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Abstract—The problem of distributed matrix-vector product is
considered, where the server distributes the task of the computa-
tion among n worker nodes, out of which L are compromised (but
non-colluding) and may return incorrect results. Specifically, it is
assumed that the compromised workers are unreliable, that is, at
any given time, each compromised worker may return an incor-
rect and correct result with probabilities α and 1−α, respectively.
Thus, the tests are noisy. This work proposes a new probabilistic
group testing approach to identify the unreliable/compromised
workers with O

(
L log(n)

α

)
tests. Moreover, using the proposed

group testing method, sparse parity-check codes are constructed
and used in the considered distributed computing framework for
encoding, decoding and identifying the unreliable workers. This
methodology has two distinct features: (i) the cost of identifying
the set of L unreliable workers at the server can be shown
to be considerably lower than existing distributed computing
methods, and (ii) the encoding and decoding functions are easily
implementable and computationally efficient.

I. INTRODUCTION

In distributed computing, an expensive task can be encoded
into sub-tasks of lower complexity, which can then be dis-
tributed to several worker nodes, in order to improve the
overall computational speed [1]–[7]. However, a subset of
the workers may be compromised and may return incorrect
results of the sub-tasks assigned to them. In other words, these
compromised workers are unreliable, i.e., they sometimes
return incorrect results (i.e., they behave maliciously) and at
other times behave like reliable workers and return correct
results, making them difficult to identify. In such scenarios, it
is desirable that the encoding into sub-tasks is performed in a
way that two properties hold: (i) Identification: there is an effi-
cient mechanism to identify the set of unreliable/compromised
worker nodes; and (ii) Decodability: from the results of the
sub-tasks assigned to the reliable worker nodes, the result of
the original task can be recovered efficiently.

In this work, we propose a probabilistic group testing based
distributed computing scheme for the task of matrix-vector
computation, which ensures both efficient identification and
decodability. Group testing was first introduced in [8] and
extensively studied in areas ranging from medicine [9] to com-
puter science [1], to efficiently identify a set of defective items
in a large set of n items, by testing groups of items at a time
rather than testing the items individually. Two types of group
testing methodologies are prevalent: (i) probabilistic group
testing; and (ii) combinatorial group testing. Combinatorial
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group testing is deterministic and identifies defective items
with a zero probability of error [10]. In probabilistic group
testing, this probability of error goes to 0 as n→∞, whereas
for finite n, it can be made arbitrarily small by increasing the
number of tests [11]–[14]. Unlike traditional group testing,
in this work, the goal is to identify the set of L (out of
n) unreliable workers, where the unreliable workers do not
always behave maliciously, but they sometimes hide their true
identity. A test can therefore be negative even if there were
one or more unreliable workers in the tested group. Group
testing with unreliable items has been widely studied [15]–
[19]. However, the probabilistic model for the behavior of
unreliable workers that we adopt is different from the models
considered in the above works. This difference is primarily due
to the fact that the behavior of an unreliable worker (i.e., either
acting maliciously or acting reliably) remains the same for all
the tests related to a specific computing task. Thus, naively
adopting the probabilistic group testing methods of [15]–[18]
for our model, produce sub-optimal results.

The contribution of this work is threefold: (i) we propose a
probabilistic group testing scheme to efficiently identify the L
unreliable workers (Section II); (ii) using the proposed group
testing scheme, we construct sparse parity-check codes which
are used for encoding and enable an efficient identification of
the unreliable workers (Section III); and (iii) we construct a
low-complexity decoding function for retrieving the original
matrix-vector product from the results of the reliable workers
(Section III). The proposed scheme can be shown to outper-
form the MDS-code based schemes presented in [1], [2] for
unreliable worker’s identification.
Notation. For an integer n ≥ 1, we define [n] , {1, 2, . . . , n}.
For a matrix M, we use Mi,: and M:,j to represent its ith row
and jth column, respectively. Moreover, for sets A and B,
MA,B is the submatrix of M where only the rows in A and
the columns in B are retained. For x, y ∈ {0, 1}, we define
x � y if (x, y) = (1, 0) and x � y, otherwise. For a vector z,
we define supp(z) = {j : zj 6= 0}.

II. SYSTEM MODEL

The server node aims at computing T matrix-vector prod-
ucts B · vt for t ∈ [T ], where B ∈ Fr×c and vt ∈ Fc×1. In
other words, we aim at computing the tth matrix-vector prod-
uct B · vt in time-slot t ∈ [T ]. To speed up the computation,
the server can distribute the task among n workers, denoted
by the set [n]. However, a set L ⊆ [n] of |L| = L workers are
unreliable and may return incorrect/noisy results for the task
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assigned to them. We model the random behavior of these
L unreliable workers as follows: at time-slot t ∈ [T ], each
unreliable worker is attacked with probability α, and returns
an incorrect result, independent of other workers and other
time-slots. If an unreliable worker remains unattacked in a
time-slot t, it behaves reliably and returns the correct result.
We denote by Lt ⊆ L the subset of unreliable workers, which
are attacked in time-slot t. For any w ∈ L, we have

P
(
w ∈ Lt

∣∣w ∈ L) = α. (1)

For the distributed computing scheme, the vectors vt’s are first
communicated to all the n workers. Moreover, each worker
w ∈ [n] receives a matrix W(w) ∈ Fs×c with s = r/k � r
rows (assuming that k ∈ N divides r) obtained by using a set
of encoding functions f (w) : Fr×c −→ Fs×c as

W(w) = f (w)(B), w ∈ [n]. (2)

For each t ∈ [T ], the wth worker then computes the matrix-
vector product a(w)

t = W(w) · vt, and sends a message back
to the server. In particular, the result ã(w)

t returned by the wth
worker is given by

ã
(w)
t =

{
W(w) · vt if w /∈ Lt,
W(w) · vt + z

(w)
t if w ∈ Lt,

(3)

where z
(w)
t ∈ Fs×1 is the noise vector corresponding to

worker w and is independent of the noise vectors of other
attacked workers (since we assume the unreliable workers to
be non-colluding). The server is then required to identify the
unreliable workers and subsequently reconstruct/decode the
correct product B · vt by applying a decoding function g(·)
on the results received from (a subset of) the reliable workers.

We propose a distributed computing scheme where the
encoding functions f (i) in (2) and the decoding function g are
such that the overall computational complexity at the server is
low because: (i) the set of unreliable workers can be identified
with a low computational cost of O

(
L log(n)

α

)
×O

(
rn
Lk

)
; and

(ii) the decoding can be performed with a cost of O
(
rn
k

)
×T

operations for T matrix-vector products.

III. GROUP TESTING FOR IDENTIFYING UNRELIABLE
WORKERS

We are interested in identifying the set of all unreliable
workers L. Here, we face two main challenges: (1) workers
cannot be tested individually, and (2) an unreliable worker is
not always attacked and hence, we cannot identify it from its
result in a single time-slot.

Instead, we can test a group of workers, and a test result
will be negative if all the unreliable workers in the selected
group are unattacked during the time-slot of interest. In other
words, a test performed based on the results of time-slot t
will be positive if and only if there is at least one attacked
unreliable worker w ∈ Lt in the tested group.

We let mt be the number of tests that are performed in time-
slot t ∈ [T ]. Then the total number of tests is M :=

∑T
t=1mt.

These tests can be represented using a contact matrix

M(c) ∈ {0, 1}M×n, where M
(c)
j,w = 1 if and only if the wth

worker is included in the jth test. The tests conducted in time-
slot t correspond to the rows Tt=[1 +

∑t−1
j=1mt :

∑t
j=1mt] of

M(c). We can use a vector x ∈ {0, 1}n×1 to indicate whether
or not each worker is unreliable, that is, xw = 1 if and only
if w ∈ L. Ideally, if all the unreliable workers were always
attacked, i.e., α = 1, the result of the tests can be represented
by a vector y(c) ∈ {0, 1}M as

y(c) = M(c) � x, (4)

where the multiplication and addition are logical and and or,
respectively. More precisely, we have y

(c)
i =

∨n
j=1(M

(c)
i,j ∧xj).

To capture the unreliable behavior of the compromised
workers, we adopt the notation in [17], and define a sampling
matrix M(s) which is obtained from the contact matrix M(c) as

M
(s)
Tt,w =

{
M

(c)
Tt,w if w ∈ ([n] \ L) ∪ Lt,

0 if w ∈ L \ Lt.
(5)

Moreover, the result of the actual tests in the presence of
unreliable workers is given by

y = M(s) � x. (6)

To understand how the sampling matrix models the unreliable
behavior, let us assume that worker w was selected to be
included in a test j ∈ Tt in time-slot t. Then, we have
M

(c)
j,w = 1. If w ∈ Lt, then in time-slot t the unreliable

worker is attacked and exposes its true identity and therefore,
we should have y

(c)
j = yj = 1, which is achieved by setting

M
(s)
j,w = M

(c)
j,w in such a scenario. Now, assume that worker w

is unreliable (i.e., xw = 1), but unattacked in time-slot t, that
is, w ∈ L \ Lt. In this case, w hides its true identity. Since
M

(c)
j,w = 1, we have y

(c)
j = 1. But the actual test result yj

should not be influenced by w. This unattacked behavior of
worker w in test j ∈ Tt is captured by setting M

(s)
j,w = 0.

Note that if α = 1, then Lt = L for all t ∈ [T ], and
therefore M

(c)
j,w = M

(s)
j,w for all j ∈ [M ] and w ∈ [n], which

reduces the problem to the classical group testing problem [8].
Examples of a contact matrix M(c) and a sampling matrix

M(s) for n = 5 workers, T = 2, m1 = 2, and m2 = 1 is
given in (7). Here, L = {3, 4}, and L1 = {4}. Since worker 3
is unattacked at t = 1, the entries of M(c) at column 3 and
T1 = [1 : 2] are replaced by 0 in M(s):

M(c) =

1 0 0 1 0
0 1 1 0 0
1 1 0 1 0

, M(s) =

1 0 0 1 0
0 1 0 0 0
1 1 0 1 0

. (7)

Remark 1. Note that the tests are always conducted according
to the contact matrix M(c), but due to the random behavior
of the unreliable workers, the actual result of the tests is
determined by y = M(s) � x (rather than y(c) = M(c) � x).

We seek to minimize the number of tests M , i.e., design a
contact matrix M(c) with as few rows as possible, such that,
given M(c) and y, we can identify the unreliable set L (or
equivalently the vector x), with an arbitrarily small probability
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of error (as n → ∞). In particular, we are interested in
characterizing how the number of tests M should scale with
respect to the underlying parameters, n,L and α, to achieve
a vanishing error probability.

To construct M(c), we consider parameters (Z,m), where
we assume mt = m tests are performed only for t ∈ [Z]
(i.e., mt = 0 for t > Z). Therefore, the total number of
tests performed is M = mZ. The parameters (m,Z) will
be determined later to guarantee the identification of the
unreliable workers with high probability.
Probabilistic construction for M(c) and M(s): We generate
M(c) ∈ FZm×n randomly, where each entry is drawn from
a Bernoulli distribution with parameter q := θ

L (where the
parameter θ will be determined later), independent of all other
entries. For this scheme, the corresponding sampling matrix
M(s) is generated from M(c) as follows,

M
(s)
Tz,w =

{
M

(c)
Tz,w if w ∈ ([n] \ L) ∪ Lz,

0 if w ∈ L \ Lz,
(8)

where, Tz = [(z − 1)m + 1 : zm] is the set of rows which
correspond to time-slot z ∈ Z.
The (d, ε)-threshold decoder: For z ∈ [Z], we let
yTz ∈ {0, 1}

m be the test result vector of time-slot z, which
is given by yTz = M

(s)
Tz,:�x, where Tz = [(z−1)m+ 1 : zm]

is the set of tests in time-slot z. Moreover, we define the score
of a worker w ∈ [n] in time-slot z by Iw,z , which is given by

Iw,z =


1 if M(c)

Tz,w � yTz and M
(c)
Tz,w 6= 0,

ε if M(c)
Tz,w = 0,

0 if M(c)
Tz,w 6� yTz .

(9)

Then, a worker w will be marked as unreliable (i.e., x̂w = 1)
if and only if Iw :=

∑Z
z=1 Iw,z ≥ d. Note that an unreliable

worker’s score is expected to be higher than a reliable worker’s
score. We leverage this fact to obtain the following result that
guarantees the success of the proposed decoder (with high
probability) for a proper choice of parameters.

Theorem 1. For any arbitrary, but a-priori fixed, L-
sparse vector x and any error exponent β > 0,
there exists a choice of parameters (q,m,Z, d, ε) such
that the (d, ε)-threshold decoder can decode x with er-
ror probability Pe = P[X̂ 6= x|X = x] ≤ n−β with at most
450(1 + β)L log(n)

α tests.

Remark 2. In this work, we focus on noise-level-independent
Bernoulli designs of the contact matrix M(c) with parameter
q = θ

L (where q does not depend on the noise parameter α).
Advantages of such a design include: (1) increased robustness
against erroneous estimates of α, and (2) no requirement of
redesigning M(c) every time that α fluctuates. Under such a
construction of M(c), it is not difficult to show an information
theoretic converse of O

(
L log(n)
α log(1/α)

)
tests for the group testing

noise model considered in this work. The (d, ε)-threshold
decoder almost achieves this converse, except for a small
factor of log(1/α). Moreover, noise-level-dependent designs

could lead to better achievable bounds, as it has been observed
in other noise models [20], [21] and we intend to explore such
designs in the extended version of this paper.

In the proof of Theorem 1, we will show that under a proper
choice of (q,m,Z, d, ε), the error probability vanishes as n−β .
In particular, we set (q,m,Z, ε) =

(
θ
L ,

L
θ ,

λ logn
α , θα

)
, where

λ and θ ∈ [0, 1] are design parameters, to be determined later.
Moreover, the value of d is given in (14).

We will need the following two propositions, which play an
essential role in the proof. The proofs of the propositions are
presented in [22, Appendix A] and [22, Appendix B].

Proposition 1. The total expected scores for reliable and
unreliable workers are given by,

µf := E
[
Iw
∣∣w /∈ L

]
=Z(hL − (1−ε)(1−q)m), (10)

µm := E
[
Iw
∣∣w ∈ L]=Z(α+(1−α)hL−1−(1−ε)(1−q)m),

where for every integer x ∈ [0 : L], we have that

hx :=
∑x

`=0

(
x

`

)
α`(1− α)x−`

(
1− q(1− q)`

)m
. (11)

Proposition 2. Assume qm ≤ 1. Then, hx in (11) satisfies

(1−q)m ≤ hL≤ (1−q)m +mLq2α, (12)

and, hL − (1− α)hL−1 ≤ α(1−mq(1− qL)/2). (13)

Proof of Theorem 1. There are two types of error associ-
ated with the (d, ε)-threshold decoder: (i) a false alarm,
where a worker w ∈ [n] \ L is identified as un-
reliable, and (ii) a mis-detection error, where an unre-
liable worker w ∈ L is identified as reliable. Cor-
respondingly, we define P+(w) := P(Iw ≥ d|w /∈ L) and
P−(w) = P(Iw < d|w ∈ L), where d is the decoder parameter
which is set to

d := (1 + η)µf = (1 + η)Z(hL − (1− ε)(1− q)m), (14)

where η > 0 will be determined later. Since there are L
unreliable and n−L reliable workers, using the union bound,
the total error probability is upper bounded by

Pe ≤
∑

w∈[n]\L

P+(w) +
∑
w∈L

P−(w). (15)

In the following, we will bound both probabilities of error for
the regime of parameters of interest. We start with

P+(w)=P
(
Iw≥d

∣∣ w /∈ L
)

= P
(
Iw≥(1 + η)µf

∣∣ w /∈ L
)

(a)

≤ exp

(
− η2

2+η
µf

)
=exp

(
− η2

2+η
Z(hL− (1− ε)(1−q)m)

)
(b)

≤ exp

(
− η2

2 + η
Zε(1− q)m

)
(c)

≤ exp

(
− η2

2+η
θ exp

(
− qm

1−q

)
Zα

)
(d)
= exp(−ζ1Zα), (16)

where: (a) is due to the Chernoff bound; in (b) we used
Proposition 2; (c) follows from the facts that ε = θα, and
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1− x ≥ exp
(
− x

1−x

)
which holds for x < 1; and in (d), we

used the choice of parameters (q,m) =
(
θ
L ,

L
θ

)
which yields

1− q ≥ 1− θ and

ζ1 =
η2

2 + η
θ exp

(
− 1

1− q

)
≥ η2

2 + η
θ exp

(
− 1

1− θ

)
.

Similarly, for P−(w) we can write

P−(w) = P(Iw < d|w ∈ L) = P(Iw < (1− δ)µm|w ∈ L)

≤ exp

(
−1

2
δ2µm

)
, (17)

where δ := µm−d
µm

. We note that

µm − d = µm − (1 + η)µf

= Z[α− η(hL − (1− ε)(1− q)m)− (hL − (1− α)hL−1)]

(e)

≥ Z

[
α− η(ε(1− q)m +mLq2α)− α

(
1− mq(1− qL)

2

)]
(f)
= Zα[−ηθ(1− q)m − ηmLq2 +mq/2−mLq2/2]

= ζ2Zα, (18)

where (e) follows from Proposition 2, and in (f) we plugged
in ε = θα. Note that

ζ2 =
mq

2
−ηθ(1− q)m −

(
η +

1

2

)
mLq2

(g)

≥ 1

2
− θ
(
η exp(−1) +

(
η +

1

2

))
,

where in (g) we used the facts that (q,m) =
(
θ
L ,

L
θ

)
and

(1− q)m ≤ exp(−mq) = exp(−1).
Moreover, we have that

µm = Z[α+ (1− α)hL−1 − (1− ε)(1− q)m]

(h)

≤ Z[α+ ε(1− q)m +mLq2α] = ζ3Zα, (19)

where the inequality in (h) follows from the chain of in-
equalities (1− α)hL−1 ≤ hL−1 ≤ hL ≤ (1− q)m +mLq2α,
which is implied by Proposition 2. Note that since ε = θα,
we have

ζ3 = 1 + θ(1− q)m +mLq2
(i)

≤ 1 + θ exp(−1) + θ,

where (i) follows since (q,m) =
(
θ
L ,

L
θ

)
and from the fact that

(1− q)m ≤ exp(−mq) = exp(−1). Therefore, plugging (18)
and (19) into (17), we get

P−(w) ≤ exp

(
−1

2

(µm − d)2

µm

)
≤ exp

(
−1

2

ζ22Z
2α2

ζ3Zα

)
= exp(−ζ4Zα), (20)

where ζ4 = ζ22/2ζ3. Now, setting (θ, η) = (0.15, 1), we have
ζ1, ζ4 > ζ := 0.015. Plugging (16) and (20) in (15), we get

Pe ≤ (n− L) exp(−ζ1Zα) + L exp(−ζ4Zα)

(j)

≤ n exp

(
−ζ λ log n

α
α

)
= exp(−(ζλ− 1) log n)

(k)
= n−β ,

where (j) holds for ζ1, ζ4 > ζ and Z = λ logn
α , and (k) follows

from the fact that λ = (1+β)/ζ. Note that the total number of
tests is mZ = L

θ
λ logn
α < 450(1 + β)L logn

α . This completes
the proof of Theorem 1.

IV. DISTRIBUTED SCHEME

In this section, we present the distributed computing scheme
by dividing the scheme into the following three subsections.

A. Generator Matrix for Encoding

To obtain the generator matrix for encoding, we start with
the group testing contact matrix M(c) ∈ {0, 1}M×n that we
obtained in Section III, where M = mZ. We design a random
parity matrix M(p) ∈ FM×n, given by M

(p)
i,j = M

(c)
i,j · Qi,j ,

where the entries of Q ∈ FM×n are chosen uniformly and
independently at random from F \ {0}. We will use the linear
code induced by M(p) for pre-coding of the matrix B. To this
end, let G ∈ Fk×n be the generator matrix of the systematic
code induced by the parity-check matrix M(p), that is,

G =
[
Ik×k

∣∣Rk×(n−k)
]
,

for some matrix R ∈ Fk×(n−k) where1 k = n −M and G
satisfies M(p) · GT = 0.

Next, we use the matrix G for encoding the original matrix
B ∈ Fr×c. To this end, B is first divided horizontally into k
equal parts B1,B2, · · · ,Bk. Then, for w ∈ [n] we generate
the matrix W(w) ∈ Fs×c (where s = r/k), given by

W(w) =
∑k

j=1
Gj,wBj , (21)

and send it to worker w, who is responsible for computing the
product a(w)

t = W(w) · vt.

B. Group Testing for Identifying the Unreliable Workers

Worker w will return the result ã(w)
t in (3), which may or

may not be equal to the expected result a(w)
t , depending on

whether w ∈ Lt or not (i.e., worker w is attacked in time-
slot t or not; see (3)). The server can not determine if ã

(w)
t

is correct or incorrect only from the information provided by
worker w. However, the set of correct results {a(w)

t : w ∈ [n]}
satisfy M parity equations, corresponding to the M rows of
the parity-check matrix M(p). To formalize this, we define a
parity check function as follows.
Parity Check Function: Consider some i ∈ [M ] and a set
of workers Ui = supp

(
M

(p)
i,:

)
with the corresponding results

{ã(j)t : j ∈Ui}. We define the parity check function Γt(Ui) as

Γt(Ui) :=
∑
j∈Ui

M
(p)
i,j ã

(j)
t , (22)

which can be used to check if there is any attacked (and hence
unreliable) worker in the set Ui that returned an incorrect result
in time-slot t ∈ [T ]. The following lemma, the proof of which
is in [22, Appendix C], states important properties of Γt(·).

1We note that in general it is rather unlikely, but possible, that M(p)

is not full-rank. In spite of that, we can always find k = n − M linearly
independent vectors in Fn which are orthogonal to the rows of M(c).
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Lemma 1. In the finite field F, for every i ∈ [M ] and set
Ui = supp(M

(p)
i,: ), we have

P[Γt(Ui) = 0|Ui ∩ Lt = ∅] = 1,

P[Γt(Ui) = 0|Ui ∩ Lt 6= ∅] =
1

|F|
.

(23)

We now discuss the use of the parity check function to
identify the set of unreliable workers.
Probabilistic Group Testing: In time-slot z ∈ [Z], the server
computes ŷj for j ∈ Tz = [(m− 1)z + 1 : mz], (where the
parameters Z and m are specified in Section III) as follows,

ŷj =

{
0 if Γz(Uj) = 0,

1 otherwise,
(24)

where Uj = supp
(
M

(p)
j,:

)
= supp

(
M

(c)
j,:

)
, since M

(c)
j,w = 0 if

and only if M
(p)
j,w = 0. Hence, the parity equation on Uj is

equivalent to a group test on Uj . However, due to (23), we get

P(ŷ = y) = P
(
ŷ = M(s) � x

)
≥ (1− 1/|F|)M ,

or equivalently, P(ŷ 6= y) ≤ 1 − (1− 1/|F|)M ≤ M
|F| . There-

fore, the server can use the (d, ε)-threshold decoder to identify
all the unreliable workers L with an error probability less
than n−β + M

|F| , where the n−β and M
|F| represent the upper

bounds on the errors due to probabilistic group testing and the
probabilistic nature of the parity-check function, respectively.

Remark 3. Here, we need to choose a finite field with
|F| �M to guarantee the success of the algorithm with high
probability. However, using a more sophisticated analysis for
group testing, we can consider the underlying model similar
to [23], in which the results of the tests are passed through a
Z-channel, i.e., P(ŷj = 0|yj = 1) = 1/|F|.

Average Computational Cost of Identifying Unreliable
Workers: On average, each row of M(p) contains qn = θn

L

non-zero elements and ã
(w)
t has s = r

k elements. There-
fore, the computational cost of Γt(Uj) for j ∈ [M ] is
O
(
θnr
kL

)
= O

(
nr
kL

)
. Moreover, a total of M = O

(
L log(n)

α

)
such tests are performed. Therefore, the total cost of identify-
ing the unreliable workers is O

(
rn log(n)

kα

)
. Note that this does

not scale with T , the number of vectors to be multiplied by B.
Moreover, for the interesting regime where L logn

α = o(n), we
have M = o(n) and hence k = n−M = Θ(n). Consequently,
in this regime, the total cost of identifying the unreliable
workers will be O

(
r log(n)

α

)
.

C. Reconstruction of Incorrect Results and Decoding

Note that after performing group testing, the server knows
the set of unreliable workers L with a probability of error
less than n−β + M

|F| . Since the generator matrix is of the
form G =

[
Ik×k

∣∣Rk×(n−k)
]
, the first k workers received

matrices {B1,B2, · · · ,Bk} and were expected to compute
{a(1)t = B1 · vt,a(2)t = B2 · vt, · · · ,a(k)t = Bk · vt} in time-
slot t. Now, if the server was lucky and all of the first k

workers were reliable, that is, L ∩ [k] = ∅, then ã
(w)
t = a

(w)
t

for all w ∈ [k] and therefore the correct matrix-vector product
B · vt is directly given by the result of the first k workers,
without any extra decoding computation cost at the server.
However, if one or more of these k workers were unreliable,
that is, L ∩ [k] 6= ∅, then ã

(w)
t may not be equal to a

(w)
t

for w ∈ L ∩ [k]. In the following, we show that the server
can reconstruct the correct answers a

(w)
t for all the unreliable

workers w ∈ L with vanishing probability of error. Towards
this end, we first define a reconstruction criterion as follows.
Reconstruction Criterion: For any worker w ∈ L, the parity
matrix M(p) satisfies the reconstruction criterion if M(p) has
a row i whose support Ui = supp

(
M

(p)
i,:

)
has the following

properties: (i) Ui ∩ L = w and (ii) Ui ∩ ([n] \ L) 6= ∅.
The following lemma shows that if M(p) satisfies the

reconstruction criterion for a worker w ∈ L, then the server
can reconstruct the correct result a(w)

t of w. The proof of the
lemma is presented in [22, Appendix D].

Lemma 2. If the parity matrix M(p) satisfies the reconstruc-
tion criterion for a worker w ∈ L, then the correct result a(w)

t

of w can be reconstructed as follows,

a
(w)
t =

(
M

(p)
i,w

)−1(
M

(p)
i,wã

(w)
t − Γt(Ui)

)
,

where i ∈ [M ] is a row for which the two conditions of the
reconstruction criterion are satisfied and Ui = supp(M

(p)
i,: ).

In the next lemma, we show that M(p) satisfies the re-
construction criterion for all unreliable workers w ∈ L with
vanishing probability of error. The proof of the lemma is
presented in [22, Appendix E].

Lemma 3. The parity matrix M(p) constructed from the
group testing contact matrix M(c) satisfies the reconstruction
criterion for all the unreliable workers w ∈ L, with an error
probability less than n−β .

Since the reconstruction criterion holds for every w ∈ L
with a probability of error less than n−β , the server can
reconstruct the results of all the unreliable workers with an
error probability less than n−β+M

|F|+n
−β = 2n−β+M

|F| , where
n−β+ M

|F| and n−β are upper bounds on the error probabilities
for the identification of the unreliable workers and for the
reconstruction of the correct results of the unreliable workers,
respectively. Once the correct results are reconstructed, the
server can use the first k workers’ results to obtain the matrix-
vector product B · vt.
Average Computational Cost of Decoding: On average,
each row of M(p) contains qn = θn

L non-zero elements and
ã
(j)
t has s = r

k elements. Therefore, the computational cost of
reconstructing each unreliable worker’s answer by Lemma 2 is
O
(
θnr
kL

)
= O

(
nr
kL

)
. Moreover, the total cost of reconstructing

all of the L unreliable workers’ results is O
(
nr
k

)
. Once the

unreliable workers’ results are reconstructed, the matrix-vector
product B · vt is given by stacking the correct results of
first k workers, which has no additional cost. Therefore, the
computational cost of decoding is O

(
nr
k

)
.
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