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As the volume of data processed by applications has increased, considerable attention has been paid to data
address translation overheads, leading to the widespread use of larger page sizes (“superpages”) and multi-
level translation lookaside buffers (TLBs). However, far less attention has been paid to instruction address
translation and its relation to TLB and pipeline structure. In prior work, we quantified the impact of using
code superpages on a variety of widely used applications, ranging from compilers to web user-interface frame-
works, and the impact of sharing page table pages for executables and shared libraries. Within this article, we
augment those results by first uncovering the effects that microarchitectural differences between Intel Sky-
lake and AMD Zen+, particularly their different TLB organizations, have on instruction address translation
overhead. This analysis provides some key insights into the microarchitectural design decisions that impact
the cost of instruction address translation. First, a lower-level (level 2) TLB that has both instruction and data
mappings competing for space within the same structure allows better overall performance and utilization
when using code superpages. Code superpages not only reduce instruction address translation overhead but
also indirectly reduce data address translation overhead. In fact, for a few applications, the use of just a few
code superpages has a larger impact on overall performance than the use of a much larger number of data
superpages. Second, a level 1 (L1) TLB with separate structures for different page sizes may require careful
tuning of the superpage promotion policy for code, and a correspondingly suboptimal utilization of the level
2 TLB. In particular, increasing the number of superpages when the size of the L1 superpage structure is small
may result in more L1 TLB misses for some applications. Moreover, on some microarchitectures, the cost
of these misses can be highly variable, because replacement is delayed until all of the in-flight instructions
mapped by the victim entry are retired. Hence, more superpage promotions can result in a performance
regression. Finally, our findings also make a case for first-class OS support for superpages on ordinary files
containing executables and shared libraries, as well as a more aggressive superpage policy for code.
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1 INTRODUCTION

With the growing importance of big data workloads, many researchers have sought to reduce the
overhead of virtual-to-physical address translation during data accesses. Their work has proposed
both architectural changes to the way that address translation is performed in hardware [29, 33,
38, 50-52] as well as improvements to the automatic support for larger page sizes (“superpages”)
in Operating Systems (OSs) [26, 40, 56]. However, much less attention has been paid to the
performance impact of address translation on instruction accesses, at either the architectural or
OS level [32, 55].

Address translation overhead for instruction accesses is exacerbated by two application trends:
(1) their increasing size and complexity and (2) their reliance on shared libraries. For example,
the Clang compiler increased in size from 31MB of x86-64 machine code in version 3.0 (2012)
to 56MB in version 6.0.0 (2018),and a recent version of the Node.js runtime environment uses
20shared libraries.In previous work [55], we showed that even on modern processors, with their
ever larger Instruction Translation Lookaside Buffers (ITLBs), a variety of widely used ap-
plications, ranging from compilers to web user-interface frameworks, suffer from high instruction
address translation overheads, which directly lead to performance degradations. We also evaluated
the impact on performance of the use of automatic OS-level superpage promotion and page table
sharing for code pages, along with transparent padding of a program’s main executable out to a
full superpage.

In this article, we extend our previous results [55] to provide an in-depth analysis of the impact
of the address translation architecture (hardware and software) on the overhead of instruction
address translation using two different hardware architectures and a combination of a few different
OS techniques at the software level.

At the hardware level, we quantify the effects of different Translation Lookaside Buffer (TLB)
organizations on address translation overhead using Intel and AMD processors. Recent Intel and
AMD processors differ in their TLB organizations along two dimensions: (1) whether there are
separate structures for data versus instruction mappings, and (2) whether there are separate struc-
tures for different page size mappings. Intel processors have a split design in the Level 1 (L1) ITLB
on the second of these dimensions (page size), whereas AMD processors have a split design in the
Level 2 (L2) TLB on the first of these dimensions (data versus instructions). We use the ability
to collect information on the processor stall cycles due to instruction address translation that is
available on modern Intel processors to analyze the overhead. To the best of our knowledge, this
is the first journal article in which this end-to-end counter that captures all forms of delay due to
instruction address translation is employed for analysis.

At the software level, we evaluate the benefits of a new in-kernel mechanism that transparently
pads all executable regions, including shared libraries, out to a superpage boundary. Generally,
the size of an executable region is not an integer multiple of the superpage size. Consequently,
without padding, executable regions generally have residual code at the end that is mapped using
4KB pages. In the worst case, on an Intel Skylake processor, despite a large L2 TLB shared between
data and instruction mappings, mappings for this residual code can occupy almost one-third of
the entries in the L2 Shared Translation Lookaside Buffer (STLB), displacing many mappings
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to data. Our padding mechanism addresses this problem while minimizing the amount of added
NOP-filled physical memory that must be allocated.
Our findings are as follows:

e Instruction address translation overhead can be large, up to 13.44% of execution cycles, on
modern processors regardless of their microarchitecture.

e Page walk cycles for instructions can be higher than for data.

e The performance benefits of using superpages on code can be larger than on data, making
a case for first-class OS support for superpages on ordinary executable files and shared li-
braries, as well as a potentially more aggressive superpage policy for code.

e We show that an aggressive code superpage promotion policy can improve the performance
of applications by up to 8.33% compared to no code superpages. However, when the L1 TLB
uses separate structures for different page sizes, tuning the aggressiveness of the policy can
be more difficult.

e We quantify the impact of the aggressive use of code superpages on time spent within the
OS on behalf of the application. In one case, OS-space execution cycles are reduced by 22%.

e We demonstrate that padding applied to residual code, including within shared libraries, can
further improve performance by up to 8% over the most aggressive code superpage policy
without padding, despite the potential for a larger memory footprint.

e Prior work [28, 39, 44] has used page table walks as a proxy for the cost of address translation.
Using the counter for instruction address translation stall cycles on modern Intel processors,
we show that pipeline stalls add significantly to the instruction address translation overhead
beyond the cost of instruction page walk cycles when the number of superpage entries is
limited.

e Using code superpages can result in underutilization of the ITLB when using separate L2
TLBs for instructions and data. With an L2 TLB shared between instructions and data, using
code superpages can reduce data page walk cycles more than using data superpages.

2 BACKGROUND

With increasing data and code footprints, using superpages can reduce address translation over-
head by increasing TLB coverage and reducing the number of memory accesses that must be per-
formed on a TLB miss to walk the page table. Consequently, modern processors support superpages
of multiple sizes (e.g., 2MB and 1GB on x86 processors), and their TLBs provide a growing number
of entries for storing these superpage mappings [3, 8]. Their microarchitectures differ, however,
in a number of dimensions. In particular, Intel and AMD have made different choices in whether
their multi-level TLBs have separate lower-level structures for instruction versus data mappings,
as well as in whether separate structures are used for different-sized mappings at L1. In recent
generations, Intel has supported separate structures for 4KB versus 2MB mappings in the L1 ITLB.
In the case of the Skylake microarchitecture (Table 1), only 8 entries for 2MB superpages are sup-
ported (per hyperthread) in the L1 ITLB. In contrast, AMD Zen+ (see Table 1) provides a unified
structure of 64 entries for 4KB and 2MB mappings in the L1 ITLB. At L2, Intel has a single TLB
structure that is shared across instructions and data, whereas AMD’s L2 TLB is split into two struc-
tures for instructions versus data. We evaluate the impact of these microarchitectural choices by
analyzing performance on both.!

1Both AMD and Intel have continued to make the same choices in their more recent microarchitectures, such as Zen 4 and
Golden Cove. However, the number of entries in Golden Cove’s L1 ITLB has doubled for both 4KB and 2MB mappings, and
the number of entries in the L2 STLB has increased by a third. Although all of the STLB entries can cache 4KB mappings,
just half of the entries can cache 2MB mappings; the other half can cache 1GB mappings. Zen 4 has larger data TLBs, but
its ITLBs are unchanged.
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OSs also differ in their support for superpages. Linux does not transparently support superpages
on code that is demand-paged from a regular disk-based file system. To map code from files with
superpages, Linux requires either (1) that the user copy the executable and shared libraries to a
special huge page file system [43] or (2) that the user process first copies its code from the original
virtual memory region backed by 4KB pages to superpage-backed anonymous memory (created
by an madvise(MADV_HUGEPAGE) call), and then remaps the superpage-backed memory to the
original virtual memory region using the mremap system call. The second approach incurs signif-
icant overhead because “copy-and-remap” has to be repeated every time an application is started.
Only Just-in-Time (JIT) compiled code that is written to anonymous virtual memory can enjoy
the benefits of superpages automatically.

In contrast, FreeBSD supports automatic superpage promotion for code from any file system.
This avoids the overhead of the copy-and-remap approach. FreeBSD uses a reservation-based
allocator to support superpages transparently [47]. When an application faults in a (virtually)
superpage-aligned region for the first time, the page fault handler reserves contiguous physical
memory (reservations) but does not map the entire reservation immediately. The page fault han-
dler then allocates base pages from the reservation on subsequent page faults in the region, bring-
ing in a 64KB-aligned cluster of pages to improve I/O performance under the assumption of spatial
locality. When the reservation becomes fully populated, the system performs a promotion, replac-
ing the entire leaf-level page table page with a single superpage mapping. However, reservations
that have not been fully populated can be broken if ever there is a shortage of free physical mem-
ory. For other processes that access the same code in the future, as long as all constituent pages in a
reservation remain resident, the kernel bypasses incremental promotion and immediately creates
superpage mappings upon (soft) page faults into the region. Due to the advantages of FreeBSD’s
support for automatic promotion, we use FreeBSD as the baseline OS for our evaluation.

3 METHODOLOGY
3.1 Experimental Setup

Our Intel-based system uses a Xeon E3-1240 v5 (Skylake) quad-core processor with 8MB of Last-
Level Cache (LLC), and our AMD-based system uses a Ryzen 7 2700X (Zen+) octa-core processor
with 16MB of LLC. Although the total LLC size on the AMD processor is larger, its implementation
is evenly split between two core complexes, and the four cores within a core complex can only
spill to the local half of the LLC [18]. Unless otherwise noted, we pin workloads to just one core
complex, so we are effectively using the same number of cores and the same amount of LLC on
both the AMD and Intel processors. Both processors support two hyperthreads (SMT threads)
per core, and all hyperthreads are enabled on both systems. Table 1 describes both processors’
TLB organizations. Both systems have 32GB of RAM. The OS is FreeBSD 11.2-RELEASE. Both
OS-controlled frequency downscaling and hardware-controlled frequency upscaling are disabled.
Thus, the frequency is fixed on the Intel system to 3.5GHz and on the AMD system to 4.0GHz.
We collect information from hardware performance-monitoring counters [15, 16, 21] (Table 2)
using the pmcstat [25] utility. Worth noting is that ICACHE_64B.IFTAG_STALL is a counter intro-
duced in Skylake that measures the end-to-end cost of ITLB misses [4, 20]. We measure user and
kernel space separately. Unless otherwise stated, the numbers presented are for user space, because
by default kernel code is already mapped with superpages to the fullest extent possible. We report
the minimum of three runs for all benchmarks except Javac and Derby. For Javac and Derby, we
use 10 runs due to their larger variance. Unless otherwise noted, we use all of the available hyper-
threads for each application evaluated. When we use only a subset of the available hyperthreads,
we assign dedicated ones to applications with the cpuset [19] utility and monitor only the activity
of those hyperthreads. This means that for the server-oriented applications, we collect counters
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Table 1. Skylake and Zen+ TLB Structures
Intel Skylake AMD Zen+

L1ITLB L0 ITLB
4KB 128 entries 8-way set associative All'sizes [ 8 entries [ fully associative
2MB 8 entries per thread | fully associative L1ITLB

L1 DTLB Allsizes [ 64 entries [ fully associative
4KB 64 entries 4-way set associative L2 ITLB
2MB 32 entries 4-way set associative 4KB + 2MB [ 512 entries [ 8-way set associative
1GB 4 entries fully associative L1 DTLB

L2 STLB All'sizes [ 64 entries [ fully associative
4KB + 2MB | 1,536 entries 12-way set associative L2 DTLB
1GB 16 entries 4-way set associative 4KB + 2MB [ 1,536 entries [ 12-way set associative

The Skylake and Zen+ microarchitectures support 4KB, 2MB, and 1GB page mappings in the TLB. Skylake has separate
L1 TLB structures for 4KB versus 2MB page mappings. However, in the L2 STLB, 4KB and 2MB page mappings reside
in the same structure. In contrast, all of Zen+’s TLB structures support page mappings of different sizes within the
same structure. DTLB, data TLB.

Table 2. Hardware Performance Counters and Their Interpretations

Descriptions Intel Counters & Equations AMD Counters & Equations

No. instructions retired INST _RETIRED.ANY_P EX_RET _INST

Execution cycles CPU_CLK_UNHALTED.THREAD_ P LS NOT_HALTED_CYCLE

Inst addr translation cycles | ICACHE_64B.IFTAG_STALL N/A

(ITLB stall)

Inst addr translation ICACHE_64B.IFTAG_STALL / N/A

overhead CPU_CLK_UNHALTED.THREAD P

Inst page table walk cycles | ITLB_MISSESWALK_PENDING N/A

No. of inst page table walks | ITLB_MISSESWALK_COMPLETED N/A

Data page table walk cycles | DTLB_LOAD_MISSESWALK_PENDING + N/A
DTLB_STORE_MISSES.WALK_PENDING

No. data page table walks | DTLB_LOAD_MISSESWALK _COMPLETED + | N/A
DTLB_STORE_MISSES.WALK_COMPLETED

LLC stall cycles CYCLE_ACTIVITY.STALLS L3 _MISS N/A

only on hyperthreads running the server processes. For all benchmarks, we perform warmup runs
before taking any measurements.

3.2 Workloads

Our workloads are based on seven widely used applications that all have large code sizes, covering
a range of application types, including two compilers (Clang and Javac), three database applica-
tions (PostgreSQL, MySQL, and Derby), two language runtimes with JIT compilation capabilities
(Java and Javascript runtimes), a web application framework (Node.js), and a machine emulator
performing JIT-compilation-like binary translation (QEMU). The applications differ in whether
they execute statically compiled code or JIT-compiled code, and whether they are statically linked
or dynamically linked. We also chose multiple database management systems to represent differ-
ent points in the database design spectrum. PostgreSQL has a multi-process concurrency model,
whereas MySQL is multi-threaded. Both are written in C. Derby is a multi-threaded database ap-
plication written in Java.

Table 3 lists the main executable size, the number of linked shared libraries, whether the work-
load generates JIT-compiled code, and the concurrency model of each workload. Main executables
and shared libraries are demand-paged from ordinary files. JIT-compiled code is generated at run-
time and written into anonymous memory. The main executables range in size from 5.953MB to as
large as 55.895MB, all of which are large enough for at least two code superpages. All applications
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Table 3. Workload Characteristics

Main No. No. No. Large Shared JIT- Multi- | Multi-
Executable | Shared | Shared | Shared Library Compiled | Thread | Process
Size (MB) | Libraries | Libraries | Libraries | ~ Size (MB) Code in
Linked | <1MB <2MB Anon Mem
Clang 55.895 0 0 0 N/A N N Y
PostgreSQL 5.953 15 10 14 1.53-2.88 N N Y
Javac 20.000 13 11 12 1.59 and 11.22 Y Y N
Derby 12.000 15 13 14 1.59 and 11.22 Y Y N
Node.js 23.836 20 16 18 1.59-2.88 Y N N
MySQL 40.094 15 13 14 1.59 and 2.27 N Y N
QEMU 12.359 48 41 47 1.59 and 2.27 Y Y Y

OpenJDK 8’s main executable consists of a single 4KB page of code that hands off control to a large 11.220MB shared
library, 1ibjvm. so, which actually implements the Java virtual machine. For Javac and Derby, the main executable
refers to JIT-compiled code rather than the main executable or 1ibjvm. so.

except for Clang link a considerable number of shared libraries. The applications that do rely on
shared libraries each link at least 13, with QEMU using as many as 48 libraries. We observe that
most shared libraries are too small (<2MB) for superpages. There are, however, a few exceptions,
such as libcrypto.so.8 (2.27MB) linked by PostgreSQL, Node. js, MySQL, and QEMU. In fact, most
libraries are smaller than 1MB. In terms of concurrency models, we note that some applications,
such as PostgreSQL, are inherently multi-process, where the server consists of six main processes
plus one worker process per client. In other cases, we run multiple instances of the application.
Moreover, we ensure that all of the applications are run with the same starting conditions of a
freshly booted machine.

Clang. Clang is a C/C++ compiler with a built-in assembler based on the LLVM infrastructure.
We run Clang version 6.0 that comes with the FreeBSD 11.2 system. We run one instance of Clang
per hyperthread, each compiling the source code for the Dhrystone [1] benchmark, to simulate
the parallel compilation of a large application consisting of many source files. The compilation
options are -Wno-everything -02 -c.

PostgreSQL. PostgreSQL is an object-relational database system [13]. We run version 9.6.8 of
PostgreSQL and use pgbench [12] to perform transactions that are loosely based on TPC-B. We
run pgbench on a separate machine that is connected to the PostgreSQL machine under test with
a dedicated 10Gbps Ethernet link. A fixed number of back-to-back transactions are performed on
a 5GB database, which easily fits in memory while still exceeding the TLB’s maximum coverage
using 2MB superpages. We set the -C option of pgbench to use one persistent connection per client.
We run six worker processes per physical core to keep the processor fully busy on the server side,
on both the Skylake and the more powerful Zen+ cores.

Javac and Derby. We use OpenJDK 8 [14], which is a Java runtime supporting JIT compila-
tion, to run Compiler.compiler and Derby from the SPECjvm2008 benchmark suite [10, 11]. Com-
piler.compiler compiles a set of . java files using the javac compiler. We refer to the benchmark
as “Javac” for simplicity. Derby is an open source in-memory database written in Java. We use the
specjvm.hardware. threads.override option to allow the benchmarks to scale appropriately
with the number of cores allocated. For each benchmark, we run a fixed number of operations.

Node.js. Node.js is a JavaScript runtime built on the V8 JavaScript engine [6]. We run version
8.11.1 of Node.js and use the React server-side rendering benchmark [17]. By default, this bench-
mark tries to run for a fixed amount of time, varying the number of iterations. We instead fix the
number of iterations to achieve roughly the same duration as the benchmark would by default.
This ensures that the same fixed amount of work across runs. We run one Node.js process per
hyperthread, which is typical of a cluster configuration of Node.js that exploits multi-core systems.
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MySQL. MySQL is a relational database system [23]. We run version 8.0.2 of MySQL and use the
read-write OLTP test of sysbench [24] to test the MySQL server. We run sysbench on a separate
machine that is connected to the MySQL machine under test with a dedicated 10Gbps Ethernet link.
We run seven worker threads per physical core within the server process to keep the processors
fully busy without incurring a significant increase in queueing delay. We perform 1,600,000 back-
to-back transactions in total on a 5GB database, which easily fits in memory while still exceeding
the TLB’s maximum coverage using 2MB superpages.

QEMU. QEMU is an emulator that supports running programs compiled for a different archi-
tecture [7]. We use QEMU version 4.2.1 to run a full FreeBSD 13.0 system compiled for AArché4.
Within an emulated system, we run one instance of the bundled Clang compiler per hyperthread,
each compiling the source code of SQLite version 3.34.0 [9] a fixed number of times. To avoid the
multiprocessor scaling limitations of QEMU’s virtual CPU emulation [30], we run one instance of
QEMU per physical core, limiting each instance/emulated system to run only two virtual CPUs on
the two hyperthreads that share a physical core. Since code targeted at AArch64 does not run na-
tively on our x86 processor, QEMU performs dynamic binary translation, which generates a large
amount of code that is stored in anonymous virtual memory. For the remainder of the article, we
will refer to this code as JIT-compiled code.

4 QUANTIFYING INSTRUCTION ADDRESS TRANSLATION OVERHEAD

The ICACHE_64B.IFTAG_STALL counter measures all ITLB-related stalls, including cycles wait-
ing for STLB hits, STLB misses, and instruction page (table) walks. Figure 1 presents the end-to-end
instruction address translation overhead using this counter on our Intel-based system, as well as
cycles spent on instruction page walks alone (as reported by the ITLB_MISSESWALK_PENDING
counter). Both the ICACHE_64B.IFTAG_STALL and ITLB_MISSESWALK_PENDING counters
are presented as a percentage of the overall user-space unhalted execution cycles on a modified
kernel where code superpages are disabled. Unhalted cycles encompass not only cycles in which
instructions are moving through the pipeline but also cycles in which the pipeline is stalled for
reasons including but not limited to TLB and cache misses. We use the term unhalted cycles inter-
changeably with execution cycles in this article. The figure presents data from two different kernels:
one stock FreeBSD and the other a modified kernel that does not create superpage mappings for
code (resulting in only 4KB code mappings). Data superpages are allowed to exist as usual in
both kernels.

To put the results of Figure 1 in perspective, Intel’s VTune profiler reports instruction address
translation as a performance problem when instruction address translation stall cycles exceed 5%
of the execution cycles [15]. Six of the seven workloads here exceed this 5% threshold. Moreover,
when code superpages are not used, three of the seven exceed 10%. At nearly 14%, PostgreSQL
suffers the largest overhead.

FreeBSD’s automatic code superpage promotion does benefit all applications except Post-
greSQL. In the Java applications (Javac and Derby) and QEMU, the JIT-compiled code regions
grow sequentially, and so the superpage-sized JIT-compiled code regions are naturally promoted
into superpages. As a result, we see performance improvements in all three workloads. In contrast,
most file-backed superpage-sized code regions are not promoted. Consequently, some workloads
with only file-backed code, such as Clang, receive little performance improvement. This is because
executable files contain code that may not be needed by a particular workload, and therefore that
code is not demand-paged into memory. Under FreeBSD’s conservative superpage promotion
policy, such non-resident code disqualifies a superpage-sized region in the main executable or
shared libraries from automatic promotion into a superpage. In fact, MySQL is the only exception
where five code superpages are created in the main executable by stock FreeBSD. The rest of the
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Fig. 1. Percentage of w/o code superpages execution cycles performing instruction address translation or
instruction page table walks in user space on the Intel processor. Each group of bars is annotated with a
tuple (x,y,z), where x is the total number of superpage-sized code regions (including the main executable,
libraries, and JIT-compiled code) in the application, y is the number of touched superpage-sized code regions,
and z is the number of promoted code superpages under stock FreeBSD.

applications have either no code superpages (PostgreSQL) or one code superpage (in the case
of Node.js and Clang) created for the main executable under stock FreeBSD. We explore more
aggressive superpage promotion policies for file-backed code in Section 5.

FreeBSD’s automatic code superpage promotion cannot help with sub-superpage-sized code
regions. For instance, although the total amount of JIT-compiled code in the Node.js workload
is 4036KB, none of the JIT-compiled code regions are superpage-sized, and therefore none are
superpage-mapped. This is because Node.js’s JIT compiler creates 512KB code regions that are
randomly placed throughout the address space. However, simply increasing the granularity of
these code regions from 512KB to 2MB would still not allow for superpages, because Node.js co-
locates a small amount of read-write metadata with read-only JIT-compiled code in each region.
In the case of file-backed code, sub-superpage-sized code regions generally come from shared
libraries and the end of the main executable. Such residual code regions are likewise mapped using
only 4KB pages and range between a few kilobytes and nearly 2MB, as can be seen by taking the
sizes in Table 3 modulo 2MB. Nonetheless, their potential impact on TLB contention is concerning.
As Table 3 shows, main executable size is generally not an integer multiple of the superpage size.
In the worst case, such as PostgreSQL, the residual code region of the main executable is nearly a
whole superpage in size. On a Skylake processor, despite a large L2 TLB shared between data and
instructions, mappings for this residual code region can occupy almost one-third of the entries
in the STLB, displacing many mappings to data. Table 3 also shows that all applications, except
for Clang, use 13 or more shared libraries, and very few of these libraries can be mapped using
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superpages because they are too small. Nonetheless, the mappings for even a moderately sized
shared library, such as the standard C library, could occupy more than a quarter of the entries
in the STLB. Moreover, when taken together, the mappings for these small and moderately sized
shared libraries could exceed the capacity of the STLB. We explore automatic padding as a solution
to residual code in Section 6.

Finally, Figure 1 also clearly shows that instruction address translation cycles are often signif-
icantly larger than page walk cycles for instruction access. PostgreSQL is the only workload for
which page walk cycles constitute more than half of the address translation overhead. At the other
extreme, when code superpages are disabled, Clang’s instruction address translation cycles are
4,9X the instruction page walk cycles. In general, in all applications except PostgreSQL, page walk
cycles are less than one-third of the instruction address translation stall cycles. This observation
suggests that, contrary to conventional wisdom [28, 39, 44], page walk cycles should not be used
as an approximation to the instruction address translation overhead. We explore this topic in more
detail in Section 7.

5 AGGRESSIVE SUPERPAGE PROMOTION FOR FILE-BACKED INSTRUCTIONS

FreeBSD’s superpage promotion policy requires that a superpage reservation be fully populated
before promotion is performed (see Section 2). More aggressive promotion policies for file-backed
code regions trade additional physical memory consumption and I/O operations for reduced ad-
dress translation overhead. We introduce an occupancy threshold to superpage reservations that
are file-backed, which when exceeded results in the kernel automatically paging in the missing
pages and performing a promotion. Specifically, the kernel keeps track of the number of resident
pages in each file-backed reservation and checks the occupancy when handling a hard page fault
(i.e., when I/O must be performed to fill the physical page). If the hard page fault handling results
in the number of resident pages crossing the threshold, the remaining non-resident pages in the
reservation are also loaded, and a superpage promotion is performed. We explore the impact of
this more aggressive code superpage promotion policy by varying the threshold.

By default, on a hard page fault, FreeBSD loads a 64KB-aligned cluster of data and/or instructions
into memory from the file that holds the executable or shared library and maps the underlying
pages. Any 2MB superpage-sized region of code contains 32 such clusters, and stock FreeBSD
conservatively requires all 32 clusters to be resident before promotion to a superpage. Figure 2
provides a cumulative count of the number of superpage-sized and aligned code regions of file-
backed main executable and library code that contain less than or equal to zero to thirty-two 64KB
clusters that are accessed by each workload. We use the same line for Javac and Derby since their
cumulative counts are the same.

As the figure shows, a small relaxation of stock FreeBSD’s residency requirement would result
in a significant increase in code superpage mappings without a significant increase in memory
consumption or I/O operations. In fact, PostgreSQL requires only a threshold of 28, where 7 more
clusters, totaling 448KB of code, would be brought into memory for both of its reservations on
the main executable to be promoted. (The third and final promotion for PostgreSQL at a threshold
of 1 would be on code from a different file, libcrypto.) Moreover, once we lower the threshold to
16, we would have all reservations that are backed by the main executable file promoted for three
additional applications. They are Node.js, Javac, and Derby. In contrast, Clang would still have
6 out of 27 reservations not promoted. Note that in practice, other applications that use a shared
library and that access a different part of the library can have a synergistic effect on the promotion
of the library’s superpage-sized regions. For instance, even though MySQL only touches 29 clusters
of libcrypto, promotion of libcrypto occurs at a threshold of 31, because other applications have
already touched two of the clusters that are never touched by MySQL.
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In Figure 3, we show the normalized user-space execution cycles at seven different thresholds
for both the Intel and AMD systems. A threshold of 32 represents the stock FreeBSD superpage
policy, which is the most conservative. In contrast, a threshold of 1 represents the most aggressive
superpage promotion policy where any superpage-sized region that is touched is immediately
loaded in full and promoted into a superpage. In general, we find that a more aggressive promotion
policy, and the resulting increase in the number of code superpages, leads to fewer unhalted cycles.
Although the most aggressive policy is not always optimal, specifically for QEMU, it never leads
to more unhalted cycles than stock FreeBSD or not using code superpages.

Among the applications, only MySQL and QEMU achieve substantial reductions in execution
cycles with the stock superpage policy. Nonetheless, both applications still see further gains with a
more aggressive superpage policy for code. The size of MySQL’s file-backed code, when converted
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to superpages, exceeds the L1 ITLB capacity for superpage mappings on the Intel processor but not
on the AMD processor. Consequently, the AMD processor sees an even greater reduction in user-
space execution cycles when an aggressive code superpage policy is applied. In contrast, QEMU
sees performance benefits on the stock superpage policy because a substantial fraction of the
JIT-compiled code regions, where the majority of execution time is spent, are already superpage-
mapped. Nonetheless, QEMU(A) sees substantial performance gains at threshold 28 due to the two
additional superpages created (relative to the superpages that existed at threshold 30; see Figure 2).
Based on page access traces, these two superpages eliminate the use of 575 different 4KB mappings,
thereby substantially reducing pressure on the 512-entry L2 ITLB. Furthermore, QEMU(A) sees ad-
ditional performance gains at threshold 24 and again at threshold 16. In contrast to QEMU(A), the
optimal threshold for QEMU(]) is 28. Further reductions in the threshold, although still better than
the stock policy, lead to a small 0.63% performance regression compared to threshold 28. In this
case, converting less frequently used code regions into superpages increases competition for the
limited superpage capacity of the L1 ITLB, displacing frequently used mappings for JIT-compiled
code superpages. For QEMU(A), it is unclear why a similar regression from the optimal threshold
of 16 happens at the most aggressive threshold 1. On the AMD processor, there are not separate
TLB structures for different page sizes. An entry in either the L1 or the L2 ITLB can hold either a
2MB or 4KB mapping.

6 AUTOMATICALLY PADDING RESIDUAL CODE

Mappings for residual code regions often exceed the size of the last-level TLB (see Section 4).
We deal with residual code regions using an automatic in-kernel padding mechanism that
leverages the standard layout of ELF executable files [2] to convert the residual code region into a
superpage.

At runtime, an ELF executable file’s program header table is read by the OS to load the file’s
contents into the address space of a process. This table defines a set of memory segments, where
each segment consists of adjacent sections within the file, such as code and read-only data, that
are to be mapped together within the same region of the address space with the same access
permissions. However, the segments are not required to start or end on a page boundary within
the file or the address space. Consequently, a physical page caching a portion of the file may
contain code and/or data from two different segments, and this page will be mapped twice within
the address space. For example, if the physical page contains both code and read/write data, it may
be mapped with execute-only permissions as part of one segment and copy-on-write permissions
as part of another. Moreover, given the page granularity of virtual-to-physical mappings, the data
within that page appears alongside the code with execute-only permissions in one segment and
the code within that page appears alongside the read/write data but without execute permissions
in the other.

This possible sharing of a physical page between two segments necessarily affects the linker’s
placement of segments within the address space. Consider a segment that ends at offset off within
a page followed by a segment that begins at offset off within the same page. The virtual address
that is the end of the first segment must be separated from the virtual address that is the start of the
second by a distance that is a multiple of the page size. Otherwise, the same physical page could not
be mapped at the end of the first segment and the beginning of the second. In the ELF specification,
this restriction on the placement of segments is expressed as follows. The virtual address at which
a segment is mapped modulo maxpagesize must equal the file position from which the segment is
loaded modulo maxpagesize. In effect, depending on the value of maxpagesize, this requirement
can create gaps between segments in the address space that our padding mechanism will
exploit.
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Table 4. PostgreSQL Main Executable Layout in Virtual Address Space

Default With In-Kernel Padding
Region | Start End Prot. || Start End Prot.
Code 0x400000 | 0x9f4000 | r-x 0x400000 | 0xa00000 | r-x
Data 0xbf4000 | 0xc00000 | rw- 0xbf4000 | 0xc00000 | rw-

The default linker on our system, the GNU binutils 1d linker (version 2.17.50), has maxpagesize
set to 2MB by default.? Consequently, as illustrated by the example in Table 4, the end of the
executable segment and the beginning of the data segment are separated by 2MB of unused virtual
address space.

We modified the kernel to exploit this unused space. Specifically, we modified the kernel to
transparently and automatically extend the executable segment up to the next superpage boundary,
back it with a physical reservation, and then fill in no-ops as needed. To keep the physical memory
allocated for holding no-ops to a minimum, the file content that comes after the code segment (i.e.,
the data segment) is used to pad out the residual code. Only if that file content is insufficient
to reach the end of the superpage will no-ops be added to fill the rest. In other words, some or
possibly all of the data section is paged in and mapped twice: once within the superpage that
contains the residual code region (which is read/execute-only) and once within the data segment,
where it is mapped copy-on-write. This is feasible because (1) the data segment is right up against
the code segment in the file, so they will automatically share the physical reservation that holds
the residual code region, and (2) the default 2MB maxpagesize ensures correct alignment for the
data segment regardless of page size used. This double mapping of the data segment means that
in cases where the data segment is large enough to fully pad the residual code region, the physical
memory footprint does not increase. In fact, as we explain later, in such cases the physical memory
footprint is strictly reduced due to savings in kernel data structures.

Padding has the largest impact on PostgreSQL and moderately sized shared libraries, like the
standard C library (libc). Padding on PostgreSQL’s main executable reduces unhalted execution
cycles by 7.75%. Padding on libc has the most impact on MySQL due to its heavy use of the library,
reducing unhalted cycles by 1.2%. For the rest of the applications that link libc, padding reduces
unhalted cycles by up to 0.45%.

Note that when padding is done on shared libraries, the start of every library’s code section has
to be aligned at a superpage boundary. In contrast, by default, libraries are packed back to back in
the address space under stock FreeBSD. The forced alignment can spread executable mappings out
and increase contention in certain sets of the L2 TLB. This side effect has a small but measurable
negative impact on Node.js. Unhalted cycles increase by roughly 0.4% when superpage alignment
is forced onto Node.js’s libraries.

7 ITLB, DATA TLB, STLB, AND PIPELINE INTERACTIONS

In this section, we look at how our workloads interact with the different TLB organizations of
Intel Skylake and AMD Zen+. In particular, at L1, their organizations differ in that Skylake has
separate structures for caching the different page sizes, whereas Zen+ has a single structure that
caches all of the page sizes. Additionally, at L2, their organizations differ in that Zen+ has separate
structures for caching instruction versus data mappings, whereas Skylake has a single structure

caching both.

%In contrast, LLVM’s LLD linker and the Gold linker set maxpagesize to 4KB by default but allow it to be changed from
the command line.
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Fig. 4. Clang TLB performance on Skylake with incrementally more aggressive code superpage promotion.
Threshold 33 is where code superpages are disabled. Threshold 32 is essentially stock FreeBSD. Threshold 1
is what is commonly referred to as the “first-touch” policy. For reference, the execution cycles at threshold
33 are 2.165 billion.

We begin by presenting various cycle counts side by side for Clang and MySQL running on
Skylake. These two applications are particularly interesting because they can use more than eight
superpages for their respective main executable at more aggressive promotion thresholds, exceed-
ing the capacity for 2MB entries in Skylake’s L1 ITLB (see Table 1). Data page walk cycles are also
included to provide additional context.

7.1 Instruction Address Translation Overhead Breakdown

Figures 4 and 5 show the changes in TLB behavior as the superpage promotion threshold is
changed for Clang and MySQL, respectively. The figures also include a line indicating the
number of superpages at each threshold.®> Note that there is a point to the left of threshold 32
(stock FreeBSD) to represent the case when no code superpages are allowed. We decompose
the instruction address translation overhead into three components: page walk cycles, STLB hit
cycles, and pipeline-inclusion stalls; the latter corresponds to the cost of replacing an entry in
the L1 ITLB. Page walk cycles are measured by the ITLB_MISSESWALK_PENDING counter,*
STLB hit cycles are the per-hit cost (seven cycles [21]) times the STLB hit count, as measured
by the ITLB_ MISSES.STLB_HIT counter. After subtracting these two components, the rest of the
instruction address translation cycles is attributed to pipeline-inclusion stalls.

These two figures show that both instruction and data page walk cycles keep decreasing as we
increase the number of code superpages. Data page walk cycles decrease because of the reduced
competition for entries in the STLB as more 4KB code mappings are replaced by 2MB code map-
pings. However, the reductions in both instruction and data page walk cycles gradually drop. This

3In contrast to the lines of Figure 2, these lines reflect the actual promotions within the main executable and shared libraries.
For example, even though MySQL only touches 29 clusters of libcrypto, promotion of liberypto occurs at threshold 31 in
Figure 5, because other applications have loaded two clusters that are not used by MySQL.

4 Although each Intel core can do two page walks in parallel [21], we observe that only one walker is ever active to serve
ITLB misses, even though we are running concurrent workloads that exercise both hyperthreads in a core.
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Fig. 5. MySQL TLB performance on Skylake with incrementally more aggressive code superpage promotion.
Threshold 33 is where code superpages are disabled. Threshold 32 is essentially stock FreeBSD. Threshold 1
is what is commonly referred to as the “first-touch” policy. For reference, the execution cycles at threshold
33 are 10.076 billion.

is unsurprising because as the promotion threshold is decreased, fewer 4KB code mappings that
are actually used are being incrementally replaced by 2MB code mappings. Section 7.3 discusses
these observations in more detail.

More importantly, these two figures show that pipeline-inclusion ITLB stall cycles consistently
account for more than 50%, and sometimes more than 80%, of the instruction address translation
overhead. Thus, page walk cycles and STLB hit cycles do not even come close to accounting for
the instruction address translation overhead, so neither is a good approximation to the address
translation overhead. To understand why, Yasin [20] states that the L1 ITLB sometimes stalls on
a miss because replacement is delayed until all of the in-flight instructions mapped by the victim
entry are retired from the pipeline. Section 7.2 discusses in more detail the impact that L1 ITLB
structure and capacity have on performance.

We note that a more aggressive code superpage policy costs little to no extra memory for two
reasons:

e When aggressively promoting reservations, the nearly fully populated reservations require
only a small number of extra code pages to be brought into memory. In fact, MySQL needs
only 5.6% more 4KB pages (or 1,152KB in absolute terms) over FreeBSD’s default policy to
achieve 85% of the best possible gains in performance.

e The use of superpages saves page table memory since an entire 4KB leaf-level page table is
replaced by a single higher-level PTE. There is also savings on reverse mapping data (i.e.,
physical-to-virtual mapping entries) of roughly 3X the savings on ordinary page table mem-
ory. These savings scale up with the number of processes sharing the code.

7.2 L1ITLB

Prior work [22, 48] has suggested that the number of code superpages should be carefully managed
to not exceed the capacity of the L1 ITLB. Notably, their older Intel processors did not cache 2MB
instruction mappings in the STLB (only 4KB instruction mappings were cached in the STLB), so
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code superpages at a given threshold in parentheses; normalized to no code superpages.

every ITLB miss on a 2MB instruction mapping incurred a page walk. However, as explained in the
following, we achieve the best overall performance for Clang and MySQL on Intel Skylake when
the number of code superpages exceeds the L1 ITLB size.

Figures 4 and 5 show that the instruction address translation cycles for both Clang and MySQL
actually hit their optimal values at a moderate number of aggressively promoted superpages.
Then, as the number of superpages increases beyond that point, pipeline-inclusion ITLB stall
cycles unfortunately increase. This is because the ITLB on Intel Skylake has only eight 2MB
entries per thread (see Table 1), and prior work has shown that overflowing this eight-entry
capacity can significantly slow execution, for example, increasing the overall unhalted cycles by
5X in a microbenchmark that suffers frequent pipeline-inclusion ITLB stalls [55]. In effect, as
the number of code superpages keeps increasing, the diminishing returns from more instruction
STLB hits are overshadowed by the increasing cost of more ITLB misses. Despite this regression
in the ITLB performance, overall execution cycles do not necessarily deteriorate (and certainly
do not increase by 5X) in real-world workloads. In particular, both Clang and MySQL’s overall
performance (as shown in Figure 3) keeps improving even as ITLB performance starts to worsen.
Because the STLB is shared between instruction and data mappings, promoting additional
4KB code mappings to a 2MB code mapping frees up entries in the STLB for additional data
mappings, yielding an overall performance gain. Nonetheless, these results suggest that future
microarchitectures should pay attention to ensuring that the L1 ITLB capacity meets the needs of
in-flight instructions, which can number in the hundreds.

In contrast to the Skylake L1 ITLB, which has separate structures for caching 4KB versus 2MB
mappings, the AMD Zen+ L1 ITLB consists of a single structure in which all 64 entries can cache
either 4KB or 2MB mappings, giving Zen+ a much larger L1 ITLB capacity for superpage map-
pings [18]. Consequently, for large applications, such as Clang and MySQL, instruction mappings
are more likely to stay in the L1 ITLB on Zen+ than on Skylake, even if we adopt the most aggres-
sive code superpage policy. Figure 6(a) shows that Zen+ sees a larger impact than Skylake when
using code superpages, with greater improvements with increasing superpage counts.

However, with these larger applications, an aggressive policy could end up creating too many
sparsely used code superpages, increasing pressure on the L1 ITLB. QEMU is an application where
the number of JIT-compiled code superpages in anonymous memory (114) under the stock super-
page policy already overwhelms the L1 ITLB on both Skylake and Zen+. Nonetheless, as shown in
Figure 6(b), on Zen+ we see continued improvement from creating more file-backed superpages
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Table 5. Instruction Page Walks (Intel, ITLB_MISSESWALK_COMPLETED) or L2 ITLB Misses
(AMD, BP_L1TLBMISS_L2MISS) When Applying the Most Aggressive Code Superpage Policy as a
Percentage of the Baseline Count, and Walks/Misses Per Thousand Instructions (PKI) Retired

Intel AMD
Benchmarks | Walks PKI | Walks % Baseline | Misses PKI | Misses % Baseline
Clang 0.013 6.24% 0.002 0.34%
PostgreSQL 0.256 8.87% 0.169 5.31%
Javac 0.001 2.50% 0.002 0.44%
Derby 0.001 7.20% 0.005 0.77%
Node.js 0.795 99.38% 0.029 12.94%
MySQL 0.240 20.73% 0.124 4.71%
QEMU 0.026 7.89% 0.193 17.50%

after threshold 29. This is because as we replace 4KB file-backed code pages with superpages, we
are steadily reducing the competition between 4KB and 2MB mappings within Zen+’s L2 ITLB. In
contrast, on Skylake, the increased pipeline-inclusion stalls from L1 ITLB misses result in perfor-
mance regression after threshold 29.

7.3 L2 TLB: AMD Zen+ versus Intel Skylake

We now turn our attention to the effects of L2 TLB organization. AMD Zen+ has separate L2 TLB
structures for instruction and data mappings, whereas Intel Skylake has a single L2 structure, the
STLB, that is used for both. With the separate L2 instruction and data TLBs on Zen+, we find that
there is either under- or overutilization of the L2 ITLB for most of our applications, making a case
for Skylake’s approach of a shared L2 TLB.

Table 5 presents the instruction L2 TLB misses per thousand instructions executed for Zen+
and the instruction page walks per thousand instructions executed for Skylake, when using the
most aggressive code superpage policy for both. The table also shows each of these counts as a
percentage of its respective baseline count, when there are no code superpages.

For some applications on Zen+, Table 5 shows that instruction L2 TLB misses all but stop oc-
curring, because instruction mappings do not compete with data mappings in the L2 TLB and the
translations for those applications’ working sets of code fit in the L2 ITLB. In those applications,
an examination of Figure 1 shows that the number of superpage mappings for code is small rel-
ative to the size of the L2 ITLB, leading to the underutilization of the L2 ITLB when using code
superpages on Zen+. For example, for the Clang and Java workloads (i.e., Javac and Derby), less
than 1% of the baseline L2 ITLB misses remain after applying the most aggressive code superpage
policy. For the PostgreSQL and MySQL databases, about 5% of the baseline L2 ITLB misses remain
because of competition for space in the L2 ITLB with the OS when it performs network and disk
I/0. In contrast, the STLB on Skylake allows entries not utilized for instruction mappings due to a
small number of code superpages to be utilized for data mappings instead.

However, for two applications, Zen+’s smaller L2 ITLB (compared to Skylake’s STLB) results
in overutilization (and correspondingly higher miss rates). Although using code superpages with
Node.js results in a significant drop in instruction L2 TLB misses (to 12.94% of the baseline) on
Zen+, mappings for the large number of JIT-compiled 4KB pages (1,009) still compete for space
in the 512-entry L2 ITLB. As the workload with the largest amount of code, including 135 code
superpages, QEMU experiences the smallest decrease in instruction L2 TLB misses (to 17.50% of
the baseline). In short, QEMU is a case where the larger STLB on Skylake offers more capacity for
instruction mappings than the smaller dedicated L2 ITLB on Zen+.
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Fig. 7. Normalized page table walk cycles on Skylake when the code superpage promotion policy requires
sixteen 64KB clusters to be physically resident.

In contrast to Zen+’s separate L2 structures, Skylake’s STLB results in all applications still in-
curring at least 2.5% of their baseline instruction L2 TLB page walks even when we apply the most
aggressive code superpage policy. We attribute this difference to the competition between instruc-
tion and data mappings in the STLB. Notably, Node.js exhibits almost no reduction in instruction
L2 TLB page walks because none of the JIT-compiled code is superpage-mapped (see Section 4).
However, in the case of QEMU, where the Zen+ L2 ITLB is overutilized, the larger capacity of Sky-
lake’s 1,536-entry STLB is exploited, resulting in a mere 0.026 page walks per thousand instructions
by using entries not used for data mappings for instruction mappings instead. Overall, we believe
that an L2 TLB shared by instruction and data mappings will better handle the varied demands of
modern applications.

7.4 Shared L2 TLB: Code Superpages versus Data Superpages

On processors like Skylake where the STLB is shared between instruction and data address trans-
lations, improving instruction address translation can sometimes reduce data address translation
overhead as well. We observe that there is significant improvement in data page walk cycles as a
result of using more code superpages. In both Figures 4 and 5, data page walk cycles drop by more
than 30% as we go from no code superpages to full code superpages. Although not included in
the figures, we did measure the number of data STLB misses, which go down with the increasing
number of code superpages, leading to a reduction in data page walk cycles. Expanding this obser-
vation to more workloads, Figure 7 shows the instruction and data page walk cycles normalized
to stock FreeBSD when the code superpage promotion policy requires sixteen 64KB clusters to be
physically resident. In six out of seven of our workloads, using code superpages reduces instruc-
tion page walk cycles by more than 70%, and data page walk cycles by more than 30%. Notably,
the data page walk cycles of Derby decrease by almost 80%.

More surprisingly, we find that for some widely used applications, the performance benefit of
using superpages on code is larger than that of using them on data when the L2 TLB is shared
between instruction and data address translations. Zhu et al. [56] showed that more aggressive
data superpage policies could improve performance over FreeBSD’s stock policy. Here we run the
workloads under the most aggressive possible data superpage policy on Intel Skylake, and we find
that even under that policy, code superpages still benefit performance more than data superpages
in four out of seven of our workloads. Figure 8 shows the normalized user-space execution cycles
where we compare the impact of code versus data superpages by selectively applying the most
aggressive superpage promotion policy (where any superpage-sized region that is touched is
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Fig.9. Combined user-space instruction and data page walk cycles on Skylake normalized to code no superpg
+ data no superpg. Both code superpg and data superpg use the most aggressive promotion policy. Each bar
consists of two components, one representing instruction page walk cycles and the other data page walk
cycles. The components are in proportion to their corresponding cycle counts.

immediately faulted in and promoted into a superpage) on either code or data. In the case of
Clang, PostgreSQL, Node.js, and MySQL, execution cycles decrease more with code superpages
alone than with data superpages alone. This is despite the fact that for PostgreSQL and MySQL
the amount of data far exceeds code by a factor of 100X. In fact, when the use of superpages
is enabled for code and/or data, there are 2,805 superpages of data versus 18 superpages of
code in PostgreSQL, and 2,675 superpages of data versus 36 superpages of code in MySQL. In
addition, Figure 9 shows that using code superpages reduces data page table walk cycles more
than using data superpages does for Clang, PostgreSQL, and Node.js. In short, when a workload
has a significant amount of either code or data, the use of code superpages is absolutely crucial,
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due to interference in the STLB, even when the amount of data is orders of magnitude larger
than code.

8 THE IMPACT OF CORE COUNTS

Increasing the level of parallelism exacerbates instruction address translation overhead, because
contention over space in the TLB and data cache becomes more intense. For Clang in one test,
the instruction address translation overhead increases from 4.6% when using a single hyperthread
on one core to 5.5% when using both hyperthreads due to competition in the TLB, and to 5.8%
of the execution cycles when increasing the number of cores from one to four (using both hyper-
threads on each) due to competition in the LLC. For PostgreSQL under persistent connection mode
(PostgreSQL-p), the instruction address translation overhead increases from 14.6% to 15.4% when
the number of cores goes from one to four. As the parallelism demanded by modern applications
and supported by modern hardware continues to grow, attention to the efficiency of instruction
address translation is paramount.

Code superpages have a larger impact on performance as a workload scales to use more cores.
In general, at higher core counts, there is increased competition in the LLC, which is shared across
cores. This increased competition means that the memory accesses performed during a page walk
are more likely to miss in the LLC, increasing the page walk cycles. Depending on the workload,
when going from one to four cores, per-core LLC stall cycles increase between 2.4X and 4.31X, and
per-core instruction page walk cycles increase between 1.06X and 4.16X. However, when code su-
perpages are used, competition for the LLC is slightly reduced because the page table occupies less
memory. Consequently, across all of our workloads, the reduction in per-core unhalted execution
cycles from the use of code superpages is consistently larger at four cores than at one, by between
0.33 and 4.21 percentage points.

9 OS SUPPORT FOR FILE-BACKED CODE SUPERPAGES

In contrast to Linux’s copy-and-remap approach (described in Section 2), FreeBSD has direct
support for file-backed code superpages. Copy-and-remap can have performance consequences
due to unnecessary copying of untouched superpages (e.g., five such pages exist in MySQL in
Figure 1). Moreover, in some cases, the overhead of copy-and-remap can be larger than the ben-
efits of using code superpages. Unlike in stock FreeBSD, where (physical) superpages containing
file-backed code persist and can be shared among different processes, code superpages created
by copy-and-remap are based on anonymous memory that is generally private to the process and
does not persist. With the exception of child processes that inherit superpage mappings from
parent processes, copy-and-remap has to be re-performed by each and every new process that
wants to use code superpages. To quantify this overhead, we developed a small dynamically linked
library that performs Linux’s copy-and-remap approach in FreeBSD. By using the LD_PRELOAD
environment variable on the library, we make sure that copy-and-remap is performed before the
main function starts executing so that the application gets the full benefit of code superpages. This
library performs copy-and-remap only for superpage-sized code regions, as is the case on Linux.
In a full kernel build workload, copy-and-remap leads to a 17.89% increase in overall execution
cycles compared to the baseline configuration of no code superpages, and a 24.57% increase
over FreeBSD’s superpage mechanism under an aggressive policy. The overhead is so large
because successive invocations of the compiler do not have a parent-child process relationship,
leading to an excessive number of copy-and-remap operations. In contrast, on applications
that perform frequent process fork operations, such as PostgreSQL, repeated copy-and-remap
operations are not necessary because child processes automatically inherit the parent’s superpage
mappings.
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Table 6. Percentage of Total Execution Cycles Spent in Kernel Space with User-Space Code Superpages
Disabled (Baseline), and Kernel-Space Execution Cycles When Applying the Most Aggressive Code
Superpage Policy as a Percentage of Baseline Total Execution Cycles

Benchmarks | Intel Baseline | Intel Most Aggressive | AMD Baseline | AMD Most Aggressive
Clang 9.34% 7.55% 10.61% 8.27%
PostgreSQL 31.48% 31.48% 30.72% 31.02%
Javac 1.52% 0.74% 0.97% 0.96%
Derby 2.48% 1.53% 0.77% 0.94%
Node.js 0.67% 0.53% 0.88% 0.87%
MySQL 19.09% 19.58% 38.81% 39.87%
QEMU 11.49% 10.69% 15.09% 14.05%

As mentioned in Section 3.1, the FreeBSD kernel uses code superpages as much as possible for
its own code by default. Although aggressive superpage promotion policies on user-space applica-
tions do not directly affect kernel-space code superpages or kernel address translation overhead,
aggressive policies can improve kernel-space execution time indirectly. For reference, Table 6 lists
for each workload the percentage of total execution cycles spent in kernel space.

For most of the workloads, the percentage of total execution cycles spent in kernel space is
about the same on the Intel Skylake and AMD Zen+ processors. In almost all cases, time spent in
the kernel is mostly due to I/O and other activity unrelated to superpage management. However,
smaller, shallower process page tables as a result of the use of code superpages make kernel-level
operations such as fork, execve, and exit cheaper. Although the initial incremental promotion of
a code superpage incurs a one-time overhead, the resulting smaller, shallower process page tables
benefit all executions from then on, because future processes will immediately map the code as a
superpage.

The degree to which superpage policies improve kernel-space execution is application depen-
dent. For instance, in the case of Clang, more aggressive superpage promotion substantially re-
duces the number of instructions retired and execution cycles in kernel space. There is less work
to do during process creation and termination as we replace hundreds of 4KB page PTEs with
a single upper-level superpage PTE. In particular, the performance improvement in kernel-space
execution is higher than in user-space execution for Clang. Therefore, the improvement in overall
execution time would be higher than the improvement in user-space execution time presented in
Figure 3. Since Javac, Derby, and Nodejs only spend around 1% of their overall execution times
in kernel space (shown in Table 6), the impact of kernel-space execution on their overall execu-
tion times is trivial, although their kernel-space execution cycles and retired instruction counts
also somewhat decrease. More aggressive superpage promotion does not substantially improve
the performance of kernel-space execution for PostgreSQL, MySQL, or QEMU, because the num-
ber of kernel-space instructions retired does not decrease for these workloads. As a result, the
performance benefits of aggressive superpage promotion is smaller for the overall execution time
than for the user-space execution time.

10 RELATED WORK

Superpages. To the best of our knowledge, existing research on superpages often overlooks
the code side. Most prior work is based on Linux, which does not provide automatic and
transparent support for superpage mappings on executable files. On the data side, Ingens [40]
promotes/demotes superpages based both on the number of physically resident pages and on their
access frequency. SmartMD [37] examines the impact of using superpages on memory deduplica-
tion in virtual environments. Superpages can reduce the effectiveness of memory deduplication
techniques if not carefully used. SmartMD’s superpage promotion/demotion heuristic is based
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on a combination of access frequency and duplication of each page within a superpage region.
Carrefour-LP improves the performance of superpages in NUMA systems by dynamically splitting
superpages as needed to balance the load across memory controllers [34]. Illuminator [49] and
Gorman and Healy [35] improve the ability to allocate superpages by grouping pages that are
immovable to avoid the possibility of fragmentation. In subsequent work, Gorman and Healy [36]
provide APIs for applications to request superpage allocation explicitly as in 1ibhugetlbfs [42]
and evaluate the performance impact of using superpages. Ausavarungnirun et al. [27] proposed a
new GPU memory manager that allocates contiguous virtual pages to contiguous physical pages
in GPU memory to allow the use of superpages.

Compile-Time Optimizations. Ottoni and Maher [48] explored the performance benefits of
using superpages on code using libhugetlbfs [42]. They show that mapping the hot functions
into superpages further improves performance of the server applications tested. Their evaluation
uses the Ivy Bridge processor, which does not support 2MB mappings in the L2 STLB, requiring
their judicious use of the eight 2MB mapping L1 ITLB entries for hot functions. Mashhadi [41] also
explored the performance improvement of mapping hot functions to superpages. On their Haswell
processor where the L2 STLB supports 2MB superpages, superpages improve performance by 1%
to 2% across the applications they tested. Our work shows that despite the L2 STLB support for
2MB superpages, the problem of performance regression in the L1 ITLB when code superpages are
overused is not entirely eliminated on Intel processors. The limited capacity for 2MB entries in the
ITLB can still lead to sizeable cumulative end-to-end costs for missing in the ITLB. Compile-time
optimizations that improve the locality of code should in principle reduce the likelihood of such
interaction, and thus reduce the average cost of ITLB replacement. Future work can explore the
effects of compile-time optimizations in this regard.

Hardware Techniques to Improve TLB Performance. To improve address translation ef-
ficiency, direct segments and redundant memory mapping support large segments of various
lengths, each of which can be translated by a single translation entry [29, 38]. Existing research
also improves address translation performance by leveraging memory contiguity and coalescing
page translations [33, 50-52]. Vavouliotis et al. [54] propose a composite ITLB prefetcher to reduce
the high instruction STLB miss rates of server workloads.

Sharing Page Tables. Previous works have focused on sharing page tables for applications
handling a large amount of data [45, 46]. Dong et al. [31, 32] share page tables among Android
application processes forked from a template process called Zygote. In our previous work [55], we
implemented a general approach to page table sharing that does not rely on a special fork model.
In principle, our design can be implemented on any standard Unix system. Moreover, page table
sharing is proposed to be used for address translation deduplication in next-generation computing
systems with ample memory [53].

Hardware Bugs. Multiple generations of Intel processors [5] may unexpectedly incur a machine
check error when an instruction address translation hits multiple entries in the ITLB, each corre-
sponding to a different page size, and the entries have different attributes (e.g., the physical address).
This can occur, for example, if an executable superpage mapping with different attributes is created
without first invalidating all of the 4KB mappings from the TLB that the superpage mapping re-
places. However, because of the differing attributes on the mappings, failing to first invalidate the
4KB mappings from the TLB is itself an OS software bug. Consequently, non-virtualized systems
running a correctly implemented native OS are not impacted by this hardware bug. Neither are
virtualized systems where the guest OS is trusted to perform the TLB invalidations. However, a
malicious guest OS running in a virtualized system with an affected processor may launch a denial
of service attack by intentionally not doing the TLB invalidations. This attack can be prevented by
not creating any executable superpage mappings in the hypervisor-managed nested page table.
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11 CONCLUSION

In this article, we examined the instruction address translation overhead for seven widely used
applications, ranging from compilers to web user-interface frameworks. The applications have
large code sizes, ranging from 22MB to 270MB. We found that the instruction address translation
overhead for these applications is non-trivial, ranging from 1.6% to 13.44% of overall execution
cycles. Moreover, we found that this overhead increases as the level of parallelism goes up.

Our findings make a case for first-class OS support for superpages on ordinary files contain-
ing executables and shared libraries, as well as a more aggressive superpage promotion policy for
code. FreeBSD’s stock superpage promotion policy when applied to the code in our application
suite reduces execution cycles by up to 5.57%. Two techniques can further reduce execution cycles
by reducing instruction address translation overhead. First, a more aggressive promotion policy
for code can further reduces execution cycles by up to 8.33% over stock FreeBSD, with the gains
achieved without the need to resort to Linux’s first-touch promotion policy for data superpages.
Such a policy would alleviate TLB pressure without significantly increasing the memory footprint.
Second, padding the sub-superpage-sized residual regions of the main executable and shared li-
braries out to a superpage boundary further reduces execution cycles by up to 8% over the more
aggressive promotion policy alone.

We made several observations about the interplay between the use of code superpages and ITLB
design. First, L1 ITLB design can have an impact on what code superpage policy should be adopted.
When the L1 ITLB does not have separate structures for base page entries and superpage entries,
as is the case with AMD Zen+, the policy can simply be to aggressively promote code superpages
at a certain occupancy threshold. The policy’s only concern needs to be the cost of the additional
memory and I/O operations. However, an L1 ITLB that has separate structures for 4KB versus
2MB mappings, as is the case with Intel Skylake, can present a challenge to such a superpage
policy. Increasing the number of superpages when the size of the L1 superpage structure is small
may result in more TLB misses for some applications. Moreover, on some microarchitectures, the
cost of these misses can be highly variable. Specifically, replacement can be delayed until all of the
in-flight instructions mapped by the victim entry are retired. Second, although separate instruction
and data TLBs at the lower level might avoid direct impact on data translation overheads, they can
incur much higher instruction translation overheads. At the same time, when code superpages
reduce ITLB pressure, such a design does not allow use of the excess capacity for data translation.

Given these observations, our recommendation is for future systems to adopt a TLB design
where all entries in the L1 ITLB can hold either base page mappings or superpage mappings, and
where the L2 TLB is shared between code and data. Such a TLB design, coupled with the use of an
aggressive code superpage policy, leads to better performance for a wide variety of applications. An
L1 ITLB having unified capacity for base and superpage mappings is able to provide much greater
coverage for code mappings without the worry about a separate structure for superpage mappings
having only limited capacity, while also reducing the likelihood of potential pipeline-inclusion
stalls. An L2 TLB unified between code and data is able to serve both code and data translations
without wasting any of its capacity. The aggressive use of code superpages (1) increases coverage
of the TLB, (2) reduces the cost of page walks and the pressure on the LLC, and also (3) increases
reuse of code TLB entries, reducing the likelihood of code entries being evicted from the L2 TLB
in the face of competition from data entries.
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