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Abstract

Evolutionary processes driving physiological trait variation depend on the underlying genomic mechanisms. Evolution of 
these mechanisms depends on the genetic complexity (involving many genes) and how gene expression impacting the traits 
is converted to phenotype. Yet, genomic mechanisms that impact physiological traits are diverse and context dependent 
(e.g., vary by environment and tissues), making them difficult to discern. We examine the relationships between genotype, 
mRNA expression, and physiological traits to discern the genetic complexity and whether the gene expression affecting the 
physiological traits is primarily cis- or trans-acting. We use low-coverage whole genome sequencing and heart- or brain-spe
cific mRNA expression to identify polymorphisms directly associated with physiological traits and expressed quantitative trait 
loci (eQTL) indirectly associated with variation in six temperature specific physiological traits (standard metabolic rate, thermal 
tolerance, and four substrate specific cardiac metabolic rates). Focusing on a select set of mRNAs belonging to co-expression 
modules that explain up to 82% of temperature specific traits, we identified hundreds of significant eQTL for mRNA whose 
expression affects physiological traits. Surprisingly, most eQTL (97.4% for heart and 96.7% for brain) were trans-acting. This 
could be due to higher effect size of trans- versus cis-acting eQTL for mRNAs that are central to co-expression modules. That 
is, we may have enhanced the identification of trans-acting factors by looking for single nucleotide polymorphisms associated 
with mRNAs in co-expression modules that broadly influence gene expression patterns. Overall, these data indicate that the 
genomic mechanism driving physiological variation across environments is driven by trans-acting heart- or brain-specific 
mRNA expression.

Key words: GWAS, eQTL, mRNA expression, WGCNA, metabolism, thermal tolerance.

Significance
The salt marsh killifish Fundulus heteroclitus exhibit large variation in physiological traits assumed to be under stabilizing 
selection, which should reduce their variation. To discern the heritability of this physiological variation, we took an in
novative approach to define the DNA variation that drives mRNA expression linked to physiological variation. This indir
ect approach revealed many DNA sequence variants associated with physiological variation via their effect on mRNA 
expression. Surprisingly, these changes were not in the mRNAs themselves, but in unlinked distant genes that are asso
ciated with mRNA expression. That is, the vast majority (>95%) were trans-acting. This is surprising because trans-acting 
effects are found less often than DNA variants within or close to mRNA expression genes. Our results are likely related to 
the select subset of mRNAs across environments that are linked to physiological variation.

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.
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Introduction
For many complex physiological traits, multiple genetic loci 
contribute small effects to produce a continuous phenotyp
ic distribution (Gibson 2010; Bernatchez 2016; Boyle et al. 
2017). Some traits have been well studied and the polygen
ic basis established, including human height (Yang et al. 
2011; Turchin et al. 2012; Berg and Coop 2014) and egg 
production in Drosophila and chickens (Szydłowski and 
Szwaczkowski 2001; Jha et al. 2015). Nevertheless, even 
when complex physiological traits have substantial herit
able physiological variation, their genetic basis often is 
not as well understood (Maher 2008; Zuk et al. 2012; 
Simons et al. 2018; López-Cortegano and Caballero 
2019). For example, metabolism varies by 2- to 3-fold with
in populations and by orders of magnitude among species 
(Burton et al. 2011; Pettersen et al. 2018). Some of this vari
ation can be explained by allometric scaling (relationship to 
body mass) and environment (Burton et al. 2011; 
Jayasundara et al. 2015; Schulte 2015; Auer et al. 2016; 
Baris et al. 2016; Pettersen et al. 2018); however, after ac
counting for these and other covariates, the unexplained 
heritable variation remains high (Bacigalupe et al. 2004; 
Rønning et al. 2005; Rønning et al. 2007; Nilsson et al. 
2009; Wone et al. 2009). Unexpected and diverse molecu
lar and genetic underpinnings have been identified in other 
complex traits including thermal tolerance (Healy et al. 
2018; Drown et al. 2022), brain size (Zwarts et al. 2015; 
Hoglund et al. 2020), cardiac cellular ATP production 
(Baris et al. 2017), and flowering time (Andres and 
Coupland 2012; Frachon et al. 2017; Grabowski et al. 
2017). Thus, the relationships between phenotype and 
genotype for complex physiological traits are multifaceted 
and likely to be affected by unfamiliar or unexpected genes 
(Drown et al. 2022). Moreover, physiological traits are con
text dependent and often vary in different environments or 
tissues (Jayasundara and Somero 2013; Baris et al. 2016; 
Chung et al. 2017; Kellermann et al. 2019; Drown et al. 
2021). These attributes make it difficult to predict or iden
tify the genetic variation driving physiological variation. 
One approach to simplify this multifaceted complexity is 
to identify the genomic mechanisms affecting mRNA ex
pression that drives phenotypic variation.

mRNA expression variation is often biologically import
ant in that complex or multivariate mRNA expression can 
explain variation in a diverse suite of traits including thermal 
tolerance, disease response, and metabolism (Zhang et al. 
2019; Huang et al. 2020; Campbell-Staton et al. 2021; 
Traylor-Knowles et al. 2021; Drown et al. 2022). Some of 
this expression is physiologically induced; yet mRNA expres
sion is also heritable (Gibson and Weir 2005) and has large 
variation among common gardened individuals (Oleksiak 
et al. 2002). Thus, it is possible to identify heritable genetic 
loci associated with mRNA expression variation. These 

associations between genetic loci and mRNA expression 
are identified as expression quantitative trait loci (eQTL), 
where eQTL mediate the expression of one or many genes. 
Furthermore, when eQTL controlled mRNA expression af
fects physiological traits, eQTL may be evolutionary targets 
for adaptation (Whitehead and Crawford 2006).

Here, we apply association studies to identify genetic loci 
directly (genome wide association [GWAS]) and indirectly 
(eQTL) driving physiological variation. The current study 
builds upon earlier results where we used three common 
gardened wild populations to capture natural variation in 
six complex physiological traits: whole animal metabolism 
(standard metabolic rate [SMR]), critical thermal maximum 
(CTmax), and four substrate specific cardiac metabolic rates 
(MRcardiac) (Drown et al. 2021). Physiological traits and 
heart and brain mRNA expression were quantified under 
two ecologically relevant acclimation temperatures (12 °C 
and 28 °C) in the same individuals. We found little evidence 
of population divergence in physiological traits (Drown 
et al. 2021) or differentially expressed mRNAs (Drown 
et al. 2022). Therefore, we treated all individuals as belong
ing to a single population and, using a heart- or brain- 
specific weighted gene co-expression network analysis 
(WGCNA, Langfelder and Horvath 2008; Healy et al. 
2018), found mRNA expression that explained a large pro
portion of physiological trait variation (Drown et al. 2022). 
Data from both studies (Drown et al. 2021; Drown et al. 
2022) suggest that variation in these physiological traits is 
driven by both physiological plasticity and heritable genetic 
variation among individuals. Here, whole genome sequen
cing was used to identify single nucleotide polymorphisms 
(SNPs) among the same individuals that were used to quan
tify physiological and mRNA expression variation allowing 
us to integrate whole animal (SMR and CTmax), whole organ 
(MRcardiac), and molecular (mRNA expression) level pheno
types (fig. 1).

Specifically, we address four key questions: 1) are SNPs 
associated with physiological trait variation (direct drivers), 
2) are mRNA expression patterns under genetic control 
(eQTL), 3) does genetic control of mRNA expression impact 
physiological trait variation (indirect drivers), and 4) are dir
ect and indirect control mechanisms unique or shared 
among physiological traits? The expectation is that many 
SNPs of small effect size explain physiological trait variation 
for these complex likely polygenic traits. It may be difficult 
to detect SNPs associated with physiological traits due to 
small effect size, however, we also expect to find larger ef
fect size cis-acting eQTL that influence mRNA expression 
patterns previously correlated with physiological traits. 
Among physiological traits, SNPs and eQTL may be shared 
as our prior work identified significant trait correlations 
suggesting a shared genetic and molecular basis. Few stud
ies have integrated data across levels of biological organiza
tion in wild populations to address these questions 
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(Morgante et al. 2020), limiting our understanding of geno
typic and molecular variation that underlies complex 
physiological traits. Using this integrative approach, we 
find that much of the natural variation in complex physio
logical traits is affected by trans-acting eQTL.

Results

Whole Genome Sequencing Results

A total of 172 adult individuals were collected in fall 2018 
(F18) from three geographically close (<15 km) popula
tions, and these were individually barcoded and sequenced 
to an average depth of 4.1× using low-coverage whole 
genome sequencing (lcWGS). After data processing and fil
tering (see Materials and Methods), 1,406,282 high- 
probability variant sites remained (SNPs).

Population Structure

To determine the genetic structure among populations, we 
conducted an admixture analysis. Using NGSadmix, we 
tested seven K values where K is the number of ancestral 
populations. We found K = 4 to be the best fit based on 
log-likelihood probability with no clear structure among po
pulations (supplementary fig. S1, Supplementary Material
online). The lack of population structure, as well as physio
logical (Drown et al. 2021) and mRNA analyses (Drown 

et al. 2022), indicates that there is little demographic struc
ture that could affect mRNA expression, physiological traits, 
or SNPs.

Linkage Disequilibrium

To correct for autocorrelation among SNPs contributing to 
physiological trait and mRNA expression variation, linkage 
among SNPs was examined using ngsLD (v1.1.0). Similar 
to prior studies in this species (Dayan et al. 2019; Ehrlich 
et al. 2020), linkage among sites decayed within 500 bp 
with an average R2 below 0.2 within 150 bp and below 
0.1 within 300 bp (supplementary fig. S2, Supplementary 
Material online). Thus, only SNPs associated with the 
same trait that were >500 bp apart were maintained as in
dependent SNPs not in linkage, and those within 500 bp 
were pruned to keep the most significant SNP. Few SNPs 
(5 heart [6.0%], 25 brain [9.3%]) that were significant in 
the association tests were in linkage, and pruning the 
SNPs for LD did not substantially change the results.

Association Studies

We interrogated potential associations between 1,406,282 
SNPs and eight phenotypes: six physiological traits: SMR, 
CTmax, four substrate specific MRcardiac (glucose, fatty acids, 
LKA, and endogenous), and two measures of mRNA expres
sion: single mRNA and multivariate mRNA expression. 
Multivariate mRNA expression used weighted gene co- 
expression network analysis (WGCNA, Langfelder and 
Horvath 2008) to identify co-expression mRNAs and group 
them into modules (MEs). Single mRNA expression was lim
ited to the top ten mRNAs from each WGCNA co-expression 
module. There were 80 MEs: 39 heart modules and 41 brain 
modules (supplementary table S1, Supplementary Material
online), resulting in 390 single heart mRNAs, and 410 single 
brain mRNAs (Drown et al. 2022).

Direct Genotypic Association to Whole Animal and 
Whole Organ Level Metabolic and Thermal Tolerance 
Traits

A total of five independent SNPs were significantly asso
ciated with three traits (FDR P value < 0.05): GLU 
MRcardiac, LKA MRcardiac, and END MRcardiac (table 1 and 
fig. 2). Of these five significant associations, two were asso
ciated with GLU MRcardiac, one was associated with LKA 
MRcardiac, and the remaining two were associated with 
END MRcardiac (table 1 and fig. 2). Only one of these SNPs 
(erfl1, directly associated with END MRcardiac) was also a sig
nificant eQTL (see below). We did not find significantly as
sociated SNPs for SMR or CTmax, however, these traits were 
previously associated with at least one mRNA co-expression 
module (Drown et al. 2022), described below. The low 
number of SNPs directly associated with physiological traits 
is most likely due to the small sample size: Average sample 

FIG. 1.—Integrating molecular and genotypic data to understand vari
ation in physiological traits. Physiological trait variation can be driven directly 
or indirectly (through gene expression) by genotype. To understand the 
molecular and genetic basis of physiological trait variation, comprehensive 
data sets can be used to investigate: 1) direct associations between geno
type and physiological traits, 2) direct correlations between gene expression 
and physiological traits, for example, using weighted gene co-expression 
analysis (WGCNA), and 3) indirect effects of genotype on physiological 
traits, which may occur when expression quantitative trait loci (eQTL) im
pact expression of genes underlying physiological traits.
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size was 29.60 ± 6.23 (mean ± one standard deviation) in
dividuals per association test (supplementary table S2, 
Supplementary Material online).

Multivariate and Single mRNA Expression

We previously identified heart- or brain-specific mRNA co- 
expression modules for heart and brain that are associated 
with variation in the six physiological traits (Drown et al. 
2022). Co-expression modules included 39 significant heart 
modules with 90–554 mRNAs per module and 41 signifi
cant brain modules with 142–393 mRNAs per module 
(Drown et al. 2022). Each module was assigned a module 
eigengene (ME, the first principal component of multivari
ate mRNA expression), and each mRNA in the module 
was assigned a module membership defined as the correl
ation coefficient between that mRNA and the ME. From 
each module, we choose the top ten single mRNAs (based 
on module membership) and used these single mRNA ex
pression values in a series of association tests to identify 
eQTL. Additionally, we used the ME for each module as a 
phenotypic value in a separate set of association studies 
to find SNPs associated with multivariate mRNA expression 
(eQTLME). This allowed us to identify SNPs that explain 
mRNA expression patterns previously correlated to acclima
tion temperature specific physiological traits (SMR, CTmax, 
and MRcardiac measured at 12 °C and 28 °C) (Drown et al. 
2022). Notably, we did not test all possible mRNAs 
(∼10,000 mRNAs per hearts or brains); instead, we were in
terested in discrete relationships between SNPs and specific 
mRNAs and MEs.

Single mRNA Expression Associations. For hearts, the 
390 single heart mRNAs tested had 79 significant inde
pendent genetic associations (FDR P value < 0.05) among 
56 unique mRNAs with 52 unique SNPs (fig. 3). These 79 
significant associations with 56 mRNAs and 52 SNPs occur 
because a SNP tends to be associated with expression of 
multiple mRNAs (average 1.58 ± 0.95, max = 5) and an 
mRNA tends to have more than one eQTL (average 1.48  
± 0.97, max = 4). For brains, the 410 single brain mRNAs 
tested had 245 significant independent associations among 
152 unique mRNAs with 146 unique SNPs (fig. 3). Again, 
many SNPs were correlated to more than one mRNA 

(average 1.68 ± 1.08, max = 8), and most mRNAs had 
more than one significant eQTL (average 2.94 ± 2.49, 
max = 14). Despite testing a similar number of heart and 
brain mRNAs, brain had 3.1× more total significant eQTL 
associations than heart (245 brain vs. 79 heart). There 
was also a greater proportion of mRNAs with at least one 
significant eQTL in brain (152/410 [37.10%] compared 
with heart mRNAs (56/390 [14.36%]) (fig. 3). This differ
ence is not explained by a difference in sample size (i.e., 
power), which was similar between hearts and brains.

One explanation for a single SNP being associated with 
multiple mRNAs is that the mRNA affected by the SNP reg
ulates the expression of many genes. This could occur when 
an eQTL is found in a transcription factor protein or trans- 
acting regulatory region (e.g., promoter). Additional regu
latory regions like LNC-RNA, micro-RNA, or a regulator of 
DNA methylation or chromatin remodeling could also 
be important. To determine if an eQTL affected many 
mRNAs through a transcription factor or other regulatory 
region, we annotated SNPs and identified those within 
5 kb of a transcription factor or other regulatory region 
(supplementary table S4, Supplementary Material online). 
Most of the changes were not in transcription factors. 
Instead, of the seventeen heart eQTL (33.7%) associated 
with more than one mRNA (hereafter identified as “hot
spots”), sixteen were in known protein-coding regions 
(within an intron or exon) and four of these sixteen (25%) 
were within an annotated transcription factor (erfl1, 
tada1, atf1, and zbtb3). The other fourteen were found 
in protein-coding regions of genes not annotated as tran
scription factors or other regulatory elements. The one 
eQTL hotspot not within a known protein-coding region 
was intergenic and not within 5 kb of an annotated tran
scription factor. In brains, 63 eQTL (43.2%) were identi
fied as hotspots, and of those, 32 were in known 
protein-coding regions (within an intron or exon); and 
only 2 of the 32 (6.25%) were within an annotated tran
scription factor (erfl1 and zbtb3) whereas 1 intergenic 
SNP was also within 5 kb of a zinc finger protein (oocyte 
zinc finger protein XlCOF6-like). One brain eQTL (chd8) 
was found within a known regulator of chromatin remod
eling. Other regulatory regions (LNC-RNA, micro-RNA, 
other epigenetic regulators) were not identified among 
the eQTL.

Table 1 
Single Nucleotide Polymorphisms Significantly Associated with Physiological Traits

Chromosome SNP location Trait FDR P value SNP annotation Sample size

NC_046380.1 38698336 GLU MRcardiac 2.97e−08 foxp1b 39
NC_046371.1 29986564 GLU MRcardiac 3.15e−17 NA 23
NC_046381.1 16773684 LKA MRcardiac 4.57e−21 kcnb2 31
NC_046363.1 31037486 END MRcardiac 3.19e−02 erfl1 25
NC_046371.1 19082580 END MRcardiac 4.86e−02 NA 30
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FIG. 2.—Direct associations: Manhattan plot for SNPs associated with cardiac metabolic rate. Variation in three substrate specific cardiac metabolic rates 
(substrates: GLU, glucose; LKA, lactate, ketones, and ethanol; and END, endogenous [no substrate added]) was associated with a total of five single nucleotide 
polymorphisms (SNPs). A) Two SNPs for MRcardiac GLU, B) one SNP for MRcardiac LKA, and C) two SNPs for MRcardiac END. The five SNPs significant after 
Benjamini–Hochberg P value correction are shown above the upper line.
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The limited sample size used here (22–35 individuals per 
association) can cause P value inflation. To address this, the 
qualitative analysis was repeated using a subset of eQTL 
with FDR P value <0.05 and >1.1102e−16 (ANGSD docu
mentation as lower bound for reliable likelihood ratio test 
P values). This reduced the number of significant single 
mRNA associations to 203 (60 heart, 143 brain associa
tions). Examining this subset of significant eQTL the results 
are qualitatively similar. There are more brain eQTL than 

heart eQTL and >95% of this subset of significant associa
tions are trans-acting and primarily found in genic regions.

Multivariate mRNA Expression Associations. Among the 
39 heart co-expression modules, there were a total of two 
significant associations (FDR P value < 0.05) between 
two SNPs and two MEs (supplementary table S5, 
Supplementary Material online). One ME had two signifi
cantly associated SNPs and they were found within 50 bp 
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FIG. 3.—Indirect associations: Expression quantitative trait loci (eQTL) are associated with expression of multiple mRNAs in heart and brain. eQTL for single 
mRNAs in A) heart and B) brain. Each SNP that is associated with expression of a mRNA (y axis) is shown on the x axis (sorted by SNP position along each 
chromosome or scaffold, designed by vertical dashed lines). The bar plots show the number of mRNAs associated with each SNP eQTL (average 1.72 ±  
1.01 correlations per SNP for heart [max = 5], average 1.81 ± 1.28 correlations per SNP for brain [max = 8]), sorted by position along each chromosome 
or scaffold (left to right). All associations are significant with a multiple test corrected P value < 0.05 (Benjamini and Hochberg).
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Heart eQTL Brain eQTL
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SNP Overlap Gene Overlap
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FIG. 4.—Unique eQTL SNPs and genes are associated with single mRNA and multivariate mRNA co-expression between hearts and brains. A) Overlap 
among eQTL SNPs associated with single mRNAs and co-expressed mRNA modules (heart and brain modules). B) Overlap among eQTL genes containing 
SNPs associated with single mRNAs and co-expressed mRNA modules (heart and brain modules).
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of each other whereas the other SNP was shared for both 
ME. Among the 41 brain co-expression modules, we found 
a total of a total of eight significant associations between 
eight SNPs and seven MEs (fig. 4). MEs are heart- or brain- 
specific, independent (not correlated to each other), and do 
not share any mRNAs. One brain ME had two significantly 
associated SNPs and they were found within 50 bp of 
each other. Four brain eQTLME were found within the 
same gene (erfl1), a known transcription factor.

The eQTL studies for single and multivariate mRNAs indi
cated significant heritable variation underlying heart- or 
brain-specific mRNA expression. Previously, multivariate 
mRNAs were correlated to physiological traits (Drown 
et al. 2022). Here, we find that the eQTLME are not asso
ciated with modules that are correlated to physiological 
trait variation. However, the significant eQTLME indicate 
that some multivariate expression patterns are heritable 
they are just not correlated with the traits measured here.

Trans-acting Effects on mRNA Expression

To better understand the genomic context of eQTL and 
eQTLME we determined their proximity to the mRNA(s) 
they affect. Interestingly, we found that >95% of single 
mRNA eQTL (97.4% for heart and 96.7% for brain) were 
trans-acting (defined as SNPs found on a different chromo
some or scaffold than that of the mRNA with which they 
were associated). Specifically, for heart 94.1% (16/17) of 
eQTL hotspots, and 97.1% (34/35) of eQTL correlated 
with single mRNAs were trans-acting. For brain 95.2% 
(60/63) of eQTL hotspots, and 96.4% (80/83) of eQTL cor
related with single mRNAs were trans-acting. Although 
eQTLME could not be classified as cis- or trans-acting be
cause they affect co-expression modules containing many 
disparately located mRNAs, we determined whether the 
eQTLME were found within 5 kb of mRNAs that were part 
of the module. All heart and brain eQTLME were in genes 
that did not overlap with mRNAs in the associated module. 
Thus, eQTLME are not simply cis-acting on a high-ranking 
mRNA within the module but have broad effects on the ex
pression of many module mRNAs.

Patterns of Shared Association

For both heart and brain, we looked for eQTL association 
for ten mRNAs from each co-expression module. Within 
an ME, the ten mRNAs have some degree of correlation 
with each other causing them to be grouped into the 
same module. Thus, we examined whether mRNAs from 
the same module had more shared eQTL than those from 
different modules. Surprisingly, within 83% of heart and 
67% of brain modules the top ten mRNAs all had unique 
eQTL. This “uniqueness” is demonstrated in the frequency 
of shared eQTL within versus among modules: For both 
hearts and brains, there was fewer shared eQTL within 

modules than among modules (t-test, heart P value =  
0.027, brain P value = 0.008). This eQTL uniqueness would 
be expected if they were cis-acting, for example, a SNP in 
the mRNA promoter. Yet, many eQTL are neither near 
nor within the genes encoding the mRNA they are corre
lated with. This indicates that these eQTL are trans-acting 
regulatory SNPs in the sense that they are found outside 
of the genes that code for modular mRNAs. Similarly, for 
eQTLME, all were in genes not containing mRNAs from 
that module. Instead, they were found in different parts 
of the genome and in genes unassociated with the physio
logical trait(s) correlated to the module.

Finally, we looked for overlap among SNP sets associated 
with a given phenotype (physiological traits, heart- or brain- 
specific single mRNAs, or heart- or brain-specific MEs, fig. 
4). First, to address whether the eQTLME were influencing 
module expression through action on a single high-ranking 
mRNA in that module, we assessed whether any SNP was 
associated with an mRNA and the module containing that 
same mRNA (overlap in eQTL and eQTLME). That is, if an 
mRNA belonged to the ME1 heart module, was there a 
shared SNP or gene containing both an eQTL for the single 
mRNA and an eQTLME associated with the ME1 heart mod
ule. We found no instances where a SNP or gene contained 
an eQTL for a single mRNA and an eQTLME for the module 
that mRNA belonged to. This suggests that the eQTLME are 
not acting on a single mRNAs but represent a more complex 
mechanism of multivariate mRNA expression control. 
Second, we examined overlap between hearts and brains 
for SNPs associated with both single mRNAs and modules. 
There was only one mRNA (atp7a, 0.13% of total) whose 
expression was correlated with at least one heart and at 
least one brain eQTL. However, the eQTL for this mRNA 
were not the same for heart and brain expression. These 
data suggest that in hearts versus brains, the variation in 
atp7a mRNA is affected by different SNPs. There is a limited 
generality of this finding because we only tested single 
heart and brain mRNAs that were high-ranking in modules, 
with only 3% of tested mRNAs shared between heart and 
brain. Thus, although our results suggest that genetic con
trol of mRNA expression is heart- or brain-specific, examin
ing a larger set of mRNAs expressed in several organs or 
tissue types would likely be more informative about the 
role of conserved eQTL among diverse tissue types. An 
additional caveat is that cell type variation within hearts 
and brains (e.g., spongy and compact myocardium in 
heart or neuronal, glial, and endothelial cells in brain) 
may alter gene expression. Notably, thermal acclimation is 
known to result in cardiac remodeling in fish, and our prior 
study (Drown et al. 2021) found evidence of cardiac remod
eling between 12 °C and 28 °C acclimated individuals 
(Gamperl and Farrell 2004; Klaiman et al. 2011; 
Oellermann et al. 2012; Nyboer and Chapman 2018). 
Single cell sequencing within hearts and brains could 
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investigate cell type specific gene expression variation that 
may contribute to patterns described here.

Genetic Diversity

To compare genetic diversity among SNP sets, heterozygos
ity at variant sites (He = 2 ∗ p ∗ 1 − p; where p is the 
allele frequency) was quantified. Among all 1,406,282 
high-probability variant sites, the average heterozygosity was 
0.231 ± 0.164 (mean ± standard deviation). Heterozygosity 
for heart and brain eQTL and brain eQTLME SNPs was sig
nificantly higher than for all SNPs (heart eQTL = 0.328 ±  
0.074, brain eQTL = 0.325 ± 0.068, brain eQTLME =  
0.369 ± 0.105). There was no significant difference in He be
tween brain and heart eQTL and eQTLME (supplementary fig. 
S3, Supplementary Material online).

Discussion
We examined associations among SNPs and specific mRNAs 
that were previously identified as biologically important 
based on their membership in co-expression modules. 
This reduced the number of tested SNPs from ∼1.5 million 
SNPs across ∼10,000 mRNAs in hearts and in brains to 
<500 mRNAs in each. Additionally, we use WGCNA 
(Langfelder and Horvath 2008) to summarize multivariate 
mRNA expression for co-expressed mRNAs. Using this ap
proach, we summarized ∼10,000 mRNAs in hearts and in 
brains into 39 heart and 41 brain modules that could be 
used in our association tests. In comparison to testing 
each of these mRNAs individually, this may have increased 
the signal to noise ratio in our mRNA expression data and 
increased our power by reducing the number of tests 
(Westra and Franke 2014).

The data suggest that there are many more significant 
indirect eQTL than direct SNP associations for the physio
logical traits we examined. Most of these indirect eQTL 
were trans-acting and in known protein-coding regions 
(within introns or exons). Many (33.7% of heart and 
43.2% of brain) eQTL were hotspots—associated with 
more than one mRNA. These results are affected by the 
power of our analyses. Although we used a total of 172 in
dividuals, a minority of individuals (∼25) had heart- and 
brain-specific and temperature specific mRNA expression 
data limiting the sample size of the association tests. 
Although other association studies conducted in wild 
populations use a similar number of individuals (Hecht 
et al. 2013; Bourret et al. 2014; Scott et al. 2015; 
Campbell-Staton et al. 2021), we acknowledge that this 
may limit our findings in two ways. First, small sample sizes 
could limit findings to only large effect loci. Yet, the import
ant insights are that nearly all significant eQTL are 
trans-acting and affect multiple mRNAs that are linked to 
physiological variation. The observation that nearly all sig
nificant eQTL are trans-acting suggests that trans-acting 

eQTL have larger effect size than cis-acting eQTL, which al
lowed us to detect them here. An additional explanation 
could be that more SNPs are in trans than in cis for a given 
mRNA making it more likely than an eQTL also is trans. This 
is possible as there is no significant difference between the 
detected proportion of trans eQTL from that expected 
based on SNP distribution among chromosomes (chi- 
square test P > 0.05). Second, small sample sizes may in
crease the risk of detecting spurious associations. Yet, the 
observation that eQTL were trans-acting and because 
they affected multiple mRNAs indicates that the eQTL are 
not spurious. That is, it is unlikely that multiple independent 
associations would spuriously be significant for a given 
eQTL. Thus, although all our conclusions are based on the 
limits of detection, these limits indicate the importance of 
trans-acting factors associated with physiologically import
ant mRNA expression. Still, we caution against making as
sumptions about the role of specific SNPs that have been 
identified here in explaining physiological traits or gene ex
pression in other populations. This is both due to the limited 
sample size and the lack of direct evidence (e.g., a tradition
al quantitative trait loci [QTL] study) for potential quantita
tive trait loci and eQTL. The alternative hypothesis is that 
these loci are not causative. Yet, using a subset of signifi
cant eQTL to obtain more conservative estimates, the over
all conclusion of mostly trans-acting eQTL is still found. An 
alternative approach would be breeding individuals with 
low and high gene expression values and examining the 
heritability of gene expression patterns in relation to a spe
cific SNP. Similarly, specific gene expression could be inter
rogated using qPCR of a common gardened individual with 
known trait measurements. Instead, we focus the discus
sion on general patterns that speak to the genetic and mo
lecular control of physiological traits.

Direct Genetic Control of Physiological 
Traits
Three out of six physiological traits (GLU, LKA, and END 
MRcardiac) were associated with five SNPs (table 1 and fig. 
1). All three of these traits are for cardiac metabolism, 
potentially reflecting less complex genomic architecture 
than standard whole animal metabolism or CTmax. Three 
of the five SNPs were within annotated genes: foxp1b 
(GLU MRcardiac), kcnb2 (LKA MRcardiac), and erfl1 (END 
MRcardiac). Foxp1b is forkhead box protein and erfl1 is a re
pressor factor; both are involved in negative regulation of 
transcription by RNA polymerase II (Cheng et al. 2007; Liu 
and Patient 2008). Kcnb2 is a voltage gated potassium 
channel, with various functions including but not limited 
to regulation of neurotransmitter release, heart rate, insulin 
release, and smooth muscle contraction (Hristov et al. 
2012; Li et al. 2022). These three genes are not found in 
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any of the heart or brain mRNA co-expression modules. 
Yet, one direct SNP (erfl1) is associated with END 
MRcardiac and contains different SNPs that are eQTL asso
ciated with mRNA expression in hearts and brains and three 
brain eQTLME. These erfl1 SNPs are all linked (within 500 bp 
of each other).

Our study did not find any direct association with F. het
eroclitus’ CTmax, but a prior study found 47 candidate SNPs 
associated (Healy et al. 2018). Similarly, none of our SNPs 
were directly associated with standard metabolic rate al
though prior studies have found multiple candidate QTL as
sociated with metabolic rate (Jacobson et al. 2006; Palomar 
et al. 2019). It is likely that this study missed these because 
of the complex nature of metabolic and thermal tolerance 
traits with many small effect loci rather than one or few 
large effect loci explaining these traits (Wentzell et al. 
2007; Burton et al. 2011; Csilléry et al. 2018; Healy et al. 
2018). Multiple studies provide evidence for a polygenic ba
sis of both traits (Healy et al. 2018; Barghi et al. 2019). Our 
approach, which is best suited to detect large effect asso
ciations, is underpowered. Thus, although we detected 
few direct drivers of physiological trait variation, this is un
likely to be representative of the biology. Using a multivari
ate approach where genotypes at many SNPs could be used 
to explain these traits may improve our detection of asso
ciated SNPs, as has been done in other studies (Bourret 
et al. 2014; Healy et al. 2018; Barghi et al. 2019). Instead 
of this multivariate approach, we focus on mRNA expres
sion patterns that may indirectly impact physiological traits. 
The ability of this approach to identify indirect drivers (eQTL 
for mRNAs linked to physiological traits) may be due to high 
effect sizes of eQTL compared with QTL, especially for 
multivariate mRNA expression (Westra and Franke 2014; 
Boyle et al. 2017). That is, whereas physiological traits are 
complex and affected by 100 s to 1,000 s of loci, mRNA ex
pression is likely to be affected by fewer loci; thus, each 
eQTL will have a larger effect because fewer polymorph
isms are involved (Boyle et al. 2017).

Are mRNA Expression Patterns under 
Genetic Control?
We found eQTL for 14.6% and 20.7% of the tested heart 
and brain mRNAs, respectively, suggesting that genetic 
variation is important in explaining these mRNA expression 
patterns (fig. 2). Interestingly, the majority (97.4% for heart 
and 96.7% for brain) of eQTL that we detected were found 
on different chromosomes than the associated mRNA 
(trans-acting). The characterization of trans-acting eQTL 
was not due to the presence of many small scaffolds 
with 78.4% of the genome found on 24 large (>28 Mb) 
chromosomes (https://www.ncbi.nlm.nih.gov/datasets/ 
genome/GCF_011125445.2) and an expected proportion 
of eQTL found on scaffolds (fig. 3; 25.3% of heart eQTL 

and 15.9% of brain eQTL). The higher number of trans- ver
sus cis-acting eQTL could reflect a higher effect size of 
trans- versus cis-acting eQTL for the selected mRNAs ex
pression or may be biased by our detection method as dis
cussed below. The relative role of cis- and trans-acting 
factors is often examined; however, many studies have 
found a prominent role of cis elements in comparison to 
trans elements (Kitano et al. 2019, although see Hoglund 
et al. 2020). Here, we find the opposite with few (<5%) 
of all eQTL in heart and brain being cis-acting (found on 
the same chromosome). If trans-acting factors have a larger 
effect size, this may be explained by our increased likeli
hood of detecting trans versus cis factors; however, other 
studies often struggle with the detection of trans-acting 
factors, which is often attributed to their lower effect size 
(Nica and Dermitzakis 2013; Westra and Franke 2014). 
Thus, our ability to detect trans-acting factors is unique 
and may be explained by the selection of specific mRNAs 
that are central to co-expression modules for our tests. 
That is, we may have enhanced our ability to identify trans- 
acting factors by looking for SNPs associated with mRNAs in 
co-expression modules that are known to be correlated 
with the expression of 10 s or 100 s of other genes. Thus, 
by examining a select set of single mRNAs, we may have 
captured many transcription factors or other regulatory ele
ments likely to have widespread effects on broad gene ex
pression patterns. As eQTL effects are often context 
dependent, our examination of heart- and brain-specific 
and temperature specific gene expression also may have 
contributed to the number of significant trans-acting ele
ments we have detected (Westra and Franke 2014; Boyle 
et al. 2017). In contrast, other studies may use the whole 
transcriptome (rather than specific organs or tissues) and 
rarely examine mRNA expression under multiple environ
ments. The frequency of trans-acting effects is important 
because it is often undetected and unappreciated. (Price 
et al. 2011). Metzger et al. suggested that trans regulatory 
mutations may be more common but do not persist over 
evolutionary time (between species) when compared with 
cis-acting factors. Our results echo this finding in that we 
emphasize the importance of trans-acting factors for within 
species gene expression. Whether the trans-acting factors 
persist due to neutral or are affected by natural selection 
is unclear. However, 44.2% of heart and 11.2% of brain 
trans-acting SNPs defined here are associated with mRNA 
expression that affect important physiological processes. 
Thus, either these trans SNP are non-neutral or the mRNA 
and the traits they appear to affect are evolutionary neutral.

Whereas we did not classify SNPs associated with MEs as 
cis or trans because there is no single genomic location for a 
module, we did examine whether SNPs associated with 
modules were found in genes that produced mRNAs that 
were part of that module. We found no association be
tween SNP identity and module membership. That is, nearly 
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all the eQTL for MEs were not found in or within 5,000 bp 
of the genes for the mRNAs in our MEs. Although 61.3% of 
eQTL and 80% of eQTLME were within genic regions (in
trons or exons), few eQTL (7.5%) were found within 5 kb 
of transcription factors or other regulatory elements. The 
percentage of eQTL found in or near transcription factors 
is similar to the percentage of transcription factors found 
globally in eukaryotic genomes and indicates that there is 
not an enrichment for eQTL or eQTLME within or near tran
scription factors (Riechmann 2002). The same is true of 
brain eQTL hotspots (6.25% within or near transcription 
factors), however, 25% of heart eQTL hotspots were within 
an annotated transcription factor. This is 2- to 5-fold en
riched when considering the proportion of protein-coding 
genes that are transcriptional regulators among organisms: 
∼8% (1,600/20,000) in humans (Lambert et al. 2018), 
12.6% in zebrafish (3,302/26,602) (Armant et al. 2013), 
and 4–5% in yeast (264/6,000) (de Boer and Hughes 
2012). Similarly, the large number of eQTL and eQTLME 

(61.3–80%) found within genic regions (introns or exons) 
exceeds expectations (∼2% of eukaryotic genomes are pro
tein coding). These data suggest that trans-acting factors 
may include more than just the annotated transcription fac
tors or that annotations are lacking. Prior studies have re
ported an enrichment within and near genic regions for 
trait associated SNPs (Li et al. 2012; Watanabe et al. 
2019) and a high likelihood of trait associated SNPs being 
eQTL (Nicolae et al. 2010). Our data have similar findings 
with an enrichment of eQTL and eQTLME within genic 
regions.

SNPs in three genes had both eQTLME and eQTL for sin
gle mRNAs (erfl1, LOC105931894, and pnpla7a). Of these, 
one gene, erfl1, is a known transcription factor and had 
four intronic eQTLME and contained five SNPs associated 
with 13 single mRNAs. The SNPs associated with single 
mRNAs were not the same as those associated with ME ex
pression, suggesting that eQTLME were functionally inde
pendent from any single mRNA. This demonstrates that 
ME expression is not driven by the effect of an eQTL on a 
single high-ranking mRNA within the module.

The approximately 25 individuals for any one SNP limit 
the conclusion on the diversity of mRNAs and molecular 
mechanisms affecting the six physiological traits. Yet, we 
find many significant eQTL for both single and multivariate 
mRNA expression where a vast majority were trans-acting 
or distant to the variable mRNA loci. These findings suggest 
that our approach may allow for better detection of trans- 
acting elements, which may affect expression of dozens or 
hundreds of co-expressed mRNAs.

Finally, we find that eQTL and brain eQTLME have greater 
heterozygosity (frequency of variant alleles) when com
pared with all 1,406,282 variant sites used in this study. 
Heart eQTLME approached significance (P = 0.056) but 
was not different from all SNPs likely due to there being 

only two SNPs in this subset. This may be explained by 
the association approach as less variable sites have less vari
ance among individuals that can be used to explain variance 
in the physiological traits and mRNA expression patterns. It 
is also possible that allele frequency differences are bio
logically relevant. If eQTL and eQTLME sites are under direc
tional selection, we might expect a loss of genetic diversity 
in these sites. Yet, we find that heterozygosity (frequency of 
variant alleles) is higher in eQTL and eQTLME when com
pared with all SNPs. Higher heterozygosity may be due to 
genetic redundancy, as indicated by the presence of differ
ent SNPs underlying eQTL and eQTLME and the association 
of correlated physiological traits with different underlying 
loci. These patterns could be driven by spatial or temporal 
variation in selection preventing allelic fixation and aiding 
in the maintenance of biologically important variation at 
the SNP and mRNA level.

Are Genetically Controlled mRNA 
Expression Patterns Likely to Impact 
Physiological Traits?
Heritable genetic variation impacts mRNA expression 
(Gibson and Weir 2005), a molecular level phenotype that 
is well established as important in physiological response 
to the environment (McCairns and Bernatchez 2010; 
Albert and Kruglyak 2015; Dayan et al. 2015; Zhang et al. 
2019; Campbell-Staton et al. 2021). Thus, our finding of 
genetic links to mRNA is not surprising, even with a small 
sample size. What is unique in our data is the ability to 
examine relationships among genotype and gene expres
sion (eQTL) of individuals from wild populations and inter
pret them in the context of known correlations between 
gene expression and physiological traits. This may be espe
cially important for improving our ability to detect biologic
ally important genetic variation (Albert and Kruglyak 2015) 
because gene expression is a relatively simpler trait that may 
be controlled by fewer, larger effect, and easier to detect 
loci (Boyle et al. 2017).

Previously, we found that up to 82% of the variation in 
several temperature specific (12 °C or 28 °C) metabolic and 
thermal tolerance traits could be explained by co- 
expression among hundreds of mRNAs grouped into mod
ules (Drown et al. 2022). However, we could not parse the 
roles of plasticity versus heritable mRNA expression vari
ation. Here, we show that expression of single mRNAs 
found within these modules and multivariate module ex
pression is associated with genetic variation. This suggests 
that a significant portion of several physiological traits 
may be explained by heritable mRNA expression variation. 
Specifically, genetic variation in heart mRNA expression is 
linked to 12 °C FA MRcardiac, 12 °C SMR, and 12 °C LKA 
MRcardiac. Heritable variation in brain mRNA expression 
is linked to 28 °C CTmax (supplementary table S6, 
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Supplementary Material online). This provides further evi
dence that mRNA expression patterns impacting these 
physiological traits are under genetic control and heritable.

Prior studies have demonstrated that heritable mRNA ex
pression variation can impact diverse physiological traits. 
For example, behavioral maturation from hive worker to 
forager between honey bee subspecies is partially attribu
ted (up to 30%) to heritable variation in brain gene expres
sion (Whitfield et al. 2006). Various organisms including sea 
turtles (Tedeschi et al. 2016), maize (Frova and Gorla 1993), 
fruit flies (Sejerkilde et al. 2003), and fish (Fangue et al. 
2006; Heredia-Middleton et al. 2008) among others exhibit 
heritability of heat shock protein expression, allowing them 
to respond to environmental temperature variation. Here, 
we found that biologically important single and multivari
ate mRNA expression related to physiological traits has a 
genetic basis and is heritable. This is similar to studies that 
have found overlap among QTL and eQTL sets (Wentzell 
et al. 2007; Carrasco-Valenzuela et al. 2019). Yet, the find
ing that a single eQTL is significantly associated with 100 s 
of co-expressed mRNAs is unique. Further, many of the 
modules were associated with more than one eQTL, sug
gesting that there is substantial genetic variation contribut
ing to gene expression patterns related to physiological 
traits. The allelic variation in gene expression provides the 
raw material for evolution and may explain the vast interin
dividual variation in physiological traits that we have mea
sured (Drown et al. 2021; Drown et al. 2022).

Are Physiological Traits Genetically 
Independent?
Here, we have shown that mRNA expression patterns pre
viously correlated with physiological traits are associated 
with a suite of mostly trans-acting eQTL, suggesting genetic 
control. One additional potential outcome of this study was 
to determine if physiological traits had a shared genetic ba
sis. This was an important avenue to explore as our prior 
studies found correlation among traits (Drown et al. 
2021) and shared patterns of mRNA expression among 
correlated traits (Drown et al. 2022). For example, we pre
viously found that 12 °C FA MRcardiac was positively asso
ciated with 12 °C SMR and that these traits were both 
associated with two MEs (heart ME4 and heart ME5). If 
these traits also had a shared genetic basis, we expected 
eQTL for heart ME4 and heart ME5 to be shared. No 
eQTLME were associated with multivariate expression of 
trait associated modules; however, 35 eQTL were asso
ciated with expression of single genes belonging to trait as
sociated modules. There were five shared SNPs among 
eQTL within or associated with genes in trait associated 
modules. Of these SNPs, three were shared between mod
ules associated with a shared trait (supplementary table S6, 
Supplementary Material online). Specifically, heart ME3 

and heart ME5, both associated with 12 °C FA MRcardiac, 
share a SNP (NW023397088_1791840), and heart ME4 
and heart ME9, both associated with 12 °C SMR, share a 
SNP (NC046366.17066247). Notably, three other SNPs 
were shared among modules correlated to different traits 
(one SNP shared between modules associated with 12 °C 
SMR and FA MRcardiac, two SNPs shared between modules 
associated with 12 °C SMR and 12 °C LKA MRcardiac). This 
provides evidence that there may be a shared genetic basis 
or genetic control of these metabolic traits. Notably, this 
was only true of heart modules with no shared SNPs among 
the three brain modules, which were all associated with 28 
°C CTmax. Additionally, the five SNPs associated directly 
with physiological traits were not shared among traits 
and do not overlap with any eQTL. One known transcrip
tion factor, erfl1, contains multiple SNPs that are either dir
ectly associated with a trait (one SNP, 12 °C END MRcardiac), 
are eQTL (one heart, five brain), or are heart or brain 
eQTLME (four SNPs).

Overall, the limited overlap among SNPs associated dir
ectly or indirectly (eQTL) with physiological traits within 
hearts or brains was surprising. This may be due to our lim
ited ability to detect small effect QTL, and we might expect 
greater overlap between QTL and eQTL if more mRNAs 
were tested across more individuals. However, within the 
power of our data, we detected diverse and complex mo
lecular mechanisms correlated with physiological trait vari
ation. Heart- or brain-specific expression patterns appear to 
be under unique genetic control, and multivariate mRNA 
expression is not explained by a single eQTL impacting 
mRNA expression of a gene highly correlation to a given 
module.

Thus, although different traits are correlated to the same 
ME, the nucleotide polymorphism, or genetic control, of 
mRNA expression is distinct. This suggests that there is sub
stantial genetic variation underlying the physiological traits 
we have measured, with a diversity of molecular and gen
etic mechanisms contributing to trait variation. The para
doxical genetic independence of physiologically related 
traits (here metabolism and thermal tolerance) is not un
common (see Van Herrewege and David 1980; Baker 
et al. 2015; Healy et al. 2018) and emphasizes that these 
traits may still be evolutionarily distinct, although they are 
linked at the molecular or physiological level.

Conclusions
Relationships among genotype, gene expression, and 
physiological traits explain biologically important natural 
variation found in wild populations. In particular, substan
tial and diverse genetic variation impacts these traits 
through direct and indirect (eQTL and eQTLME) mechan
isms. Demonstrated here, much of the mRNA expression 
variation is associated with a diverse set of trans-acting 
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eQTL. Surprisingly, these trans-acting eQTL are unique even 
for mRNAs that affect multiple traits. Under a simpler gen
etic architecture, we may expect mRNAs that have a shared 
association with cardiac and whole animal metabolism to 
also share the same trans-acting eQTL, but this does not oc
cur. Instead, the mRNA expression changes that affect mul
tiple physiological traits are associated with different 
trans-acting SNPs. Finally, the SNPs directly or indirectly as
sociated with physiological traits have greater heterozygos
ity (genetic variation) compared with all SNPs, and this 
greater genetic variation likely contributes to F. heterocli
tus’ well characterized resilience and plasticity (reviewed 
in Burnett et al. 2007; Crawford et al. 2020) in the face 
of novel environments. Additional studies are needed to 
demonstrate causative relationships between SNPs, 
mRNAs, and traits. Yet, there are known functional rela
tionships between SNP variance and mRNA expression, 
and these patterns are heritable. It is possible that the 
eQTL identified here are linked to causal variants and are 
not the causal variants per se, however, we do demonstrate 
in finding SNPs and eQTL associated with physiological trait 
variation that these traits are under genetic control at least 
partially driven by heritable mRNA expression patterns. 
Together, our data suggest genetic control of biologically 
effective, mRNA expression (expression that impacts 
physiological traits), which in turn, may impact fitness.

Materials and Methods

1. Sample collection: Fin clips were taken from adult F. het
eroclitus collected along the central coast of New Jersey, 
United States near the Oyster Creek Nuclear Generating 
Station (OCNGS), which produces a thermal effluent 
that locally heats the water. Three populations were 
sampled: 1) north reference (N.Ref; 39°52′28.000N, 
74°08′19.000W), 2) south reference (S.Ref; 39°47′ 
04.000N, 74°11′07.000W), and 3) a central site located 
between the southern and northern references that is 
within the OCNGS thermal effluent (TE; 39°48′ 
33.000N, 74°10′51.000W). The TE population used 
here differs by 4 °C in habitat temperature from the 
two reference populations (average summer high tide 
temperature 28 °C N.Ref and S.Ref, and 32 °C for TE) 
but is otherwise ecologically similar (Drown et al. 
2021) (Dayan et al. 2019). Fin clips were collected in 
fall 2015 (F15), fall 2018 (F18), spring 2019 (S19), fall 
2019 (F19), and fall 2020 (F20) and stored in GuHCl buf
fer. DNA was extracted using carboxyl coated magnetic 
beads. The DNA quality was assayed using gel electro
phoresis and spectrophotometry to ensure high molecu
lar weight and low contamination.

2. Library preparation: The analysis presented here uses a 
subset of samples that were part of a larger sequencing 

run. A total of 1,121 individuals were sequenced 
(supplementary table S3, Supplementary Material on
line). All samples were quantified in triplicate using spec
trophotometry and normalized to 100 ng for 
sequencing library preparation. The whole genome se
quencing library was prepared using a tagmentation ap
proach. Briefly, DNA was digested with an in-house 
purified Tn5 transposase (as in Picelli et al. 2014) loaded 
with partial adapter sequences. After tagmentation, the 
fragmented DNA was amplified using barcoded primers 
such that each individual sample would contain a un
ique i7 and a plate level (1 per 96 samples) i5 barcode. 
This allowed for unique dual indexing of up to 768 in
dividuals. After barcoding, samples were combined 
into two pools (560 samples each) and each pool amp
lified and then sequenced on a single lane of Illumina 
HiSeq 3000. These single sequencing lanes were as
sessed to determine coverage balance among samples, 
and the same libraries were sequenced across an add
itional four lanes each. For all sequencing runs, a great
er relative amount of library for F18 samples was added 
to the pool to achieve higher coverage because whole 
animal, whole organ, and molecular (mRNA expres
sion) level phenotypic data were available for these 
individuals.

3. Raw sequence analysis: We followed best practices for 
lcWGS data processing as in Lou et al. (2021). Briefly, 
adapter sequences and low-quality bases were trimmed 
using Trimmomatic (v0.39) (Bolger et al. 2014). Flash 
(v1.2.11) (Magoč and Salzberg 2011) was used to com
bine overlapping reads and to parse singletons and 
paired reads. Singletons and paired reads were mapped 
separately using BWA mem (v0.7.17) and resulting sam 
files converted to bam files using samtools (v1.3.1) 
(Danecek et al. 2021). The first and second sequencing 
runs were processed separately until BAM files were 
produced and found to be of similar quality assessed 
by comparing total percentage of mapped reads and le
vels of dually mapped reads before combining for the re
maining file processing steps. Picard (v2.26.4) was used 
to add read group information, which is needed for du
plicate marking downstream. After combining all 
mapped reads for a single individual, BAM files were fur
ther filtered for mapping quality using samtools and 
overlapping reads softclipped using bamutil (v1.0.15). 
Finally, Picard (v2.26.4) was used to mark duplicate 
reads.

4. Variant calling: Two variant calling pipelines were used. 
First, Freebayes (v1.0.2) was used to call variants, and 
the resulting VCF file was filtered using VCFtools 
(v0.1.16). VCFtools filters were to include only biallelic 
sites, >5% minor allele frequency, <5% missingness 
per individual, and <10% missingness per site. This re
sulted in 1,406,282 high-probability variant sites. 
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ANGSD (v0.935) (Korneliussen et al. 2014), which is de
signed for use with lcWGS data, was then used to obtain 
a genotype likelihood beagle file containing the previ
ously identified high-probability variant sites from 
Freebayes and VCFtools. This approach is similar to 
other studies using lcWGS data where variant calling 
may be sensitive to specific tool use.

Phenotypic Data

Methods and analyses for phenotypic data are described in 
previous publications (DeLiberto et al. 2020; Drown et al. 
2020; Drown et al. 2021; Drown et al. 2022). Briefly, all 
phenotypes were measured after common gardening 
and under two temperature acclimation conditions. 
Whole animal phenotypes included temperature specific 
whole animal metabolism (standard metabolic rate 
[SMR]) and critical thermal maximum (CTmax, a measure 
of thermal tolerance) measured at and after acclimation 
to 12 and 28 °C. Heart-specific phenotypes included four 
substrate specific cardiac metabolic rates (MRcardiac, sub
strates: glucose [GLU], fatty acids [FA], lactate + ketones  
+ ethanol [LKA], and endogenous [END, no substrate 
added]) measured for half the individuals at 12 °C and 
half at 28 °C.

Hearts and brains were collected after measuring 
MRcardiac and stored in chaotropic buffer for mRNA expres
sion analysis. The mRNA data include heart- or brain- 
specific expression counts for single mRNAs and heart- or 
brain-specific module mRNA expression (ME) from a whole 
genome co-expression network analysis (WGCNA, v1.70– 
3, Langfelder and Horvath 2008; Drown et al. 2022). The 
WGCNA approach summarizes mRNAs with correlated ex
pression into co-expression modules, calculates a principal 
component of module expression for each individual 
(ME), and assigns a rank to single mRNAs within the module 
(module membership) based on their correlation to the ME. 
Here, we use the first principal component of module ex
pression (ME) as a multivariate molecular level phenotype 
that may be predicted using genotype likelihoods. In add
ition, we examined association between genotype likeli
hoods and the top ten mRNAs for each module (based on 
module membership). 

1. Association studies: All results are reported from the 
score test conducted in ANGSD using -doAsso 2 with 
default filters (-minHigh 10, -minCount 10). The sample 
size for each association can be found in supplementary 
table S2, Supplementary Material online and is limited 
by the availability of phenotypic and mRNA expression 
data (a subset of the 172 genotyped individuals). For 
all phenotypes, acclimation temperature was included 
as a covariate. For SMR, CTmax, and MRcardiac, acclima
tion order (individuals were acclimated to 12 °C then 

28 °C or 28 °C then 12 °C) was included as an additional 
covariate. For SNP associations to mRNA expression, 
heart and brain mRNA expression were examined as 
separate phenotypes. P values for genotype to pheno
type associations were corrected for multiple testing 
using the Benjamini–Hochberg approach (Benjamini 
and Hochberg 1995) and significant associations identi
fied as those with a corrected P value < 0.05. To exam
ine patterns among independent SNPs, in cases where 
SNPs associated with the same phenotype were within 
500 bp of each other, we pruned SNPs to keep the 
most significant SNP for each association and removed 
any within 500 bp of that SNP.

2. Annotation of significant SNPs: A bed file was generated 
from a SNP list using the genomic region for the SNP as 
the SNP location—1 bp: SNP location. Bedtools intersect 
was used to obtain annotation information from the 
.GTF file for the current F. heteroclitus genome.

3. Statistical analysis: Data visualization and statistical 
analyses were conducted in R (v 4.0.5). An annotated 
script is available on Github (https://github.com/ 
mxd1288/Genotypic_drivers.git). Association tests 
were carried out using ANGSD, as described above, 
and the likelihood ratio test values used to calculate P 
values for each SNP to trait association calculating 
using a one-sided noncentral chi-squared distribution 
(pchisq in R). P values were corrected within each set 
of trait associations using p.adjust in R with the 
Benjamini and Hochberg method (Benjamini and 
Hochberg 1995).

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online (http://www.gbe.oxfordjournals.org/).
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