝜖(𝑥) ∫R𝑑
𝑔𝜖(|𝑥 − 𝑦|)

√

∫ 𝑔𝜖(|𝑦 − 𝑧|)𝜌(𝑧)d𝑧
𝑓 (𝑦)𝜌(𝑦)d𝑦, (27)

where 𝑔𝜖(𝑧) ∶= 𝑒−
𝑧2
4𝜖 is the Gaussian kernel in R and 𝑛𝜖(𝑥) is the

ormalization factor chosen so that ∫ (𝑇𝜖1)(𝑥)d𝑥 = 1 (Coifman & Lafon,
006). A representative approximation result is as follows:

roposition 4.1 (Prop. 3.4 in Taghvaei et al., 2020). Let 𝑛 ∈ N, 𝑡0 <∞,
nd 𝑡 ∈ (0, 𝑡0) with 𝜖 = 𝑡

𝑛 . Then, for all functions 𝑓 such that 𝑓,∇𝑓 ∈
𝐿4(𝜌):

‖(𝑇 𝑛𝑡
𝑛
− 𝑒𝑡𝛥𝜌 )𝑓‖𝐿2(𝜌) ≤

𝑡
3
2

𝑛
𝐶(‖𝑓‖𝐿4(𝜌) + ‖∇𝑓‖𝐿4(𝜌)),

here the constant 𝐶 depends only on 𝑡0 and 𝜌.

Because the diffusion map (27) is defined using Gaussian kernels,
ts empirical approximation is straightforward:

𝑇 (𝑁)
𝜖 𝑓 )(𝑥) = 1

𝑛(𝑁)
𝜖 (𝑥)

𝑁
∑

𝑖=1

𝑔𝜖(|𝑥 −𝑋𝑖
|)

√

∑𝑁
𝑗=1 𝑔𝜖(|𝑋𝑖 −𝑋𝑗

|)
𝑓 (𝑋𝑖),

where 𝑛(𝑁)
𝜖 (𝑥) is the normalization factor. The nature of the approxima-

tion is as follows:

Proposition 4.2 (Prop. 3.5 in Taghvaei et al., 2020). Consider the
diffusion map kernel 𝑇𝜖 and its empirical approximation {𝑇 (𝑁)

𝜖 }𝑁∈N.
hen for any bounded continuous function 𝑓 ∈ 𝐶 (R𝑑 ):
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Algorithm 3 Synthesis of the gain function: diffusion map-based
algorithm
Input: {𝑋𝑖}𝑁𝑖=1, {ℎ(𝑋

𝑖)}𝑁𝑖=1, prev, 𝜖, L.
utput: {𝖪𝑖}𝑁𝑖=1.

1: Calculate 𝑔𝑖𝑗 ∶= 𝑒−
|𝑋𝑖−𝑋𝑗 |2

4𝜖 for 𝑖, 𝑗 = 1 to 𝑁 .

2: Calculate 𝑘𝑖𝑗 ∶=
𝑔𝑖𝑗

√
∑

𝑙 𝑔𝑖𝑙
√

∑

𝑙 𝑔𝑗𝑙
for 𝑖, 𝑗 = 1 to 𝑁 .

3: Calculate 𝑑𝑖 =
∑

𝑗 𝑘𝑖𝑗 for 𝑖 = 1 to 𝑁 .
4: Calculate 𝖳𝑖𝑗 ∶=

𝑘𝑖𝑗
𝑑𝑖
for 𝑖, 𝑗 = 1 to 𝑁 .

5: Calculate 𝜋𝑖 =
𝑑𝑖

∑

𝑗 𝑑𝑗
for 𝑖 = 1 to 𝑁 .

6: Calculate 𝗁̂ =
∑𝑁
𝑖=1 𝜋𝑗ℎ(𝑋

𝑖).

7: Initialize  = prev.

8: for 𝑡 = 1 to L do
9: 𝑖 =

∑𝑁
𝑗=1 𝖳𝑖𝑗𝑗 + 𝜖(𝗁 − 𝗁̂) for 𝑖 = 1 to 𝑁 .

10: end for
11: Calculate 𝑟𝑖 = 𝑖 + 𝜖𝗁𝑖 for 𝑖 = 1 to 𝑁 .
12: Calculate 𝑠𝑖𝑗 =

1
2𝜖𝖳𝑖𝑗 (𝑟𝑗 −

∑𝑁
𝑘=1 𝖳𝑖𝑘𝑟𝑘) for 𝑖, 𝑗 = 1 to 𝑁 .

13: Calculate 𝖪𝑖 =
∑

𝑗 𝑠𝑖𝑗𝑋
𝑗 for 𝑖 = 1 to 𝑁 .

1. (Almost sure convergence) For all 𝑥 ∈ R𝑑

lim
𝑁→∞

(𝑇 (𝑁)
𝜖 𝑓 )(𝑥) = (𝑇𝜖𝑓 )(𝑥), a.s.

2. (Convergence rate) For any 𝛿 ∈ (0, 1), in the asymptotic limit as
𝑁 → ∞,

∫ |(𝑇 (𝑁)
𝜖 𝑓 )(𝑥) − (𝑇𝜖𝑓 )(𝑥)|

2𝜌(𝑥)d𝑥 ≤ 𝑂(
log(𝑁𝛿 )

𝑁𝜖𝑑
),

with probability higher than 1 − 𝛿.

With these approximations, the fixed-point equation (24) is approx-
imated in two steps:

1. The semigroup 𝑒𝜖𝛥𝜌 is approximated by the diffusion map 𝑇𝜖 :

(step 1) 𝜙𝜖 = 𝑇𝜖𝜙𝜖 + 𝜖(ℎ − ℎ̄𝜖), (28a)

where ℎ̄𝜖 = ∫ ℎ(𝑥)𝜌(𝜖)(𝑥)d𝑥 with 𝜌(𝜖)(𝑥) = 𝑛𝜖 (𝑥)𝜌(𝑥)
∫ 𝑛𝜖 (𝑥)𝜌(𝑥)d𝑥

.

2. 𝑇𝜖 is approximated by its empirical approximation 𝑇
(𝑁)
𝜖 :

(step 2) 𝜙(𝑁)
𝜖 = 𝑇 (𝑁)

𝜖 𝜙(𝑁)
𝜖 + 𝜖(ℎ − ℎ̄(𝑁)

𝜖 ), (28b)

where ℎ̄(𝑁)
𝜖 = ∫ ℎ(𝑥)𝜌(𝑁)

𝜖 (𝑥)d𝑥 with 𝜌(𝑁)
𝜖 (𝑥) =

∑𝑁
𝑖=1 𝑛𝜖 (𝑥)𝛿𝑋𝑖
∑𝑁
𝑖=1 𝑛𝜖 (𝑋

𝑖)
.

Based on the finite-dimensional fixed-point equation (28b), an algo-
rithm for gain function approximation is given in Algorithm 3. In the
algorithm, the gain function is approximated by the formula

𝖪(𝑁)
𝜖 = ∇

[

𝑇 (𝑁)
𝜖 𝜙(𝑁)

𝜖 + 𝜖𝑇 (𝑁)
𝜖 (ℎ − ℎ̄(𝑁)

𝜖 )
]

.

here are alternative ways to approximate the gain function in terms
f 𝜙(𝑁)

𝜖 . While these solutions have the same asymptotic in the limit
s 𝜖 → 0, they behave differently when 𝜖 is large. The specific
approximation selected here does not require derivative of the obser-
vation function and converges to the constant gain approximation as 𝜖
becomes large (Taghvaei et al., 2020, Remark 4.8).

Error analysis. The error in diffusion map approximation comes from
two sources:

1. The bias error due to the diffusion map approximation of the
semigroup (step 1); and

2. The variance error due to empirical approximation in terms of
particles (step 2).
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Fig. 3. Bias variance trade-off in the diffusion map-based gain function approximation algorithm: (a) Gain function computed for different values of 𝜖 with 𝑁 = 200 particles. The
ashed line is the constant gain solution (26). As 𝜖 gets larger, the diffusion map gain converges to the constant gain. (b) Plot of the MSE as a function of 𝜖. The shaded area in
he background of part (a) is the density 𝜌 which is taken as sum of two Gaussians  (−1, 𝜎2) and  (+1, 𝜎2) with 𝜎2 = 0.2. The exact gain function 𝖪(𝑥) is computed for ℎ(𝑥) = 𝑥
by using an (exact) integral formula for the solution (Taghvaei et al., 2020, Eq. 4.6). In part (b), the MSE is computed as an empirical approximation of the lefthand-side of (29)
by averaging over 1000 simulation runs.
Fig. 4. Bias–variance trade-off as a function of (a) the state dimension 𝑑 ∈ {1, 2, 5, 10} (for a fixed 𝑁 = 1000); and (b) the number of particles 𝑁 ∈ {100, 200, 500, 1000} (for a fixed
= 1). In the vector case, 𝜌(𝑥) = 𝜌𝑏(𝑥1)

∏𝑑
𝑛=2 𝜌𝑔 (𝑥𝑛) where 𝜌𝑏 is the bimodal density (same as in Fig. 3) and 𝜌𝑔 is the Gaussian density.
he error is analyzed in Taghvaei et al. (2020) where the following
esult is proved:

roposition 4.3 (Thm. 4.3 and 4.4 in Taghvaei et al., 2020). Consider
he fixed-point formulation of the Poisson equation (24), its diffusion-
ap approximation (28a), and its empirical approximation (28b).

1. For each fixed 𝜖 > 0, there exists a unique solution to (28a) with
a uniform bound ‖𝜙𝜖‖𝐿2(𝜌𝜖 ) ≤ 𝐶‖ℎ‖𝐿2(𝜌𝜖 ). In the asymptotic limit
as 𝜖 → 0

‖𝜙𝜖 − 𝜙‖𝐿2(𝜌𝜖 ) ≤ 𝑂(𝜖).

2. The operator 𝑇 (𝑁)
𝜖 is a strict contraction on 𝐿2

0(𝜌
(𝑁)
𝜖 ) and the

fixed-point equation (28b) admits a unique solution. The approx-
imate solution 𝜙(𝑁)

𝜖 converges to the kernel solution 𝜙𝜖
lim
𝑁→∞

‖𝜙(𝑁)
𝜖 − 𝜙𝜖‖𝐿∞(𝛺) = 0, a.s.

The following diagram illustrates the convergence and the respec-
tive types of errors:

𝜙(𝑁)
𝜖

𝑁↑∞
⟶

(variance)
𝜙𝜖

𝜖↓0
⟶
(bias)

𝜙.

A quantitative bound on the mean-squared error (MSE) is obtained in
the asymptotic limit as 𝜖 ↓ 0 and 𝑁 → ∞ as follows:
(

E[ 1
𝑁

𝑁
∑

𝑖=1
|𝖪𝑖 − ∇𝜙(𝑋𝑖)|2]

)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤ 𝑂(𝜖2)
⏟⏟⏟
bias

+𝑂( 1
𝜖(2+𝑑)𝑁

)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

, (29)
366

MSE variance
where {𝖪𝑖}𝑁𝑖=1 is computed from the Algorithm 3 and ∇𝜙 is the exact
gain function from solving the Poisson equation (12). The error due to
bias converges to zero as 𝜖 → 0 and the error due to variance converges
to zero as 𝑁 → ∞. There is trade-off between the two errors: To reduce
bias, one must reduce 𝜖. However, for any fixed value of 𝑁 , one can
reduce 𝜖 only up to a point where the variance starts increasing. The
bias–variance trade-off is illustrated with the aid of a scalar (𝑑 = 1)
example in Fig. 3: If 𝜖 is large, the error due to bias dominates, while if 𝜖
is small, the error due to variance dominates. An numerical illustration
of scalings with 𝑁 and 𝑑 appears in Fig. 4. Additional details on both
these examples can be found in Taghvaei et al. (2020, Sec. 5).

Remark 4.4 (Relationship to the Constant Gain Formula (26)). There
is a remarkable and somewhat unexpected relationship between the
diffusion map and the constant gain approximation (Taghvaei et al.,
2020, Prop. 4.7). In particular, in the limit as 𝜖 → ∞, the diffusion map
gain converges to the constant gain (26). This suggests a systematic
procedure to improve upon the constant gain by de-tuning the value
of 𝜖 away from the [𝜖 = ∞] limit. For any fixed 𝑁 , a finite value of
𝜖 is chosen to minimize the MSE according to the bias variance trade-
off. Based on this, a rule of thumb for choosing the 𝜖 value appears
in Taghvaei et al. (2020, Remark 5.1).

Remark 4.5 (Analysis of FPF with Diffusion Map Approximation). An
analysis of the finite-𝑁 FPF using the diffusion map approximation
appears in Pathiraja and Stannat (2021). Under mild technical con-
ditions on the drift 𝑎(⋅), 𝜎(⋅), ℎ(⋅), it is shown that the finite-𝑁 FPF is
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Table 1
Applications and evaluation of the feedback particle filter.
Authors Applications of FPF Reference Year

del Moral and Horton Quantum harmonic oscillators del Moral and Horton (2021) 2021
Wang et. al. Unmanned aerial vehicle tracking Wang, Wang, and Cui (2021) 2021
Su et. al. Soil estimation Su, Zhou, Yu, Yuan, and Fu (2019) 2021
Kumar and Mishra Marine applications Zheng, Yu, and Yuan (2019) 2019
Berntorp and Grover Satellite tracking and re-entry Berntorp (2015) 2015
Surace et. al. Evaluation and comparison of FPF Surace et al. (2019) 2017
Stano Hopper-dredger model Stano (2018), Stano et al. (2014) 2014
Matsuura et. al. Target state estimation Matsuura et al. (2016) 2016
Kutschireiter et. al. Neuronal dynamics Kutschireiter, Surace, Sprekeler, and Pfister (2017) 2016
Tilton et. al. Coupled oscillators Tilton et al. (2012) 2013
Tilton et. al. Marine estimation Tilton et al. (2013) 2013
t
t
S

T
g
n
o
e

4

t
f
a
o
t
a
(
p
e
t
a
r
k
b

R
s
2
R
s
F
P
i
c
T
S
t
r
c
(
w
p
n
w

well-posed, i.e., a strong solution exists for all time 𝑡 (Pathiraja & Stan-
nat, 2021, Thm. 1.1). Based on a propagation of chaos type analysis,
convergence estimates are derived to relate the finite-𝑁 system to its
mean-field limit (Pathiraja & Stannat, 2021, Thm. 1.2). These estimates
are shown to hold up to a certain stopping time. For arbitrary time 𝑡,
well-posedness and convergence remains an open problem.

4.4. Variational approximation

The starting point is the variational form (25). The objective func-
tion is denoted by 𝐽 (𝑓 ) with its empirical approximation is obtained
as

𝐽 (𝑁)(𝑓 ) ∶= 1
𝑁

𝑁
∑

𝑖=1

1
2 |∇𝑓 (𝑋

𝑖)|2 − 𝑓 (𝑋𝑖)(ℎ(𝑋𝑖) − ℎ(𝑁))

he problem of minimizing the empirical approximation over all func-
ions is ill-posed: the minimum is unbounded and minimizer does not
xist. (Abstractly, this is because the empirical probability distribution
oes not satisfy the Poincaré inequality.) Therefore, we consider

min
𝜃∈𝛩

𝐽 (𝑁)(𝑓𝜃)

here 𝛩 is a parameterized class of functions. A function in the class
𝛩 is denoted by 𝑓𝜃(𝑥) or 𝑓 (𝑥; 𝜃) where 𝜃 ∈ 𝛩 is the parameter, and 𝛩
s the parameter set. The two main examples are as follows:

1. 𝛩 = {
∑𝑀
𝑗=1 𝜃𝑗𝜓𝑗 ; 𝜓𝑗 ∈ 𝐻1

0 , 𝜃𝑗 ∈ R for 𝑗 = 1,… ,𝑀} is
a linear combination of selected basis functions. With a lin-
ear parametrization, the solution of the empirical optimization
problem is given by the Galerkin algorithm (Yang et al., 2016,
Remark 5).

2. 𝛩 is a neural network where the parameters 𝜃 are the weights
in the network.

In practice, it is not possible to solve the optimization problem
xactly, but up to some optimization gap. In particular, let 𝜙(𝑁)

𝜃 be the
utput of an optimization algorithm that solves the problem up to 𝜖
rror, i.e.,

(𝜙(𝑁)
𝜃 ) ≤ min

𝑓∈𝐻1
0

𝐽 (𝑓 ) + 𝜖.

he good news is that it is possible to upper-bound the error in
pproximating the gain function in terms of this optimization gap.

roposition 4.6 (Prop. 1 in Olmez, Taghvaei, & Mehta, 2020). Let 𝖪(𝑁)
𝜃 =

𝜙(𝑁)
𝜃 where 𝜙(𝑁)

𝜃 is the output of an optimization algorithm that solves
he minimization objective 𝐽 (𝑓 ) with 𝜖 optimality gap. Then

𝖪(𝑁)
𝜃 − 𝖪‖2

𝐿2
𝜌
≤ 2𝜖,

here 𝖪 = ∇𝜙 is the exact gain function.

The optimization gap 𝜖 depends on the selected parametrization
𝜃 , number of particles 𝑁 , and the iteration number of the employed
367

ptimization algorithm. Its characterization and analysis is open and f
he subject of ongoing work. In general, such analysis falls under
he framework of statistical learning theory (Anthony et al., 1999;
halev-Shwartz & Ben-David, 2014).
The numerical results using this approach are depicted in Fig. 5.

hese results are for the bimodal example introduced in Fig. 3. The
ain function is parameterized using a two-layer residual NN with 32
eurons per layer. The Adam algorithm is used to learn the parameters
f the NN. Additional details on the numerics can be found in Olmez
t al. (2020).

.5. Numerical evaluation of FPF

Numerical evaluations of the FPF algorithm, and comparisons with
he nonlinear extensions of the Kalman filter and conventional particle
ilters, have been subject of several publications (some of these studies
re tabulated in the Table 1). Notable amongst these is the early work
f Berntorp (2015) who both extended the algorithm and applied it
o two highly nonlinear applications in aerospace, namely, the re-entry
nd two-body problems. Another notable early work is Stano et al.
2014) on the application of estimating soil-dependent time-varying
arameters of the hopper sedimentation model. The study includes
xtensive comparisons with the conventional particle filters. While
hese studies report favorable accuracy and computational cost, the
pplication of FPF to truly high-dimensional and nonlinear problems
emains still open. In particular, beyond the toy examples, we do not
now of any application where the diffusion map approximation has
een applied.

emark 4.7. Curse of dimensionality (CoD) is one of the main is-
ues motivating the recent work on particle filters (Bengtsson et al.,
008; Beskos, Crisan, Jasra, & Whiteley, 2014; Bickel et al., 2008;
ebeschini et al., 2015). The analysis presented in Section 3.4 helps
how that, at least in the linear Gaussian settings of the problem, the
PF/EnKF algorithm does not suffer from CoD. This is because the
oisson equation admits an explicit solution in this case. Because FPF
s an exact algorithm, if/when CoD can be avoided in the nonlinear
ase really depends on the quality of the gain function approximation.
he bias–variance analysis of the diffusion map algorithm, presented in
ection 4.3, is helpful to see some of the tradeoffs. The analysis suggests
hat to avoid CoD one must take advantage of (i) the underlying
egularity of the gain function (e.g., constant in the linear Gaussian
ase), and/or (ii) inherent low-dimensional structure in the problem
e.g., approximation of posterior density in a low-dimensional manifold
here a good diffusion map approximation can be obtained). One
romising avenue is the variational gain function approximation using
eural networks, as described in Section 4.4. It remains to be seen
hether some of the outstanding successes of neural networks in other

ields can be replicated to avoid CoD in the particle filters.
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of iterations of the Adam algorithm. The problem setup is the same as Fig. 3.
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5. Optimal transport theory

In this section, we describe a systematic procedure to construct the
exact mean-field process 𝑋̄ introduced as step 1 in (10). The first aspect
o note is that while the FPF (11) provides an explicit formula for 𝑢 and
, the formula is not unique: One can interpret (10) as transporting
the prior density 𝑝0 at time 𝑡 = 0 to the posterior density 𝑝𝑡 at time t.
Clearly, there are infinitely many maps that transport one density into
another. This suggests that there are infinitely many choices of control
laws that all lead to exact filters. This is not surprising: The exactness
condition specifies only the marginal density at times 𝑡, which is not
enough to uniquely identify a stochastic process, e.g., the joint density
at two time instants has not been specified.

In the following, we first discuss the non-uniqueness issue for the
simpler linear Gaussian model. The non-uniqueness naturally motivates
optimal transport ideas to uniquely solve for 𝑢 and 𝖪. This is the subject
of the remainder of this section to derive the feedback control law for
the FPF (11).

5.1. Non-uniqueness issue in linear-Gaussian setting

Consider the linear Gaussian FPF (14) for the mean-field pro-
cess {𝑋̄𝑡}𝑡≥0. The conditional mean and variance of 𝑋̄𝑡 are denoted by
̄ 𝑡 and 𝛴̄𝑡, respectively. The conditional mean evolves according to

d𝑚̄𝑡 = 𝐴𝑚̄𝑡d𝑡 + 𝖪̄𝑡(d𝑍𝑡 −𝐻𝑚̄𝑡d𝑡),

where 𝖪̄𝑡 ∶= 𝛴̄𝑡𝐻T. Define an error process 𝜉𝑡 ∶= 𝑋̄𝑡 − 𝑚̄𝑡. Its equation
is given by

d𝜉𝑡 = (𝐴 − 1
2
𝛴̄𝑡𝐻

T𝐻)𝜉𝑡 + 𝜎𝐵d𝐵̄𝑡.

This is a linear system and therefore the variance of 𝜉𝑡, which equals
𝛴̄𝑡 (by definition), evolves according to the Lyapunov equation
d
d𝑡
𝛴̄𝑡 = (𝐴 − 1

2
𝛴̄𝑡𝐻

T𝐻)𝛴̄𝑡 + 𝛴̄𝑡(𝐴 − 1
2
𝛴̄𝑡𝐻

T𝐻)T + 𝛴𝐵

= Ricc(𝛴̄𝑡).

The derivation helps show that the equations for the mean and variance
are identical to the Kalman filter equations, (8a) and (8b), respectively,
and thus proves the exactness property of the linear FPF (14).

These arguments suggest the following general procedure to con-
struct an exact 𝑋̄ process: Express 𝑋̄𝑡 as a sum of two terms:

𝑋̄𝑡 = 𝑚̄𝑡 + 𝜉𝑡, 𝑡 ≥ 0,

where 𝑚̄𝑡 evolves according to (8a) and the evolution of 𝜉𝑡 is defined
by the SDE:

d𝜉 = 𝐺 𝜉 d𝑡 + 𝜎 d𝐵̄ + 𝜎′d𝑊̄ ,
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𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 t
where {𝑊̄ }𝑡≥0 and {𝐵̄}𝑡≥0 are independent copies of the measurement
noise {𝑊 }𝑡≥0 and the process noise {𝐵}𝑡≥0, respectively, and 𝐺𝑡, 𝜎𝑡, and
𝜎′𝑡 satisfy the matrix equation (for each time)

𝐺𝑡𝛴̄𝑡 + 𝛴̄𝑡𝐺𝑇𝑡 + 𝜎𝑡𝜎T𝑡 + 𝜎′𝑡 (𝜎
′
𝑡 )
T = Ricc(𝛴̄𝑡), 𝑡 ≥ 0. (30)

By construction, the equation for the variance is given by the Riccati
equation (8b). The result is summarized in the following Proposition:

Proposition 5.1 (Prop. 1 in Taghvaei, Mehta, & Georgiou, 2022). Con-
sider the linear-Gaussian filtering problem (7) and the following family
f the mean-field processes

𝑋̄𝑡 = 𝐴𝑚̄𝑡d𝑡 + 𝖪̄𝑡(d𝑍𝑡 −𝐻𝑚̄𝑡d𝑡)

+ 𝐺𝑡(𝑋̄𝑡 − 𝑚̄𝑡)d𝑡 + 𝜎𝑡d𝐵̄𝑡 + 𝜎′𝑡d𝑊̄𝑡, 𝑋̄0 ∼ 𝑁(𝑚0, 𝛴0),

here 𝐺𝑡, 𝜎𝑡, and 𝜎′𝑡 satisfy the consistency condition (30). Then, 𝑋̄𝑡 is
xact, i.e. the density of 𝑋̄𝑡 is Gaussian 𝑁(𝑚̄𝑡, 𝛴̄𝑡) where 𝑚̄𝑡 and 𝛴̄𝑡 solve
he Kalman filter equations, (8a) and (8b), respectively.

In general, with different choices of 𝜎𝑡 and 𝜎′𝑡 , there are infinitely
any solutions for (30). Below, we describe three solutions that lead

to three established form of EnKF and linear FPF:

1. EnKF with perturbed observation (Reich, 2011, Eq. (27)):

𝐺𝑡 = 𝐴 − 𝛴̄𝑡𝐻T𝐻, 𝜎𝑡 = 𝜎𝐵 , 𝜎′𝑡 = 𝛴̄𝑡𝐻
T.

2. Stochastic linear FPF (Yang et al., 2016, Eq. (26)) or square-root
form of the EnKF (Bergemann & Reich, 2012, Eq (3.3)) :

𝐺𝑡 = 𝐴 − 1
2
𝛴̄𝑡𝐻

T𝐻, 𝜎𝑡 = 𝜎𝐵 , 𝜎′𝑡 = 0.

3. Deterministic linear FPF (Taghvaei & Mehta, 2016, Eq. (15)) (de
Wiljes et al., 2018, Eq. (82)):

𝐺𝑡 = 𝐴 − 1
2
𝛴̄𝑡𝐻

T𝐻 + 1
2
𝛴𝐵𝛴̄

−1
𝑡 , 𝜎𝑡 = 0, 𝜎′𝑡 = 0.

Fix 𝜎𝑡, 𝜎′𝑡 . Then given any particular solution 𝐺𝑡 of (30), one can
construct a family of solutions 𝐺𝑡 + 𝛴̄−1

𝑡 𝛺𝑡, where 𝛺𝑡 is any arbitrary
skew-symmetric matrix (Taghvaei & Mehta, 2020, Sec. III-B). For the
linear Gaussian problem, the non-uniqueness issue is well known in
literature: The two forms of EnKF, the perturbed observation form Re-
ich (2011) and the square-root form Bergemann and Reich (2012) are
standard. A homotopy of exact deterministic and stochastic EnKFs is
given in Kim, Taghvaei, and Mehta (2018). An explanation for the non-
uniqueness in terms of the Gauge transformation appears in Abedi and
Surace (2019). An extension to the case with correlated noise appears
in Kang, Chen, Tao, and Yau (2022).

Given the non-uniqueness issue, a natural question is how to iden-
ify a unique 𝑋̄ process? For this purpose, optimal transport theory is
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described in the following Section 5.2. For the linear Gaussian case,
the theory is used to derive the following optimal transport form of the
linear FPF (see Taghvaei & Mehta, 2016, 2020 for details):

𝑋̄𝑡 =𝐴𝑋̄𝑡d𝑡 +
1
2
𝛴𝐵𝛴̄

−1
𝑡 (𝑋̄𝑡 − 𝑚̄𝑡)d𝑡

+ 1
2
𝖪̄𝑡(d𝑍𝑡 −

𝐻𝑋̄𝑡 +𝐻𝑚̄𝑡
2

d𝑡) +𝛺𝑡𝛴̄
−1
𝑡 (𝑋̄𝑡 − 𝑚̄𝑡)d𝑡,

(31)

where 𝛺𝑡 = 𝛺OPT
𝑡 is a specific skew-symmetric matrix. The optimal

transport FPF (31) is exact and has two differences compared to the
linear FPF (14):

1. The stochastic term 𝜎𝐵d𝐵̄𝑡 is replaced with the deterministic
term 1

2𝛴𝐵𝛴̄
−1
𝑡 (𝑋̄𝑡 − 𝑚̄𝑡)d𝑡. Given a Gaussian prior, the two terms

yield the same posterior. However, in a finite-𝑁 implementation,
the stochastic term serves to introduce an additional error of
order 𝑂( 1

√

𝑁
) (Taghvaei & Mehta, 2018, Prop. 4).

2. The SDE (31) has an extra term involving the skew-symmetric
matrix 𝛺𝑡. The extra term does not effect the posterior, i.e., 𝑋̄ is
exact for all skew-symmetric choices of 𝛺𝑡. The specific optimal
choice 𝛺𝑡 = 𝛺OPT

𝑡 serves to pick the symmetric solution 𝐺𝑡 of
the consistency equation (30). For the scalar (𝑑 = 1) case, the
skew-symmetric term is zero. Therefore, in the scalar case, the
update formula in the linear FPF (14) is optimal. In the vector
case, it is optimal iff 𝛺OPT

𝑡 ≡ 0.

5.2. FPF formula

In this section, we provide a justification for the feedback con-
trol formula in the FPF (11). It is helpful to begin with the simpler
deterministic case.

5.2.1. Deterministic path
Let 2(R𝑑 ) be the space of everywhere positive probability densi-

ties on R𝑑 with finite second moment. Given a smooth path {𝑝𝑡 ∈
2(R𝑑 ) ∶ 𝑡 ≥ 0} the problem is to construct a stochastic process {𝑋̄𝑡}𝑡≥0
such that the probability density of 𝑋̄𝑡, denoted as 𝑝̄𝑡, equals 𝑝𝑡 for all
𝑡 ≥ 0. The exactness condition is expressed as

̄𝑡 = 𝑝𝑡, ∀ 𝑡 ≥ 0. (32)

As has already been noted, there are infinitely many stochastic pro-
cesses that satisfy the exactness condition. A unique choice is made
by prescribing an additional optimality criterion based on the optimal
transport theory.

To make these considerations concrete, assume that the given path
{𝑝𝑡}𝑡≥0 evolves according to the PDE

𝜕𝑝𝑡
𝜕𝑡

= (𝑝𝑡), 𝑡 > 0,

where (⋅) is an operator (e.g., the Laplacian) that acts on probability
densities. (This necessarily restricts the operator  , e.g., ∫ (𝜌)(𝑥)d𝑥 = 0
for all 𝜌 ∈ 2(R𝑑 ).) The following model is assumed for the process
{𝑋̄𝑡}𝑡≥0:

d
d𝑡
𝑋̄𝑡 = 𝑢𝑡(𝑋̄𝑡), 𝑋̄0 ∼ 𝑝0, (33)

here 𝑢𝑡(⋅) is a control law that needs to be designed. From the
continuity equation, the exactness condition (32) is satisfied if

− ∇ ⋅ (𝑝̄𝑡𝑢𝑡) = (𝑝̄𝑡), ∀ 𝑡 > 0. (34)

The non-uniqueness issue is now readily seen: The first-order PDE
(34) admits infinitely many solutions. A unique solution 𝑢𝑡(⋅) is picked
by minimizing the transportation cost from 𝑋̄𝑡 to 𝑋̄𝑡+𝛥𝑡 in the limit as
𝛥𝑡→ 0. The 𝐿2-Wasserstein cost is particularly convenient because

lim 1 E[|𝑋𝑡+𝛥𝑡 −𝑋𝑡|
2] = |𝑢𝑡(𝑥)|

2𝑝̄𝑡(𝑥)d𝑥.
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𝛥𝑡→0 𝛥𝑡2 ∫R𝑑 t
Therefore, for each fixed 𝑡, the control law 𝑢𝑡(⋅) is obtained by solving
the constrained optimization problem

min
𝑢𝑡(⋅) ∫R𝑑

|𝑢𝑡(𝑥)|
2𝑝̄𝑡(𝑥)d𝑥, s.t − ∇ ⋅ (𝑝̄𝑡𝑢𝑡) = (𝑝̄𝑡).

By a standard calculus of variation argument, the optimal solution is
obtained as 𝑢∗𝑡 = ∇𝜙𝑡 where 𝜙𝑡 solves the Poisson equation −∇⋅(𝑝̄𝑡∇𝜙𝑡) =
(𝑝̄𝑡). The resulting stochastic process 𝑋̄ is defined by

d𝑋̄𝑡
d𝑡

= ∇𝜙𝑡(𝑋̄𝑡), 𝑋̄0 ∼ 𝑝0,

𝑡 solves the PDE − ∇ ⋅ (𝑝̄𝑡∇𝜙𝑡) = (𝑝̄𝑡).

he process is exact by construction.

xample 5.2. Suppose the given path is a solution of the heat equation
𝜕𝑝𝑡
𝜕𝑡 = 𝛥𝑝𝑡 ((⋅) is the Laplacian). The solution of the Poisson equation
s easily obtained as 𝜙𝑡 = log(𝑝̄𝑡). The optimal transport process then
volves according to
d
d𝑡
𝑋̄𝑡 = −∇ log(𝑝̄𝑡(𝑋̄𝑡)), 𝑋̄0 ∼ 𝑝0. (35a)

This process should be compared to the well known example

d𝑋𝑡 = d𝐵𝑡, 𝑋0 ∼ 𝑝0, (35b)

where {𝐵𝑡}𝑡≥0 is a W.P. The density for 𝑋𝑡 also solves the heat equa-
ion. In the language of optimal transportation theory, the coupling
efining (35a) is deterministic while it is stochastic in (35b).

5.2.2. Stochastic path
In the filtering problem, the path of the posterior probability den-

sity is stochastic (because it depends upon the random observations
{𝑍𝑡}𝑡≥0). Therefore, the preceding discussion is not directly applicable.
uppose the stochastic path {𝑝𝑡}𝑡≥0 is governed by a stochastic PDE

𝑝𝑡 = (𝑝𝑡)d𝐼𝑡,

here (⋅) is an operator that acts on probability densities and {𝐼𝑡 ∶
𝑡 ≥ 0} is a W.P.

Consider the following SDE model:

d𝑋̄𝑡 = 𝑢𝑡(𝑋̄𝑡)d𝑡 + 𝖪𝑡(𝑋̄𝑡)d𝐼𝑡, 𝑋̄0 ∼ 𝑝0

where, compared to the deterministic model (33), an additional
stochastic term is now included. The problem is to identify control laws
𝑢𝑡(⋅) and 𝖪𝑡(⋅) such that the conditional density of 𝑋̄𝑡 equals 𝑝𝑡. Upon
writing the evolution equation for the conditional density of 𝑋̄𝑡 (Yang
et al., 2016, Prop. 1), the exactness condition is formally satisfied by
all such 𝑢𝑡(⋅) and 𝖪𝑡(⋅) that solve

− ∇ ⋅ (𝑝̄𝑡𝖪𝑡) = (𝑝̄𝑡), (36a)

− ∇ ⋅ (𝑝̄𝑡𝑢𝑡) +
1
2
(∇ ⋅ (𝑝̄𝑡𝖪𝑡)𝖪𝑡 + 𝑝̄𝑡𝖪𝑡∇𝖪𝑡) = 0. (36b)

hese equations are the stochastic counterpart of (34), and as with (34),
heir solution is not unique.
The unique solution is obtained by requiring that the coupling

rom 𝑋̄𝑡 and 𝑋̄𝑡+𝛥𝑡 is optimal in the limit as 𝛥𝑡 → 0. In contrast to
he deterministic setting, the leading term in the transportation cost
[|𝑋̄𝑡+𝛥𝑡 − 𝑋̄𝑡|

2] is 𝑂(𝛥𝑡) whereby

lim
𝛥𝑡→0

1
𝛥𝑡

E[|𝑋̄𝑡+𝛥𝑡 − 𝑋̄𝑡|
2] = ∫R𝑑

|𝖪𝑡(𝑥)|
2𝑝̄𝑡(𝑥)d𝑥.

Therefore, for each fixed 𝑡, the control law 𝖪𝑡(⋅) is obtained by solving
the constrained optimization problem

min
𝖪𝑡(⋅) ∫R𝑑

|𝖪𝑡(𝑥)|
2𝑝̄𝑡(𝑥)d𝑥, s.t − ∇ ⋅ (𝑝̄𝑡𝖪𝑡) = 𝑡(𝑝̄𝑡).

s before, the optimal solution is given by 𝖪∗
𝑡 = ∇𝜙𝑡 where 𝜙𝑡 solves

he second-order PDE −∇ ⋅ (𝑝̄ ∇𝜙 ) = (𝑝̄ ).
𝑡 𝑡 𝑡
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It remains to identify the control law 𝑢𝑡(⋅). For this purpose, the
second-order term in the infinitesimal Wasserstein cost is used:

lim
𝛥𝑡→0

1
𝛥𝑡2

(

E[|𝑋̄𝑡+𝛥𝑡 − 𝑋̄𝑡|
2] − 𝛥𝑡∫R𝑑

|𝖪∗
𝑡 (𝑥)|

2𝑝̄𝑡(𝑥)d𝑥
)

= ∫R𝑑
|𝑢𝑡(𝑥)|

2𝑝̄𝑡(𝑥)d𝑥.

The righthand-side is minimized subject to the constraint (36b). Re-
markably, the optimal solution is obtained in closed form as

𝑢∗𝑡 = − 1
2𝑝̄𝑡

(𝑝̄𝑡)∇𝜙𝑡 +
1
2
∇2𝜙𝑡∇𝜙𝑡 + 𝜉𝑡,

where 𝜉𝑡 is the (unique such) divergence free vector field (i.e., ∇⋅(𝑝𝑡𝜉𝑡) =
) such that 𝑢∗𝑡 is of a gradient form. That (36b) can be solved in an
xplicit manner was a major surprise at the time of its discovery (Yang
t al., 2011b; Yang, Mehta, & Meyn, 2013). The resulting optimal
ransport process is

𝑋̄𝑡 = ∇𝜙𝑡(𝑋̄𝑡)◦(d𝐼𝑡 −
1
2𝑝̄𝑡

(𝑝̄𝑡)d𝑡) + 𝜉𝑡(𝑋̄𝑡)d𝑡, 𝑋̄0 ∼ 𝑝0. (37)

It is also readily shown that the process {𝑋̄𝑡}𝑡≥0 is in fact exact for
any choice of divergence free vector field {𝜉𝑡}𝑡≥0. The most convenient
such choice is to simply set 𝜉𝑡 ≡ 0. The resulting filter is exact and
furthermore also (infinitesimally) optimal to the first-order.

For the special case of the nonlinear filtering problem, (𝜌) = (ℎ −
ℎ̄)𝜌 where ℎ̄ = ∫ ℎ(𝑥)𝜌(𝑥)d𝑥 and d𝐼𝑡 = (d𝑍𝑡−ℎ̄𝑡d𝑡) is the increment of the
innovation process. For these choices, the optimal transport stochastic
process (37) becomes

d𝑋̄𝑡 = ∇𝜙𝑡(𝑋̄𝑡)◦(d𝑍𝑡 −
1
2
(ℎ(𝑋̄𝑡) + ℎ̄𝑡)d𝑡) + 𝜉𝑡(𝑋̄𝑡)d𝑡.

The feedback control law in the FPF algorithm (11) represents the
particular sub-optimal choice 𝜉𝑡 ≡ 0. The choice is optimal for 𝑑 = 1.

Remark 5.3. The sub-optimality of FPF is not a problem because the
filter is exact. A case for FPF may be made on computational grounds.
Because it requires a solution of a single Poisson equation, the FPF
control law is the simplest possible control law leading to an exact
filter. A natural question then is whether there is any advantage to
be had by using the optimal transport control law? As of yet, the
answer to this question is not clear. The same question arises in the
optimal transport map estimation problem (Makkuva, Taghvaei, Oh,
& Lee, 2020): why aim for the optimal transport map as opposed to
say Knothe–Rosenblatt rearrangement (Villani, 2009, Ch. 1)? As an
additional point, there is also a freedom in replacing the quadratic cost
function in the optimal transport problem. An argument for the optimal
transport map with quadratic cost function can be made on the account
of its special geometrical structure: the optimal map is the gradient of
a convex function. This may lead to nice computational and stability
properties when the map is approximated with particles/samples.

5.3. Optimal transport formula for the static example

We now revisit the static example introduced in Section 3.1 with
the aim of deriving an explicit form of the control 𝑈 and relating it to
the FPF. As explained in Section 3.1, the problem is to find a control 𝑈
such that E[𝑓 (𝑋)|𝑌 ] = E[𝑓 (𝑋̄1)|𝑌 ] for all functions 𝑓 ∈ 𝐶𝑏(R𝑑 ), where
𝑋̄1 = 𝑋̄0 + 𝑈 and 𝑋̄0 is an independent copy of 𝑋. This condition is
equivalently expressed as (𝑋̄1, 𝑌 ) ∼ 𝖯𝑋𝑌 , and the problem of finding 𝑈
is formulated as the following optimal transportation problem:

min
𝑈∈𝜎(𝑋̄0 ,𝑌 )

E[|𝑈 |

2],

s.t 𝑋̄1 = 𝑋̄0 + 𝑈, (𝑋̄1, 𝑌 ) ∼ 𝖯𝑋𝑌 ,
(38)

where the notation 𝑈 ∈ 𝜎(𝑋̄0, 𝑌 ) means that 𝑈 is allowed to be
measurable with respect to 𝑋̄0 and 𝑌 . This is an optimal transportation
problem between (𝑋̄0, 𝑌 ) ∼ 𝖯𝑋 ⊗ 𝖯𝑌 and (𝑋, 𝑌 ) ∼ 𝖯𝑋𝑌 where the
transportation is constrained to be of the form (𝑋̄0, 𝑌 ) → (𝑋̄0 + 𝑈, 𝑌 ),
i.e., the second argument 𝑌 remains fixed. Its solution is obtained as an
extension of the celebrated Brenier’s result (Brenier, 1991) as follows:
370
Theorem 5.4 (Thm. 1 in Taghvaei & Hosseini, 2022). Consider the
optimal transportation problem (38). Suppose 𝖯𝑋 admits a density with
respect to the Lebesgue measure. Then the optimal control is

𝑈 = ∇𝛷̄(𝑋̄0; 𝑌 ) − 𝑋̄0,

where 𝛷̄ is the minimizer of the dual Kantorovich problem

min
𝛷∈CVX𝑥

E[𝛷(𝑋̄0; 𝑌 ) +𝛷⋆(𝑋; 𝑌 )], (39)

where 𝛷 ∈ CVX𝑥 means 𝑥 ↦ 𝛷(𝑥; 𝑦) is convex in 𝑥 for all 𝑦 and
𝛷⋆(𝑥; 𝑦) ∶= sup𝑧 𝑧T𝑥 − 𝛷(𝑧; 𝑦) is the convex conjugate of 𝛷 with respect
to 𝑥.

Remark 5.5 (Relationship to the Update Formula for FPF). In the
continuous-time limit, the dual Kantorovich problem (39) is related to
the variational form (25) of the Poisson equation (12). In particular,
with 𝛥𝑍𝑡 = ℎ(𝑋𝑡)𝛥𝑡 + 𝛥𝑊𝑡, the solution to the problem (39) is as
follows (Taghvaei & Hosseini, 2022, Prop. 2):

𝛷̄(𝑋̄𝑡;𝛥𝑍𝑡) =
1
2
|𝑋̄𝑡|

2 + 𝜙(𝑋̄𝑡)𝛥𝑍𝑡 + 𝜓(𝑋̄𝑡)𝛥𝑡 + 𝑂(𝛥𝑡2)

here 𝜙 is the solution to the Poisson equation (12) with 𝜌 taken
s the density of 𝖯𝑋 , and 𝜓 is the unique such function such that
𝜓 = − ℎ+ℎ̄

2 ∇𝜙 + 1
4∇|∇𝜙|

2 + 𝜉 where 𝜉 is divergence free. Therefore,
the optimal transformation 𝑋̄𝑡 ↦ 𝑋̄𝑡+𝛥𝑡 is given by,

𝑋̄𝑡+𝛥𝑡 = ∇𝑥𝛷̄(𝑋̄𝑡;𝛥𝑍𝑡)

= 𝑋̄𝑡 + ∇𝜙(𝑋̄𝑡)(𝛥𝑍𝑡 −
ℎ(𝑋̄𝑡) + ℎ̄𝑡

2
𝛥𝑡)

+ 1
4
∇|∇𝜙(𝑋̄𝑡)|

2𝛥𝑡 + 𝜉(𝑋̄𝑡)𝛥𝑡 + 𝑂(𝛥𝑡2)

which in the limit as 𝛥𝑡 → 0 is the SDE for the optimal transport
FPF (37).

Remark 5.6 (Stochastic Optimization and DNNs). The variational prob-
em (39) is a stochastic optimization problem which allows for ap-
lication of machine learning tools to approximate its solution. In
articular, deep neural networks (DNNs) can be used to parametrize
he function 𝛷 and stochastic optimization algorithms employed to
earn the parameters. Preliminary results in this direction are presented
n Taghvaei and Hosseini (2022) with a comprehensive development
the subject of ongoing work.

PART II

6. CIPS for optimal control

In order to elucidate the ideas as clearly as possible, our focus in this
paper is entirely on the linear quadratic (LQ) problem. Its extension
to the nonlinear optimal control problem (4) can be found in Joshi,
Taghvaei, Mehta, and Meyn (2022).

6.1. Problem statement and background

The finite-horizon linear quadratic (LQ) optimal control problem is
a special case of (4) as follows:

min
𝑢

𝐽 (𝑢) = ∫

𝑇

0

1
2

(

|𝐶𝑥𝑡|
2 + 𝑢T𝑡 𝑅𝑢𝑡

)

d𝑡 + 𝑥T𝑇 𝑃𝑇 𝑥𝑇 (40a)

subject to: 𝑥̇𝑡 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡, 𝑥0 = 𝑥 (40b)

It is assumed that (𝐴,𝐵) is controllable, (𝐴,𝐶) is observable, and
atrices 𝑃𝑇 , 𝑅 ≻ 0. The [𝑇 = ∞] limit is referred to as the linear

quadratic regulator (LQR) problem.
It is well known that the optimal control 𝑢𝑡 = ϕ𝑡(𝑥𝑡) where the

optimal policy is linear

ϕ (𝑥) = 𝐾 𝑥 where 𝐾 = −𝑅−1𝐵T𝑃 , 0 ≤ 𝑡 ≤ 𝑇
𝑡 𝑡 𝑡 𝑡
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is the optimal gain matrix and {𝑃𝑡 ∶ 0 ≤ 𝑡 ≤ 𝑇 } is a solution of the
backward (in time) differential Ricatti equation (DRE)

− d
d𝑡
𝑃𝑡 = 𝐴T𝑃𝑡 + 𝑃𝑡𝐴 + 𝐶T𝐶 − 𝑃𝑡𝐵𝑅−1𝐵T𝑃𝑡, 𝑃𝑇 (given) (41)

The algebraic Ricatti equation (ARE) is obtained by setting the left-hand
side to 0. As 𝑇 → ∞, for each fixed time 𝑡, 𝑃𝑡 → 𝑃∞, exponentially
fast (Kwakernaak & Sivan, 1972, Thm. 3.7), where 𝑃∞ ≻ 0 is the
unique such positive-definite solution of the ARE, and therefore the
optimal gain converges, 𝐾𝑡 → 𝐾∞ ∶= −𝑅−1𝐵T𝑃∞. Approximation of
he gain 𝐾∞ is a goal in recent work on model-based RL for the LQR
roblem (Fazel et al., 2018; Mohammadi et al., 2022).

.2. Objectives and assumptions

For the reasons noted in Section 1, we are interested in a simulation-
ased solution that does not rely on an explicit solution of the DRE (41).
o clarify what is meant by a simulation-based solution in the context
f model-based RL, we make a formal assumption as follows:

ssumption 1.

1. Functions 𝑓 (𝑥, 𝛼) = 𝐴𝑥 + 𝐵𝛼 and 𝑐(𝑥) = 𝐶𝑥 are available in the
form of an oracle (which allows function evaluation at any state
action pair (𝑥, 𝛼) ∈ R𝑑 × R𝑚).

2. Matrices 𝑅 and 𝑃𝑇 are available. Both of these matrices are
strictly positive-definite.

3. Simulator is available to simulate (40b).
4. Simulator provides for an ability to add additional inputs outside
the control channel (e.g., see (5a)).

This assumption is motivated from the data assimilation literature
here it is entirely standard and widely used in applications, such as
eather prediction, involving EnKF. Part 1 of the assumption means
hat the matrices 𝐴,𝐵, 𝐶 are not available explicitly. Rather, for any
iven (𝑥, 𝛼) ∈ R𝑑 × R𝑚, the vectors 𝑓 (𝑥, 𝛼) and 𝑐(𝑥) can be evaluated.
unction evaluation forms for the dynamics and the cost function is
lso a standard assumption for any model-based RL algorithm. Part 2
f the assumption is not too restrictive for the following two reasons:

1. In physical systems, one is typically able to assess relative costs
for different control inputs (actuators). This knowledge can be
used to select 𝑅.

2. For the LQR problem, under mild technical conditions, the opti-
mal policy is stationary and does not depend upon the choice of
𝑃𝑇 .

f these matrices are not available, one possibility is to take 𝑅 and 𝑃𝑇
o be identity matrices of appropriate dimensions. The main restriction
omes from part 3 of the assumption. However, as the widespread use
f EnKF amply demonstrates, it is not un-realistic to assume it for a
imulation-based solution. Of course, it will not be possible with a
hysical experiment.

.3. Dual EnKF

The dual EnKF algorithm is obtained from making use of duality
etween optimal control and filtering. For this purpose, we need to first
ualize the DRE (41). Under the assumptions of this paper, 𝑃𝑡 ≻ 0 for
≤ 𝑡 ≤ 𝑇 whenever 𝑃𝑇 ≻ 0 (Brockett, 2015, Sec. 24). Set 𝑆𝑡 = 𝑃−1

𝑡 .
t is readily verified that {𝑆𝑡 ∶ 0 ≤ 𝑡 ≤ 𝑇 } also solves a DRE (which
represents the dual of (41))

d 𝑆 = 𝐴𝑆 + 𝑆 𝐴T − 𝐵𝑅−1𝐵T + 𝑆 𝐶T𝐶𝑆 , 𝑆 = 𝑃−1 (42)
371

d𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑇 𝑇
The strategy is to approximate {𝑆𝑡 ∶ 0 ≤ 𝑡 ≤ 𝑇 } using simulations.
s before, the construction proceeds in two steps: (i) definition of an
xact mean-field process; and (ii) its finite-𝑁 approximation.

tep 1. Mean-field process: Define a stochastic process 𝑌 = {𝑌𝑡 ∈ R𝑑 ∶
≤ 𝑡 ≤ 𝑇 } as a solution of the following backward (in time) SDE:

𝑌𝑡 = 𝐴𝑌𝑡d𝑡 + 𝐵d
←
𝜂 𝑡 +

1
2 𝑆̄𝑡𝐶

T(𝐶𝑌𝑡 + 𝐶𝑛̄𝑡)d𝑡, 0 ≤ 𝑡 < 𝑇

𝑌𝑇 ∼  (0, 𝑆𝑇 ) (43)

here 𝜂 = {𝜂𝑡 ∈ R𝑚 ∶ 0 ≤ 𝑡 ≤ 𝑇 } is a W.P. with covariance matrix 𝑅−1,
nd

̄𝑡 ∶= E[𝑌𝑡], 𝑆̄𝑡 ∶= E[(𝑌𝑡 − 𝑛̄𝑡)(𝑌𝑡 − 𝑛̄𝑡)T], 0 ≤ 𝑡 < 𝑇 (44)

he meaning of the backward arrow on d
←
𝜂 in (43) is that the SDE

s simulated backward in time starting from the terminal condition
pecified at time 𝑡 = 𝑇 . The reader is referred to Nualart and Pardoux
1988, Sec. 4.2) for the definition of the backward Itô-integral. The
ean-field process is useful because of the following proposition.

roposition 6.1 (Prop. 1 in Joshi et al., 2022). The solution to the
DE (43) is a Gaussian stochastic process, in which the mean and
ovariance of 𝑌𝑡 are given by

̄𝑡 = 0, 𝑆̄𝑡 = 𝑆𝑡, 0 ≤ 𝑡 ≤ 𝑇

onsequently, 𝑋̄𝑡 ∶= 𝑆̄−1
𝑡 (𝑌𝑡 − 𝑛̄𝑡) is also a Gaussian random variable

ith

[𝑋̄𝑡] = 0, E[𝑋̄𝑡𝑋̄
T
𝑡 ] = 𝑃𝑡, 0 ≤ 𝑡 ≤ 𝑇

The significance of Proposition 6.1 is that the optimal control policy
𝑡(⋅) can now be obtained in terms of the statistics of the random
ariable 𝑋̄𝑡. Specifically, we have the following two cases:

1. If the matrix 𝐵 is explicitly known then the optimal gain matrix

𝐾𝑡 = −𝑅−1𝐵TE[𝑋̄𝑡𝑋̄
T
𝑡 ]

2. If 𝐵 is unknown, define the Hamiltonian (the continuous-time
counterpart of the Q-function (Mehta & Meyn, 2009)):

𝐻(𝑥, 𝛼, 𝑡)

∶= 1
2 |𝐶𝑥|

2 + 1
2𝛼

T𝑅𝛼
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

cost function

+𝑥TE[𝑋̄𝑡𝑋̄
T
𝑡 ] (𝐴𝑥 + 𝐵𝛼)⏟⏞⏞⏞⏟⏞⏞⏞⏟

model (40b)

from which the optimal control law is obtained as

ϕ𝑡(𝑥) = argmin
𝛼∈R𝑚

𝐻(𝑥, 𝛼, 𝑡)

by recalling the minimum principle, which states that the op-
timal control is the unique minimizer of the Hamiltonian. It
is noted that the Hamiltonian 𝐻(𝑥, 𝛼, 𝑡) is in the form of an
oracle because (𝐴𝑥+𝐵𝛼) is the right-hand side of the simulation
model (40b).

tep 2. Finite-𝑁 approximation: The particles {𝑌 𝑖𝑡 ∈ R𝑑 ∶ 0 ≤ 𝑡 ≤
, 𝑖 = 1,… , 𝑁} evolve according to the backward SDE:

𝑌 𝑖𝑡 = 𝐴𝑌 𝑖𝑡 d𝑡 + 𝐵d
←
𝜂
𝑖

𝑡
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

ith copy of model (40b)

+𝑆(𝑁)
𝑡 𝐶T

(

𝐶𝑌 𝑖𝑡 + 𝐶𝑛
(𝑁)
𝑡

2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
coupling

d𝑡, (45)

𝑌 𝑖𝑇
i.i.d∼  (0, 𝑃−1

𝑇 ), 1 ≤ 𝑖 ≤ 𝑁

𝜂𝑖 ∶= {𝜂𝑖𝑡 ∶ 0 ≤ 𝑡 ≤ 𝑇 } is an i.i.d copy of 𝜂 and

𝑛(𝑁)
𝑡 = 1

𝑁

𝑁
∑

𝑖=1
𝑌 𝑖𝑡

𝑆(𝑁)
𝑡 = 1

𝑁
∑

(𝑌 𝑖𝑡 − 𝑛
(𝑁)
𝑡 )(𝑌 𝑖𝑡 − 𝑛

(𝑁)
𝑡 )T
𝑁 − 1 𝑖=1
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The CIPS (45) is referred to as the dual EnKF.
Optimal control: Set 𝑋𝑖

𝑡 = (𝑆(𝑁)
𝑡 )−1(𝑌 𝑖𝑡 − 𝑛

(𝑁)
𝑡 ). There are two cases

as before:

1. If the matrix 𝐵 is explicitly known then

𝐾 (𝑁)
𝑡 = − 1

𝑁 − 1

𝑁
∑

𝑖=1
𝑅−1(𝐵T𝑋𝑖

𝑡 )(𝑋
𝑖
𝑡 )
T (46)

2. If 𝐵 is unknown, define the Hamiltonian

𝐻 (𝑁)(𝑥, 𝛼, 𝑡) ∶= 1
2 |𝐶𝑥|

2 + 1
2𝛼

T𝑅𝛼
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

cost function

+ 1
𝑁 − 1

𝑁
∑

𝑖=1
(𝑥T𝑋𝑖

𝑡 )(𝑋
𝑖
𝑡 )
T (𝐴𝑥 + 𝐵𝛼)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
model (40b)

from which the optimal control policy is approximated as

ϕ(𝑁)
𝑡 (𝑥) = argmin

𝑎∈R𝑚
𝐻 (𝑁)(𝑥, 𝑎, 𝑡)

There are several zeroth-order approaches to solve the minimiza-
tion problem, e.g., by constructing 2-point estimators for the
gradient. Since the objective function is quadratic and the matrix
𝑅 is known, 𝑚 queries of 𝐻 (𝑁)(𝑥, ⋅, 𝑡) are sufficient to compute
ϕ(𝑁)
𝑡 (𝑥).

The overall dual EnKF algorithm can be found in Joshi et al. (2022,
lgorithm 1 and 2).

.4. Relating dual EnKF to model-based RL

The following remarks are included to help provide an intuitive
xplanation of the various aspects of the dual EnKF and relate these
o the model-based RL:

1. Representation. In designing any RL algorithm, the first issue
is the representation of the unknown value function (𝑃𝑡 in the
linear case). Our novel idea is to represent 𝑃𝑡 is in terms of
statistics (variance) of the particles. Such a representation is
distinct from representing the value function, or its proxies, such
as the Q function, within a parameterized class of functions.
372
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2. Value iteration. The algorithm is entirely simulation based: 𝑁
copies of the model (40b) are simulated in parallel where the
terms on the right hand-side of (45) have the following intuitive
interpretations:

(a) Dynamics: The first term ‘‘𝐴𝑌 𝑖𝑡 d𝑡’’ on the right-hand side
of (45) is simply a copy of uncontrolled dynamics in the
model (40b).

(b) Control: The second term ‘‘𝐵d
←
𝜂
𝑖

𝑡’’ is the control input for
the 𝑖th particle. It is specified as a W.P. with covariance
𝑅−1. One may interpret this as an approach to exploration
whereby cheaper control directions are explored more.

(c) Coupling: The third term, referred to as the coupling,
effectively implements the value iteration step. Coupling
has a ‘‘gain times error’’ structure where 𝑆(𝑁)

𝑡 𝐶T is the
gain and 1

2 (𝐶𝑌
𝑖
𝑡 +𝐶𝑛

(𝑁)
𝑡 ) is the counterpart of the error in

the linear FPF (14).

3. Arrow of time. The particles are simulated backward—from
terminal time 𝑡 = 𝑇 to initial time 𝑡 = 0. This is different
from most model-based RL but consistent with the dynamic
programming (DP) equation which also proceeds backward in
time.

.5. Convergence and error analysis

In Joshi et al. (2022, Prop. 3), under certain additional assumptions
n system matrices, the following error bound is derived:

[‖𝑆(𝑁)
𝑡 − 𝑆̄𝑡‖𝐹 ] ≤

𝐶1
√

𝑁
+ 𝐶2𝑒

−2𝜆(𝑇−𝑡)E[‖𝑆(𝑁)
𝑇 − 𝑆̄𝑇 ‖𝐹 ], (47)

here 𝐶1, 𝐶2, 𝜆 are positive constants and ‖ ⋅ ‖𝐹 denotes Frobenius
orm for matrices. The significance of the bound (47) is as follows:
he constant 𝜆 is same as the rate that governs the convergence of
he solution of the DRE (41) to the stationary solution (of the infinite-
orizon LQR problem). This means that the dual EnKF learns the optimal
QR gain exponentially fast with a rate that is as good as one would obtain

rom directly solving the DRE.
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Convergence is numerically illustrated for a d-dimensional system
expressed in its controllable canonical form

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0 … 0
0 0 1 0 … 0
⋮ ⋮
𝑎1 𝑎2 𝑎3 𝑎4 … 𝑎𝑑

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐵 =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
⋮
1

⎤

⎥

⎥

⎥

⎥

⎦

where the entries (𝑎1,… , 𝑎𝑑 ) ∈ R𝑑 are i.i.d. samples from  (0, 1). The
matrices 𝐶,𝑅, 𝑃𝑇 are identity matrices of appropriate dimension. For
numerics, we fix 𝑇 = 10, chose the time-discretization step as 0.02,
and use 𝑁 = 1000 particles to simulate the dual EnKF.

Fig. 6(a) depicts the convergence of the four entries of the matrix
𝑃 (𝑁)
𝑡 for the case where 𝑑 = 2. Fig. 6(b) depicts the analogous results
for 𝑑 = 10. Fig. 7(a) and Fig. 7(b) depict the open-loop poles
(eigenvalues of the matrix 𝐴) and the closed-loop poles (eigenvalues of
the matrix (𝐴 + 𝐵𝐾 (𝑁)

0 )), for 𝑑 = 2 and 𝑑 = 10, respectively. Note that
the closed-loop poles are stable, whereas some open-loop poles have
positive real parts.

6.6. Comparison to literature

We present a comparison of the dual EnKF with policy gradient
algorithms in Mohammadi et al. (2022) (denoted as [M21]) and Fazel
t al. (2018) (denoted as [F18]). In these prior works, by restricting the
ontrol policies to the linear form 𝑢𝑡 = 𝐾𝑥𝑡, the LQR problem reduces
o the finite-dimensional static optimization problem:

⋆ = argmin
𝐾

𝐽 (𝐾) = E
(

∫

∞

0
𝑥T𝑡 𝑄𝑥𝑡 + 𝑢

T
𝑡 𝑅𝑢𝑡 𝑑𝑡

)

(48)

here the expectation is over the initial condition. The authors apply a
ure-actor method using ‘‘zeroth order’’ methods to approximate gradi-
nt descent, much like the early REINFORCE algorithm for RL (Sutton
Barto, 2018).
A qualitative comparison of the dual EnKF with these prior algo-

ithms is given in Table 2. Choosing 𝑡 = 0 in (47), the error is smaller
han 𝜀 if the number of particles 𝑁 > 𝑂( 1

𝜀2
) and the simulation time

> 𝑂(log( 1𝜀 )), while the iteration number is one. This is compared with
olicy optimization approach in Fazel et al. (2018) where the number
f particles and the simulation time scales polynomially with 𝜀, while
the number of iterations scale as 𝑂(log( 1𝜀 )). This result is later refined
in Mohammadi et al. (2022) where the required number of particles
and the simulation time are shown to be 𝑂(1) and 𝑂(log( 1𝜀 )) respectively
although this result is valid with probability that approaches zero as
he number of iterations grow (Mohammadi et al., 2022, Thm. 3).).
A numerical comparison is made on the benchmark spring mass

amper example borrowed from Mohammadi, Zare, Soltanolkotabi, and
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Table 2
Computational complexity comparison of the algorithms to achieve 𝜀 error in
approximating the infinite-horizon LQR optimal gain.
Algorithm Particles/samples Simulation time Iterations

dual EnKF 𝑂( 1
𝜀2
) 𝑂(log( 1

𝜀
)) 1

Fazel et al. (2018) poly
(

1
𝜀

)

poly
(

1
𝜀

)

𝑂(log( 1
𝜀
))

Mohammadi et al.
(2022)

𝑂(1) 𝑂(log( 1
𝜀
)) 𝑂(log( 1

𝜀
))

Jovanovic (2019, Sec. VI). Fig. 8 depicts the relative mean-squared
error, defined as

MSE ∶= 1
𝑇
E

(

∫

𝑇

0

‖𝑃𝑡 − 𝑃
(𝑁)
𝑡 ‖

2
𝐹

‖𝑃𝑡‖2𝐹
d𝑡

)

Two trends are depicted in the figure: the 𝑂( 1
𝑁 ) decay of the MSE as

𝑁 increases (for 𝑑 fixed), which is a numerical illustration of the error
bound (47), and a plot of the MSE as a function of dimension 𝑑 (for 𝑁
fixed).

A side-by-side comparison with [F18] and [M21] is depicted in
Fig. 9. The comparison is for the following metrics (taken from Mo-
hammadi et al., 2022):

errorgain =
‖𝐾est −𝐾∞

‖𝐹
‖𝐾∞

‖𝐹
, errorvalue = 𝑐est − 𝑐∞

𝑐(𝑁)
init − 𝑐

∞

here the LQR optimal gain 𝐾∞ and the optimal value 𝑐∞ are com-
uted from solving the ARE. The value 𝑐(𝑁)

init is approximated using the
nitial gain 𝐾 = 0 (Note such a gain is not necessary for EnKF). Because
F18] is for discrete-time system, an Euler approximation is used to
btain a discrete-time model.
In the numerical experiments, the dual EnKF is found to be signif-

cantly more computationally efficient—by two orders of magnitude
r more. The main reason for the order of magnitude improvement
n computational time is as follows: An EnKF requires only a single
teration over a fixed time-horizon In contrast, [F18] and [M21] require
everal steps of gradient descent, with each step requiring an evaluation
f the LQR cost, and because these operations must be done serially,
hese computations are slower.
In carrying out these comparisons, the same time-horizon [0, 𝑇 ] and

iscretization time-step 𝛥𝑡 was used for all the algorithms. It is certainly
ossible that some of these parameters can be optimized to improve the
erformance of the other algorithms. In particular, one may consider
horter or longer time-horizon 𝑇 or use parallelization to speed up the
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Fig. 8. Performance of the dual EnKF algorithm: MSE as a function of the number of particles 𝑁 and system dimension 𝑑.
Fig. 9. Comparison with algorithms in Fazel et al. (2018) (labeled [F18]) and Mohammadi et al. (2022) (labeled [M21]). The comparisons depict the computation time (in Python)
s a function of the relative error in approximating the LQR gain and cost.
radient calculation. Codes are made available on Github for interested
arties to independently verify these comparisons.1

.7. Extension to the nonlinear problem (4)

An extension of the dual EnKF algorithm for the nonlinear optimal
ontrol problem (4) appears in Joshi et al. (2022, Sec. 3). In the
eneral nonlinear setting, the empirical distribution of the 𝑁 particles
pproximates the minus log of the value function, leading to the
ptimal control law (5b). The algorithm involves the solution of a
oisson equation, similar to the Poisson equation that appears in the
PF algorithm. The dual EnKF algorithm for the LQ problem arises as
special case when the Poisson equation admits an analytical solution.
n interested reader can find additional details in Joshi et al. (2022)
here some numerical results for the problem of stabilizing an inverted
endulum on the cart are also described.

. Discussion and conclusion

In this survey, we described CIPS to approximate the solution of
he optimal filtering and the optimal control problems (in parts I and
I, respectively). As explained in Section 1, there are close parallels

1 https://github.com/anantjoshi97/EnKF-RL
374
with DA and RL. In this section, we expand on some of these parallels
with the goal of highlighting some important points and directions for
future work.

Data assimilation, sampling, optimal transportation. CIPS may be viewed
as a sampling algorithm. The FPF control law (coupling) is designed
to sample from the posterior. Compared to the conventional particle
filters, coupling is beneficial because the issue of particle degeneracy is
avoided (as discussed in Section 3.4). To design the coupling, optimal
transportation theory provides a useful framework (as described in Sec-
tion 5). Variations of the basic approach described here have been
used in construction of a class of filtering algorithms (Garbuno-Inigo,
Hoffmann, Li, & Stuart, 2020; Halder & Georgiou, 2017, 2018, 2019;
Luo, 2019). The optimal transport formulation has also been extended
to the Schrödinger bridge setting by considering a cost with respect to
the (prior) dynamics, or considering an entropic regularization (Chen,
Georgiou, & Pavon, 2016; Reich, 2019). In related works, the coupling
viewpoint along with geometric notions from optimal transportation
theory, have enabled application of optimization algorithms to design
sampling schemes (Chen, Zhang, Wang, Li, & Chen, 2018; Chizat &
Bach, 2018; Frogner & Poggio, 2018; Liu & Wang, 2016; Liu et al.,
2018; Richemond & Maginnis, 2017; Taghvaei & Mehta, 2019; Zhang,
Chen, Li, & Carin, 2018; Zhang, Taghvaei, & Mehta, 2019).

Part II of this paper is motivated by the enormous success of the

CIPS (EnKF) in DA.

https://github.com/anantjoshi97/EnKF-RL
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Reinforcement learning and optimal control. Compared to typical RL
approaches, there are two key innovations/differences:

1. Representation of the unknown value function in terms of the
statistics (variance) of a suitably designed process; and

2. Design of interactions (coupling) between simulations for the
purposes of policy optimization.

We fully believe that the two key innovations may be useful for many
other types of models including MDPs and partially observed problems.
In the LQ setting of the problem, doing so is beneficial because of the
learning rate: Since the [𝑁 = ∞] limit is exact tor the LQ problem, the
ual EnKF algorithm yields a learning rate that closely approximates
he exponential rate of convergence of the solution of the DRE. This is
igorously established with the aid of error bound (47). In numerical
xamples, this property is shown to lead to an order of magnitude better
erformance than the state-of-the-art algorithms.
Apart from RL, model predictive control (MPC) is another area

here a model in the form of a simulator is assumed to design optimal
ontrol for problems such as (4) (Rawlings et al., 2017). Using dual-
ty, MPC methods have been adapted to design the moving horizon
stimator (MHE). A big selling point of MPC is its ability to handle
onstraints which has not been a major theme in the DA literature.
nother notable distinction is that while MPC aims to find a single
optimal) trajectory, CIPS simulate multiple stochastic trajectories in a
onte Carlo manner. Notably, the solution of the deterministic optimal
ontrol problem (4) is based on simulating (5a) which is an SDE. For the
tochastic MPC problems, multiple simulations have been considered in
he scenario-based approach (Campi & Garatti, 2018).

ome perspectives on future research. In basic sciences, there are a
umber of important examples of interacting particle systems. This
aper presents results on the theme of ‘‘CIPS as an algorithm’’. The
ost historical of such algorithms is the EnKF which is used to solve
he problem of data assimilation. It is hoped that this survey convinces
he reader that the paradigm is also useful for solving other problems
n estimation and control. A major selling point of CIPS, and also the
eason for widespread use of the EnKF, is that it is able to work directly
ith a simulator. Therefore, it is amenable as a solution method for
omplex systems where models typically exist only in the form of a
imulator. Apart from the open problems described in the main body
f the paper, a few themes for future research are as follows:

• MPC offers a useful benchmark for CIPS. With the exception of the
geometric approaches, e.g., FPF on Riemannian manifolds (Zhang
et al., 2017b), constraints has not been an important theme in
design of CIPS. It is an important problem to extend the design of
mean-field process to handle general types of constraints in inputs
and states. One possible next step is to extend the dual EnKF to
the inequality-constrained LQR problems.

• RL could be an important application for CIPS. A key difference is
that CIPS-based solution does not rely on function approximation.
Instead, the value function is approximated in terms of the distri-
bution of the particles. This has some advantages, e.g., avoids the
need to select basis functions, and some disadvantages, e.g., avail-
ability of computational resources. It will be useful to understand
some of these trade-offs.

• Relationship to mean-field games and optimal control should be
further developed. CIPS represent simple examples of mean-field
type control laws. However, derivation of these control laws is,
more often than not, rooted in methods from optimal transporta-
tion theory ( Section 5). It remains an open problem to derive the
FPF control law starting from a mean-field optimal control type
objective (some partial results in this direction appear in Zhang
375

et al., 2019).
• The lack of progress to obtain FPF as a solution of an optimal
control problem is symptomatic of a satisfactory duality theory
between optimal filtering and optimal control (Todorov, 2008).
Recent progress in this direction has been made in some work
originating in our group (Kim, 2022; Kim & Mehta, 2022b; Kim,
Mehta, & Meyn, 2019). While the focus of this new work has
thus far been on dual characterization of stochastic observabil-
ity (Kim & Mehta, 2021a, 2022a) and its use in filter stability
analysis (Kim & Mehta, 2021b; Kim, Mehta, & Meyn, 2021), it will
be interesting to explore connections both to FPF and to mean-
field control. Duality-based derivation of the EnKF has previously
been considered in Kim et al. (2018).

• Extensions to partially observed optimal control problems. For the
linear Gaussian model, algorithms described in parts I and II are
easily combined to obtain a CIPS for the partially observed prob-
lem. The solution is based on the separation principle: A forward
(in time) EnKF is run to solve the optimal filtering problem; and
a completely independent backward (in time) dual EnKF is run
to solve the optimal control problem. For the nonlinear problem,
there may be benefit to couple the forward and backward CIPS.

• Distributionally robust FPF. In order to handle uncertainty in sig-
nal and observation models, it may be useful to explore methods
from distributionally robust optimization framework (Rahimian
& Mehrotra, 2019). The framework has been used to develop
the Wasserstein robust Kalman filter for the linear Gaussian
model (Shafieezadeh Abadeh, Nguyen, Kuhn, & Mohajerin Es-
fahani, 2018). Its extension to the nonlinear filtering model (1)
is open and may be possible based on the optimal transport
formulation of the FPF.
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