loT System Vulnerability Analysis and Network Hardening with
Shortest Attack Trace in a Weighted Attack Graph

Yinxin Wan"
Arizona State University

Xuanli Lin*
Arizona State University

Abdulhakim Sabur

Arizona State University

School of Computing and Augmented School of Computing and Augmented School of Computing and Augmented

Intelligence Intelligence Intelligence
Tempe, AZ, USA Tempe, AZ, USA Tempe, AZ, USA
ywan28@asu.edu xlin54@asu.edu asabur@asu.edu
Alena Chang Kuai Xu Guoliang Xue

Arizona State University
School of Computing and Augmented
Intelligence
Tempe, AZ, USA
ahchang@asu.edu

ABSTRACT

In recent years, Internet of Things (IoT) devices have been ex-
tensively deployed in edge networks, including smart homes and
offices. Despite the exciting opportunities afforded by the advance-
ments in the IoT, it also introduces new attack vectors and vulnera-
bilities in the system. Existing studies have shown that the attack
graph is an effective model for performing system-level analysis
of IoT security. In this paper, we study IoT system vulnerability
analysis and network hardening. We first extend the concept of
attack graph to weighted attack graph and design a novel algorithm
for computing a shortest attack trace in a weighted attack graph.
We then formulate the network hardening problem. We prove that
this problem is NP-hard, and then design an exact algorithm and a
heuristic algorithm to solve it. Extensive experiments on 9 synthetic
IoT systems and 2 real-world smart home IoT testbeds demonstrate
that our shortest attack trace algorithm is robust and fast, and our
heuristic network hardening algorithm is efficient in producing
near optimal results compared to the exact algorithm.

CCS CONCEPTS

« Security and privacy — Network security; Vulnerability
management; « Networks — Cyber-physical networks; Home
networks.

KEYWORDS

shortest attack trace, weighted attack graph, network hardening,
IoT security

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IoTDI °23, May 09-12, 2023, San Antonio, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0037-8/23/05...$15.00
https://doi.org/10.1145/3576842.3582326

Arizona State University
School of Mathematical and Natural
Sciences
Glendale, AZ, USA
kuai.xu@asu.edu

Arizona State University
School of Computing and Augmented
Intelligence
Tempe, AZ, USA
xue@asu.edu

ACM Reference Format:

Yinxin Wan, Xuanli Lin, Abdulhakim Sabur, Alena Chang, Kuai Xu, and Guo-
liang Xue. 2023. IoT System Vulnerability Analysis and Network Hardening
with Shortest Attack Trace in a Weighted Attack Graph. In International
Conference on Internet-of-Things Design and Implementation (IoTDI °23), May
09-12, 2023, San Antonio, TX, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3576842.3582326

1 INTRODUCTION AND BACKGROUND

Recent advances in artificial intelligence, wireless communication,
and cloud computing have driven the rapid development of IoT
devices. Heterogeneous IoT devices designed for different purposes
have brought convenience to users and facilitated home automa-
tion. However, design flaws, weak authentication, and software
vulnerabilities in IoT devices also introduced a broad range of at-
tack vectors, making IoT devices ideal targets for cyber attacks [2].

To analyze and understand the IoT system, many research works
have been focused on measuring the network traffic generated by
IoT devices [23, 24], analyzing smart home applications [9], and
investigating the vulnerabilities in low-energy wireless communi-
cation protocols [15, 18]. Recent studies on detecting abnormal IoT
device events in smart homes IoT systems have identified the inter-
actions between IoT devices [6, 11] which are critical for identifying
abnormal IoT device events.

To systematically profile and analyze IoT system security, [OTA
[8] proposes to utilize attack graphs [16, 19, 21] for modeling and
studying the vulnerabilities of the whole IoT system where different
IoT devices and IoT applications are deployed. In particular, IOTA
generates the exploit-dependency attack graph by identifying the
vulnerabilities of individual IoT device as well as the physical depen-
dencies and mobile app dependencies among the IoT devices. IOTA
further defines the concept of attack trace, which models how the
attack could gradually achieve the attack goal from the primitives
and proposes a recursive algorithm for computing a shortest attack
trace (SAT) to an attack goal as well as an algorithm for calculating
the blast radius of a vulnerability in the attack graph. [22] proposes
a risk-based approach to identify critical IoT devices that act as
enablers in an attack path. The authors combine CVSS metrics to

https://orcid.org/0000-0003-1535-5253
https://orcid.org/0000-0003-0332-8645
https://orcid.org/0000-0001-6373-3584
https://orcid.org/0009-0007-7550-2856
https://orcid.org/0000-0001-6659-6773
https://orcid.org/0000-0002-5833-8894
https://doi.org/10.1145/3576842.3582326
https://doi.org/10.1145/3576842.3582326

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

develop a risk-oriented approach that aims to reduce the number
of critical attack paths to enhance the mitigation strategy.

In this paper, we consider a more general attack graph model
where each vertex and edge is associated with a non-negative
weight. We study attack traces and shortest attack traces in a
weighted attack graph and show that the unweighted concepts
of attack graphs, attack traces, and shortest attack traces are special
cases of the weighted counterparts studied in this paper.

We design a novel algorithm for computing a shortest attack
trace in a weighted attack graph. Our algorithm is robust. It can
properly deal with cycles in the attack graphs [16] and is guaranteed
to find a shortest attack trace in polynomial time if the attack graph
contains at least one attack trace. In case there is no attack trace in
the attack graph, our algorithm will stop properly without entering
the infinite loop. The state-of-the-art algorithm [8] does not have
this robust property, as demonstrated by examples. Our algorithm
is fast. It has a worst-case running time of O(m + nlogn), where
n and m are the number of vertices and edges in the attack graph,
respectively. This is faster than the state-of-the-art algorithm [8].

We study the network hardening problem, where a subset of
network elements is selected to be hardened (within a budget con-
straint) in order to maximally increase the height of a shortest
attack trace in the hardened attack graph. Since the height of the
shortest attack trace represents the level of difficulty for the attacker
to gain access to the attack goal, the network hardening problem is
important. We prove that the network hardening problem is NP-
hard. We design an exact algorithm (as a baseline) for computing
an optimal solution using a novel bounding technique. We also
design a polynomial-time heuristic algorithm. While the heuristic
algorithm does not guarantee to find an optimal solution, our ex-
tensive experimental evaluation on different datasets demonstrates
that it can produce relatively good results compared with the exact
algorithm.

Our main contributions are the following:

e We study weighted attack graphs and present a polynomial-
time algorithm for computing a shortest attack trace in a
weighted attack graph. Our algorithm can properly deal with
cycles in the attack graph and guarantees producing correct
results regardless of whether the attack graph contains an
attack trace. In contrast, the state-of-the-art algorithm [8]
may require exponential time when the attack graph has no
cycles and go into an infinite loop when the attack graph
contains cycles.

e Using the height of a shortest attack trace as the metric, we
study the network hardening problem. We prove that the
problem is NP-hard by a polynomial-time reduction from
Knapsack [12]. We design an exact algorithm with a novel
bounding technique. We also design a polynomial-time heuris-
tic algorithm with good performance.

e We implement all algorithms and evaluate them on 9 syn-
thetic IoT systems and 2 real-world smart home IoT testbeds.
Our extensive experiment results have demonstrated that our
heuristic network hardening algorithm can efficiently pro-
duce near optimal results compared to our exact algorithm.

The remainder of this paper is organized as follows. Section 2 de-
fines basic concepts. Section 3 presents our algorithm for computing

Wan, Lin, Sabur, Chang, Xu, and Xue

a shortest attack trace. Section 4 studies the network hardening
problem. Section 5 presents the evaluation results. Section 6 con-
cludes this paper.

2 BASIC CONCEPTS

In this section, we first present the concept of attack graphs in
network security. We then discuss how to conduct the system-level
security analysis of IoT systems using attack graphs. We show that
the concept of attack trace [8] is critical in analyzing the attack
graphs. Subsequently, we define weighted attack graphs and discuss
attack traces and shortest attack traces in a weighted attack graph.

2.1 Attack Graph

The concept of attack graphs has been widely adopted in cyber secu-
rity to provide a systematic view of network security and to analyze
the vulnerabilities in the system. State-based attack graphs [21]
model the network system as a finite state machine where state
transitions correspond to the intruder’s atomic attacks. However,
the size of the state-based attack graphs could scale exponentially
to the input size, thus limiting their applications. Logical attack
graphs [16, 17], on the other hand, is more efficient as the logical
attack graphs can be generated in polynomial time. In this paper,
we focus on the logical attack graph model, and we refer to logical
attack graphs as attack graphs in the rest of this paper.

We use MulVAL [17] to generate attack graphs. The inputs to
MulVAL are system configurations and interaction rules in Datalog
tuples and Datalog rules. Then the MulVAL reasoning engine will
call the Prolog system XSB [20] to evaluate the interaction rules on
input facts and subsequently output the logical attack graph.

The MulVAL-generated logical attack graphs are directed graphs
and could contain cycles [16]. There are three kinds of vertices in
the logical attack graph: primitive fact vertices, derived fact vertices,
and rule vertices. The attack goal is a special derived fact vertex. The
edges in the graph represent the “depends on” relation. Each derived
fact vertex is dependent on any one of its incoming neighbors.
Hence a derived fact vertex is also called an OR vertex.

Each rule vertex is dependent on all of its incoming neighbors.
Hence a rule vertex is also called an AND vertex.

2.2 System-Level IoT Security Analysis

An attack graph conveys critical information regarding the sys-
tem vulnerabilities, making it a powerful model for methodically
measuring and analyzing IoT system security. IOTA [8] formally
develops a framework for efficiently constructing attack graphs
given the IoT system configurations.

In IOTA, the attack graph of an IoT system is generated using
MulVal [17] with Prolog clauses representing the exploit models
and device dependencies as inputs. The exploit models are built by
scanning the IoT system configurations for individual vulnerability.
Three types of IoT device dependencies are identified by IOTA, in-
cluding app-based dependency, indirect physical dependency, and
direct physical dependency. The app-based dependencies are ex-
tracted by applying natural language processing (NLP) techniques
to the descriptions of smart home apps. IOTA [8] proposes the
metrics of the shortest attack trace to an attack goal and the blast
radius of a vulnerability for interpreting the generated attack graph.

loT System Vulnerability Analysis and Network Hardening

A recursive algorithm is proposed to calculate the shortest attack
trace to the attack goal in the attack graph.

The authors of [1] study the IoT device deployment problem
systematically by considering the whole IoT system with the attack
graph. Both the problem of deploying all required IoT devices with
minimal security implications and computing the maximal number
of IoT devices to be deployed without increasing the security risk
of the network are studied in [1]. A heuristic search algorithm for
solving both optimization problems is designed by [1].

2.3 Weighted Attack Graph

We extend the concept of attack graphs [16] and propose the con-
cept of weighted attack graphs.

Definition 1 (Weighted Attack Graph). A weighted attack
graph is a directed graph G = (Vp, Va4, Ve, E, w, g), where Vo, Va and
Vi denote the set of primitive fact vertices (source vertices), the
set of derived fact vertices (OR vertices), and the set of rule vertices
(AND vertices), respectively; E € {(Vp U Vy) X Vi } U {V, x Vy} is
the set of directed edges; w(v) > 0 is the weight for a vertex v;
w(e) > 0 the weight for an edge e € E; g € V; is the attacker’s goal.
u]

In the above definition, the notation w(-) is overloaded: w(v)
denotes the weight of vertex v € V,, U V; U V., while w(e) denotes
the weight of edge e € E. It should be noted that this notation
overloading simplifies the presentation without creating ambiguity,
as its meaning is clear from the context.

Let G be a weighted attack graph. We use VPG to denote the

set of primitive fact vertices in G, VdG to denote the set of derived

fact vertices in G, VrG to denote the set of rule vertices in G, EC to
denote the set of edges in G, g€ to denote the goal vertex in G, and
wC to denote the weight function in G. We also use V¥ to denote
the set of all vertices, i.e., VO = Vl? U VdG U V,C. When the graph G
is clear from the context, we may drop the superscript and use the
notations Vp, Vg, Vi, V, E, g, w.

The concept of weighted attack graph contains the concept of
(unweighted) attack graph studied in the literature [8, 16, 19, 21] asa
special case. When we restrict w(v) = 0,Vo € V and w(e) = 1,Ve €
E, the weighted attack graph reduces to the classic (unweighted)
attack graph. For this reason, we will use the notations of weighted
attack graph and (unweighted) attack graph interchangeably, unless
specified otherwise.

Note that not all vulnerabilities are the same in terms of pene-
trability and ubiquity. Therefore, the inclusion of vertex and edge
weights in attack graphs can more accurately characterize the vul-
nerabilities of the IoT system. This is the main motivation for us
to study weighted attack graphs in this paper. We will discuss the
impact and cost of networking hardening in Section 4.

2.4 Attack Trace

Given an attack graph, an attacker can have different attacking
strategies in order to achieve the attack goal. To model the at-
tacker’s attacking strategies, we adopt the concept of attack trace
introduced in IOTA [8], which can accurately profile the depen-
dency relationships between vertices in an attack graph. Note that
IOTA [8] defines attack traces for unweighted attack graphs. In this

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

paper, we extend the concept of attack traces to weighted attack
graphs in Definition 2.

Definition 2 (Attack Trace in a Weighted Attack Graph).
Let G be a weighted attack graph. Let t € VC be any vertex in G.
An attack trace to vertex t in G, denoted by TGt , is a subgraph of G
that satisfies the following properties:

(1) Let o be any vertex in T%. If v € VdG, then the in-degree of v
in TG is 1. In other words, for any OR vertex v in TGt TGt
contains exactly one of the edges in {(u,v)|(u,v) € E®}.

(2) Let v be any vertex in TS, If v € V.©, then the in-degree of
v in TS is equal to the in-degree of v in G. In other words,
for any AND vertex o in T, T®! contains all edges in the
set {(u,0)|(u,0) € EC}.

(3) Let 0 be any vertex in T, If the in-degree of v in TS is 0,
thenov € VPG . In other words, every source vertex in T®! is a
primitive fact vertex.

(4) Vertex t is the only vertex in with out-degree 0 in
The height of the attack trace TG, denoted by H (TG’t), is the
length of the longest path in TS, where the length of a path is the
summation of the weights of the vertices and edges on the path.
An attack trace to vertex g is called an attack trace of G. We may
use TC to denote TS since the goal vertex g is unique in G. O

TG, t TG’ t)

<2
D

O

(b)
Figure 1: (a) An attack graph with two attack traces. (b) An
attack graph with no attack trace.

Example. To illustrate the concept of attack trace in a weighted
attack graph, consider the attack graph G in Fig. 1(a). We assume
that w(v) = 0 for each vertex v and w(e) = 1 for each edge in G.
There are two attack traces to node g in the attack graph G:

(1) Attack trace TIG’g with vertices {02, 013,, Uf, vs, v‘r*, g},and edges

{(v2,02), (v3,02), (02, Ufl), (0(21, od), (v}, 9)}. This attack trace
is highlighted in orange in Fig. 1(a).

(2) Attack trace T, "9 with vertices {vl,v},al 03,05,

- ot g} and
edges {(0,01), (01, 01), (0}, 62), (63, 02), (02, o), (v, 9)}
The height of attack trace TlG Y is 4, while the height of attack
trace TZG Y is 6.
Definition 3 (Shortest Attack Trace). Let G be a weighted
attack graph. Let t € VO be any vertex in G. Let TsGh’t be an attack
trace in G. Tsc};lt is said to be a shortest attack trace to vertex t,

if H(Tgl’t) < H(TO?) for any attack trace T%! to vertex t. A

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

shortest attack trace to vertex g € VO (the attacker’s goal) is called
a shortest attack trace of G. O

The concept of (unweighted) attack trace and shortest attack
trace was introduced in [8] for unweighted attack graphs, where the
height of an attack trace is defined as the longest path (measured
by hop-count) in the attack trace. One can verify that the height of
an attack trace defined above is the same as the height of an attack
trace defined in [8] when w(v) = 0,Yv € V and w(e) = 1,Ve € E.

A given attack graph may have multiple nonidentical shortest
attack traces. However, for any two shortest attack traces T1 and T,
of attack graph G, their heights must be equal, i.e., H(T1) = H(T2).
To simplify the presentation without confusion, we will use Ty, to
denote a shortest attack trace.

Following a shortest attack trace is the optimal strategy for the
attacker, i.e., it requires the least effort/time for the attacker to gain
control of the attack goal. Therefore H (Tyy,) is the least effort/time
that the attacker needs to spend to gain control of the attack goal.

3 COMPUTING A SHORTEST ATTACK TRACE:
PERSPECTIVE OF THE ATTACKER

In this section, we present a novel polynomial time algorithm for
computing a shortest attack trace in a weighted attack graph. Our
algorithm is inspired by the approach in IOTA [8].

3.1 A Novel Algorithm for Computing an SAT

Our algorithm for computing a shortest attack trace is Algorithm 1,
named SAT(G). SAT(G) takes an attack graph G as input. It either
stops in Line 27, claiming that there is no attack trace in G, or stops
in Line 37, outputting a shortest attack trace Tg,.

Before illustrating SAT(G) with examples, we explain its main
steps in the following. Line 1 creates an empty priority queue PQ
such as the Fibonacci heap [10]. We use a color system for the
vertices. A vertex v is WHITE before it is inserted into PQ, GRAY when
it is on PQ, and BLACK after it is extracted from PQ. The in-degree
of v is recorded in v.in. The vertex attribute v.done denotes the
number of edges into v that have been traversed by the algorithm.
If v is an OR vertex, v.height is initialized to oo, and decreased to the
minimum of the heights of all attack traces to v computed so far. If
v is an AND vertex, v.height is initialized to —oco, and increased to the
maximum of {u.height + w(u,v) + w(v)|u.color = BLACK}. When
all incoming neighbors of v are extracted from PQ, a shortest attack
trace to vertex v is computed, and its height is stored in v.height.
These attributes for v € V; U V;. are initialized in Lines 2-7.

In Lines 8-9, each vertex v € Vp is inserted into PQ, with v.height
set to its final value of w(v). The main body of the algorithm is the
while-loop in Lines 10-26, where the vertex on PQ with the mini-
mum height value is extracted. Whenever a vertex u is extracted
from PQ, edges in the form (u, v) are traversed and the attributes
of v are updated accordingly. An OR vertex v is inserted into PQ as
soon as an attack trace T%? is computed (note that T%? does not
have to be a shortest attack trace to v). An AND vertex v is inserted
into PQ as soon as a shortest attack trace TG is computed. If the
goal vertex g is extracted, the algorithm goes to Line 28 to output
the computed shortest attack trace T, and exits in Line 37. If PQ
becomes empty before g is inserted into it, the algorithm exits in
Line 27, claiming that G does not contain an attack trace.

Wan, Lin, Sabur, Chang, Xu, and Xue

Algorithm 1: SAT(G)
Input: G = (Vp, Vg, Vi, E, w, g): an attack graph
Output: T,: a shortest attack trace to g in G.
Create an empty priority queue PQ;
for Yu € V; do
L v.type « 1; v.in « 0; v.done « 0; v.height « oo;
v.color «— WHITE;
for Yo € V,- do
L v.type « 2; v.in « 0; v.done « 0; v.height « —co;
v.color «— WHITE;
for Ve = (x,y) € E do
L y.in < y.in+1;
for Yo € V,, do
9 v.type «— 0; v.height — w(v); Insert v to PQ;
v.color < GRAY;
10 while PQ # 0 do
11 u « ExtractMin(PQ); u.color « BLACK;
12 if (u == g) goto 28; // Shortest attack trace found
13 for You € u.adj with v.color # BLACK do

@ N =

LIS

IO

3

14 temp « u.height + w(u,v) + w(v);

15 if (v.type == 1) then

16 if (v.done == 0) then

17 v.height «— temp; v.parent «— u;

18 L Insert o to PQ; v.color « GRAY;

19 else if (temp < v.height) then

20 v.height < temp; v.parent «— u;
L // DecreaseKey at vertex v triggered

21 | v.done — v.done+1;

22 if (v.type == 2) then

23 v.height «— max{v.height, temp};

24 v.done «— v.done +1;

25 if v.done == v.in then

26 L Insert v to PQ; v.color « GRAY;

27 stop: There is no attack trace in the attack graph G; // Exit

—_

28 Create an empty FIFO queue Q; Insert g to Q;
29 Create an empty set Ty, of edges in the shortest attack trace;
30 while Q # 0 do
31 0 « Dequeue(Q);
32 if (v.type == 1) then
33 L u < v.parent; Insert u to Q; Ty, «— Ty, U {(u,0) };
34 if (v.type == 2) then
35 for Yu € V such that (u,v) € E do
L L Insert u to Q; Ty, « Typ U {(w,0) };

37 Output Ty,; // Exit 2: Ty, is a shortest attack trace

3.2 Walk-through Examples

We use the examples in Fig. 1 to illustrate Algorithm 1. The attack
graph in Fig. 1(a) has two attack traces. The attack graph in Fig. 1(b)
has no attack trace. We assume that w(v) = 0 for each vertex v and
w(e) = 1 for each edge in Fig. 1. Hence, the weighted attack graphs
reduce to unweighted attack graphs.

When Algorithm 1 is applied to the attack graph in Fig. 1(a),
the main steps are as follows. (S1) An empty priority queue PQ
is initialized and the primitive fact vertices ol, 5, U; are inserted

into PQ with v},.height = 0, v2.height = 0, v3.height = 0. (S2) ZJ},

loT System Vulnerability Analysis and Network Hardening

is extracted from PQ. Edge (v},0}) is traversed,and v}.height is
increased from —co to v},.height + w(vl,oi) + w(u}) = 1. Since we
have traversed all edges going into v}, the AND vertex o} is inserted
into PQ. (S3) 012) is extracted from PQ. Edge (v2, uf) is traversed, and
02 height is increased from —oo to vf,.height+w(02, 02 +w(v?) = 1.
Unlike the previous step, the AND vertex vZ is not inserted into PQ
at this moment, since we have not traversed all edges going into
0? yet. (S4) 013, is extracted from PQ. Edge (vz,vg) is traversed,
02.height remains unchanged since v?,.height +w(03,02) + w(v?)
is not larger than v2.height. However, since we have now traversed
all edges going into v2, the AND vertex v? is inserted into PQ. (S5)
o} is extracted from PQ. Edge (o}, U(li) is traversed, and v}i.height
is decreased from oo to 2. The OR vertex 0(11 is inserted into PQ.

(S6) 02 is extracted from PQ. The OR vertex vg is inserted into PQ

with u{zi,height =2.(S7) v(li is extracted from PQ. The AND vertex

03 is inserted into PQ with v3.height = 3. (S8) 03 is extracted from

PQ. The AND vertex vy is inserted into PQ with o?.height = 3. (S9)

03 is extracted from PQ. The edge (v, 02) is traversed. Since 0(21

has been extracted from PQ, the attributes at vczl are not updated.

(S10) v# is extracted from PQ. The OR vertex g is inserted into PQ
with g.height = 4. (S11) g is extracted from PQ. The algorithm
outputs the attack trace {(v}, g), (031, o), (02, vgl), (02,02), (v3,0%)}
and stops in Line 37. The height of the computed shortest attack
trace is 4. This example is representative of cases where the attack
graph contains at least one attack trace.

When Algorithm 1 is applied to the attack graph in Fig. 1(b),
the main steps are as follows. (S1) An empty priority queue PQ
is initialized and the primitive fact vertex 011, is inserted into PQ
with v},.height =0.(S2) 011, is extracted from PQ. The edge (v}, 0})
is traversed, and o}.height is increased from —co to v},.height +
w(v},0}) + w(vl) = 1. Since we have not traversed all edges going
into v} (edge (uﬁ,, ol) has not been traversed) yet, the AND vertex
U; is not inserted into PQ at this moment. (S3) Algorithm 1 finds
PQ = 0 and goes to Line 27. It stops, claiming that there is no
attack trace in the attack graph shown in Fig. 1(b). This example is
representative of cases where the attack graph does not contain any
attack trace.

3.3 Analysis of the Algorithm

In this section, we analyze the properties of the algorithm. In Theo-
rem 1, we analyze the worst-case running time of the algorithm. In
Theorems 2-3, we prove the correctness of the algorithm.

Theorem 1. Let n be the number of vertices in G and m be the
number of edges in G. The worst-case running time of Algorithm 1
is O(m + nlogn). O

Proof. The time spent on Lines 1-9 is O(n+m) as we spend O(1)
time for each vertex and each edge. The while-loop from Line 10
to Line 26 performs at most n ExtractMin operations, at most n
Insertion operations, and at most m DecreaseKey operations. If
we use the Fibonacci heap [10] to implement the priority queue,
this portion has a worst-case running time O(m + nlogn). Line 28
takes O(1) time. The while-loop from Line 30 to Line 36 takes O(m)

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

time, as there are at most m edges in T. Hence the worst-case time
complexity of Algorithm 1is O(m + nlogn). O

Remarks. At the high level, our algorithm for computing a
shortest attack trace follows the same principle as the algorithm
in [8]. However, there are subtle differences that may affect the
worst-case running time. The algorithm in [8] uses a top-down
approach (without momoization). Our algorithm uses a bottom-
up approach, where no instance is solved more than once. Our
algorithm can compute a shortest attack trace whenever an attack
trace exists, and can recognize if an attack trace does not exist, in
polynomial time (refer to Theorems 1 and 2).

Theorem 2. If the attack graph G contains an attack trace, then
Algorithm 1 correctly computes a shortest attack trace, with the
edges in the shortest attack trace stored in Ty,. In this case, the
algorithm exits in Line 37. O

Proof. Our proof relies on the following claims:

(a) Let v € VO be any vertex in G. The following is always true
throughout the execution of the algorithm: v.color is WHITE
if and only v has not been inserted into the priority queue
PQ, v.color is GRAY if and only v is on the priority queue PQ,
and v.color is BLACK if and only v has been extracted from
the priority queue PQ.

(b1) Let v be any OR vertex in G. The value v.height is monotoni-
cally non-increasing during the execution of the algorithm.

(b2) Let v be any OR vertex in G. The first time v.height is reduced
from oo to a real number, v is inserted into PQ, and v.height
is the height of some (not necessarily the shortest) attack
trace to vertex v; When v is extracted from PQ, v.height is
the height of a shortest attack trace to vertex v.

(c1) Let v be any AND vertex in G. The value v.height is monotoni-
cally non-decreasing during the execution of the algorithm.

(c2) Let v be any AND vertex in G. When v is inserted into PQ,
v.height is the height of a shortest attack trace to vertex v.
The value v.height will not be changed again after v is inserted
into PQ. When v is extracted from PQ, v.height is the height
of a shortest attack trace to vertex v.

(d) If vertex a is extracted from PQ before vertex f is extracted,
then a.height (at the time « is extracted) is less than or equal
to B.height (at the time f is extracted).

Claim (a) follows directly from the algorithm. We note that vertex
v becomes GRAY and gets inserted into PQ only in Line 9 (for v € V}),
Line 18 (for v € V), and Line 26 (for v € V;); and vertex v gets
extracted from PQ and becomes BLACK only in Line 11.

To prove Claim (b1), we note that for v € VdG, v.height is initial-
ized to oo in Line 5, and changed (to a smaller value) in Line 17
and Line 20. To prove Claim (c1), we note that for v € VrG, v.height
is initialized to —oo in Line 7, and changed (to a larger value) in
Line 23.

To prove Claim (d), we note that vertices is extracted from PQ
by the ExtractMin operation. Therefore, when « is extracted, the
height of « is the smallest among all vertices on PQ. Since the vertex
weights and edge weights are all non-negative, for any vertex v
that has not been extracted from PQ before vertex a, we will not
have v.height < a.height when v.done > 1. This proves Claim (d).

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Claims (b2) and (c2) can be proved using mathematical induction.
Let v be an OR vertex. The first time an incoming neighbor of v is
extracted from PQ, the height of v is decreased from oo to a real
number (which is the height of an attack trace to v). This value
may be further reduced when other incoming neighbors of v are
extracted from PQ. When all incoming neighbors of v are extracted
from PQ, the height of v will no longer be decreased.

Let v be an AND vertex. v.height is initialized to —co in Line 5.
Every time an incoming neighbor v’ of v is extracted, v.height will
be set to the maximum of its current value and v’ .height +w(v’, v) +
w(v). Therefore, when all incoming neighbors of v are extracted
from PQ, the v.height is the height of a shortest attack trace to
vertex v. The above analysis, together with (d), proves (b2) and (c2).

Now assume that there is an attack trace in G. Since the number
of attack traces in G is finite, there must be a shortest attack trace.
Let hop; be the height of the shortest attack trace to g. Following the
above analysis, vertex v will be inserted into and extracted from PQ
provided that the height of the shortest attack trace to v is smaller
than the hops. Hence, the attack goal g will be inserted into and
extracted from PQ. Therefore, Algorithm 1 exits at Line 37. O

Theorem 3. If the attack graph G contains no attack trace, then
Algorithm 1 stops in Line 27. O

Proof. The algorithm stops after O(m +nlog n) basic operations.
If it stops at Line 37, it must have computed a shortest attack trace.
The only other place for the algorithm to stop is Line 27. Therefore
if there is no attack trace to g, Algorithm 1 must stop at Line 27. O

4 OPTIMAL NETWORK HARDENING:
PERSPECTIVE OF THE DEFENDER

In Section 3, we presented an efficient algorithm for computing
a shortest attack trace. The best strategy for the attacker to gain
access to the attack goal g is to launch an attack along a shortest
attack trace. Therefore, the height of a shortest attack trace, H (Ty,),
is a good metric to measure the hardness for the attacker to gain
access to its attack goal g. The larger the value of H (Tyy), the less
vulnerable the system is.

Assume that we can harden a network element z (a vertex or an
edge) to increase the value of w(z). Then we can increase the height
of the shortest attack trace by hardening some selected network
elements. However, hardening a network element comes with a
cost. Also, some network elements are hardenable, while others are
not. Therefore, a natural question to ask is: What is the best strategy
to harden the network with a given budget constraint? This section
is devoted to answering the above question.

4.1 The Network Hardening Problem

A network element in this paper refers to either a vertex or an edge
in G. Since there are n = |V| vertices and m = |E| edges in G, we
have a total of N = n + m network elements. We define a one-to-
one mapping n from the set of integers {1, 2,..., N} to the set of
network elements V' U E such that (k) € Vfork =1,2,...,n,and
n(k) € Efork =n+1,n+2,...,n+m. We use a binary-valued array
¢[1: N] to indicate whether a network element is hardenable. In
particular, ¢[k] = 1if n(k) is hardenable, and ¢ [k] = 0 otherwise.

Wan, Lin, Sabur, Chang, Xu, and Xue

Let k € [1, N] be an integer. If ¢[k] = 1, we can harden network
element r(k) with a cost of ¢c[k] > 0 to increase the weight of n(k)
from w(n(k)) to w(n(k))+35[k].If ¢[k] = 0, n(k) is not hardenable.
For convenience, we define §[k] = 0 and c[k] = oo in this situation.

Definition 4. Let the attack graph G be given, together with
mapping 1 and network hardening information ¢, 8, and c. A binary-
valued array X[1 : N] is said to be a feasible hardening strategy
for budget B > 0,if X[k] < ¢[k], k=1,2,...,Nand XN X[k] x
c[k] < B. o

The meaning of the array X [1 : N] as a hardening strategy is the
following. For k = 1,2,..., N, network element 7(k) is hardened if
and only if X[k] = 1. Since X [k] < ¢[k], only hardenable network
elements will be hardened. Since Zszl X[k] x c[k] < B, the total
cost for hardening does not exceed the given budget B.

We use G(X) to denote the hardened attack graph corresponding
to X, and use Ty, (X) and H (T, (X)) to denote the shortest attack
trace of G(X) and the height of T, (X), respectively. The decision
version and the optimization version of the network hardening
problem are formally defined in the following.

Definition 5 (Decision Hardening Problem). Let the attack
graph G be given, together with network hardening information
1, ¢, 0, and c. Let B be the budget for network hardening, and H be
the desired level of network hardness. The decision network hard-
ening problem (DHP) asks whether there exists a feasible hardening
strategy X such that H (T, (X)) > H. When the answer is YES, the
problem also asks for the corresponding hardening strategy X. O

Definition 6 (Optimization Hardening Problem). Let the
attack graph G be given, together with network hardening informa-
tion 1, ¢, §, and c. Let B be the budget for network hardening. The
optimization network hardening problem (OHP) asks for a feasible
hardening strategy Xopt such that H (Tgp (Xopt)) = H (Tg (X)) for
every feasible hardening strategy X. O

OHP can be formulated as the following optimization problem.

maximize H(Ty, (X)) (1)
s.t. X[k] € {0,1}, k=1,2,...,N, @)
X[k] < ¢[k], k=1,2,...,N, 3)

N
Zx[k] x c[k] < B. (4)

k=1

In Section 4.2, we will study the computational complexity of
the network hardening problem. In Sections 4.3 and 4.4, we will
present optimal and heuristic algorithms, respectively, for solving
the OHP problem.

4.2 Hardness of the Problem

We present a polynomial-time reduction from Knapsack [12] to
DHP. An instance of Knapsack is given by a finite set U, a size
s(u) € Z* and a reward r(u) € Z* for each u € U, a size constraint
B € Z*, and a reward goal R € Z*. It asks for a subset S C U such
that

Z s(u) < B and Z o(u) > R. (5)

ues ues

loT System Vulnerability Analysis and Network Hardening

Theorem 4 (Hardness of Network Hardening). The network
hardening problems DHP and OHP are both NP-hard. O

Proof. Let 71 = (U, s(-),r(-),B,R) be an arbitrary instance of
Knapsack, where U = {uj,uy,...,ux}. If K is an even integer,
we construct a corresponding instance 7, = (U’,s’(-),7"(-), B’,R’)
with |U’| = |U| + 1 such that
U' =U U{uk41}
s"(ug) =s(ug), 1 <k <K,

s’ (ug+1) = min{s(ug)|1 < k < K},
r'(ug) =r(u), 1<k <K,

¥ (ugcen) = 1+ XK r(ug),

B’ =B +s(ug+1),

R’ =R +r(ugq1)-

Since s(ug+1) < s(ug) for 1 < k < K and r(ug41) > Zszl r(ug),
11 has a solution if and only if 7 1’ has a solution. In addition, any
solution to 7/ must be the union of S and {ug41}, where S is a
solution to 77. Therefore, without loss of generality, we may assume
that for instance 73, K is an odd integer.

Given instance 7; of Knapsack, we construct a corresponding
instance 72 of DHP in the following. The weighted attack graph is
G = (Vp, Vg, Vr, E, g, w), where V}, = {v1}, Vg = {v3,05,07,..., 0K},
Vi = {02’ 04, 06, - - va—l}’ E= {(Uk—bvk)lk =23,.. "K}’ g = UK,
and w(ovg) = 1foreachk =1,2,...,K and w(e) = 1 foreach e € E.
There are K vertices and K — 1 edges in G, leading to N = 2K — 1
network elements. Define 7, ¢, §, and c such that

n(k) = o, glk] =1,

S[k] = r(ug), c[k] = s(u),
N(K+k) = (g, 0s1), $IK+K] =0,
S[K+k] =0, c[K+k] =co,

k=12...K (6
k=12...K, ()
k=12...,K-1, (8)
k=12...,K-1. (9

Define the hardening budget to be B, and the desired hardness
level to be H = R + (K + 1). Then 7; has a solution if and only if
DHP has a solution. In addition, if X is a solution to DHP, then
S ={n(k)|X[k] = 1} is a solution to Knapsack and vice versa. Since
Knapsack is NP-hard, we have proved that DHP is NP-hard. Since
OHP is the optimization version of DHP, OHP is also NP-hard. O

4.3 An Exact Algorithm

We design a branch and bound algorithm for computing an optimal
solution to OHP. The algorithm is listed in Algorithm 2. While
the branch and bound algorithm paradigm has been known for
a long time, the bounding technique in our algorithm is novel. Its
effectiveness will be demonstrated in our evaluation results.

Theorem 5. Algorithm 2 (ExactBnB) always computes an op-
timal hardening strategy. o

Proof. Algorithm 2 traverses a decision tree with 2K leaf vertices,
while cutting branches that do not contain a better solution when-
ever we know it. We use B to denote the residual budget, which is
the initial budget B minus the sum of the costs of the subset of net-
work elements selected to be hardened. In general, given the values
of X[j] for1 < j <k-1suchthat X[j] < ¢[j]for1<j<k-1
and Zk_ll X[j] x c[j] £ B, we decide whether to explore or cut

j=
the branch with X[k] = 1, and the branch with X[k] = 0.

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Algorithm 2: ExactBnB(G, N, , ¢, §, ¢, Hpests Xpest> B)

Input: G = (V, E, g) is a weighted attack graph; N = |V| + |E| is
the number of network elements; n : {1,2,...,N} —» VUE
is a one-to-one mapping; ¢[k] is 1 if n[k] is hardenable, 0
otherwise; (k] and c[k] are the added strength and
hardening cost for network element [k] when ¢[k] is 1; B
is the budget constraint for network hardening; Xy is
some hardening strategy; Hy.eg; is the height of the shortest
attack trace after the network is hardened using Xpeg;-
Output: An optimal hardening strategy given by Xpest[k], j = 1,2,
..., N together with the height of the shortest attack trace
after hardening using the optimal strategy.
1 Create an array X[1: N] and an array ceym[1: N +1];
2 Coum [N + 1] « 0;
3 fork=N,N-1,...,1do
4 if (p[k] ==1) then
5 L csum[k] < csum[k + 1] + c[k];

6 else
7 L csum[k] & csum[k +1];
s B« B;

9 Branch1(B, 1, X, Xpests Hpests G, N, 1, ¢, 8, ¢, Csum) ;
10 Branch0(B, 1, X, Xpest» Hpest» G> N, 17, 5 5, €, Csum)
11 Output Hpeq and Xpegt-

Algorithm 3: Branch1(B, k, X, Xpest; Hpests G, N, 17, ¢, 6, ¢, Csum)

Input: Current Hyey and feasible values for X[1: k — 1]
Output: Explore the branch for X [k] =1

1 if (k > N or ¢[k] == 0 or c[k] > B) then return;

2 X[k] < 1; B« B—-c[k];

3 if (k == N or csym[k + 1] < B) then

4 X[jl < oljl, j=k+1,k+2,...,N;

5 Hpew « H(Tjn(X));

6 if (Hpew > Hpest) then

7 L Kpest < X; Hpest < Hnews

s else

9 X[jl«0, j=k+1,k+2,...,N;

10 Hpew «— H(T(X));

1 if (Hpew > Hpest) then

12 L Xpest < X; Hpest < Hnews

13 Branch1(B, k + 1, X, Xpests Hpests Gs N, 17, @, 8, ¢, Csum)5
14 BranchO(B, k + 1, X, Xpest Hpests G, N, 17, ¢, 8, ¢, csum) ;

15 B« B+c(k);

The Branch for X [k] = 1 does notexistif ¢ [k] = 0 or Z;?:l X[j]x

c[j] > B. If2§:1X[j] Xcl[j]+ Z;V:kﬂ c[j] x ¢[j] < B, the best
solution in the branch corresponding to setting X [k] = 1 is to set
X[jl=¢lj] for j =k+1,...,N.In a nutshell, the algorithm never
cuts a branch that contains a better solution than the current best
solution. Therefore, the algorithm always computes an optimal

solution to OHP.]

4.4 A Heuristic Algorithm

Since OHP is NP-hard, we design a polynomial-time greedy heuris-
tic algorithm for computing a solution to OHP. This is listed in

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Algorithm 4: Branch0(B, k, X, Xpest, Hpest> Gs N, 17, @, 8, ¢, Csum)
Input: Current Hy and feasible values for X[1: k — 1]
Output: Explore the branch for X[k] =0

1 if (k > N) then return;

2 X[k] <« 0;

3 if (k == N or csuym[k + 1] < B) then

4 X[jl < ¢ljl, j=k+1,k+2,...,N;

5 Hpew < 7-{(Tsh(X)))

6 if (Hpew > Hpest) then

7 L Kpest < X; Hpest < Hnews

s else

9 X[jl<0, j=k+1,k+2,...,N;

10 Hpew «— H(Tyn(X));

1 if (Hpew > Hpest) then

12 L Xpest < X Hpest < Hnews

13 Branch1(B, k + 1, X, Xpests Hpests G» N, 17, ¢, 8, ¢, Csum)5
1| Branch0 (B, k + 1, X, Xpest, Hpest: G, N, 1, §, 8, ¢, €sum)5

Algorithm 5. While our greedy heuristic algorithm does not guar-
antee to find an optimal solution, extensive evaluation results show
that the heuristic algorithm produces close-to-optimal solutions.

Algorithm 5: Greedy(G, N, n, ¢, 4, ¢, B)

Input: G,N, n, ¢, 6, c: as in Algorithm 2; B: hardening budget.
Output: A feasible hardening strategy Xg .

-

Create a binary-valued array Xgq[1: N;
2 Xgralk] <0, k=1,2,...,N;

3 Hyg « H(Ten(Xga)); B < B; done « 0;
4 while (done == 0) do

5 done «— 1; Rpest < 0; kpest < 05
6 fork=1,2,...,Ndo
7 if (Xgal[k] < ¢[k] and c[k] < B) then
8 Xgrd[k] — 1
Hinew —Hgq
9 Hpew < (}_{(Tsh(xgrd))i Rpew < TJgQ
10 if (Rpew > Rpest) then
11 | done « 0; Rpest Ruew; kvest — k3
12 Xgra[k] < 0;
13 if (done ==0) then
14 L Xgrd (Kpest) < 1; B = B—c[kpegt |5 ngd —H(Ty (Xgrd))§

15 output Xy and Hyq;

Theorem 6. Algorithm 5 always finds a feasible hardening
strategy. Its worst-case running time is O(K?(m + nlog n)), where
n = |V|, m = |E|, and K is the number of hardenable network
elements.]

Proof. Algorithm 5 only hardens hardenable network elements,
and never hardens a subset of network elements whose aggregated
cost exceeds the given budget. Therefore, it always produces a fea-
sible hardening strategy. The algorithm performs O(K) iterations,
where each iteration requires the computation of O(K) shortest at-
tack traces. Therefore, the worst-case running time of the algorithm
is O(K?(m + nlogn)). O

Wan, Lin, Sabur, Chang, Xu, and Xue

4.5 Related Work on Network Hardening

Network hardening is an important problem in cyber security, and
the attack graph is an elegant tool to measure system-level vulner-
abilities for performing network hardening [5, 7, 13, 26, 27]. [13]
proposes heuristic approaches to perform network hardening by
patching a selected subset of vertices in the attack graph with the
lowest cost. However, only primitive fact vertices can be patched
in [13], thus their model is not general. Similarly, [5] assumes that
only primitive fact vertices are patchable at different costs. It mod-
els the network hardening problem as finding the optimal patching
strategy that minimizes the cost and residual damage to the system.
However, [5] applies the attack tree model [3] instead of the attack
graph, which has a simpler structure but makes strong assumptions
about attackers’ abilities. Durkota et al. [7] model the defender’s
hardening strategy as finding the optimal way to add honeypots to
a networked system, by which the defender can detect and mitigate
attacks at certain costs. They proposed several heuristic algorithms,
albeit with limited scalability.

Another set of works takes the probabilistic metric [25] into
account when studying the network hardening problem. The net-
work hardening framework proposed by [26] assigns probabilities
to the edges in attack graphs to incorporate the attack graph and
the Hidden Markov Model (HMM). Both attack cost and defense
cost are modeled in [26] for conducting cost-benefit security analy-
sis. The cost-aware IoT network hardening solution in [27] assigns
a cost for removing exploits and initial conditions in the system,
and applies a greedy algorithm for finding a cost-effective solution
to harden the system. Since all paths to the attack goal need to
be calculated to decide which exploits or initial conditions to be
removed, it faces scalability issues when the attack graph is large.

Our work has similar motivations of assigning costs and weights
to the elements in the attack graphs as that of existing research.
However, our problem is more general where all vertices and edges
are hardenable. Instead of measuring the attacker’s capability as the
probability of reaching a specific state, e.g., conquering the attack
goal, we assume that the attacker always follows the shortest attack
trace to launch an attack. This assumption is intuitive and reason-
able, and profiles the attacker’s attacking strategy more accurately
compared to the probabilistic model.

5 PERFORMANCE EVALUATION

To evaluate our proposed network hardening algorithms, we imple-
mented both algorithms and tested them in two types of scenarios.
We introduce the network topology in Section 5.1 and the deriva-
tion of the parameters in the attack graph of the evaluation in
Section 5.2. We present evaluation results in Section 5.3.

5.1 Network Topologies

Following the attack graph generation strategy in [8], we generated
11 (unweighted) attack graphs from the devices and app configura-
tions in IoT systems using MulVAL [17]. The basic flow of the attack
graph generation is as follows. First, we profile an IoT system by
obtaining the details of IoT devices installed in the system, includ-
ing brand, model, network protocol, and firmware version. We also
verify if there are companion apps to these devices. We then query
the CVE database [4] and gather any vulnerabilities reported about

loT System Vulnerability Analysis and Network Hardening

the installed devices in the IoT system. To build dependency rela-
tionships in the attack graph, we use natural language processing
(NLP) techniques to process the descriptions and automation rules
in the devices’ companion apps. We then combine the vulnerability
information and the dependency information and use MulVAL to
generate the attack graph for the system.

We studied 9 synthetic IoT systems based on real IoT devices and
apps (systems with numbered labels) and 2 real-world IoT systems
from our smart home testbeds (System A and System B). The IoT
devices deployed in Systems A and B are listed in Table 1. In total,
11 system configurations were studied and converted to attack
graphs. With an attack graph generated for a system, we then apply
the approaches discussed in Section 5.2 to obtain weighted attack
graphs with both vul-only parameters and random parameters for

evaluation.
Table 1: IoT devices deployed in smart home testbeds

Device Name Device Type Protocols Home
Amazon Smart Plug Plug WiFi A
Amcrest ProHD Camera WiFi A
Arlo Q Camera Camera WiFi A
Arlo Ultra Camera WiFi A
August Doorbell Cam Pro Doorbell WiFi A
August Lock Lock WiFi A
Blink XT2 Camera WiFi A
Chamberlain Garage Control ~ Sensor WiFi B
D-Link Water Sensor Sensor WiFi A&B
Gosund WiFi Smart Socket Plug WiFi A
Kangaroo Motion Sensor Sensor WiFi A&B
Philips Hue Bulb WiFi & Zigbee A
Reolink Camera Camera WiFi A
Ring Doorbell Doorbell WiFi A&B
Ring Spotlight Spotlight WiFi A
Schlage WiFi Deadbolt Lock WiFi A
Sengled SmartLED Bulb WiFi A
Smart Life Contact Sensor Sensor WiFi A&B
SmartThings Hub Hub WiFi & Zigbee A
Tessan Contact Sensor Sensor WiFi A&B
TP-Link Bulb Bulb WiFi A&B
TP-Link Plug Plug WiFi A&B
WeMo Plug Plug WiFi A

5.2 Evaluation Scenarios

We evaluated our algorithms on two types of scenarios:

(@) Only vulnerability vertices are hardenable. A vulnerability
vertex is signified by the vulExists keyword in the vertex’s
description. Their weights w, costs ¢, and added strength § are
systematically derived from the relevant CVE information,
detailed below. Under this scenario, we study a variation of
the OHP problem. Instead of trying to maximize the height
of the shortest attack trace (SAT), we aim to make the system
secure by patching out critical vulnerabilities while minimiz-
ing the total costs associated with patching the system. We
call this type of parameter assignment the vul-only type.

(B) Hardenable network elements are chosen randomly. Initial
weights, costs, and added strength for all network elements
are randomly generated. For this scenario, we follow OHP
problem defined in Equations (1)-(4) to obtain a hardening
strategy X under budget B, where the SAT for the hardened
attack graph H (T (X)) is maximized. We designate this type
of parameter assignment as the random type.

We now detail our approach to parameter assignment in both types
of scenarios.

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Hardenable elements ¢: For scenario (@), we define ¢[i] =0
fori = |V|+1L|V]+2,...,|V| + |E|, and ¢[i] = 1 if and only if
n(i) is a vulnerability vertex in the attack graph G,i =1,2,...,|V]|.
For scenario (f8), we choose hardenable elements randomly. K =
Zfil ¢[i] is the number of hardenable elements. For each attack
graph, we evaluate the algorithms with K = 16, K = 24, and K = 32.

Weights w: For scenario (@), weights for vulnerability vertices
are calculated based on the CVSS exploitability score of the CVE
number associated with each vertex. Let CVSS,y;(v) be this ex-
ploitability score, w(v) = (max(CVSSexpr) = CVSSeypi(v)) X 2.5,
where max(CVSS,,p) is 4, the maximum exploitability subscore
in the CVSS 3.x scoring system. Note that the higher the exploitabil-
ity score is, the easier it is to breach a vulnerable device. Thus, to
represent the relative difficulty to breach the device, it is necessary
to deduct CVSS,p(v) from the maximum exploitability score. We
multiply the final result by 2.5 to scale it to the range [0, 10] to be
consistent with the the weights in scenario (f). For network ele-
ments that are not hardenable, we assign weights of zero to them.
For scenario (f), weights for vertices and edges are real numbers
randomly chosen within the range [0, 10].

Added strength 6: In scenario (), hardening a network element
means that the vulnerability is eliminated from the network and
the attacker can no longer utilize the vulnerability. Therefore, we
define the added strength for a hardened vulnerability vertex v to
be a very large number H, i.e. §(v) = H. We seek a minimum-cost
hardening strategy so that the height of a shortest attack trace in
the hardened attack graph is greater than or equal to H. For scenario
(B), 8(z) for each hardenable element z is randomized to be a real
number in [0.05, 2.00] times w(z).

Hardening cost c: In scenario (@), because every vulnerability
is resulted from a weakness, we correlate the origin of the vul-
nerability, i.e., the weakness, and examine how many identified
vulnerabilities are affected by the same weakness. The hardening
cost ¢(v) for a vulnerability vertex v is then defined as the ratio
between the vertex’s CWE [14] score relative to the number of
all CWEs as follows: c(v) = RCT“C"—‘;(EU) x 10, where Rewg(v) is the
rank of the CWE for vulnerability v and Tew is the total num-
ber of CWEs. The resulting cost will be in the range [0-10]. This
cost represents the amount of effort that is needed to remediate a
vulnerability.

For scenario (f), c¢(z) for a hardenable element z is chosen to be
a real number in [0.30, 1.50] times §(z).

Note that for scenario (f), the generated parameters are not
meant to represent realistic network configurations or actual effects
of hardening, but rather to test whether our algorithms are effective
for any general case of network hardening problems. Also for a
given attack graph, we fix the values of w, ¢, and § once they are
generated, and we vary the hardenable network elements for each
test case in scenario (f).

5.3 Evaluation Results

We present the evaluation results for attack graphs generated in
both scenarios (and their associated hardening problems). All eval-
uation was done on a workstation with i9-12900 16-core CPU @
5.1GHz, 64GB system memory, and Ubuntu 22.04 system.

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Wan, Lin, Sabur, Chang, Xu, and Xue

‘5 5 1.6 ™ Exact 5 1.6 Exact
= T =
= & 1.4F M Heuristic & 1.4/ M Heuristic
< < <
@ < 12 s 12
[° °
2 2 2
z 3 g 1.0 E 1.0
& . 2 08 2 08 -
I 2 3 4 5 6 7 8 9 A B 1 2 3 4 5 6 7 8 9 A 1 2 3 4 5 6 7 8§ 9 A
System ID System ID System ID
@@ K=16 (b) K =24 () K=32

Figure 2: Relative SAT heights for the exact and the heuristic algorithms across different systems.

For the vul-only type of graphs, we follow the parameter as-
signment described in Section 5.2. There is only one test case per
attack graph, since the vulnerability vertices in an attack graph and
their CVSS assessments are fixed. For the random type of graphs,
define p the percentage of the budget B over the cost of all harden-
able elements, i.e., p= W We further create two kinds
of test suites.

(i) The suite with a fixed budget percentage p, but different
attack graphs: We fix p to 0.3 so that the budget B will be 0.3
times the total cost of all hardenable elements in an attack
graph, and we create test cases with all 11 attack graphs. For
each attack graph, we further create cases where K = 16, 24,
and 32, respectively. For each K we generate 10 different test
cases. Recall that the network parameters are set once they
are generated, so each test case with the same attack graph
differs only in their selection of hardenable network elements
and budget B.

(ii) The suite with a fixed attack graph, but different budget per-
centages p: We fix System 9 as the target attack graph, but
vary p to be one of the following values: [0, 15, 30, 50, 70, 85,
100]. We generate cases with zero budget assigned all the
way up to the cases where the budget is enough to harden
all network elements. Like in (i), we create test cases where
K = 16, 24, and 32, respectively. For each K we also generate
10 different test cases.

For each test suite, we run both the exact algorithm (Algorithm 2)
and the heuristic algorithm (Algorithm 5). Note that the exact algo-
rithm will give the optimal solution X, where the height of the
attack trace H (T (Xopt)) is maximized given the budget B.

5.3.1 Results for Scenario (o). We apply the algorithms on vul-only
graphs to find a hardening strategy Xop that secures the system
while having the lowest total cost. We say that a system is secure
when the height of the SAT in the hardened attack graph is greater
than or equal to H. To ensure the hardening strategy X,p; has the
minimum cost, we perform a bisection search on the budget B and
find the minimal B that affords a strategy to secure the system.
Table 2 lists several key results from the experiments. We note
that for all 11 systems, the procedure defined above was able to
find a hardening strategy to secure the system within 0.01 seconds.

The results also reveal that in an attack graph, there can be a
large number of hardenable elements (vulnerabilities), but not all of
them affect the overall security of the system equally. In some cases,
one can patch only a small subset of all vulnerable vertices and still
be able to secure the system. We list Orig. Cost the combined
cost to harden all vulnerable vertices, and Opt. Cost the optimized
cost to secure the system after performing the cost optimization

Table 2: Evaluation results on applying network hardening
techniques to patch vulnerabilities in the system

Runnin; Strate, Original ~ Optimal Cost
SystemID K Timi Fuundg?y gCost ? Cost Saving
System 1 25 0.0036s Yes 182.6 6.1 96.7%
System 2 17 0.0009s Yes 127.7 8.2 93.6%
System 3 14 0.0008s Yes 105.7 8.2 92.2%
System 4 9 0.0006s Yes 74.5 19.8 73.4%
System 5 9 0.0004s Yes 68.3 9.6 85.9%
System 6 4 <0.0001s Yes 31.2 9.5 69.6%
System 7 4 < 0.0001s Yes 38.0 9.5 75.0%
System 8§ 4 <0.0001s Yes 28.3 5.5 80.6%
System 9 1 < 0.0001s Yes 9.8 9.8 N/A
Testbed A 6 < 0.0001s Yes 50.6 10.0 80.2%
Testbed B 2 <0.0001s Yes 15.1 6.6 56.3%

procedure. In all attack graphs in our test where K > 1, it is possible
to cut down the costs to secure the system by a significant amount,
resulting in as much as 96.7% savings in hardening cost as in the
case of System 1.

5.3.2 Results for Scenario (f)-(i). In Fig. 2, we present the relative
SAT heights for hardening strategies generated by both the exact
and the heuristic algorithms. This illustrates the improvements of
the heights of the SAT after running both algorithms and perform-
ing the hardening strategy returned by the algorithms. Note that for
Testbed B, we have results for K = 16 and 21 only, as the system
has only 21 network elements.

The exact algorithm is guaranteed to return an optimal hardening
strategy Xop; within the budget B. Note that the optimal strategy
is not necessarily unique, and the algorithm does not guarantee the
strategy is of minimum cost. Due to the "bound" procedure in the
algorithm, anytime when the residual budget is enough to harden
all the remaining elements, the algorithm will do so if the resulting
height of the SAT is better. This cuts down the running time but
can result in more spending than necessary. This is the reason that
the exact algorithm sometimes produces a more expensive strategy
than the heuristic strategy, even if they achieve the same SAT
height. The data shows that the algorithm exhibits an exponential
running time with regard to K. However, due to the branch and
bound strategy in the algorithm, the running time in general is
much faster than a brute-force approach.

On the other hand, the heuristic algorithm achieves a comparable
performance to the exact algorithm in many attack graphs. In some
cases, the heuristic algorithm finds the same optimal solution that
the exact algorithm finds. Averaging all test cases, the solution that
the heuristic algorithm produces is approximately 96.81% as good as
our exact algorithm produces. In other words, the heuristic strategy
yields on average 96.81% of the increase in the height of SAT that
an optimal strategy can do. In addition, the heuristic algorithm runs
quickly even in the largest cases, finishing within 0.0002 seconds
for all test cases.

loT System Vulnerability Analysis and Network Hardening

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Table 3: Evaluation results of our exact and heuristic network hardening algorithm

System ID #Vertices #Edges Height | K Budget Cos:{e“?lsc:ilgcl:: lgorlthn}rime Cost H]Zi(;l:: Algo;‘::)i:l Time
16 23.20 | 5.78 130.60 0.0004s | 17.12 _ 130.60 21.70% 0.1121s
System 1 338 577 124.83 [24 3634 | 0.88 133.00 0.0011s | 32.08 133.90 12.03% _ 15.02s
32 5050 | 24.02 147.77 0.0020s | 46.58 147.97 _ 8.01% 2802s
16 21.14 | 11.58 36.46 0.0003s | 17.50 86.46 21.21% 0.0527s
System 2 209 310 77.94 [24 34.01 | 19.90 90.38 0.0006s | 27.49 9038 8.86% _ 5.495s
32 32.84 | 1859 89.56 0.0010s | 38.66 8956 6.62% T041s
16 22.04 | 755 86.52 0.0002s | 18.56 86,52 17.44% _ 0.0328s
System 3 162 234 79.06 [24 28.40 | 15.73 9457 0.0004s | 25.63 96.25 12.54% _ 6.052s
32 36.21 | 23.05 98.34 0.0007s | 30.67 9839 7.31% _ 873.7s
16 26.05 | 19.72 243.12 0.0002s | 17.42 244.63 20.21% 0.0281s
System 4 130 182 228.02 [24 3032 | 34.70 253.87 0.0004s | 29.51 255.46 9.83% 3.571s
32 5144 | 43.28 257.55 0.0006s | 46.68 260.47 5.21% 454.5s
16 2791 | 1255 118.20 0.0001s | 18.86 119.40 25.68% 0.0338s
System 5 117 173 11029 [24 47.07 | 22.78 127.49 0.0003s | 38.07 128.20 15.95% 5.493s
32 59.77 | 29.22 129.37 0.0005s | 54.59 129.37 10.92% _ 900.9s
16 21.95 | 17.82 116.77 _<0.0001s | 17.40 117.07 _ 8.72% _ 0.0028s
System 6 37 39 9480 [24 3331 | 28.47 128.84 0.0001s | 29.03 128.90 3.60% 0.2950s
32 1468 | 4118 114.07 0.0001s | 4159 144.07 1.81% 39.02s
16 2419 | 2159 97.96 < 0.0001s | 18.10 98.82 16.06% 0.0052s
System 7 36 35 72.11 [24 3356 | 30.73 112.28 0.0001s | 28.95 114.82 9.03% 0.7210s
32 4244 | 39.03 123.17 0.0002s | 35.64 12450 6.38% 34.40s
16 21.67 | 16.73 12271 < 0.0001s | 17.88 124.12 27.07% _ 0.0076s
System 8 35 44 106.01 [24 3131 | 28.33 128.84 0.0001s | 26.18 134.68 12.02% 0.8846s
32 3478 | 40.79 145.04 0.0001s | 41.71 14730 _ 7.32% 135.1s
16 24.25 | 22.82 _197.94 < 0.0001s | 17.72 19851 _ 28.90% _ 0.0041s
System 9 25 26 165.84 [24 3821 | 3712 217.24 < 0.0001s | 31.28 _ 217.95 22.78% _ 0.8392s
32 52.42 | 51.60 238.24 0.0001s | 50.96 242.62 16.78% 154.1s
16 15.22 | 13.38 8255 < 0.0001s | 1250 _ 83.28 25.93% _ 0.0090s
Testbed A 37 42 61.91 [24 2416 | 2234 94.30 0.0001s | 19.89 95.43 11.18% 0.9399s
32 27.01 | 2551 96.29 0.0002s | 23.94 98.40 8.72% 12.00s
16 15.19 | 12.68 72.45 < 0.0001s | 12.71 72.87 34.38% 0.0026s
Testbed B 10 1 5536 7 1887 | 17.16 80.75 < 0.0001s | 12.86 80.75 26.97% 0.0671s

Table 3 lists the results in this test suite. For each system, we show
the number of vertices and edges in the attack graph. The Height
column indicates the height of the SAT in the graph before any
hardening. For each algorithm, we show the cost of the hardening
strategies along with the heights of the SAT in the hardened graph.
We also list the time taken to execute one test case. For the exact
algorithm, we added a ratio of the number of SAT queries made by
the algorithm over that of the brute force solution (which is 2K).
Each (minor) row is averaged results over 10 test cases.

5.3.3 Results for Scenario (f)-(ii). We study also the behavior of the
algorithms using the same attack graph (hence identical parameters)
but different budget constraints. Fig. 3 shows the relative heights of
the SAT of both algorithms compared to that of the original graph
when K = 16, 24, and 32. While reaffirming the results found in
Section 5.3.2, the results also display that the difference between
relative SAT heights is higher for medium budgets and tapers off
towards the extremes.

Intuitively, when the budget is low, neither of the two algorithms
can do much to harden the network. As the budget increases, the
disparity between the two algorithms begins to manifest. However,
once the budget is sufficiently large, the two algorithms can elect
to harden most elements in the network, resulting again a similar
performance.

The figures also suggest a diminishing return as more budget is
added. Indeed, as the budget percentage p increases, the gains in
SAT heights slows down, to a point where virtually no improvement
is made between p = 0.85 and p = 1.00.

6 CONCLUSIONS

In this paper, we study the problem of analyzing IoT system vulner-
abilities and network hardening. We first design a novel algorithm
for computing a shortest attack trace in a weighted attack graph.

We demonstrate that our algorithm is more robust and faster than
the state-of-the-art [8]. In particular, our algorithm can handle cy-
cles in the attack graph properly, and works correctly regardless
of whether the attack graph contains an attack trace or not. We
then formulate the network hardening problem. We prove that
the network hardening problem is NP-hard, and design an exact
algorithm and a polynomial-time heuristic algorithm to solve it.
Extensive evaluations show that our exact algorithm can compute
optimal solutions for reasonably sized problems, and our heuristic
algorithm can efficiently produce near optimal results.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants 2007469 and
2007083. The information reported herein does not reflect the posi-
tion or the policy of the funding agency.

REFERENCES

[1] Noga Agmon, Asaf Shabtai, and Rami Puzis. 2019. Deployment
optimization of IoT devices through attack graph analysis. In
Proc. of ACM WiSec.

Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian
Monrose. 2019. SoK: Security evaluation of home-based IoT
deployments. In Proc. of IEEE S&P.

Paul Ammann, Duminda Wijesekera, and Saket Kaushik. 2002.
Scalable, graph-based network vulnerability analysis. In Proc.
of ACM CCS.

CVE. Common vulnerabilities and exposures. https://www.
cve.org

Rinku Dewri, Nayot Poolsappasit, Indrajit Ray, and Darrell
Whitley. 2007. Optimal security hardening using multi-
objective optimization on attack tree models of networks. In
Proc. of ACM CCS.

—
[\
—

https://www.cve.org
https://www.cve.org

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Wan, Lin, Sabur, Chang, Xu, and Xue

= = =
&)
';%D 1.8 é” 1.8 'El 18
E 1.6 £ 1.6 £ 1.6
s 14 v 14 v 14)
; 12 — Exact E 12 — Exact 2 12 — l:(ac!)
el — He ic - i = — Heuristic
E 1.0 Heuristic é 10 Heuristic é—j 10
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Budget Percentage

(a) K =16

Budget Percentage

(b) K =24

Budget Percentage

(c) K=32

Figure 3: Relative SAT heights for the exact and the heuristic algorithms with different budget percentages.

[6] Wenbo Ding, Hongxin Hu, and Long Cheng. 2021. IOTSAFE:
Enforcing safety and security policy with real IoT physical
interaction discovery. In Proc. of NDSS.

[7] Karel Durkota, Viliam Lisy, Branislav Bosansky, Christopher
Kiekintveld, and Michal Péchoucek. 2019. Hardening net-
works against strategic attackers using attack graph games.
Computers & Security 87 (2019), 101578.

(8] Zheng Fang, Hao Fu, Tianbo Gu, Pengfei Hu, Jinyue Song,

Trent Jaeger, and Prasant Mohapatra. 2022. IOTA: A frame-

work for analyzing system-level security of IoTs. In Proc. of

ACM/IEEE IoTDIL

Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel

Simionato, Mauro Conti, and Atul Prakash. 2016. FlowFence:

Practical data protection for emerging IoT application frame-

works. In Proc of USENIX Security.

[10] Michael L Fredman and Robert Endre Tarjan. 1987. Fibonacci
heaps and their uses in improved network optimization algo-
rithms. Journal of the ACM (JACM) 34, 3 (1987), 596-615.

[11] Chenglong Fu, Qiang Zeng, and Xiaojiang Du. 2021.
HAWatcher: Semantics-aware anomaly detection for appified
smart homes. In Proc. of USENIX Security.

[12] Michael R Garey and David S Johnson. 1979. Computers and
intractability: A guide to the theory of NP-completeness. W.H.
Freeman and Company.

[13] Tania Islam and Lingyu Wang. 2008. A Heuristic approach to
minimum-cost network hardening using attack graph. In 2008
New Technologies, Mobility and Security.

[14] MITRE. CWE - Common weakness enumeration. https:
//cwe.mitre.org/

[15] Philipp Morgner, Stephan Mattejat, Zinaida Benenson, Chris-
tian Miiller, and Frederik Armknecht. 2017. Insecure to the
touch: Attacking ZigBee 3.0 via touchlink commissioning. In
Proc. of ACM WiSec.

[16] Xinming Ou, Wayne F Boyer, and Miles A McQueen. 2006. A
scalable approach to attack graph generation. In Proc. of ACM
CCS.

[17] Xinming Ou, Sudhakar Govindavajhala, Andrew W Appel,
et al. 2005. MulVAL: A logic-based network security analyzer.
In Proc. of USENIX Security Symposium.

[18] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin
O’Flynn. 2017. IoT goes nuclear: Creating a ZigBee chain
reaction. In Proc. of IEEE S&P.

[19] Abdulhakim Sabur, Ankur Chowdhary, Dijiang Huang, and
Adel Alshamrani. 2022. Toward scalable graph-based security
analysis for cloud networks. Computer Networks 206 (2022),
108795.

[20] Konstantinos Sagonas, Terrance Swift, and David S. Warren.
1994. XSB as a deductive database. In Proc. of ACM SIGMOD.

[9

—

[21] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann,
and Jeannette M Wing. 2002. Automated generation and anal-
ysis of attack graphs. In Proc. of IEEE S&P.

Toannis Stellios, Panayiotis Kotzanikolaou, and Christos Grigo-

riadis. 2021. Assessing [oT enabled cyber-physical attack paths

against critical systems. Computers & Security 107 (2021),

102316.

[23] Rahmadi Trimananda, Janus Varmarken, Athina Markopoulou,
and Brian Demsky. 2019. PingPong: Packet-level signatures
for smart home device events. In Proc. of NDSS.

[24] Yinxin Wan, Kuai Xu, Feng Wang, and Guoliang Xue. 2021.
Characterizing and mining traffic patterns of IoT devices in
edge networks. IEEE Transactions on Network Science and
Engineering 8, 1 (2021), 89-101.

[25] Lingyu Wang, Tania Islam, Tao Long, Anoop Singhal, and
Sushil Jajodia. 2008. An attack graph-based probabilistic se-
curity metric. In Proc. of IFIP Annual Conference on Data and
Applications Security and Privacy.

[26] Shuzhen Wang, Zonghua Zhang, and Youki Kadobayashi. 2013.
Exploring attack graph for cost-benefit security hardening:
A probabilistic approach. Computers & Security 32 (2013),
158-169.

[27] Beytillah Yigit, Giirkan Giir, Fatih Alag6z, and Bernhard Tel-
lenbach. 2019. Cost-aware securing of IoT systems using attack
graphs. Ad Hoc Networks 86 (2019), 23-35.

—

[22

https://cwe.mitre.org/
https://cwe.mitre.org/

	Abstract
	1 Introduction and Background
	2 Basic Concepts
	2.1 Attack Graph
	2.2 System-Level IoT Security Analysis
	2.3 Weighted Attack Graph
	2.4 Attack Trace

	3 Computing a Shortest Attack Trace: Perspective of the Attacker
	3.1 A Novel Algorithm for Computing an SAT
	3.2 Walk-through Examples
	3.3 Analysis of the Algorithm

	4 Optimal Network Hardening: Perspective of the Defender
	4.1 The Network Hardening Problem
	4.2 Hardness of the Problem
	4.3 An Exact Algorithm
	4.4 A Heuristic Algorithm
	4.5 Related Work on Network Hardening

	5 Performance Evaluation
	5.1 Network Topologies
	5.2 Evaluation Scenarios
	5.3 Evaluation Results

	6 Conclusions
	Acknowledgments

