GBE

Trans-Acting Genotypes Associated with mRNA
Expression Affect Metabolic and Thermal Tolerance Traits

Melissa K. Drown @ *, Marjorie F. Oleksiak, and Douglas L. Crawford @

Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami,
Florida, USA

*Corresponding author: E-mail: mxd1288@miami.edu.
Accepted: 28 June 2023

Abstract

Evolutionary processes driving physiological trait variation depend on the underlying genomic mechanisms. Evolution of
these mechanisms depends on the genetic complexity (involving many genes) and how gene expression impacting the traits
is converted to phenotype. Yet, genomic mechanisms that impact physiological traits are diverse and context dependent
(e.g., vary by environment and tissues), making them difficult to discern. We examine the relationships between genotype,
mRNA expression, and physiological traits to discern the genetic complexity and whether the gene expression affecting the
physiological traits is primarily cis- or trans-acting. We use low-coverage whole genome sequencing and heart- or brain-spe-
cific mRNA expression to identify polymorphisms directly associated with physiological traits and expressed quantitative trait
loci (eQTL) indirectly associated with variation in six temperature specific physiological traits (standard metabolic rate, thermal
tolerance, and four substrate specific cardiac metabolic rates). Focusing on a select set of MRNAs belonging to co-expression
modules that explain up to 82% of temperature specific traits, we identified hundreds of significant eQTL for mRNA whose
expression affects physiological traits. Surprisingly, most eQTL (97.4% for heart and 96.7 % for brain) were trans-acting. This
could be due to higher effect size of trans- versus cis-acting eQTL for mRNAs that are central to co-expression modules. That
is, we may have enhanced the identification of trans-acting factors by looking for single nucleotide polymorphisms associated
with mRNAs in co-expression modules that broadly influence gene expression patterns. Overall, these data indicate that the
genomic mechanism driving physiological variation across environments is driven by trans-acting heart- or brain-specific
MRNA expression.
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Significance

The salt marsh killifish Fundulus heteroclitus exhibit large variation in physiological traits assumed to be under stabilizing
selection, which should reduce their variation. To discern the heritability of this physiological variation, we took an in-
novative approach to define the DNA variation that drives mRNA expression linked to physiological variation. This indir-
ect approach revealed many DNA sequence variants associated with physiological variation via their effect on mRNA
expression. Surprisingly, these changes were not in the mRNAs themselves, but in unlinked distant genes that are asso-
ciated with mRNA expression. That is, the vast majority (>95%) were trans-acting. This is surprising because trans-acting
effects are found less often than DNA variants within or close to mRNA expression genes. Our results are likely related to
the select subset of mRNAs across environments that are linked to physiological variation.
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Introduction

For many complex physiological traits, multiple genetic loci
contribute small effects to produce a continuous phenotyp-
ic distribution (Gibson 2010; Bernatchez 2016; Boyle et al.
2017). Some traits have been well studied and the polygen-
ic basis established, including human height (Yang et al.
2011; Turchin et al. 2012; Berg and Coop 2014) and egg
production in Drosophila and chickens (Szydtowski and
Szwaczkowski 2001; Jha et al. 2015). Nevertheless, even
when complex physiological traits have substantial herit-
able physiological variation, their genetic basis often is
not as well understood (Maher 2008; Zuk et al. 2012;
Simons et al. 2018; Lépez-Cortegano and Caballero
2019). For example, metabolism varies by 2- to 3-fold with-
in populations and by orders of magnitude among species
(Burton etal. 2011; Pettersen et al. 2018). Some of this vari-
ation can be explained by allometric scaling (relationship to
body mass) and environment (Burton et al. 2011,
Jayasundara et al. 2015; Schulte 2015; Auer et al. 2016;
Baris et al. 2016; Pettersen et al. 2018); however, after ac-
counting for these and other covariates, the unexplained
heritable variation remains high (Bacigalupe et al. 2004;
Renning et al. 2005; Regnning et al. 2007; Nilsson et al.
2009; Wone et al. 2009). Unexpected and diverse molecu-
lar and genetic underpinnings have been identified in other
complex traits including thermal tolerance (Healy et al.
2018; Drown et al. 2022), brain size (Zwarts et al. 2015;
Hoglund et al. 2020), cardiac cellular ATP production
(Baris et al. 2017), and flowering time (Andres and
Coupland 2012; Frachon et al. 2017; Grabowski et al.
2017). Thus, the relationships between phenotype and
genotype for complex physiological traits are multifaceted
and likely to be affected by unfamiliar or unexpected genes
(Drown et al. 2022). Moreover, physiological traits are con-
text dependent and often vary in different environments or
tissues (Jayasundara and Somero 2013; Baris et al. 2016;
Chung et al. 2017; Kellermann et al. 2019; Drown et al.
2021). These attributes make it difficult to predict or iden-
tify the genetic variation driving physiological variation.
One approach to simplify this multifaceted complexity is
to identify the genomic mechanisms affecting mRNA ex-
pression that drives phenotypic variation.

mRNA expression variation is often biologically import-
ant in that complex or multivariate mRNA expression can
explain variation in a diverse suite of traits including thermal
tolerance, disease response, and metabolism (Zhang et al.
2019; Huang et al. 2020; Campbell-Staton et al. 2021;
Traylor-Knowles et al. 2021; Drown et al. 2022). Some of
this expression is physiologically induced; yet mRNA expres-
sion is also heritable (Gibson and Weir 2005) and has large
variation among common gardened individuals (Oleksiak
et al. 2002). Thus, it is possible to identify heritable genetic
loci associated with mRNA expression variation. These

associations between genetic loci and mRNA expression
are identified as expression quantitative trait loci (eQTL),
where eQTL mediate the expression of one or many genes.
Furthermore, when eQTL controlled mRNA expression af-
fects physiological traits, eQTL may be evolutionary targets
for adaptation (Whitehead and Crawford 2006).

Here, we apply association studies to identify genetic loci
directly (genome wide association [GWAS]) and indirectly
(eQTL) driving physiological variation. The current study
builds upon earlier results where we used three common
gardened wild populations to capture natural variation in
six complex physiological traits: whole animal metabolism
(standard metabolic rate [SMR]), critical thermal maximum
(CTmay), and four substrate specific cardiac metabolic rates
(MRcardiac) (Drown et al. 2021). Physiological traits and
heart and brain mRNA expression were quantified under
two ecologically relevant acclimation temperatures (12 °C
and 28 °C) in the same individuals. We found little evidence
of population divergence in physiological traits (Drown
et al. 2021) or differentially expressed mRNAs (Drown
etal. 2022). Therefore, we treated all individuals as belong-
ing to a single population and, using a heart- or brain-
specific weighted gene co-expression network analysis
(WGCNA, Langfelder and Horvath 2008; Healy et al.
2018), found mRNA expression that explained a large pro-
portion of physiological trait variation (Drown et al. 2022).
Data from both studies (Drown et al. 2021; Drown et al.
2022) suggest that variation in these physiological traits is
driven by both physiological plasticity and heritable genetic
variation among individuals. Here, whole genome sequen-
cing was used to identify single nucleotide polymorphisms
(SNPs) among the same individuals that were used to quan-
tify physiological and mRNA expression variation allowing
us to integrate whole animal (SMR and CT,ax), whole organ
(MRcardiac), and molecular (mRNA expression) level pheno-
types (fig. 1).

Specifically, we address four key questions: 1) are SNPs
associated with physiological trait variation (direct drivers),
2) are mRNA expression patterns under genetic control
(eQTL), 3) does genetic control of MRNA expression impact
physiological trait variation (indirect drivers), and 4) are dir-
ect and indirect control mechanisms unique or shared
among physiological traits? The expectation is that many
SNPs of small effect size explain physiological trait variation
for these complex likely polygenic traits. It may be difficult
to detect SNPs associated with physiological traits due to
small effect size, however, we also expect to find larger ef-
fect size cis-acting eQTL that influence mRNA expression
patterns previously correlated with physiological traits.
Among physiological traits, SNPs and eQTL may be shared
as our prior work identified significant trait correlations
suggesting a shared genetic and molecular basis. Few stud-
ies have integrated data across levels of biological organiza-
tion in wild populations to address these questions
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Fic. 1.—Integrating molecular and genotypic data to understand vari-
ation in physiological traits. Physiological trait variation can be driven directly
or indirectly (through gene expression) by genotype. To understand the
molecular and genetic basis of physiological trait variation, comprehensive
data sets can be used to investigate: 1) direct associations between geno-
type and physiological traits, 2) direct correlations between gene expression
and physiological traits, for example, using weighted gene co-expression
analysis (WGCNA), and 3) indirect effects of genotype on physiological
traits, which may occur when expression quantitative trait loci (€QTL) im-
pact expression of genes underlying physiological traits.

(Morgante et al. 2020), limiting our understanding of geno-
typic and molecular variation that underlies complex
physiological traits. Using this integrative approach, we
find that much of the natural variation in complex physio-
logical traits is affected by trans-acting eQTL.

Results

Whole Genome Sequencing Results

A total of 172 adult individuals were collected in fall 2018
(F18) from three geographically close (<15 km) popula-
tions, and these were individually barcoded and sequenced
to an average depth of 4.1x using low-coverage whole
genome sequencing (ICWGS). After data processing and fil-
tering (see Materials and Methods), 1,406,282 high-
probability variant sites remained (SNPs).

Population Structure

To determine the genetic structure among populations, we
conducted an admixture analysis. Using NGSadmix, we
tested seven K values where K is the number of ancestral
populations. We found K=4 to be the best fit based on
log-likelihood probability with no clear structure among po-
pulations (supplementary fig. S1, Supplementary Material
online). The lack of population structure, as well as physio-
logical (Drown et al. 2021) and mRNA analyses (Drown

et al. 2022), indicates that there is little demographic struc-
ture that could affect mMRNA expression, physiological traits,
or SNPs.

Linkage Disequilibrium

To correct for autocorrelation among SNPs contributing to
physiological trait and mRNA expression variation, linkage
among SNPs was examined using ngsLD (v1.1.0). Similar
to prior studies in this species (Dayan et al. 2019; Ehrlich
et al. 2020), linkage among sites decayed within 500 bp
with an average R? below 0.2 within 150 bp and below
0.1 within 300 bp (supplementary fig. S2, Supplementary
Material online). Thus, only SNPs associated with the
same trait that were >500 bp apart were maintained as in-
dependent SNPs not in linkage, and those within 500 bp
were pruned to keep the most significant SNP. Few SNPs
(5 heart [6.0%], 25 brain [9.3%]) that were significant in
the association tests were in linkage, and pruning the
SNPs for LD did not substantially change the results.

Association Studies

We interrogated potential associations between 1,406,282
SNPs and eight phenotypes: six physiological traits: SMR,
CTax four substrate specific MR argiac (glucose, fatty acids,
LKA, and endogenous), and two measures of mRNA expres-
sion: single mRNA and multivariate mRNA expression.
Multivariate mRNA expression used weighted gene co-
expression network analysis (WGCNA, Langfelder and
Horvath 2008) to identify co-expression mRNAs and group
them into modules (MEs). Single mRNA expression was lim-
ited to the top ten mRNAs from each WGCNA co-expression
module. There were 80 MEs: 39 heart modules and 41 brain
modules (supplementary table S1, Supplementary Material
online), resulting in 390 single heart mRNAs, and 410 single
brain mRNAs (Drown et al. 2022).

Direct Genotypic Association to Whole Animal and
Whole Organ Level Metabolic and Thermal Tolerance
Traits

A total of five independent SNPs were significantly asso-
ciated with three traits (FDR P value <0.05): GLU
MRcardiac: LKA MR ardiacr and END MRcardiac (table 1 and
fig. 2). Of these five significant associations, two were asso-
ciated with GLU MR 4giac, ONe was associated with LKA
MRcardiac, @nd the remaining two were associated with
END MR argiac (table 1 and fig. 2). Only one of these SNPs
(erfl1, directly associated with END MR 4;giac) Was also a sig-
nificant eQTL (see below). We did not find significantly as-
sociated SNPs for SMR or CT,,ax, however, these traits were
previously associated with at least one mRNA co-expression
module (Drown et al. 2022), described below. The low
number of SNPs directly associated with physiological traits
is most likely due to the small sample size: Average sample
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Table 1

Single Nucleotide Polymorphisms Significantly Associated with Physiological Traits

Chromosome SNP location Trait FDR P value SNP annotation Sample size
NC_046380.1 38698336 GLU MR cardiac 2.97¢7%8 foxp1b 39
NC_046371.1 29986564 GLU MRardiac 3.15e7" NA 23
NC_046381.1 16773684 LKA MR argiac 45772 kecnb2 31
NC_046363.1 31037486 END MR ardiac 3.19e7% erfl1 25
NC_046371.1 19082580 END MR ardiac 486~ NA 30

size was 29.60 + 6.23 (mean + one standard deviation) in-
dividuals per association test (supplementary table S2,
Supplementary Material online).

Multivariate and Single mRNA Expression

We previously identified heart- or brain-specific mRNA co-
expression modules for heart and brain that are associated
with variation in the six physiological traits (Drown et al.
2022). Co-expression modules included 39 significant heart
modules with 90-554 mRNAs per module and 41 signifi-
cant brain modules with 142-393 mRNAs per module
(Drown et al. 2022). Each module was assigned a module
eigengene (ME, the first principal component of multivari-
ate mRNA expression), and each mRNA in the module
was assigned a module membership defined as the correl-
ation coefficient between that mRNA and the ME. From
each module, we choose the top ten single mRNAs (based
on module membership) and used these single mRNA ex-
pression values in a series of association tests to identify
eQTL. Additionally, we used the ME for each module as a
phenotypic value in a separate set of association studies
to find SNPs associated with multivariate mMRNA expression
(eQTLpe). This allowed us to identify SNPs that explain
mMRNA expression patterns previously correlated to acclima-
tion temperature specific physiological traits (SMR, CTnax
and MR¢argiac measured at 12 °C and 28 °C) (Drown et al.
2022). Notably, we did not test all possible mRNAs
(~10,000 mRNAs per hearts or brains); instead, we were in-
terested in discrete relationships between SNPs and specific
mMRNAs and MEs.

Single mRNA Expression Associations. For hearts, the
390 single heart mRNAs tested had 79 significant inde-
pendent genetic associations (FDR P value < 0.05) among
56 unigue mRNAs with 52 unique SNPs (fig. 3). These 79
significant associations with 56 mRNAs and 52 SNPs occur
because a SNP tends to be associated with expression of
multiple mRNAs (average 1.58 +£0.95, max=5) and an
mRNA tends to have more than one eQTL (average 1.48
+0.97, max=4). For brains, the 410 single brain mRNAs
tested had 245 significant independent associations among
152 unique mRNAs with 146 unique SNPs (fig. 3). Again,
many SNPs were correlated to more than one mRNA

(average 1.68+ 1.08, max=238), and most mRNAs had
more than one significant eQTL (average 2.94 +2.49,
max = 14). Despite testing a similar number of heart and
brain mRNAs, brain had 3.1x more total significant eQTL
associations than heart (245 brain vs. 79 heart). There
was also a greater proportion of mRNAs with at least one
significant eQTL in brain (152/410 [37.10%] compared
with heart mRNAs (56/390 [14.36%]) (fig. 3). This differ-
ence is not explained by a difference in sample size (i.e.,
power), which was similar between hearts and brains.

One explanation for a single SNP being associated with
multiple mRNAs is that the mRNA affected by the SNP reg-
ulates the expression of many genes. This could occur when
an eQTL is found in a transcription factor protein or trans-
acting regulatory region (e.g., promoter). Additional regu-
latory regions like LNC-RNA, micro-RNA, or a regulator of
DNA methylation or chromatin remodeling could also
be important. To determine if an eQTL affected many
MRNAs through a transcription factor or other regulatory
region, we annotated SNPs and identified those within
5 kb of a transcription factor or other regulatory region
(supplementary table S4, Supplementary Material online).
Most of the changes were not in transcription factors.
Instead, of the seventeen heart eQTL (33.7%) associated
with more than one mRNA (hereafter identified as “hot-
spots”), sixteen were in known protein-coding regions
(within an intron or exon) and four of these sixteen (25%)
were within an annotated transcription factor (erfl1,
tadal, atf1, and zbtb3). The other fourteen were found
in protein-coding regions of genes not annotated as tran-
scription factors or other regulatory elements. The one
eQTL hotspot not within a known protein-coding region
was intergenic and not within 5 kb of an annotated tran-
scription factor. In brains, 63 eQTL (43.2%) were identi-
fied as hotspots, and of those, 32 were in known
protein-coding regions (within an intron or exon); and
only 2 of the 32 (6.25%) were within an annotated tran-
scription factor (erfl1 and zbtb3) whereas 1 intergenic
SNP was also within 5 kb of a zinc finger protein (oocyte
zinc finger protein XICOF6-like). One brain eQTL (chd8)
was found within a known regulator of chromatin remod-
eling. Other regulatory regions (LNC-RNA, micro-RNA,
other epigenetic regulators) were not identified among
the eQTL.
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Fic. 2—Direct associations: Manhattan plot for SNPs associated with cardiac metabolic rate. Variation in three substrate specific cardiac metabolic rates
(substrates: GLU, glucose; LKA, lactate, ketones, and ethanol; and END, endogenous [no substrate added]) was associated with a total of five single nucleotide
polymorphisms (SNPs). A) Two SNPs for MRcargiac GLU, B) one SNP for MRcargiac LKA, and C) two SNPs for MR rdiac END. The five SNPs significant after
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Benjamini—Hochberg P value correction are shown above the upper line.
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Fic. 3.—Indirect associations: Expression quantitative trait loci (eQTL) are associated with expression of multiple MRNAs in heart and brain. eQTL for single
mRNAs in A) heart and B) brain. Each SNP that is associated with expression of a mRNA (y axis) is shown on the x axis (sorted by SNP position along each
chromosome or scaffold, designed by vertical dashed lines). The bar plots show the number of mRNAs associated with each SNP eQTL (average 1.72 +
1.01 correlations per SNP for heart [max = 5], average 1.81 + 1.28 correlations per SNP for brain [max = 8]), sorted by position along each chromosome
or scaffold (left to right). All associations are significant with a multiple test corrected P value < 0.05 (Benjamini and Hochberg).

A SNP Overlap

Heart eQTL-ME Brain eQTL-ME

Heart eQTL 0 6 Brain eQTL
0 1 0
39 0 0 139
0
1 1
0 0
12

B Gene Overlap

Heart eQTL-ME Brain eQTL-ME

Heart eQTL 0 1 Brain eQTL
0 1 0
10 0 0 25
1 0 0
2 1
21

Fic. 4—Unigue eQTL SNPs and genes are associated with single mRNA and multivariate mRNA co-expression between hearts and brains. A) Overlap
among eQTL SNPs associated with single mRNAs and co-expressed mRNA modules (heart and brain modules). B) Overlap among eQTL genes containing
SNPs associated with single mRNAs and co-expressed mRNA modules (heart and brain modules).

The limited sample size used here (22-35 individuals per
association) can cause Pvalue inflation. To address this, the
qualitative analysis was repeated using a subset of eQTL
with FDR P value <0.05 and >1.1102e™'® (ANGSD docu-
mentation as lower bound for reliable likelihood ratio test
P values). This reduced the number of significant single
mMRNA associations to 203 (60 heart, 143 brain associa-
tions). Examining this subset of significant eQTL the results
are qualitatively similar. There are more brain eQTL than

heart eQTL and >95% of this subset of significant associa-
tions are trans-acting and primarily found in genic regions.

Multivariate mRNA Expression Associations. Among the
39 heart co-expression modules, there were a total of two
significant associations (FDR P value <0.05) between
two SNPs and two MEs (supplementary table S5,
Supplementary Material online). One ME had two signifi-
cantly associated SNPs and they were found within 50 bp
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of each other whereas the other SNP was shared for both
ME. Among the 41 brain co-expression modules, we found
a total of a total of eight significant associations between
eight SNPs and seven MEs (fig. 4). MEs are heart- or brain-
specific, independent (not correlated to each other), and do
not share any mRNAs. One brain ME had two significantly
associated SNPs and they were found within 50 bp of
each other. Four brain eQTLye were found within the
same gene (erfl1), a known transcription factor.

The eQTL studies for single and multivariate mRNAs indi-
cated significant heritable variation underlying heart- or
brain-specific mRNA expression. Previously, multivariate
mRNAs were correlated to physiological traits (Drown
et al. 2022). Here, we find that the eQTLye are not asso-
ciated with modules that are correlated to physiological
trait variation. However, the significant eQTLy indicate
that some multivariate expression patterns are heritable
they are just not correlated with the traits measured here.

Trans-acting Effects on mRNA Expression

To better understand the genomic context of eQTL and
eQTLye we determined their proximity to the mRNA(s)
they affect. Interestingly, we found that >95% of single
MRNA eQTL (97.4% for heart and 96.7% for brain) were
trans-acting (defined as SNPs found on a different chromo-
some or scaffold than that of the mRNA with which they
were associated). Specifically, for heart 94.1% (16/17) of
eQTL hotspots, and 97.1% (34/35) of eQTL correlated
with single mRNAs were trans-acting. For brain 95.2%
(60/63) of eQTL hotspots, and 96.4% (80/83) of eQTL cor-
related with single mRNAs were trans-acting. Although
eQTLye could not be classified as cis- or trans-acting be-
cause they affect co-expression modules containing many
disparately located mRNAs, we determined whether the
eQTLwe were found within 5 kb of mMRNAs that were part
of the module. All heart and brain eQTLye were in genes
that did not overlap with mRNAs in the associated module.
Thus, eQTLye are not simply cis-acting on a high-ranking
mMRNA within the module but have broad effects on the ex-
pression of many module mRNAs.

Patterns of Shared Association

For both heart and brain, we looked for eQTL association
for ten mRNAs from each co-expression module. Within
an ME, the ten mRNAs have some degree of correlation
with each other causing them to be grouped into the
same module. Thus, we examined whether mRNAs from
the same module had more shared eQTL than those from
different modules. Surprisingly, within 83% of heart and
67% of brain modules the top ten mRNAs all had unique
eQTL. This “uniqueness” is demonstrated in the frequency
of shared eQTL within versus among modules: For both
hearts and brains, there was fewer shared eQTL within

modules than among modules (t-test, heart P value =
0.027, brain Pvalue = 0.008). This eQTL uniqueness would
be expected if they were cis-acting, for example, a SNP in
the mRNA promoter. Yet, many eQTL are neither near
nor within the genes encoding the mRNA they are corre-
lated with. This indicates that these eQTL are trans-acting
regulatory SNPs in the sense that they are found outside
of the genes that code for modular mRNAs. Similarly, for
eQTLye, all were in genes not containing mRNAs from
that module. Instead, they were found in different parts
of the genome and in genes unassociated with the physio-
logical trait(s) correlated to the module.

Finally, we looked for overlap among SNP sets associated
with a given phenotype (physiological traits, heart- or brain-
specific single MRNAs, or heart- or brain-specific MEs, fig.
4). First, to address whether the eQTLy were influencing
module expression through action on a single high-ranking
mMRNA in that module, we assessed whether any SNP was
associated with an mRNA and the module containing that
same MRNA (overlap in eQTL and eQTLy). That is, if an
mRNA belonged to the ME1 heart module, was there a
shared SNP or gene containing both an eQTL for the single
MRNA and an eQTLy associated with the ME1 heart mod-
ule. We found no instances where a SNP or gene contained
an eQTL for a single mRNA and an eQTLye for the module
that mRNA belonged to. This suggests that the eQTLy are
not acting on a single MRNAs but represent a more complex
mechanism of multivariate mRNA expression control.
Second, we examined overlap between hearts and brains
for SNPs associated with both single mRNAs and modules.
There was only one mRNA (atp7a, 0.13% of total) whose
expression was correlated with at least one heart and at
least one brain eQTL. However, the eQTL for this mRNA
were not the same for heart and brain expression. These
data suggest that in hearts versus brains, the variation in
atp7a mRNA is affected by different SNPs. There is a limited
generality of this finding because we only tested single
heart and brain mRNAs that were high-ranking in modules,
with only 3% of tested mRNAs shared between heart and
brain. Thus, although our results suggest that genetic con-
trol of MRNA expression is heart- or brain-specific, examin-
ing a larger set of MRNAs expressed in several organs or
tissue types would likely be more informative about the
role of conserved eQTL among diverse tissue types. An
additional caveat is that cell type variation within hearts
and brains (e.g., spongy and compact myocardium in
heart or neuronal, glial, and endothelial cells in brain)
may alter gene expression. Notably, thermal acclimation is
known to result in cardiac remodeling in fish, and our prior
study (Drown et al. 202 1) found evidence of cardiac remod-
eling between 12 °C and 28 °C acclimated individuals
(Gamperl and Farrell 2004; Klaiman et al. 2011;
Qellermann et al. 2012; Nyboer and Chapman 2018).
Single cell sequencing within hearts and brains could
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investigate cell type specific gene expression variation that
may contribute to patterns described here.

Genetic Diversity

To compare genetic diversity among SNP sets, heterozygos-
ity at variant sites (He=2#%p=1—p; where p is the
allele frequency) was quantified. Among all 1,406,282
high-probability variant sites, the average heterozygosity was
0.231 +0.164 (mean + standard deviation). Heterozygosity
for heart and brain eQTL and brain eQTLye SNPs was sig-
nificantly higher than for all SNPs (heart eQTL=0.328 +
0.074, brain eQTL=0.325+0.068, brain eQTlLye=
0.369 + 0.105). There was no significant difference in He be-
tween brain and heart eQTL and eQTLy (supplementary fig.
S3, Supplementary Material online).

Discussion

We examined associations among SNPs and specific mRNAs
that were previously identified as biologically important
based on their membership in co-expression modules.
This reduced the number of tested SNPs from ~1.5 million
SNPs across ~10,000 mRNAs in hearts and in brains to
<500 mRNAs in each. Additionally, we use WGCNA
(Langfelder and Horvath 2008) to summarize multivariate
mMRNA expression for co-expressed mRNAs. Using this ap-
proach, we summarized ~10,000 mRNAs in hearts and in
brains into 39 heart and 41 brain modules that could be
used in our association tests. In comparison to testing
each of these mRNAs individually, this may have increased
the signal to noise ratio in our mRNA expression data and
increased our power by reducing the number of tests
(Westra and Franke 2014).

The data suggest that there are many more significant
indirect eQTL than direct SNP associations for the physio-
logical traits we examined. Most of these indirect eQTL
were trans-acting and in known protein-coding regions
(within introns or exons). Many (33.7% of heart and
43.2% of brain) eQTL were hotspots—associated with
more than one mRNA. These results are affected by the
power of our analyses. Although we used a total of 172 in-
dividuals, a minority of individuals (~25) had heart- and
brain-specific and temperature specific mRNA expression
data limiting the sample size of the association tests.
Although other association studies conducted in wild
populations use a similar number of individuals (Hecht
et al. 2013; Bourret et al. 2014; Scott et al. 2015;
Campbell-Staton et al. 2021), we acknowledge that this
may limit our findings in two ways. First, small sample sizes
could limit findings to only large effect loci. Yet, the import-
ant insights are that nearly all significant eQTL are
trans-acting and affect multiple mRNAs that are linked to
physiological variation. The observation that nearly all sig-
nificant eQTL are trans-acting suggests that trans-acting

eQTL have larger effect size than cis-acting eQTL, which al-
lowed us to detect them here. An additional explanation
could be that more SNPs are in trans than in cis for a given
mRNA making it more likely than an eQTL also is trans. This
is possible as there is no significant difference between the
detected proportion of trans eQTL from that expected
based on SNP distribution among chromosomes (chi-
square test P> 0.05). Second, small sample sizes may in-
crease the risk of detecting spurious associations. Yet, the
observation that eQTL were trans-acting and because
they affected multiple mRNAs indicates that the eQTL are
not spurious. That is, it is unlikely that multiple independent
associations would spuriously be significant for a given
eQTL. Thus, although all our conclusions are based on the
limits of detection, these limits indicate the importance of
trans-acting factors associated with physiologically import-
ant mRNA expression. Still, we caution against making as-
sumptions about the role of specific SNPs that have been
identified here in explaining physiological traits or gene ex-
pression in other populations. This is both due to the limited
sample size and the lack of direct evidence (e.g., a tradition-
al quantitative trait loci [QTL] study) for potential quantita-
tive trait loci and eQTL. The alternative hypothesis is that
these loci are not causative. Yet, using a subset of signifi-
cant eQTL to obtain more conservative estimates, the over-
all conclusion of mostly trans-acting eQTL is still found. An
alternative approach would be breeding individuals with
low and high gene expression values and examining the
heritability of gene expression patterns in relation to a spe-
cific SNP. Similarly, specific gene expression could be inter-
rogated using gPCR of a common gardened individual with
known trait measurements. Instead, we focus the discus-
sion on general patterns that speak to the genetic and mo-
lecular control of physiological traits.

Direct Genetic Control of Physiological
Traits

Three out of six physiological traits (GLU, LKA, and END
MR ardiac) Were associated with five SNPs (table 1 and fig.
1). All three of these traits are for cardiac metabolism,
potentially reflecting less complex genomic architecture
than standard whole animal metabolism or CT,.. Three
of the five SNPs were within annotated genes: foxp1b
(GLU MRcargiao), kenb2 (LKA MReargiac), and erfl1 (END
MR ardiac). Foxp1b is forkhead box protein and erfl1 is a re-
pressor factor; both are involved in negative regulation of
transcription by RNA polymerase Il (Cheng et al. 2007; Liu
and Patient 2008). Kcnb2 is a voltage gated potassium
channel, with various functions including but not limited
to regulation of neurotransmitter release, heart rate, insulin
release, and smooth muscle contraction (Hristov et al.
2012; Li et al. 2022). These three genes are not found in
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any of the heart or brain mRNA co-expression modules.
Yet, one direct SNP (erfl1) is associated with END
MR cardgiac and contains different SNPs that are eQTL asso-
ciated with mRNA expression in hearts and brains and three
brain eQTLyse. These erfl1 SNPs are all linked (within 500 bp
of each other).

Our study did not find any direct association with F. het-
eroclitus’ CTmax, but a prior study found 47 candidate SNPs
associated (Healy et al. 2018). Similarly, none of our SNPs
were directly associated with standard metabolic rate al-
though prior studies have found multiple candidate QTL as-
sociated with metabolic rate (Jacobson et al. 2006; Palomar
etal. 2019). It is likely that this study missed these because
of the complex nature of metabolic and thermal tolerance
traits with many small effect loci rather than one or few
large effect loci explaining these traits (Wentzell et al.
2007; Burton et al. 2011; Csilléry et al. 2018; Healy et al.
2018). Multiple studies provide evidence for a polygenic ba-
sis of both traits (Healy et al. 2018; Barghi et al. 2019). Our
approach, which is best suited to detect large effect asso-
ciations, is underpowered. Thus, although we detected
few direct drivers of physiological trait variation, this is un-
likely to be representative of the biology. Using a multivari-
ate approach where genotypes at many SNPs could be used
to explain these traits may improve our detection of asso-
ciated SNPs, as has been done in other studies (Bourret
et al. 2014; Healy et al. 2018; Barghi et al. 2019). Instead
of this multivariate approach, we focus on mRNA expres-
sion patterns that may indirectly impact physiological traits.
The ability of this approach to identify indirect drivers (eQTL
for mRNAs linked to physiological traits) may be due to high
effect sizes of eQTL compared with QTL, especially for
multivariate mRNA expression (Westra and Franke 2014;
Boyle et al. 2017). That is, whereas physiological traits are
complex and affected by 100 s to 1,000 s of loci, mRNA ex-
pression is likely to be affected by fewer loci; thus, each
eQTL will have a larger effect because fewer polymorph-
isms are involved (Boyle et al. 2017).

Are mRNA Expression Patterns under
Genetic Control?

We found eQTL for 14.6% and 20.7% of the tested heart
and brain mRNAs, respectively, suggesting that genetic
variation is important in explaining these mRNA expression
patterns (fig. 2). Interestingly, the majority (97.4% for heart
and 96.7 % for brain) of eQTL that we detected were found
on different chromosomes than the associated mRNA
(trans-acting). The characterization of trans-acting eQTL
was not due to the presence of many small scaffolds
with 78.4% of the genome found on 24 large (>28 Mb)
chromosomes (https:/www.ncbi.nlm.nih.gov/datasets/
genome/GCF_011125445.2) and an expected proportion
of eQTL found on scaffolds (fig. 3; 25.3% of heart eQTL

and 15.9% of brain eQTL). The higher number of trans- ver-
sus cis-acting eQTL could reflect a higher effect size of
trans- versus cis-acting eQTL for the selected mRNAs ex-
pression or may be biased by our detection method as dis-
cussed below. The relative role of cis- and trans-acting
factors is often examined; however, many studies have
found a prominent role of cis elements in comparison to
trans elements (Kitano et al. 2019, although see Hoglund
et al. 2020). Here, we find the opposite with few (<5%)
of all eQTL in heart and brain being cis-acting (found on
the same chromosome). If trans-acting factors have a larger
effect size, this may be explained by our increased likeli-
hood of detecting trans versus cis factors; however, other
studies often struggle with the detection of trans-acting
factors, which is often attributed to their lower effect size
(Nica and Dermitzakis 2013; Westra and Franke 2014).
Thus, our ability to detect trans-acting factors is unique
and may be explained by the selection of specific MRNAs
that are central to co-expression modules for our tests.
That is, we may have enhanced our ability to identify trans-
acting factors by looking for SNPs associated with mRNAs in
co-expression modules that are known to be correlated
with the expression of 10 s or 100 s of other genes. Thus,
by examining a select set of single mRNAs, we may have
captured many transcription factors or other regulatory ele-
ments likely to have widespread effects on broad gene ex-
pression patterns. As eQTL effects are often context
dependent, our examination of heart- and brain-specific
and temperature specific gene expression also may have
contributed to the number of significant trans-acting ele-
ments we have detected (Westra and Franke 2014; Boyle
et al. 2017). In contrast, other studies may use the whole
transcriptome (rather than specific organs or tissues) and
rarely examine mRNA expression under multiple environ-
ments. The frequency of trans-acting effects is important
because it is often undetected and unappreciated. (Price
etal. 2011). Metzger et al. suggested that trans regulatory
mutations may be more common but do not persist over
evolutionary time (between species) when compared with
cis-acting factors. Our results echo this finding in that we
emphasize the importance of trans-acting factors for within
species gene expression. Whether the trans-acting factors
persist due to neutral or are affected by natural selection
is unclear. However, 44.2% of heart and 11.2% of brain
trans-acting SNPs defined here are associated with mRNA
expression that affect important physiological processes.
Thus, either these trans SNP are non-neutral or the mRNA
and the traits they appear to affect are evolutionary neutral.

Whereas we did not classify SNPs associated with MEs as
cis or trans because there is no single genomic location for a
module, we did examine whether SNPs associated with
modules were found in genes that produced mRNAs that
were part of that module. We found no association be-
tween SNP identity and module membership. That is, nearly

Genome Biol. Evol. 15(7)  https://doi.org/10.1093/gbe/evad123  Advance Access publication 1 July 2023 9

€202 Joquieydag g| uo Josn Aleiqr Jo)yory ' oNO - IWeIN Jo AlsIaAuN A 82891Z./EZLPEAR/./S L /loIe/a06/w00 dno dlwapese//:Ssd)y Wolj papeojumod


https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_011125445.2
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_011125445.2

Drown et al.

GBE

all the eQTL for MEs were not found in or within 5,000 bp
of the genes for the mRNAs in our MEs. Although 61.3% of
eQTL and 80% of eQTLye were within genic regions (in-
trons or exons), few eQTL (7.5%) were found within 5 kb
of transcription factors or other regulatory elements. The
percentage of eQTL found in or near transcription factors
is similar to the percentage of transcription factors found
globally in eukaryotic genomes and indicates that there is
not an enrichment for eQTL or eQTLye Within or near tran-
scription factors (Riechmann 2002). The same is true of
brain eQTL hotspots (6.25% within or near transcription
factors), however, 25% of heart eQTL hotspots were within
an annotated transcription factor. This is 2- to 5-fold en-
riched when considering the proportion of protein-coding
genes that are transcriptional regulators among organisms:
~8% (1,600/20,000) in humans (Lambert et al. 2018),
12.6% in zebrafish (3,302/26,602) (Armant et al. 2013),
and 4-5% in yeast (264/6,000) (de Boer and Hughes
2012). Similarly, the large number of eQTL and eQTLy
(61.3-80%) found within genic regions (introns or exons)
exceeds expectations (~2 % of eukaryotic genomes are pro-
tein coding). These data suggest that trans-acting factors
may include more than just the annotated transcription fac-
tors or that annotations are lacking. Prior studies have re-
ported an enrichment within and near genic regions for
trait associated SNPs (Li et al. 2012; Watanabe et al.
2019) and a high likelihood of trait associated SNPs being
eQTL (Nicolae et al. 2010). Our data have similar findings
with an enrichment of eQTL and eQTLye within genic
regions.

SNPs in three genes had both eQTLye and eQTL for sin-
gle mRNAs (erfl1, LOC105931894, and pnpla7a). Of these,
one gene, erfl1, is a known transcription factor and had
four intronic eQTLye and contained five SNPs associated
with 13 single mRNAs. The SNPs associated with single
mRNAs were not the same as those associated with ME ex-
pression, suggesting that eQTLye were functionally inde-
pendent from any single mRNA. This demonstrates that
ME expression is not driven by the effect of an eQTL on a
single high-ranking mRNA within the module.

The approximately 25 individuals for any one SNP limit
the conclusion on the diversity of mRNAs and molecular
mechanisms affecting the six physiological traits. Yet, we
find many significant eQTL for both single and multivariate
MRNA expression where a vast majority were trans-acting
or distant to the variable mRNA loci. These findings suggest
that our approach may allow for better detection of trans-
acting elements, which may affect expression of dozens or
hundreds of co-expressed mRNAs.

Finally, we find that eQTL and brain eQTLy have greater
heterozygosity (frequency of variant alleles) when com-
pared with all 1,406,282 variant sites used in this study.
Heart eQTLye approached significance (P=0.056) but
was not different from all SNPs likely due to there being

only two SNPs in this subset. This may be explained by
the association approach as less variable sites have less vari-
ance among individuals that can be used to explain variance
in the physiological traits and mRNA expression patterns. It
is also possible that allele frequency differences are bio-
logically relevant. If eQTL and eQTLy sites are under direc-
tional selection, we might expect a loss of genetic diversity
in these sites. Yet, we find that heterozygosity (frequency of
variant alleles) is higher in eQTL and eQTLye when com-
pared with all SNPs. Higher heterozygosity may be due to
genetic redundancy, as indicated by the presence of differ-
ent SNPs underlying eQTL and eQTLye and the association
of correlated physiological traits with different underlying
loci. These patterns could be driven by spatial or temporal
variation in selection preventing allelic fixation and aiding
in the maintenance of biologically important variation at
the SNP and mRNA level.

Are Genetically Controlled mRNA
Expression Patterns Likely to Impact
Physiological Traits?

Heritable genetic variation impacts mRNA expression
(Gibson and Weir 2005), a molecular level phenotype that
is well established as important in physiological response
to the environment (McCairns and Bernatchez 2010;
Albert and Kruglyak 2015; Dayan et al. 2015; Zhang et al.
2019; Campbell-Staton et al. 2021). Thus, our finding of
genetic links to mRNA is not surprising, even with a small
sample size. What is unique in our data is the ability to
examine relationships among genotype and gene expres-
sion (eQTL) of individuals from wild populations and inter-
pret them in the context of known correlations between
gene expression and physiological traits. This may be espe-
cially important for improving our ability to detect biologic-
ally important genetic variation (Albert and Kruglyak 2015)
because gene expression is a relatively simpler trait that may
be controlled by fewer, larger effect, and easier to detect
loci (Boyle et al. 2017).

Previously, we found that up to 82% of the variation in
several temperature specific (12 °C or 28 °C) metabolic and
thermal tolerance traits could be explained by co-
expression among hundreds of mRNAs grouped into mod-
ules (Drown et al. 2022). However, we could not parse the
roles of plasticity versus heritable mRNA expression vari-
ation. Here, we show that expression of single mRNAs
found within these modules and multivariate module ex-
pression is associated with genetic variation. This suggests
that a significant portion of several physiological traits
may be explained by heritable mMRNA expression variation.
Specifically, genetic variation in heart mMRNA expression is
linked to 12 °C FA MRcardiac, 12 °C SMR, and 12 °C LKA
MR argiac. Heritable variation in brain mRNA expression
is linked to 28 °C CTnax (supplementary table S6,
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Supplementary Material online). This provides further evi-
dence that mRNA expression patterns impacting these
physiological traits are under genetic control and heritable.

Prior studies have demonstrated that heritable mRNA ex-
pression variation can impact diverse physiological traits.
For example, behavioral maturation from hive worker to
forager between honey bee subspecies is partially attribu-
ted (up to 30%) to heritable variation in brain gene expres-
sion (Whitfield et al. 2006). Various organisms including sea
turtles (Tedeschi et al. 2016), maize (Frova and Gorla 1993),
fruit flies (Sejerkilde et al. 2003), and fish (Fangue et al.
2006; Heredia-Middleton et al. 2008) among others exhibit
heritability of heat shock protein expression, allowing them
to respond to environmental temperature variation. Here,
we found that biologically important single and multivari-
ate mRNA expression related to physiological traits has a
genetic basis and is heritable. This is similar to studies that
have found overlap among QTL and eQTL sets (Wentzell
et al. 2007; Carrasco-Valenzuela et al. 2019). Yet, the find-
ing that a single eQTL is significantly associated with 100 s
of co-expressed mRNAs is unique. Further, many of the
modules were associated with more than one eQTL, sug-
gesting that there is substantial genetic variation contribut-
ing to gene expression patterns related to physiological
traits. The allelic variation in gene expression provides the
raw material for evolution and may explain the vast interin-
dividual variation in physiological traits that we have mea-
sured (Drown et al. 2021; Drown et al. 2022).

Are Physiological Traits Genetically
Independent?

Here, we have shown that mRNA expression patterns pre-
viously correlated with physiological traits are associated
with a suite of mostly trans-acting eQTL, suggesting genetic
control. One additional potential outcome of this study was
to determine if physiological traits had a shared genetic ba-
sis. This was an important avenue to explore as our prior
studies found correlation among traits (Drown et al.
2021) and shared patterns of mRNA expression among
correlated traits (Drown et al. 2022). For example, we pre-
viously found that 12 °C FA MR agiac Was positively asso-
ciated with 12 °C SMR and that these traits were both
associated with two MEs (heart ME4 and heart ME5). If
these traits also had a shared genetic basis, we expected
eQTL for heart ME4 and heart ME5 to be shared. No
eQTLye were associated with multivariate expression of
trait associated modules; however, 35 eQTL were asso-
ciated with expression of single genes belonging to trait as-
sociated modules. There were five shared SNPs among
eQTL within or associated with genes in trait associated
modules. Of these SNPs, three were shared between mod-
ules associated with a shared trait (supplementary table S6,
Supplementary Material online). Specifically, heart ME3

and heart ME5, both associated with 12 °C FA MRrdiacs
share a SNP (NW023397088_1791840), and heart ME4
and heart ME9, both associated with 12 °C SMR, share a
SNP (NC046366.17066247). Notably, three other SNPs
were shared among modules correlated to different traits
(one SNP shared between modules associated with 12 °C
SMR and FA MR argiac, tWo SNPs shared between modules
associated with 12 °C SMR and 12 °C LKA MR¢ardiac). This
provides evidence that there may be a shared genetic basis
or genetic control of these metabolic traits. Notably, this
was only true of heart modules with no shared SNPs among
the three brain modules, which were all associated with 28
°C CTax- Additionally, the five SNPs associated directly
with physiological traits were not shared among traits
and do not overlap with any eQTL. One known transcrip-
tion factor, erfl1, contains multiple SNPs that are either dir-
ectly associated with a trait (one SNP, 12 °C END MR 4 giac),
are eQTL (one heart, five brain), or are heart or brain
eQTLe (four SNPs).

Overall, the limited overlap among SNPs associated dir-
ectly or indirectly (eQTL) with physiological traits within
hearts or brains was surprising. This may be due to our lim-
ited ability to detect small effect QTL, and we might expect
greater overlap between QTL and eQTL if more mRNAs
were tested across more individuals. However, within the
power of our data, we detected diverse and complex mo-
lecular mechanisms correlated with physiological trait vari-
ation. Heart- or brain-specific expression patterns appear to
be under unique genetic control, and multivariate mRNA
expression is not explained by a single eQTL impacting
mRNA expression of a gene highly correlation to a given
module.

Thus, although different traits are correlated to the same
ME, the nucleotide polymorphism, or genetic control, of
mMRNA expression is distinct. This suggests that there is sub-
stantial genetic variation underlying the physiological traits
we have measured, with a diversity of molecular and gen-
etic mechanisms contributing to trait variation. The para-
doxical genetic independence of physiologically related
traits (here metabolism and thermal tolerance) is not un-
common (see Van Herrewege and David 1980; Baker
et al. 2015; Healy et al. 2018) and emphasizes that these
traits may still be evolutionarily distinct, although they are
linked at the molecular or physiological level.

Conclusions

Relationships among genotype, gene expression, and
physiological traits explain biologically important natural
variation found in wild populations. In particular, substan-
tial and diverse genetic variation impacts these traits
through direct and indirect (eQTL and eQTLye) mechan-
isms. Demonstrated here, much of the mRNA expression
variation is associated with a diverse set of trans-acting
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eQTL. Surprisingly, these trans-acting eQTL are unique even
for mRNAs that affect multiple traits. Under a simpler gen-
etic architecture, we may expect mRNAs that have a shared
association with cardiac and whole animal metabolism to
also share the same trans-acting eQTL, but this does not oc-
cur. Instead, the mRNA expression changes that affect mul-
tiple physiological traits are associated with different
trans-acting SNPs. Finally, the SNPs directly or indirectly as-
sociated with physiological traits have greater heterozygos-
ity (genetic variation) compared with all SNPs, and this
greater genetic variation likely contributes to F. heterocli-
tus' well characterized resilience and plasticity (reviewed
in Burnett et al. 2007; Crawford et al. 2020) in the face
of novel environments. Additional studies are needed to
demonstrate causative relationships between SNPs,
mRNAs, and traits. Yet, there are known functional rela-
tionships between SNP variance and mRNA expression,
and these patterns are heritable. It is possible that the
eQTL identified here are linked to causal variants and are
not the causal variants per se, however, we do demonstrate
in finding SNPs and eQTL associated with physiological trait
variation that these traits are under genetic control at least
partially driven by heritable mRNA expression patterns.
Together, our data suggest genetic control of biologically
effective, mRNA expression (expression that impacts
physiological traits), which in turn, may impact fitness.

Materials and Methods

1. Sample collection: Fin clips were taken from adult F. het-
eroclitus collected along the central coast of New Jersey,
United States near the Oyster Creek Nuclear Generating
Station (OCNGS), which produces a thermal effluent
that locally heats the water. Three populations were
sampled: 1) north reference (N.Ref; 39°52'28.000N,
74°08’19.000W), 2) south reference (S.Ref; 39°47'
04.000N, 74°11’07.000W), and 3) a central site located
between the southern and northern references that is
within the OCNGS thermal effluent (TE; 39°48’
33.000N, 74°10’51.000W). The TE population used
here differs by 4 °C in habitat temperature from the
two reference populations (average summer high tide
temperature 28 °C N.Ref and S.Ref, and 32 °C for TE)
but is otherwise ecologically similar (Drown et al.
2021) (Dayan et al. 2019). Fin clips were collected in
fall 2015 (F15), fall 2018 (F18), spring 2019 (519), fall
2019 (F19), and fall 2020 (F20) and stored in GuHCI buf-
fer. DNA was extracted using carboxyl coated magnetic
beads. The DNA quality was assayed using gel electro-
phoresis and spectrophotometry to ensure high molecu-
lar weight and low contamination.

2. Library preparation: The analysis presented here uses a
subset of samples that were part of a larger sequencing

run. A total of 1,121 individuals were sequenced
(supplementary table S3, Supplementary Material on-
line). All samples were quantified in triplicate using spec-
trophotometry and normalized to 100ng for
sequencing library preparation. The whole genome se-
guencing library was prepared using a tagmentation ap-
proach. Briefly, DNA was digested with an in-house
purified Tn5 transposase (as in Picelli et al. 2014) loaded
with partial adapter sequences. After tagmentation, the
fragmented DNA was amplified using barcoded primers
such that each individual sample would contain a un-
ique i7 and a plate level (1 per 96 samples) i5 barcode.
This allowed for unique dual indexing of up to 768 in-
dividuals. After barcoding, samples were combined
into two pools (560 samples each) and each pool amp-
lified and then sequenced on a single lane of Illlumina
HiSeqg 3000. These single sequencing lanes were as-
sessed to determine coverage balance among samples,
and the same libraries were sequenced across an add-
itional four lanes each. For all sequencing runs, a great-
er relative amount of library for F18 samples was added
to the pool to achieve higher coverage because whole
animal, whole organ, and molecular (MRNA expres-
sion) level phenotypic data were available for these
individuals.

3. Raw sequence analysis: We followed best practices for

IcCWGS data processing as in Lou et al. (2021). Briefly,
adapter sequences and low-quality bases were trimmed
using Trimmomatic (v0.39) (Bolger et al. 2014). Flash
(v1.2.11) (Mago¢ and Salzberg 2011) was used to com-
bine overlapping reads and to parse singletons and
paired reads. Singletons and paired reads were mapped
separately using BWA mem (v0.7.17) and resulting sam
files converted to bam files using samtools (v1.3.1)
(Danecek et al. 2021). The first and second sequencing
runs were processed separately until BAM files were
produced and found to be of similar quality assessed
by comparing total percentage of mapped reads and le-
vels of dually mapped reads before combining for the re-
maining file processing steps. Picard (v2.26.4) was used
to add read group information, which is needed for du-
plicate marking downstream. After combining all
mapped reads for a single individual, BAM files were fur-
ther filtered for mapping quality using samtools and
overlapping reads softclipped using bamutil (v1.0.15).
Finally, Picard (v2.26.4) was used to mark duplicate
reads.

4. Variant calling: Two variant calling pipelines were used.

First, Freebayes (v1.0.2) was used to call variants, and
the resulting VCF file was filtered using VCFtools
(v0.1.16). VCFtools filters were to include only biallelic
sites, >5% minor allele frequency, <5% missingness
per individual, and <10% missingness per site. This re-
sulted in 1,406,282 high-probability variant sites.
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ANGSD (v0.935) (Korneliussen et al. 2014), which is de-
signed for use with IcCWGS data, was then used to obtain
a genotype likelihood beagle file containing the previ-
ously identified high-probability variant sites from
Freebayes and VCFtools. This approach is similar to
other studies using IcCWGS data where variant calling
may be sensitive to specific tool use.

Phenotypic Data

Methods and analyses for phenotypic data are described in
previous publications (DeLiberto et al. 2020; Drown et al.
2020; Drown et al. 2021; Drown et al. 2022). Briefly, all
phenotypes were measured after common gardening
and under two temperature acclimation conditions.
Whole animal phenotypes included temperature specific
whole animal metabolism (standard metabolic rate
[SMR]) and critical thermal maximum (CT,.x, @ measure
of thermal tolerance) measured at and after acclimation
to 12 and 28 °C. Heart-specific phenotypes included four
substrate specific cardiac metabolic rates (MRcardiac, Sub-
strates: glucose [GLU], fatty acids [FA], lactate + ketones
+ethanol [LKA], and endogenous [END, no substrate
added]) measured for half the individuals at 12 °C and
half at 28 °C.

Hearts and brains were collected after measuring
MR cardgiac and stored in chaotropic buffer for mRNA expres-
sion analysis. The mRNA data include heart- or brain-
specific expression counts for single mRNAs and heart- or
brain-specific module mRNA expression (ME) from a whole
genome co-expression network analysis (WGCNA, v1.70-
3, Langfelder and Horvath 2008; Drown et al. 2022). The
WGCNA approach summarizes mRNAs with correlated ex-
pression into co-expression modules, calculates a principal
component of module expression for each individual
(ME), and assigns a rank to single mRNAs within the module
(module membership) based on their correlation to the ME.
Here, we use the first principal component of module ex-
pression (ME) as a multivariate molecular level phenotype
that may be predicted using genotype likelihoods. In add-
ition, we examined association between genotype likeli-
hoods and the top ten mRNAs for each module (based on
module membership).

1. Association studies: All results are reported from the
score test conducted in ANGSD using -doAsso 2 with
default filters (-minHigh 10, -minCount 10). The sample
size for each association can be found in supplementary
table S2, Supplementary Material online and is limited
by the availability of phenotypic and mRNA expression
data (a subset of the 172 genotyped individuals). For
all phenotypes, acclimation temperature was included
as a covariate. For SMR, CTnax, and MRcardiac, acclima-
tion order (individuals were acclimated to 12 °C then

28°C or28°Cthen 12 °C) was included as an additional
covariate. For SNP associations to mRNA expression,
heart and brain mRNA expression were examined as
separate phenotypes. P values for genotype to pheno-
type associations were corrected for multiple testing
using the Benjamini-Hochberg approach (Benjamini
and Hochberg 1995) and significant associations identi-
fied as those with a corrected P value < 0.05. To exam-
ine patterns among independent SNPs, in cases where
SNPs associated with the same phenotype were within
500 bp of each other, we pruned SNPs to keep the
most significant SNP for each association and removed
any within 500 bp of that SNP.

2. Annotation of significant SNPs: A bed file was generated
from a SNP list using the genomic region for the SNP as
the SNP location—1 bp: SNP location. Bedtools intersect
was used to obtain annotation information from the
.GTF file for the current F. heteroclitus genome.

3. Statistical analysis: Data visualization and statistical
analyses were conducted in R (v 4.0.5). An annotated
script is available on Github (https:/github.com/
mxd1288/Genotypic_drivers.git). Association tests
were carried out using ANGSD, as described above,
and the likelihood ratio test values used to calculate P
values for each SNP to trait association calculating
using a one-sided noncentral chi-squared distribution
(pchisqg in R). P values were corrected within each set
of trait associations using p.adjust in R with the
Benjamini and Hochberg method (Benjamini and
Hochberg 1995).

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online (http:/www.gbe.oxfordjournals.org/).
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