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ABSTRACT
GPUs are widely used in today’s computing platforms to accelerate
applications in various domains. However, scarce GPU memory
resources are often the dominant limiting factor in strengthen-
ing the applicability of GPU computing. In this paper, we propose
D�GPUM, the �rst pro�ler that systematically investigates pat-
terns of memory ine�ciencies in GPU-accelerated applications.
The strength of D�GPUM, when compared to a large class of exist-
ing GPU pro�lers, is its ability to (1) correlate problematic memory
usage with data objects and GPU APIs, (2) identify and categorize
object-level and intra-object memory ine�ciencies, and (3) provide
rich insights to guide memory optimization.

D�GPUM works on fully-optimized and unmodi�ed GPU bina-
ries, requires nomodi�cation to hardware or OS, and features a user-
friendly GUI, which makes it attractive to use in production. Our
evaluation with well-known benchmarks and applications shows
D�GPUM’s e�ectiveness in identifying memory ine�ciencies with
moderate overhead. Eliminating these ine�ciencies requires less
than nine source lines of code modi�cations and yields signi�cant
reductions in peak memory usage (up to 83%) and/or signi�cant
performance improvements (up to 2.48⇥). Our optimization patches
have been con�rmed by application developers and upstreamed to
their repositories.
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1 INTRODUCTION
GPUs are widely used in modern and emerging computing plat-
forms to accelerate applications in various domains, including deep
learning (DL) and high performance computing (HPC). However,
scarce GPU memory resources are often the dominant limiting fac-
tor in enhancing the applicability of GPU computing. For DL, the
trend of developing deeper and wider neural networks demands
signi�cant GPU memory resources. For instance, training a trillion-
parameter model with 3D parallelism requires up to 320 high-end
NVIDIA A100 GPUs [53] as each A100 GPU only o�ers 80 GB on-
board memory [11]. For HPC, the trend of pursuing high-resolution
simulation of climate projections, quantum chromodynamics, and
molecular dynamics is accompanied by the ever-increasing usage
of GPU memory. For instance, a global climate model needs to be
deployed to a supercomputer of 4888 NVIDIA P100 GPUs to achieve
a 1 km resolution [18].

There is a long line of research and engineering work in the DL
community that overcomes the hurdle of GPU memory capacity
by either reducing peak memory usage of GPU-accelerated appli-
cations or incorporating the CPU memory as an external bu�er
(including DRAM and NVRAM). Such techniques primarily in-
clude recomputation [6, 23, 34, 52, 66], swapping [30, 52, 56, 57, 66],
and compression [7, 17, 17, 31, 51]. The recomputation-based ap-
proaches reclaim temporarily-unused data in the forward propaga-
tion phase and then recompute them in the backward propagation
phase. The swapping-based approaches copy temporarily-unused
data to CPUs in the forward propagation phase and copy them back
to GPUs in the backward propagation phase. These approaches,
however, often su�er from nontrivial performance degradation due
to expensive recomputation and frequent CPU-GPU data transfers.
The compression-based approaches employ lossless or lossy com-
pression algorithms to compress intermediate data (e.g., activation
maps) and decompress them when needed. Unfortunately, the for-
mer su�ers from a limited compression ratio, while the latter is
prone to accuracy loss.

Unlike the aforementioned approaches that speci�cally target
deep neural networks (DNNs), uni�ed memory [26] is a general so-
lution applicable to a broad range of GPU-accelerated applications.
On NVIDIA GPUs, uni�ed memory has been supported since CUDA
6.0, which enables GPUs to access both CPU and GPU memories
without explicit data movement. On the downside, however, it can
bring a severe performance loss (up to 10⇥ slowdown [40]) due to
expensive page migrations.

In summary, existing solutions lack wide applicability as they are
designed for a speci�c class of GPU workloads (e.g., DNNs), incur
severe performance degradation due to expensive recomputation/data
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transfers/page migrations, and su�er from a low compression ratio or
accuracy loss.

1.1 Proposed Work
To complement the missing pieces in existing approaches, we ex-
plore memory optimization opportunities with D�GPUM, a novel
object-centric GPU memory pro�ler that consists of macroscopic
object-level analysis (e.g., arrays and tensors) and microscopic intra-
object analysis (e.g., individual elements in an array/tensor.)

• Macroscopic object-level analysis. D�GPUM tracks and collects
object-level accesses across GPU APIs (i.e., memory allocation,
deallocation, copy, and set, and kernel launch APIs), and presents
them in a topological order to identify a class of ine�ciencies at
the granularity of data objects.

• Microscopic intra-object analysis. D�GPUM monitors intra-object
accesses (i.e., memory accesses in a data object) to identify never-
and infrequently-accessed regions in a data object for space com-
pression and discern hot regions from cold ones in a data object
for better data placement in the GPU memory hierarchy.

Together, they present a comprehensive view of memory in-
e�ciencies (including memory wastage and ine�cient memory
accesses) for GPU-accelerated applications and provide actionable
insights for code optimization.

Although memory pro�lers are abundant in the GPU commu-
nity, including vendor-provided pro�lers [3, 19, 41, 44, 47–49] and
research pro�lers [2, 20, 35, 55, 59, 67, 69, 73], they tend to mon-
itor GPU memory usage from only a macroscopic point of view.
Without correlating data objects with GPU APIs, they provide little
actionable insight for developers. To the best of our knowledge,
TensorBoard [19] is the only object-centric GPU pro�ler. However,
it applies to TensorFlow-based DL workloads only and instruments
program source code to monitor tensors (i.e., data objects). Thus,
this approach is not application-independent. Additionally, it lacks
a systematic investigation of patterns of memory ine�ciencies (de-
scribed in Section 3) and thus cannot provide intuitive optimization
insights needed for developer action or detect as many memory
ine�ciencies as D�GPUM can.

D�GPUM di�ers fundamentally from the existing solutions in
several aspects. First, it is independent of applications (e.g., Ten-
sorFlow), models (e.g., DNNs), and compilers and works on fully-
optimized and unmodi�ed GPU binaries. Second, it requires no
source code modi�cation or recompilation, which is suitable for
production software that requires cumbersome dependencies for
compilation and proprietary code packages without source code.
Last but not least, it provides intuitive program insights and sug-
gestions to enable object-level and intra-object optimizations. To
the best of our knowledge, D�GPUM is the �rst general and object-
centric pro�ler to guide memory optimization for GPU-accelerated
applications.

In the remainder of this section, we �rst describe two motivat-
ing examples, showing the unique optimization opportunities de-
tectable only via D�GPUM. We then summarize the contributions
of this paper.

1.2 Motivating Examples
We study Laghos [14] and MiniMDock [63], two DOE applications,
and identify the following memory ine�ciencies.

Object-level ine�ciency: late deallocations. Laghos solves
the time-dependent Euler equations of compressible gas dynamics.
Listing 1 shows the problematic code snippet. Vector q_dx (line 2)
is a member variable of class QUpdate and resides in the GPU
memory. We �nd that the last access to q_dx occurs in function
UpdateQuadratureData() at line 7, whereas q_dx is not released
until the end of the program execution. For memory saving, one can
proactively invoke a GPUmemory deallocation API (e.g., cudaFree)
to release q_dx just after UpdateQuadratureData() is �nished.
This optimization reduces the memory peak by 18%. Identifying
this kind of ine�ciency requires tracking all GPU APIs that access
q_dx.

Intra-object ine�ciency: overallocations. MiniMDock is a
particle-grid based protein-ligand molecular docking tool. Listing 2
shows the problematic code snippet, which always allocates a maxi-
mum constant-size memory chunk for array pMem_conformations
on the GPU (line 2) without considering the actual size speci-
�ed by program inputs (line 7). As a result, many elements in
pMem_conformations are never accessed. By adjusting the allo-
cated memory size based on the inputs, one is able to achieve up
to a 64% reduction in peak memory usage. Identifying this kind of
ine�ciency requires monitoring accesses to individual elements in
pMem_conformations.

1 class QUpdate {
2 I Vector q_dx;
3 ...
4 }
5 qupdate = new QUpdate (...);
6 // The last function that accesses q_dx.
7 I qupdate ->UpdateQuadratureData (...);

Listing 1: Late memory deallocations in Laghos. The last
access to member variable q_dx of class QUpdate occurs
in function UpdateQuadratureData(), whereas q_dx is not
released until the end of the program execution.

1 void setup_gpu_for_docking (...) {
2 I size_population = MAX_NUM_OF_RUNS * MAX_POPSIZE *

GENOTYPE_LENGTH_IN_GLOBMEM * sizeof(float);
3 cudaMalloc ((void **)& (pMem_conformations), size_population);
4 }
5 ...
6 void docking_with_gpu (..., Dockpars& mypars) {
7 I size_population = mypars ->num_of_runs * mypars ->pop_size *

GENOTYPE_LENGTH_IN_GLOBMEM * sizeof(float);
8 cudaMemcpy(pMem_conformations , cpu_init , size_population ,

cudaMemcpyHostToDevice);
9 }

Listing 2: Memory overallocations in MiniMDock. Array
pMem_conformations is always allocated with a maximum
constant-size memory chunk without considering the actual
size speci�ed by program inputs.

1.3 Contribution Summary
In this paper, we make the following contributions:
• Investigate and categorize patterns of memory ine�ciencies in-
volved in GPU code, which serves as the foundation of D�GPUM.
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• Develop macroscopic object-level and microscopic intra-object
analyses and integrate them into D�GPUM to perform multi-
scale memory pro�ling on the GPU.

• Show that D�GPUMcanmonitor fully-optimized and unmodi�ed
GPU binaries and provide rich insights to guide memory opti-
mization. Such insights include an object-centric view, liveness
analysis, call paths of GPU APIs, ine�ciency patterns, as well
as metrics that can prioritize identi�ed ine�ciencies to facilitate
optimization.

• Demonstrate the e�ectiveness of D�GPUM in identifying various
forms of memory ine�ciencies in well-known benchmarks and
applications. Eliminating these ine�ciencies requires less than
nine source lines of code modi�cations and yields signi�cant
reductions in peak memory usage and/or signi�cant performance
improvements.

2 RELATEDWORK
There exist many optimization and pro�ling techniques for as-
sisting GPU application developers in tuning their code, such as
saving memory [6, 29, 31, 56, 66], eliminating redundant memory
accesses [61, 62, 67, 71, 72], reducingmemory access latency [33, 37],
increasing parallelism [28, 70], and minimizing synchronization
overhead [16, 24, 74]. This section only reviews the techniques that
are closely related to memory optimization and pro�ling on GPUs.

2.1 Memory Optimization
Recomputation, swapping, and compression are widely-used mem-
ory optimization techniques on GPUs. Recomputation was �rst
proposed to explore a tradeo� between time and space overheads
in Automatic Di�erentiation [22]. Recent work has extended re-
computation to develop deeper and wider DNNs. Gruslys et al. [23]
leveraged dynamic programming in conjunction with memoization
and recomputation to �nd an optimal balance between memory
usage and recomputation cost. Superneurons [66] performs layer-
wise recomputation; an improved variant of this work was proposed
in a later research [52], which performs tensor-wise recomputation
to achieve �ne-grained memory management.

Swapping-based approaches swap data between GPU and CPU
memories. vDNN [56] o�oads tensors that are not used in the near
future to the CPUmemory and prefetches them to the GPUmemory
when reuse is required. Capuchin [52] makes swapping decisions
on the �y based on dynamic tensor access patterns. Unlike vDNN
and Capuchin that focus on swapping tensors, SwapAdvisor [30]
swaps both tensors and parameters with a custom-designed genetic
algorithm to achieve a higher memory-saving ratio.

Compression-based approaches directly reduce the size of certain
data on GPUs and restore them when needed without data transfers
between CPUs and GPUs. Lal et al. [36] developed a Hu�man-based
lossless memory compressor based on a probability estimation of
symbols. COMET [31] adopts an error-bounded lossy compression
algorithm to reduce peak memory usage in convolutional neu-
ral network (CNN) training. JPEG-ACT [17] extends an existing
JPEG-based lossy compression algorithm to CNNs by exploiting
the similarities between images in computer vision and tensors in
CNNs. Compared to lossless compression algorithms, lossy ones

achieve a higher compression ratio with a certain level of accuracy
loss.

D�GPUM di�ers from the aforementioned approaches. First, as
a pro�ler, D�GPUM reports ine�ciencies and provides optimiza-
tion suggestions but does not modify application code, whereas
the aforementioned approaches do. Based on D�GPUM’s report,
users make optimization choices, which can include recomputa-
tion, swapping, compression, and many others. Second, D�GPUM
is generally applicable to GPU-accelerated applications, whereas
the aforementioned approaches typically target a speci�c class of
GPU workloads.

2.2 Memory Pro�ling
Most popular GPU pro�lers in industry and academia employ pro-
�ling interfaces such as CUPTI API [10], Sanitizer API [8], PC
sampling [12], SASSI [60], or NVBit [65] available for NVIDIA
GPUs to collect and analyze memory metrics. They, however, do
not correlate data objects with GPU APIs, thus missing out on
many optimization opportunities that D�GPUM can identify via
object-level and intra-object analyses.

Zhou et al. [71] proposed GVProf, a value-aware pro�ler to
identify redundant memory accesses; their follow-up work [72]
improves on GVProf’s pro�ling techniques to identify more redun-
dancy patterns. Diogenes [67] identi�es duplicate memory copies
by monitoring values copied from CPUs to GPUs. Orthogonal
to them, D�GPUM targets value-agnostic ine�ciencies. Besides,
GVProf and Diogenes detect ine�cient memory accesses only;
D�GPUM not only detects ine�cient memory accesses but also
memory wastage. CUDAAdvisor [58] instruments memory instruc-
tions using an LLVM compiler pass to measure reuse distance and
memory divergence. DARSIE [69] leverages an LLVM compiler pass
to identify redundant memory instructions. Unlike them, D�GPUM
is independent of compilers and can monitor legacy and proprietary
code packages that are only available in the form of binary �les.

3 PATTERNS OF MEMORY INEFFICIENCIES
AND OPTIMIZATION GUIDANCE

Our observation, which is justi�ed by myriad cases under investi-
gation, is that the following ten patterns of memory ine�ciencies
pervasively exist in GPU-accelerated applications. They fall into
two categories based on the granularity of ine�ciencies — object-
level and intra-object memory ine�ciencies. The former focuses
on accesses to individual data objects by treating the data object as
a whole and the latter focuses on accesses to individual elements
in each data object. Table 1 summarizes patterns of memory ine�-
ciencies found by D�GPUM in popular GPU programs, including
benchmarks and applications. In the remaining section, we elabo-
rate on each pattern and their respective optimization guidance.

3.1 Object-level Memory Ine�ciencies
De�nition 3.1 (Early Allocation). A data object O is allocated
before GPU APIs A1 and A2 1. O matches the early allocation

1GPU APIs include memory allocation, deallocation, copy, and set, and kernel launch.
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Table 1: Patterns of memory ine�ciencies found in popular GPU programs.

Programs
Object-level ine�ciency patterns Intra-object ine�ciency patterns

Early
Allocation

Late
Deallocation

Redundant
Allocation

Unused
Allocation

Memory
Leak

Temporary
Idleness

Dead
Write Overallocation Non-uniform

Access Frequency
Structured
Access

Rodinia [5] hu�man X X X X X
dwt2d X X X X X X

PolyBench [21]

2MM X X X
3MM X X X X
Gram-
Schmidt X X X X X

BICG X X X X
PyTorch [50] X X X X X
Laghos [14] X X X X X X
Darknet [54] X X X X X X X
XSBench [64] X X

MiniMDock [63] X X X X X
SimpleMultiCopy [13] X X X X

pattern ifA2 is the �rst GPUAPI that accessesO andA1 is executed
earlier than A2 2.

De�nition 3.2 (Late Deallocation). A data object O is deallocated
after GPU APIsA1 andA2. O matches the late deallocation pattern
if A1 is the last GPU API that accesses O and A2 is executed later
than A1.

The early allocation and late deallocation patterns are prevalent
in GPU-accelerated applications. The main reason is that applica-
tion developers tend to eagerly allocate memory in batches (typi-
cally at the beginning of a program) and lazily reclaim allocated
memory in batches (typically at the end of a program), leading to
memory wastage. For memory saving, the best course of action is
to defer a data object’s allocation until the time just before the �rst
GPU API that accesses this data object is executed and reclaim the
allocated memory as soon as GPU APIs do not access it.

De�nition 3.3 (Redundant Allocation). A1 is the last GPUAPI that
accesses a data object O1 and A2 is the �rst GPU API that accesses
another data object O2. O2 matches the redundant allocation pattern
with O1 if A1 ends before A2 starts and O1 does not exceed X% of
O2 in size.

Reusing an already-allocated data object not only saves memory
but also improves performance because it reduces the frequency of
performing expensive GPU memory allocation operations (i.e., call-
ing cudaMalloc family of functions). The optimization is straight-
forward; one can reuse the already-allocated data object to avoid
allocating a new one of (approximately) equal size. It is worth not-
ing that X is user-tunable; based on our experiments, we set X% to
10%.

De�nition 3.4 (Unused Allocation). A data object O matches the
unused allocation pattern if it is not accessed by GPU APIs.

De�nition 3.5 (Memory Leak). A data object O matches themem-
ory leak pattern if it is not deallocated by the end of execution.

Based on case studies, we observe that the unused allocation
and memory leak patterns are fairly common, especially in large
codebases where memory allocations can be hidden deep and go
unnoticed if not carefully designed or periodically monitored. For
2Note that a GPU memory allocation/deallocation API allocates/deallocates memory
for a data object but does not access that data object.

optimization, one should remove unused allocations and guarantee
that memory allocation and deallocation operations always appear
in pairs to avoid memory leaks.

De�nition 3.6 (Temporary Idleness). A8 andA8+1 are the 8C⌘ and
(8 + 1)C⌘ GPU APIs that access a data object O. If at least X GPU
APIs are executed between A8 and A8+1, O matches the temporary
idleness pattern in this time range.

A data object is temporarily idle during the execution of GPU
APIs that do not access it. The temporary idleness pattern is preva-
lent in DNNs. For instance, some activation maps accessed in the
forward propagation phase are not accessed by subsequent for-
ward GPU APIs until the backward propagation phase. One can
reduce memory consumption by o�oading temporarily-idle data
objects from the GPU memory to the CPU memory and bringing
them back when reuse is required. X is user-tunable; based on our
experiments, we set X to 2.

De�nition 3.7 (Dead Write). A data object O matches the dead
write pattern if no intervening GPU APIs access O between two
memory copies, two memory sets, or one memory copy and one
memory set (or vice versa) that write O.

A dead write occurs when a write operation, such as a memory
copy or set, to a data object is overwritten by the following write
operation without any use of the data object in between. This pat-
tern exposes useless memory operations during program execution.
For optimization, one can remove dead writes without a�ecting
program results.

3.2 Intra-object Memory Ine�ciencies
De�nition 3.8 (Overallocation). A data object O matches the
overallocation pattern if less than X% elements in O are accessed
by GPU APIs.

The overallocation pattern occurs if a data object holds many
elements while only a small portion of elements are accessed. Not
only do unnecessary elements waste memory, but also they result in
suboptimal data placement in the GPU memory hierarchy. NVIDIA
Ampere and Hopper architectures provide L2 cache residency con-
trols for users [43, 46]; with this facility, one can keep/evict data
in/from the L2 cache. However, due to the limited L2 cache size,
users could fail to make an overallocated data object that exhibits
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Table 2: Optimization guidance on memory overallocations.
We recommend that users focus their optimization e�orts on
data objects with both low percentages of accessed elements
and memory fragmentation.

% of
accessed elements

% of
fragmentation Optimization guidance

Low Low Easy to optimize and shrinking/freeing unaccessed
memory yields nontrivial bene�t to memory saving.

High Low Shrinking/freeing unaccessed memory
yields little bene�t to memory saving.

Low High Di�cult to optimize because unaccessed
elements are scattered all over the data object.

High High No action on memory saving.

strong locality of reference �t into the L2 cache, leading to unneces-
sary cache misses. For optimization, one needs to track every access
to a data object to locate unaccessed elements and then works out
a solution to shrink/free them. X is user-tunable, which quanti-
�es the severity of memory wastage in O. Besides, we compute
the percentage of memory fragmentation for O with the follow-
ing equation, which quanti�es the di�culty of shrinking/freeing
unaccessed memory.

FA06
O
=1 �

Size of the largest unaccessed memory chunk in O

Size of unaccessed memory in O
(1)

Guided by these two metrics, our optimization guidance is shown
in Table 2. Only data objects with both low percentages of accessed
elements and memory fragmentation are worth e�orts for optimiza-
tion. Based on our experiments, we investigate a data object 8 5 5
both percentages are less than 80%.

De�nition 3.9 (Non-uniform Access Frequency). A data object O
matches the non-uniform access frequency pattern at a GPU API A
if the variance 3 of access frequencies of di�erent elements in O is
higher than X%.

As on-chip memory, shared memory and cache enjoy much
lower latency than global memory (⇠100⇥ speedup [25]). However,
due to their limited sizes, oftentimes, only a small portion of a data
object can reside in shared memory and cache. By tracking access
frequencies of individual elements in a data object, one can discern
hot slices from cold ones within the data object and then place
the hot ones in shared memory and cache to accelerate memory
accesses. X is user-tunable; based on our experiments, we set X%
to 20%.

De�nition 3.10 (Structured Access). A data object O matches the
structured access pattern if each GPU API A8 accesses a slice of O
and these slices do not overlap.

The structured access pattern exposes a unique memory-saving
opportunity — replace a single memory allocation with multiple
smaller memory allocations whose lifetimes do not overlap. Poly-
Bench/GramSchmidt [21] falls into such an example. We �nd that
array R_gpu is split into many disjoint slices and each slice is ac-
cessed by a distinct instance of GPU kernel gramschmidt_kernel3
(invoked in a loop). For memory saving, instead of allocating a large
chunk of memory for the entire data object once and for all, one
can allocate memory for each slice separately. For example, one
3We employ the coe�cient of variation metric [68] to compute variance.

can allocate memory for a slice just before it is accessed by a kernel
instance, free the allocated memory just after the kernel instance
is �nished, and repeat this process until all kernel instances are
�nished.

4 DRGPUMWORKFLOW
D�GPUM is versatile and practical for production use: it works
on fully-optimized and unmodi�ed GPU binaries, does not require
any hardware or OS modi�cation, and features a user-friendly GUI.
Figure 1 shows the work�ow of D�GPUM, which consists of an
online data collector, an online pattern detector, an o�ine analyzer,
and an o�ine GUI.

Online data collector. The data collector leverages NVIDIA’s San-
itizer API [8] to intercept every GPU API to collect object-level
information (i.e., a data object’s lifetime, start address, and size) and
instrument every memory instruction to collect intra-object infor-
mation (i.e., which element(s) in a data object a memory instruction
touches). Also, it collects call paths of GPU APIs to provide deep
insights.

Online pattern detector. The pattern detector analyzes the data
obtained from the data collector to detect patterns of memory in-
e�ciencies. The detector performs object-level pattern detection
on the GPU to accelerate the analysis and minimize CPU-GPU
memory tra�c, and performs intra-object pattern detection on the
CPU/GPU in an adaptive fashion to avoid exhausting the GPU
memory. The output is composed of object-level and intra-object
ine�ciency patterns, along with their respective call paths and
optimization suggestions.

O�ine analyzer. The analyzer extracts line mapping informa-
tion (e.g., source code lines, �le names, and �le paths) from the
DWARF [15] debugging sections in executables and dynamically
loaded libraries, and associates them with ine�ciency patterns
obtained from the pattern detector. Also, the analyzer pinpoints
data objects involved in memory peaks, which are highlighted by
D�GPUM’s GUI. This way, D�GPUM narrows down the investiga-
tion scope to help users focus on data objects appearing on critical
paths. In our experiments, D�GPUM reports data objects involved
in the top two memory peaks, which is user-tunable.

O�ine GUI. The GUI is built atop an existing web-based graphi-
cal interface, Perfetto UI [39], which supports popular data formats
(e.g., JSON and Protocol Bu�ers) and runs in mainstream browsers
(e.g., Chrome, Firefox, Safari, and Microsoft Edge). Figure 7 in Sec-
tion 7.1 shows an example of the GUI, which visualizes data objects’
lifetimes, a topological order of GPU APIs, as well as ine�ciency
patterns and optimization suggestions correlated with data objects.
We defer the explanation of the GUI details to that section.

5 METHODOLOGY AND IMPLEMENTATION
In this section, we describe the implementation of D�GPUM’s
core components — data collector and pattern detector. D�GPUM’s
multi-scale analysis includes object-level and intra-object analyses.
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Data
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.json files

Pattern 
detector
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Figure 1: The Work�ow of D�GPUM.
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Timeline
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: Memory allocation : Memory copy : Memory set

: Memory deallocation : Data object: Kernel launch

Figure 2: The mental model of a timestamp-augmented
object-level memory access trace (denoted by the thick solid
line). On the trace, each pentagram represents access to a
data object (denoted by the circle), along with a GPU API
(denoted by the rectangle) that accesses this data object at
the timestamp T . Data object B matches the early allocation
and late deallocation patterns, and data object C matches the
memory leak and temporary idleness patterns.

The former analyzes accesses to individual data objects by treat-
ing the data object as a whole and the latter analyzes accesses to
individual elements in each data object.

5.1 Identifying Object-level Memory
Ine�ciencies

The key component of D�GPUM’s object-level analysis is a mem-
ory access trace, as shown in Figure 2, which is a unique view
among all existing GPU pro�lers. On the trace, each pentagram
represents access to a data object (denoted by the circle). The se-
quence of rectangles represents GPU APIs invoked at di�erent
timestamps T that access the corresponding data objects below.
D�GPUM associates each GPU API invocation with a timestamp,
which is aligned with its invocation order. To construct the memory
access trace, D�GPUM keeps track of active data objects and GPU
APIs. D�GPUM intercepts memory allocation and deallocation API
invocations to record necessary information for each data object.
At the invocation of each memory allocation API, D�GPUM obtains
the address range of the allocated data object as the key, unwinds
the call path using libunwind [42] as the value, and inserts them

into a memory mapM. At the invocation of each memory dealloca-
tion API, D�GPUM removes the corresponding record from M. At
the invocation of each memory copy, memory set, or kernel launch
API, D�GPUM looks up M with addresses this invocation touches
to determine which data objects have been accessed.

Automating pattern detection. With the help of a timestamp-
augmented memory access trace, D�GPUM can automate the anal-
ysis of memory ine�ciencies and provide actionable optimization
insights. Consider O as a data object, and assume that O is allo-
cated and deallocated at T0;;>2

$ and T
5 A44

$ , and the �rst and last

GPU APIs that access O are invoked at T 5 8ABC
$ and T ;0BC

$ . D�GPUM
walks through the memory access trace from the node with T

0;;>2
$

to the node with T
5 A44

$ and checks O’s ine�ciency patterns based
on the following rules:
• Early Allocation: If there exist GPU API invocations between
T
0;;>2
$ and T

5 8ABC
$ .

• Late Deallocation: If there exist GPU API invocations between
T
;0BC
$ and T

5 A44
$ .

• Unused Allocation: If O is not accessed by GPU APIs between
T
0;;>2
$ and T

5 A44
$ .

• Memory Leak: If there is no GPU memory deallocation API asso-
ciated with O.

• Temporary Idleness: If there exist at least two (user-tunable) GPU
API invocations between two consecutive GPU APIs that access
O.

• Dead Write: If O is not accessed by GPU APIs between two mem-
ory copies, two memory sets, or one memory copy and one
memory set (or vice versa) that write O.
For example, based on the trace in Figure 2, D�GPUM identi�es

that data object B matches the early allocation pattern because
there exist four GPU API invocations between the time when B is
allocated (T = 2) and the timewhen the �rst GPUAPI that accesses B
is invoked (T = 7). Also, D�GPUM identi�es that Bmatches the late
deallocation pattern because there exist two GPU API invocations
between the time when the last GPU API that accesses B is invoked
(T = 9) and the time when B is freed (T = 12).

Detecting redundant allocations. Detecting the redundant alloca-
tion pattern is di�erent from detecting the others. A data object can
reuse the memory of another data object freed before it is allocated,
while it can also be reused by others allocated after it is freed. To
address this challenge, we developed a one-pass algorithm that
scans the memory access trace once to suggest potential data object
reuse pairs, as illustrated in Figure 3. 1� For each data object, we
extract the �rst and last GPU APIs (including memory set, memory
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Figure 3: An example of identifying redundant allocations.

copy, and kernel launch APIs) that access it from the memory access
trace. 2� For data objects whose sizes are within a user-de�ned
percentage threshold of di�erence (10% in our experiments), we
sort their �rst and last GPU APIs based on each GPU API’s times-
tamp, and the last GPU API is placed after the �rst GPU API if they
have the same timestamp. For example, in Figure 3, the last GPU
API A5 of O1 is placed after the �rst GPU API A5 of O3. 3� We
traverse the sorted GPU API list from the tail to the head. During
the traversal, each data object can be changed from one status to
another. (a) Initial represents a data object’s initial status. (b) In
Use indicates that a data object’s last GPU API has been visited,
but its �rst GPU API has not. (c) Done indicates that a data object’s
�rst and last GPU APIs have been visited. (d) Reused indicates a
data object has been reused, so it is no longer available for reuse by
other objects (but it can still reuse others.). 4� Once a data object
O8 turns to the Done status, we select the closest data object O9 to
it from the left with the Initial status and recommend that O8
reuses O9 ’s memory. After O9 has been selected for reuse, its status
becomes Reused. In Figure 3, when the �rst GPU API A6 of O4 is
visited on the GPU API list, O4’s status is changed to Done. Then,
we claim that O4 can reuse O1’s memory and change O1’s status
to Reused.

5.2 Identifying Intra-object Memory
Ine�ciencies

D�GPUM’s intra-object analysis instruments every memory in-
struction (i.e., memory read and write) in GPU binaries to track
accesses to individual elements within a data object. Upon the exe-
cution of each instrumented memory instruction, D�GPUM obtains
its accessed memory range (i.e., start address and size) to determine
which object has been accessed and which elements in this object
have been accessed.
• Overallocation:D�GPUMmaintains a bitmap for each data object,
of which each bit corresponds to the access status of an element
in the data object. The initial status of each bit in a data object’s
bitmap is “untouched” (0). Upon the execution of an instrumented

memory instruction, D�GPUM sets the states of corresponding
bits to “accessed” (1) in the accessed data object’s bitmap. After
all GPU APIs are �nished, D�GPUM examines each data object’s
bitmap to compute the percentage of accessed elements and
identi�es data objects whose accessed percentages are less than
a user-de�ned percentage threshold (80% in our experiments).

• Structured Access: Di�erent from the overallocation pattern,
D�GPUM creates multiple bitmaps for a data object, where each
bitmap represents memory accesses of a GPU API. For each
data object, if its bitmaps of di�erent GPU APIs do not overlap,
D�GPUM reports the structured accessed pattern.

• Non-uniform Access Frequency: D�GPUM maintains a hashmap
for each data object, where each cell stores the access frequency
of an element in the data object. Upon the invocation of a GPU
API A, D�GPUM zeros out hashmaps of data objects this GPU
API will access. Upon the execution of an instrumented memory
instruction, D�GPUM increases the access frequencies of corre-
sponding elements by one in the accessed data object’s hashmap.
After A is �nished, D�GPUM examines each accessed data ob-
ject’s hashmap to compute the variance of access frequencies of
individual elements. If the variance is higher than a user-de�ned
percentage threshold (20% in our experiments), D�GPUM reports
the non-uniform access frequency pattern and plots the hashmap
as a histogram to facilitate optimization. D�GPUM repeats the
above steps until all GPU APIs are �nished.

5.3 Handling Multi-stream GPU Applications
While D�GPUM can sequence GPU APIs according to their invoca-
tion order for single-stream applications, the scenario of multi-
stream applications, where GPU APIs dispatched on di�erent
streams are executed concurrently, complicates matters. D�GPUM
addresses this challenge by constructing a dependency graph to
track dependencies across GPU APIs and establish a topological
order for them.

De�nition 5.1 (Dependency Graph). A dependency graph ⌧ =
(+ , ⇢) is a directed acyclic graph, where+ is the set of vertices and
⇢ is the set of edges.

• Each vertex E 2 + represents a GPU API, i.e., a memory alloca-
tion, memory deallocation, memory copy, memory set, or kernel
launch.

• An edge 48, 9 2 ⇢ exists from E8 to E 9 if one of the following holds:
– E8 and E 9 pertain to the same stream and E 9 is E8 ’s immediate
successor. In this case, 48, 9 denotes the intra-stream execution
dependency between E8 and E 9 .

– E8 allocates/writes a data object OG , E 9 reads OG , and no E: 2 +
writes OG following E8 and before E 9 . In this case, 48, 9 is labeled
with a read operation for E 9 , denoting a read-after-write (RAW)
dependency on OG between E8 and E 9 .

– E8 allocates/writes a data object OG , E 9 frees/writes OG , and
no E: 2 + reads/writes OG following E8 and before E 9 . In this
case, 48, 9 is labeled with a free/write operation for E 9 , denoting
a write-after-write (WAW) dependency on OG between E8 and
E 9 .

– E8 reads a data object OG , E 9 frees/writes OG , and no E: 2 +
writes OG following E8 and before E 9 . In this case, 48, 9 is labeled
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with a free/write operation for E 9 , denoting a write-after-read
(WAR) dependency on OG between E8 and E 9 .
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Figure 4: The mental model of a timestamp-augmented de-
pendency graph, where vertices represent GPUAPIs (denoted
by rectangles), and edges represent data dependencies (de-
noted by red edges) and intra-stream execution dependencies
(denoted by green edges). The red edges indicate the execu-
tion order for inter-stream GPU APIs, while the green edges
indicate the execution order for intra-stream GPU APIs.

Figure 4 shows an example of constructing a dependency graph
based on De�nition 5.1, where vertices represent GPU APIs and
edges represent dependencies across GPU APIs. D�GPUM tracks
two kinds of dependencies: RAW/WAW/WAR data dependencies
(denoted by red edges) and intra-stream execution dependencies
(denoted by green edges). The former indicates the execution order
for GPU APIs pertaining to di�erent streams, while the latter in-
dicates the execution order for GPU APIs pertaining to the same
stream (GPU APIs are executed sequentially within a stream.). To
track data dependencies, D�GPUM monitors the �ow of data ob-
jects across GPU APIs. To track intra-stream execution dependen-
cies, D�GPUM monitors GPU API invocations within each stream,
where the invocation order is consistent with the execution order.

After construction of the dependency graph, we employ Kahn’s
topological sorting algorithm [32] in conjunction with a global
timestamp T to annotate the topological order of vertices in the
graph. The topological order ensures that, for any given directed
edge, the execution of the origin vertex precedes that of the des-
tination vertex. We elaborate on major steps of the algorithm as
follows. 1� D�GPUM initializes T to zero. 2� D�GPUM searches
the dependency graph for vertices with an in-degree of zero, assigns
T to them, and deletes them along with their outgoing edges from
the graph. 3�D�GPUM updates in-degrees of vertices adjacent to
the deleted vertices. 4� D�GPUM increases T by one. 5� D�GPUM
repeats steps 2�- 4� until the graph is empty. In the end, every ver-
tex is annotated with a timestamp, denoting its topological order
in the graph.

With the help of a timestamp-augmented dependency graph as
shown in Figure 4, D�GPUM can obtain the ine�ciency distance
between any two dependent vertices (i.e., dependent GPU APIs) by
computing the di�erence between their timestamps, which helps
quantify the severity of identi�ed ine�ciencies. For example, in
Figure 4, data object O1 is allocated at T [ALLOC1

1] = 0, and the
�rst access to O1 occurs at T [CPY21] = 3; thus, O1 matches the
early allocation pattern and the ine�ciency distance is 3.

5.4 Handling Custom GPU Memory APIs
Existing DL frameworks, such as PyTorch [50] and TensorFlow [1],
typically pre-allocate a large chunk of GPU memory, used as a
memory pool, at the beginning of the execution. Then, users can re-
quest and release tensors from the memory pool using custom GPU
memory APIs with low overhead. As NVIDIA’s Sanitizer API has no
visibility into custom GPU memory APIs, we developed a memory
pro�ling interface for PyTorch and integrate it into D�GPUM. Our
memory pro�ling interface registers a callback through PyTorch’s
ThreadLocalDebugInfo utility to monitor every allocation and
deallocation operations on PyTorch’s memory pool. At each mem-
ory operation, we associate it with a call path consisting of Python
frames to identify where this operation occurred and update the
total amount of allocated and reserved memory.

5.5 Accelerating Pattern Analysis
Without optimization, D�GPUM can easily exhaust scarce GPU
memory and introduce high time overhead. For instance, without
optimization, D�GPUM incurs up to a 1170⇥ time overhead when
monitoring Darknet [54]. We propose several strategies to reduce
D�GPUM’s time and memory overheads.
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Data object’s start address Data object’s end address Access flag

Figure 5: An example of identifying data objects accessed by
kernels on the GPU.

Accelerating object-level analysis. Naively, we can record infor-
mation about every GPU memory access in a bu�er and copy the
bu�er to the CPU when it is full to construct the memory access
trace. However, this method can result in frequent CPU-GPU data
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Table 3: The con�gurations of two GPU platforms: NVIDIA RTX 3090 and A100 GPUs

CPU GPU GPU memory System GPU
driver

CUDA
Toolkit GCC Compiler options

Intel(R) Xeon(R) 4316 RTX 3090 24 GB GDDR6X Linux 5.4 460.32 11.2.1 9.4.0 -g -lineinfo -O3 -arch sm_86
AMD EPYC 7402 A100 40 GB HBM2 Linux 4.18 460.27 11.1.1 8.3.1 -g -lineinfo -O3 -arch sm_80

transfers and long execution time on the CPU. To accelerate object-
level analysis, we o�oad major steps of constructing the memory
access trace to the GPU, as shown in Figure 5. We maintain a mem-
ory map M on the CPU, which records the address range of every
active data object. We copy M to the GPU at each kernel launch 4

and associate each entry with a hit �ag, representing whether the
kernel accesses this data object. The initial status of every hit �ag is
“untouched” (0). For each GPU memory access, we adopt a binary
search to locate which data object the address belongs to inM and
set the corresponding hit �ag to “accessed” (1). After the kernel is
�nished, we copy all hit �ags to the CPU to identify which data
objects have been accessed by the kernel. We gained nontrivial
speedup from this design. For instance, the object-level analysis
time of Darknet is reduced from 1.5 hours to 12 seconds.

Accelerating intra-object analysis. For intra-object analysis,
D�GPUM needs to �ll each memory access record into the cor-
responding cell of bitmaps/hashmaps. In the following, we refer to
the bitmap/hashmap as the access map. D�GPUM implements two
modes to collect information: (a) copying all accessed addresses
from the GPU to the CPU and updating access maps on the CPU;
(b) updating access maps on the GPU and copying the �nal results
back to CPU after each kernel is �nished. Option (b) is much faster
than option (a) since updates can be done via atomic operations
by massive threads on the GPU. However, the size of access maps
in option (b) is subject to the GPU memory capacity; option (a)
does not impose this limitation in most cases. We have to ensure
the total size of access maps and active data objects does not ex-
ceed the GPU memory capacity. To this end, D�GPUM computes
the total size of access maps and data objects before each kernel
launch. If the total size is smaller than the GPU memory capacity,
D�GPUM selects option (b); otherwise, it selects option (a). This
method strikes a good balance between pro�ling overhead and pro-
�ling applicability. In addition, D�GPUM adopts kernel sampling
and kernel whitelist [71] to further reduce its time and memory
overheads. The former is based on an observation that code behav-
iors typically remain similar across di�erent instances of the same
GPU kernel. The latter allows users to specify one or more GPU
kernels of interest for monitoring.

5.6 Discussion
First, like other dynamic pro�lers, D�GPUM’s pro�ling output is
input-dependent. Therefore, we recommend using typical program
inputs for representative pro�les. Second, D�GPUM identi�es mem-
ory ine�ciencies and provides optimization suggestions but does
not implement automatic ine�ciency �xing mechanisms. Third,

4There is no need to copy M to the GPU at the invocation of a memory copy or set
API because NVIDIA’s Sanitizer API provides facilities to directly obtain the accessed
address range.

D�GPUM does not incur false positives; all reported memory ine�-
ciencies are real ine�ciencies. However, users’ postmortem analysis
is necessary to make appropriate and safe optimization choices. Last
but not least, D�GPUM is built atop NVIDIA’s Sanitizer API, which
works on NVIDIA GPUs only. However, the proposed methodology
is generally applicable to other GPU brands if necessary binary
instrumentation engines are available.

6 EVALUATION
We evaluated D�GPUM on two GPU platforms shown in Table 3.
We applied D�GPUM on well-known HPC benchmarks, such as Ro-
dinia [5], PolyBench [21], XSBench [64], and SimpleMultiCopy [13],
as well as DL and HPC applications, such as PyTorch [50], Dark-
net [54], Laghos [14], and MiniMDock [63].

Overhead measurement. Figure 6 shows the overhead of
D�GPUM, which is measured as the ratio of the execution time of a
program with D�GPUM enabled to the execution time of its native
execution. To reduce system noises, we run every program 10 times
and compute the average. D�GPUM incurs moderate overhead for
both object-level and intra-object analyses. For object-level anal-
ysis, D�GPUM has a median overhead of 1.45⇥ and 1.30⇥, and a
geometric mean overhead of 2.19⇥ and 2.28⇥ on RTX 3090 and
A100, respectively. For intra-object-analysis, D�GPUM has a me-
dian overhead of 3.55⇥ and 4.13⇥, and a geometric mean overhead
of 3.66⇥ and 3.31⇥ on RTX 3090 and A100, respectively. We observe
three takeaways. First, A100 enjoys lower overhead over programs
that involve many memory accesses (e.g., Polybench/2MM) because
of its higher bandwidth than RTX 3090. Second, MiniMDock su�ers
the highest overhead on both machines because it involves signi�-
cant memory accesses and GPU API invocations. The former results
in high overhead for intra-object analysis and the latter results in
high overhead for object-level analysis. Third, the A100 machine
incurs noticeably higher overhead over Rodinia/dwt2d than the
RTX 3090 machine because most execution time in Rodinia/dwt2d
is spent on the CPU side and the AMD EPYC 7402 CPU o�ers worse
performance than the Intel(R) Xeon(R) 4316 CPU.

Program optimization. Table 4 summarizes the memory inef-
�ciencies reported in GPU programs using D�GPUM, and peak
memory reductions and speedups obtained by eliminating the inef-
�ciencies. From the table, we can see that nontrivial peak memory
reductions and speedups are achieved with just a few source lines
of code modi�cations. To guarantee optimization correctness, we
ensure the optimized code does not change program semantics
for any inputs and passes validation tests. Note that all the ine�-
ciencies were found and �xed by a graduate student familiar with
CUDA programming but with no prior knowledge of the pro�led
programs. Thanks to D�GPUM’s intuitive optimization guidance,
that student typically spent ⇠1.5 hours �xing each ine�ciency.

172



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mao Lin, Keren Zhou, and Pengfei Su

D
ar

kn
e-

La
gh

os

M
in

iM
D
oc

k

X
SB

en
ch

R
od

in
ia

/h
u 

 m
an

R
od

in
ia

/d
0
-2

d

Po
l1

be
nc

h/
2M

M

Po
l1

be
nc

h/
3M

M

Po
l1

be
nc

h/

G
ra

m
Sc

hm
id

-

Po
l1

be
nc

h/
B
IC

G

P1
To

rc
h

Si
m

pl
eM

ul
-i
C
op

1

G
eo

m
ea

n

M
ed

ia
n

0

5

10

15

20

25
S
lo

0
d
o
0

n
 F

a
c
-
o
r A100 Objec--le/el

A100 In-ra-objec-

RTX 3090 Objec--le/el

RTX 3090 In-ra-objec-

Figure 6: D�GPUM’s overhead on benchmarks and applications. In object-level analysis, D�GPUM monitors all GPU APIs
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Table 4: Overview of peak memory reductions and performance gains guided by D�GPUM.

Programs

Ine�ciencies Optimizations

DomainsData objects Patterns SLOC
mod.

Peak mem.
reductions⇤

Speedups
RTX
3090 A100

Rodinia

hu�man d_cw32
d_sourceData

UA
LD

2
2 67% – – Lossless

compression

dwt2d

c_r_out
c_g_out
backup
c_g

EA
RA
UA
TI

4
2
4
5

48% – – Image/video
compression

Poly-
Bench

2MM
A_gpu
B_gpu
D_gpu

LD
RA
EA

2
5
4

40% – – Matrix
multiplication

3MM

A_gpu
C_gpu
E_gpu
F_gpu

RA
LD
TI
EA

5
2
4
4

57% – – Matrix
multiplication

Gram-
Schmidt R_gpu SA

NUAF
6
4

33%
–

–
1.39⇥

–
1.30⇥

Gram-Schmidt
decomposition

BICG s_gpu
q_gpu

NUAF
NUAF

8
8 – 2.06⇥ 2.48⇥ Linear solver

PyTorch columns UA 3 3% – – Deep
learning

Laghos q_dx
q_dy

LD
LD

2
2 35% – – LAGrangian

solver

Darknet
l.weights_gpu
l.output_gpu
l.delta_gpu

DW
EA
UA

1
3
2

83% – – Deep
learning

XSBench GSD.concs
GSD.index_grid

ML
OA

1
8 63% – – Neutronics

MiniMDock pMem_
conformations OA 2 64% – – Molecular

biology

SimpleMultiCopy

d_data_in1
d_data_out1
d_data_in2
d_data_out2

TI
EA
LD
LD

4
2
2
2

50% – – Data
communication

EA: Early Allocation, LD: Late Deallocation, RA: Redundant Allocation, UA: Unused Allocation, ML: Memory Leak,
TI: Temporary Idleness, DW: Dead Write, OA: Overallocation, NUAF: Non-uniform Access Frequency, SA: Structured Access.
⇤ : The optimization yields the same peak memory reduction for each program on RTX 3090 and A100.
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7 CASE STUDIES
This section dives into several case studies listed in Table 4 to show
how D�GPUM guides optimization. We ran each program with its
default input unless otherwise speci�ed.

7.1 SimpleMultiCopy
SimpleMultiCopy [13] is a multi-stream sample program released
with NVIDIA CUDA Toolkit [9]. Figure 7 shows a snapshot of
D�GPUM’s web-based GUI that visualizes the pro�le of Simple-
MultiCopy for intuitive analysis. The GUI consists of three panes.
The top pane shows the topological order of GPU APIs in the time-
line. The middle pane presents data objects related to the top two
memory peaks in SimpleMultiCopy, along with GPU APIs that
access these data objects. The bottom pane provides rich informa-
tion for each GPU API, including call paths, ine�ciency patterns,
ine�ciency distances, and optimization suggestions. This �gure
highlights that data object d_data_out1 matches the early allo-
cation pattern because it is allocated at ALLOC(0, 2), which is
three GPU APIs (i.e., ALLOC(0, 3), SET(0, 2), and ALLOC(0, 4))
before its �rst-touch GPU API KERL(0, 1). For memory saving,
D�GPUM suggests deferring the allocation of d_data_out1 just
before KERL(0, 1).

The middle pane also involves other ine�ciency patterns, of
which detailed insights are not shown in the �gure due to the
page limit. 1� Data object d_data_in1 is temporarily idle during
the execution of ALLOC(0, 2), ALLOC(0, 3), SET(0, 2), and
ALLOC(0, 4); D�GPUM suggests freeing d_data_in1 just before
ALLOC(0, 2) and reallocating it just after ALLOC(0, 4). 2� Data
objects d_data_in2 and d_data_out2 match the late deallocation
pattern; D�GPUM suggests freeing them immediately after their
respective last-touch GPU APIs.

By incorporating the aforementioned optimizations, we cut the
peak memory usage by 50% on RTX 3090 and A100.

7.2 Darknet
We applied D�GPUM to pro�le the inference phase of the

YOLOv4 [4] model with Darknet, a popular DL framework.
D�GPUM identi�es that array l.weights_gpu matches the dead
write pattern. Further investigation shows that l.weights_gpu is
initialized twice without an intervening read in the forward phase
of each convolutional layer, as shown in Listing 3. The �rst initializa-
tion (i.e., the dead write) occurs in function cuda_make_array() at
line 2, which allocates memory for l.weights_gpu on the GPU and
then initializes it with l.weights, an array on the CPU. The sec-
ond initialization occurs in function cuda_push_array() at line 7,
which initializes l.weights_gpu again. To eliminate the unneces-
sary initialization, as per Darknet’s API manual, we change the �rst
parameter of cuda_make_array() to zero (line 3) such that it only
allocates memory on the GPU without initialization.

D�GPUM also identi�es other ine�ciency patterns in Darknet,
which are not shown in Listing 3. Array l.output_gpumatches the
early allocation pattern; it is allocated in the networking parsing
phase (i.e., the beginning of the execution) but unused until the
forward phase of convolutional layers. Array l.delta_gpumatches
the unused pattern; it is allocated in the Route layer but unused
during the entire inference phase. After optimizing all the identi�ed

ine�ciencies, we reduce Darknet’s memory peak by 83% on RTX
3090 and A100.

7.3 Polybench/GramSchmidt and BICG
Polybench/GramSchmidt [21] is a method for orthonormaliz-
ing a set of vectors in an inner product space. D�GPUM re-
ports that array R_gpu matches the structured access pattern at
GPU kernel gramschmidt_kernel3. Our investigation reveals that
gramschmidt_kernel3 is invoked in a hot loop and accesses a slice
of R_gpu in each invocation. These slices are the same size and do
not overlap, as shown in Figure 8. To save memory, before entering
the loop, we request GPUmemory for a slice of R_gpu instead of for
the whole R_gpu and reuse it across di�erent invocation instances
of gramschmidt_kernel3. This optimization reduces the memory
peak by 33% on RTX 3090 and A100. D�GPUM further reports that
the variance of access frequencies of individual slices in R_gpu is
58%, indicating R_gpu matches the non-uniform access frequency
pattern. For optimization, we sort the slices based on their access
frequencies and place the top 60% hottest slices in shared memory,
which yields a 1.39⇥ speedup on RTX 3090 and a 1.30⇥ speedup on
A100, respectively. It is worth noting that an even higher speedup
can be achieved by �ne-tuning the percentage of slices that reside
in shared memory.

Using D�GPUM, we �nd the same ine�ciency pattern in arrays
s_gpu and q_gpu in Polybench/BICG [21], a linear system solver.
By performing the same optimization on s_gpu and q_gpu, we
obtain a 2.06⇥ speedup on RTX 3090 and a 2.48⇥ speedup on A100,
respectively.

7.4 PyTorch
Resnet50 [27] is a 50-layer convolutional neural network. We

pro�led it on PyTorch [50]. D�GPUM reveals that tensor columns
matches the unused allocation pattern, which is created and as-
signed memory at line 2 in Listing 4. Further investigation shows
that columns is accessed only when the binary condition in the
ternary operator ?: at line 6 is true. Thus, we can conditionally
bypass the memory allocation for columns (line 4) when the binary
condition in ?: is false. Adding this simple conditional check re-
duces the peak memory usage of convolutional layers by 3% on RTX
3090 and A100. This patch has been upstreamed to the PyTorch
repository.

7.5 XSBench
XSBench [64], a mini-app developed by the Argonne National
Laboratory, models the Monte Carlo neutron transport algo-
rithm. D�GPUM reports that array GSD.index_grid matches the
overallocation pattern. The percentage of accessed elements in
GSD.index_grid is 5%, indicating most elements are unaccessed.
Our investigation reveals that GSD.index_grid consists of many
equal-sized chunks and each GPU thread accesses one chunk only.
Consequently, most chunks are untouched. To save memory, we
reclaim all untouched memory chunks. Our optimization yields a
63% reduction in peak memory usage on RTX 3090 and A100, and
has been upstreamed to the XSBench repository.
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Insights

Data object

GPU
API

Figure 7: D�GPUM’s report for SimpleMultiCopy, showing that data object d_data_out1matches the early allocation pattern
with detailed optimization insights. ALLOC(i, j): 9C⌘ cudaMalloc on stream 8, SET(i, j): 9C⌘ cudaMemset on stream 8, CPY(i, j): 9C⌘

cudaMemcpy on stream 8, FREE(i, j): 9C⌘ cudaFree on stream 8, KERL(i, j): 9C⌘ kernel launch on stream 8.

1 convolutional_layer make_convolutional_layer (...) {
2 - l.weights_gpu = cuda_make_array(l.weights , l.nweights);
3 + l.weights_gpu = cuda_make_array (0, l.nweights);
4 ...}
5 ...
6 void push_convolutional_layer (...) {
7 cuda_push_array(l.weights_gpu , l.weights , l.nweights);
8 ...}

Listing 3: The dead write pattern in Darknet. l.weights_gpu,
an array on the GPU, is initialized twice without an
intervening read in the forward phase of each convolutional
layer.

gramschmidt_kernel3

Array: R_gpu
…

1st
invocation

3rd
invocation

2nd
invocation

Figure 8: The mental model of the structured access pattern
in GramSchmidt. gramschmidt_kernel3 is invoked in a loop
and accesses a slice of array R_gpu in each invocation. These
slices do not overlap.

7.6 MiniMDock
D�GPUM detected the overallocation pattern described in Sec-
tion 1.2. D�GPUM reports that array pMem_conformations is the
largest data object in MiniMDock, of which only 2.4E-3% elements
are accessed and memory fragmentation is as low as 4.89E-3%. By
applying the optimization described in Section 1.2, we obtain a 64%
reduction in peak memory usage on RTX 3090 and A100. This patch
has been upstreamed to the MiniMDock repository.

1 void slow_conv2d_forward (...) {
2 - auto columns = at::empty({ nInputPlane * kW * kH, outputHeight *

outputWidth}, input.options ());
3 + at:: Tensor columns;
4 + if (requires_columns) {
5 + columns = at:: empty ({ nInputPlane * kW * kH , outputHeight *

outputWidth}, input.options ());}
6 auto gemm_in_ptr = requires_columns ? columns.data_ptr <scalar_t

>() : input_n.data_ptr <scalar_t >();
7 }

Listing 4: The unused allocation pattern in PyTorch. Tensor
columns is always assignedwithmemorywithout considering
whether the assigned memory is used.

7.7 Laghos
Using D�GPUM, we con�rmed and optimized the late deallocation
pattern described in Section 1.2. Besides, D�GPUM highlights that
another member variable q_dy of class QUpdate su�ers from the
same ine�ciency and guides the same optimization. Together, these
two optimizations deliver a 35% reduction in peakmemory usage on
RTX 3090 and A100, and have been con�rmed by Laghos developers.

7.8 Comparison with State-of-the-art Tools
We ran ValueExpert [72] and Compute Sanitizer (with thememcheck
substrate) [8] on every benchmark and application studied in this
paper to compare memory ine�ciencies detected by each tool.
Table 5 draws an overview of the comparison results, from which
we can make the following key conclusions:
1 Except for unused allocations, ValueExpert failed to detect any
ine�ciencies reported by D�GPUM. ValueExpert targets value-
aware memory ine�ciencies (e.g., consecutive writes of the same
value to the same memory location), while D�GPUM targets
value-agnostic memory ine�ciencies.

2 Except for memory leaks, Compute Sanitizer failed to detect any
ine�ciencies reported by D�GPUM. Compute Sanitizer is highly
specialized for detecting various forms of memory errors, such as
memory leaks, out-of-bound memory accesses, and misaligned
memory accesses, but not memory ine�ciencies. It is worth
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Table 5: D�GPUM vs. state-of-the-art tools: whether the in-
e�ciencies detected by D�GPUM could be detected by other
tools.

Ine�ciency
patterns D�GPUM ValueExpert Compute

Sanitizer
Early Allocation Yes No No
Late Deallocation Yes No No

Redundant Allocation Yes No No
Unused Allocation Yes Yes⇤ No
Memory Leak Yes No Yes

Temporary Idleness Yes No No
Dead Write Yes No No

Overallocation Yes No No
Non-uniform

Access Frequency Yes No No

Structured Access Yes No No
⇤: While ValueExpert does not report unused allocations, users can reason
about them with ease based on ValueExpert’s pro�ling output.

noting that Compute Sanitizer can detect memory leaks caused
not only by the host-side cudaMalloc but also the device-side
malloc [45], while D�GPUM can detect the former only.

8 CONCLUSIONS AND FUTUREWORK
This paper presents D�GPUM, the very �rst pro�ler that system-
atically investigates patterns of memory ine�ciencies in GPU-
accelerated applications and provides rich insights to guide opti-
mization. D�GPUM can identify both object-level and intra-object
memory ine�ciencies, which helps isolate memory usage problems
in complex codebases. D�GPUM works on fully-optimized and un-
modi�ed GPU binaries, requires no modi�cation to hardware or
OS, and features a user-friendly GUI, making it attractive to produc-
tion software. Guided by D�GPUM, we are able to optimize several
GPU benchmarks and applications. The results show signi�cant
peak memory reductions and/or signi�cant performance improve-
ments. Our optimization patches have been con�rmed or accepted
by application developers.

We envision two future directions. One is to enable D�GPUM to
support TensorFlow. The other is to explore memory ine�ciencies
beyond GPU code. We will investigate both CPU and GPU code to
identify memory ine�ciencies that reside in CPU-GPU interactions,
such as page-level false sharing in uni�ed memory.
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A ARTIFACT APPENDIX
A.1 Abstract
Our artifact includes D�GPUM and benchmarks, along with in-
structions to generate results for Table 1, Table 4, Figure 6, and
Figure 7 on NVIDIA A100 and RTX 3090 GPUs. The memory peak
reduction and D�GPUM’s pro�ling overhead for each benchmark
are averaged among 10 runs.

We provide a docker image with pre-installed prerequisites to
simplify the experiment work�ow. Users can also start from scratch.

A.2 Artifact Check-list (Meta-information)
• Benchmarks: Laghos@54977f7, AlexeyAB/dark-
net@b4d03f8, XSBench@�7e9d4, miniMDock@3811014,
PyTorch@34b0285, Rodinia v3.1, polybench-gpu@08b2fb0

• Run-time environment: Linux x86-64 systems.
• Hardware: NVIDIA Volta GPUs and later generations.
• Metrics: Memory ine�ciency patterns, memory peak reduc-
tions, and pro�ling overhead

• Output: An example of D�GPUM GUI. A �le that contains
memory peak reductions for all benchmarks. A �le that con-
tains pro�ling overhead for all benchmarks.

• How much disk space required (approximately)?: 300 GB
• How much time is needed to prepare work�ow (approxi-
mately)?: 4 hours

• How much time is needed to complete experiments (approxi-
mately)?: 5 hours

• Publicly available?: Yes
• Code licenses (if publicly available)?: BSD-3
• Archived (provide DOI)?: doi.org/10.5281/zenodo.7588406

A.3 Description
A.3.1 How to Access. The artifact is published on Zenodo [38].

A.3.2 Hardware Dependencies. D�GPUM currently only works
on NVIDIA Volta GPUs and generations above. We have tested
D�GPUM’s correctness and performance on machines equipped
with NVIDIA A100 and RTX 3090 GPUs. To reproduce the results
in the paper, we suggest the reviewers use the same GPUs and a
machine with at least 300 GB of available disk space.

A.3.3 So�ware Dependencies.
• NVIDIA CUDA driver: � 460.27
• CUDA Toolkit: 11.1.1 and above
• GCC: 8.3.1 and above
• Linux Kernel: 4.18.0 and above

A.4 Installation
Decompress the packages and launch a docker instance.

7za x drgpum_ae_image.tar.7z

7za x docker_drgpum_home.7z

docker load -i drgpum_ae_image.tar

docker run --rm --runtime=nvidia -it -v \

�pwd�/docker_drgpum_home:/root drgpum_ae

Install D�GPUM and benchmarks (4 hours).

cd /root

# [gpu_arch]=80 if you are using A100

# [gpu_arch]=86 if you are using RTX 3090

./scripts/install.sh [gpu_arch] # ~4 hours

A.5 Experiment Work�ow
Reproduce memory peak reductions in Table 4 and ine�ciency
pattern detection in Table 1 (1 hour).
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cd /root && ./scripts/tables.sh # ~1 hour

cat ./results/memory_peak.txt

cat ./results/patterns.txt

Reproduce overhead in Figure 6 and D�GPUM GUI in Figure 7
(4 hours). It will generate an overhead.pdf �le and a liveness.json
�le under /root/results/.

cd /root

./scripts/overhead.sh # generate overhead.pdf (~4 hours)

./scripts/generate_gui.sh # generate liveness.json (~5 mins)

D�GPUM GUI is built atop Perfetto (https://ui.perfetto.dev/). To
view D�GPUM GUI on Perfetto, click on Open trace �le on the left
pane of Perfetto and then upload liveness.json.

A.6 Evaluation and Expected Results
The reproduced results for Table 1, Table 4, Figure 6, and Figure 7
are expected to match the corresponding results in the paper. Ta-
ble 1 shows ine�ciency patterns and Table 4 shows memory peak
reductions. Figure 6 shows D�GPUM’s pro�ling overhead. Figure 7
shows a snapshot of D�GPUM GUI that visualizes the pro�le of
SimpleMultiCopy. Our PRs for PyTorch 79183, XSBench 24, and
miniMDock 2 have been accepted by the developers.
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