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Abstract— This paper presents an intensive case study of 10
participants in the US and South Korea interacting with a
robotic companion pet in their own homes over the course of
several weeks. Participants were tracked every second of every
day during that period of time. The fundamental goal was to
determine whether there were significant differences in the
types of interactions that occurred across those cultural
settings, and how those differences affected modeling of the
human-robot interactions. We collected a mix of quantitative
and qualitative data through sensors onboard the robot,
ecological momentary assessment (EMA), and participant
interviews. Results showed that there were significant
differences in how participants in Korea interacted with the
robotic pet relative to participants in the US, which impacted
machine learning and deep learning models of the interactions.
Moreover, those differences were connected to differences in
participant perceptions of the robot based on the qualitative
interviews. The work here suggests that it may be necessary to
develop culturally-specific models and/or sensor suites for
human-robot interaction (HRI) in the future, and that simply
adapting the same robot’s behavior through cultural
homophily may be insufficient.

I. INTRODUCTION

A. Background

Novel forms of robotic companions have been a growing
area of research over the past decade, particularly for
applications related to in-home chronic health conditions and
aging-related issues [1,2]. Within the field of human-robot
interaction (HRI), many of these companions take on the
form factor of robotic pets, intended to provide social support
and enhance cognitive functioning through social interaction.
Such socially-assistive robots (SARs) are thus critical in
many places that are faced with a rapidly increasing elderly
population and/or greater awareness of the impact of mental
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health on physical health, in order to facilitate community-
based health approaches [3-5].

However, open questions remain as to appropriate types
of interactions that such robotic pets need to entail during
these applications. For instance, how should the robotic pet
behave in user homes in response to a person with dementia,
or a younger person suffering from chronic depression and
anxiety? Moreover, another question is whether the robot’s
behavior should be dependent on situational factors, such a
geographical location or cultural setting. Indeed, previous
research has shown that situated robot use in different
cultural locales has a major impact on how the same robots
are perceived and utilized by different groups of people [6,7].
However, many previous studies (see Section 1.B below) are
limited to either controlled lab experiments or retrospective
real-world data based purely on user recall, so a challenge
still exists to explore these questions in real-time in real-
world settings. That challenge is two-fold, entailing the need
for approaches that can monitor HRI interactions that occur
in real-time as well as identification of appropriate modeling
methods relevant to robotic companions in-the-wild [8].

In this paper, we explore these questions in users in the
United States and South Korea interacting with a robotic pet
in their own homes over several weeks. We purposely
adopted a case study approach, focusing on intensively
tracking a smaller number of users over a longer period of
time (every second of every day for 3 weeks), rather than
gathering a small amount of data about many users briefly, to
account for intra-person behavior variation. The fundamental
goal was to determine whether there were significant
differences in the types of interactions that occurred across
different cultural settings, and how those differences affected
modeling of real-world human-robot interactions.

B. Prior Work

There is existing previous research that has explored
inter-group differences for various types of interactions
between humans and robots [9-17]. That research has
explored different types of groups (e.g. cultural, age, gender)
across various settings (e.g. home, work, healthcare, military,
education). For instance, Andreasson et al. (2018) examined
gender differences regarding robot touch [9], while other
groups have explored the effects of pre-existing negative
attitude differences towards robots between genders [10].
Other researchers have asked whether HRI varies across age
groups. For example, since older adults have slower reaction
times, a question is whether that might lead to differences in
human-robot collaborative task performance [11]. Another
question is whether teenagers respond differently to social
robots than adults [12].
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Some research has also looked at cultural differences in
HRI interactions, such as children’s expressiveness during
gameplay across different cultures [13] or moral judgments
between US and Japan [14]. In a comparison specifically
between the US and Korea, Lee & Sabanovic (2014) found
that participants in South Korea envision robots as
companions for the family, while US participants see home
robots as individual assistants and modern appliances [6].
Other researchers have looked at the combination of cultural
differences with other factors. For example, Rudovic et al.
examined how engagement with a social robot varied in
children with autism between Serbia and Japan, finding
significant differences [15]. Fraune et al. (2015) showed that
Japanese and US participants respond differently to groups of
robots, relative to an individual robot [16].

Interestingly, however, past results in cross-cultural
robotics have indicated that cultural homophily (e.g. agents
adapted to a specific set of cultural attributes) alone does not
necessarily always correspond to higher ratings of a robot by
human participants [17]. This suggests that the impact of
culture on HRI is not so simple as identifying differences.
The real question is how such differences might impact our
models of robot interactive behavior in real-world settings.

II. METHODS

A. Setting, Users & Robot Description

The study involved a sample of 10 users, with 5 recruited
from the greater Seoul area in South Korea and 5 recruited
from the US Midwest. Participants were in the age range of
20-35, and included 7 females and 3 males. All participants
were recruited from the general population and were living
alone. The study was approved separately by the IRBs at
Indiana University (US) and Hanyang University (Korea).

Each participant was given a robotic pet for home use, in
this case the Hasbro Joy-For-All robotic therapy pet
(https://joyforall.com/) equipped with a robotic sensor collar
(see Figure 1). The collar, which was developed at Indiana
University’s R-house robotics lab, contained sensors capable
of detecting light, sound, and motion [18,19]. Sensor data
was collected roughly every second of every day across the
3-week study period, while data about interaction modalities
was simultaneously collected via use of a mobile app
(described in Section 2.B). Equipment failure with the sensor
collar during two participants (one in the US and one in
Korea) led to partial data loss that was identified during the
analysis phase, so they were excluded from the results below
(leaving 8 participants with complete data).

B. Experimental Design

Along with collecting the sensor data described in Section
2.A, the experiment utilized a sampling method known as
ecological momentary assessment (EMA) to gather real-time
data about interactions occurring between the robotic pet and
human participant [20]. EMA works by randomly sampling
each user's behavior multiple times throughout the day over a
period of time (days, weeks, months). EMA has been shown
to be a powerful tool for monitoring everyday user behaviors
by gathering real-time data via smartphones [21,22], as well
as interactive robots [8,23]. For EMA in this study, we
employed the PiLR mobile app (https://pilrhealth.com/). The

Figure 1. Joy-For-All robot and sensor collar

EMA app was setup to ping users via their smartphone
roughly 5-7 times per day (referred to as “stimulus
prompts”), arriving randomly during set time periods (e.g.
morning, late afternoon, early evening)

The EMA prompts collected data about the interaction
modality (the type of behavior) and proximity (whether the
interaction occurred near/far to the robot). The interaction
modalities were defined based on previous research with
robotic pets in in-home settings [18,19,24,25], and included
both active interactions directly with the robot (e.g. petting,
talking, playing) as well as indirect passive interactions (e.g.
watching television, eating together with the robot). Beyond
the interaction-focused stimulus questions above, we
incorporated additional psychological assessment questions
to gauge user perception and emotional response post-
interaction. As such, the study period was divided into
baseline, intervention, post-intervention phases.

Each participant was enrolled into an approximately 3-
week long study period, including ~16 day intervention phase
of sensor data collection plus a 2-day pre/post questionnaire
phase to establish a baseline and for final assessment. The
18-item pre-intervention questionnaire assessed the user’s
current daily habits and behavioral routines, while a similar
post-intervention questionnaire assessed changes. After the 3-
week period with the robot, there was a subsequent follow-up
interview conducted by a research assistant to gather
qualitative data about the participant’s experience during the
study with the robotic pet and EMA app. The full survey and
questionnaires (referred to as the SOREMA instrument [8])
are available online on the author’s website:
http://www.caseybennett.com/uploads/SOREMA_Survey Qu
estionnaire.docx

To summarize, including the follow-up interview during
the week after the robot deployment study period, there was
approximately a total 1-month study involvement for
each participant. During this time, a mix of both
quantitative and qualitative data was collected (using a
convergent parallel mixed method approach [26]). This
included pre- and post-intervention questionnaires, robotic
sensor data, EMA interaction data, and recorded interviews.

Some EMA prompts resulted in users reporting no
interaction occurring (roughly 65% of time) and were thus
excluded from further analysis. That is to be expected with
real-world use of robots. Additionally, some modalities were
only rarely performed and so excluded. This left us with a
sample of 152 interactions across five modalities: petting,
playing, moving the SAR (from one location to another),
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TABLE L. FEATURE LIST
Category Features Description

Accelerometer accel_x, accel z, accel y Raw average readings from accelerometer in x, y
(lateral) and z (up/down) directions

Light & Sound Sensor light val, sound_val Raw average readings from light and sound sensors

Motion motion_detect Percentage of time robot was detected as "in-motion"
(above some noise threshold) in any coordinate direction
(x.,y,2)

Rotation arc Average amount of rotation motion during interaction

Orientation orient Orientation during the interaction in which the robot
spent the max time (i.e. mode)

Sound Category Quiet, Moderate, Loud Percentage of time that specific sound categories were

detected, using sound sensor manufacturer specified
thresholds

Sound Transitions

Quiet-Moderate, Quiet-Loud, Moderate-Quiet,
Moderate-Loud, Loud-Quiet, Loud-Moderate

Frequency of detected transitions between sound

categories during interaction

Orientation Category
Portrait Down, Flat

Landscape Right, Landscape Left, Portrait Up,

Percentage of time that specific orientation categories
were detected, using accelerometer manufacturer-

specified thresholds

Orientation Transitions orient_shift Frequency of detected transitions between orientation
categories

Any Detection awake Percentage of time that a "signal" was detected by any

sensor (above some noise threshold) on the robotic
collar

talking to the SAR, watching TV/radio (or other media, e.g.
YouTube). Each “interaction” represented a 15-minute time
period (users were specifically directed by the EMA prompts
to report interactions for that entire time range), so the 152
interactions constituted nearly 40 hours of total
interaction data. The modalities were not mutually
exclusive, so for instance a participant could be petting the
SAR while talking to it. Indeed, participants reported
approximately 2.5 modality types per interaction (higher
among Korean vs. US participants). This was intended
though, in order to reflect real-world settings where people
often do multiple things at a time without a clear start/stop

C. Analysis Approach

The analysis in this paper is broken into 3 parts: 1) a
general analysis of interaction patterns between the groups
using descriptive statistics, 2) a machine learning & deep
learning analysis, 3) a qualitative analysis of participant
interview data.

First, we examined the overall differences in interaction
behaviors between participants in the US and Korea, using
descriptive statistics to give a high-level overview of the data.

Second, we utilized machine learning (ML), deep
learning (DL), and XgBoost models that were originally
developed on the US data in previous work [8]. The aim is
to examine whether the same models work on the Korean
data or not, or adversely whether different models would be
needed for each cultural locale. The details of these
approaches have been described in previous work, but in
short the EMA data became the "targets" (i.e. interaction
modalities) while the sensor data became the "features" for
the ML and DL models. For simplicity we collapsed the
dataset into a series of binary classification predictions (e.g.
petting vs. not petting) rather than attempt a complex multi-
class classification problem. Due to target class imbalance,
the data was re-balanced using SMOTE [27].

Features in the dataset (see Table 1) included motion in
the x/y/z directions, rotational motion (arc), light/sound
values, orientation, and transitions between sound/orientation
categories (e.g. loud to quiet, portrait to landscape). For
predicting the EMA target, the feature data for that 15-minute
time period was sliced into 15-second-long overlapping
windows, with 50% overlap (similar to [28]). The way these
features were handled depends on the type of modeling
method. In general, the standard ML approaches calculated
averages or percentages/frequencies for each feature across
the entire interaction (the "time window") resulting a single
row of data for each target, whereas DL approaches utilized
smaller time slices as the windows so that each interaction
was broken into many windows. For DL, the data can be
visualized as a mutli-dimensional array, with a row for each
second of data ("y" dimension), a column for each sensor
data feature ("x" dimension), and each 15-second window
being a third "z" dimension (see Figure 2).

Figure 2. Keras Data Input
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Standard ML approaches were performed using the
python package Scikit-Learn (https:/scikit-learn.org).
Multiple modeling methods were attempted: Random Forest,
Gradient Boosting, Neural Networks, and Support Vector
Machines (SVM). Models were generally run using the
default parameters in Scikit. Results were evaluated using 5-
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fold cross-validation based on accuracy and AUC metrics.
DL modeling was performed using the python package Keras
(https://keras.io/), which is a deep learning library based on
TensorFlow. The data was fed into a DL model consisting of
a single 2D convolutional neural network layer (CNN) with
kernel size set to 1 and using a ReLU activation function,
followed by a single recurrent layer (LSTM) with 50 units
[29]. The idea was that the CNN could parse out "invariant
representations" of pattern signatures occurring anywhere in
the interaction, followed by the LSTM detecting critical
"sequences" of those patterns over time. A final fully
connected "Dense" layer using a sigmoidal activation
function was used to make the final binary classification
predictions. To evaluate performance, 20% of the data was
held out as a "test set" for each classification run.

TABLE II. INTERVIEW QUALITATIVE CODING HEIRACHY
Code Group 1 Code Group 2

Charging
Robot/Collar Design

Interactions

Alerts

Gamifications
EMA App Incentivizing
Interactions

Leaderboard

Challenges

Overall Experiment Feelings

Interactions

Third, we performed a qualitative analysis of the
participant interviews. These were first coded by two
independent coders using the Atlas TI software
(https://atlasti.com/), using a coding scheme developed for
the project that included a hierarchy of codes. The top level
of the hierarchy distinguished comments related to the
robot/collar, the EMA app, and the experiment itself. Below
those top level codes was a second level with codes for
design, interactions, alerts, incentives, challenges,
charging/battery issues, and desire for leaderboards or other
types of gamification with the robot. The code hierarchy can
be seen in Table 2. The codes in “Code Group 2” were
further broken into positive, negative, or suggestions for
improvement. Interrater reliability between the two coders
was calculated as 0.67, implying moderate agreement.

III. RESULTS

A. General Interaction Analysis

General patterns of interaction modalities by cultural
locale (US or Korea) can be seen in Table 3. Reported
modalities were fairly consistent between the two groups,
outside of Petting and Playing. That may be a linguistic or
definitional difference in understanding of the terms. It had
no bearing on the rest of the analysis here, but may be of
interest for future research.

As can be seen in Table 1, there are numerous features in
the dataset. We analyzed the average values for those across
all interactions for the Korean and US groups. Mostly the

values were consistent across groups, but there were a few
notable differences for light, sound, and motion (arc) which
are shown in Table 4. In short, US participants appeared to
move the robotic pet around more frequently, and had higher
levels of noise in the environment. Conversely, the Korean
participants exhibited less movement and noise, but higher
ambient light levels. Our interpretation was that this might
be due to different living environments and lifestyles between
the two locales, e.g. Korean living spaces tend to be smaller
and more compact than US living spaces (thus less need to
move around in Korea). However, the exact reasons for these
differences are still unclear and need more research.

TABLE IIL INTERACTION MODALITY FREQUENCY
Cultural TV/ Moved
Locale Petting Talking Playing Radio It
Us 38.0% 15.2% 3.8% 19.0% 23.9%
KOR 25.7% 19.9% 17.8% 19.4% 17.3%

TABLE IV. NOTABLE FEATURE DIFFERENCES
Cultural | Interact- Sound Light Motion
Locale ion Cnt val val arc detect
UsS 80 89.48 189.4 0.059 0.201
KOR 72 59.24 590.0 0.011 0.010
Grand
Total 152 75.18 378.9 0.036 0.111

B. ML & DL Modeling

In previous work, we have been able to build ML and DL
models that achieved approximately 75-80% accuracy in
detecting interaction modalities in user homes in the US
based on this EMA approach and sensor features [8]. One
question we had was whether that same approach would
work in Korea, particularly given the differences in
feature values that we observed (Section 2.A). To evaluate
this, we applied the same ML and DL models trained on US
data to the Korean data collected here. Additionally, we
combined all the US and Korean data together as if it were
one single training sample and attempted to re-create the
same models. The results can be seen in Table 5 (ML) and
Table 6 (DL). For brevity, we only show the gradient
boosting results for ML here. We did employ other modeling
methods, including random forests and SVM, but the patterns
were consistently the same.

As can be seen in the tables, using the trained models
from the US on the Korean data was not successful. There
was slightly more success when combining the US & Korean
data together as one sample, but it was still suboptimal, with
accuracy and AUC values 10% less than the original models.
Our interpretation here is that this may be due to the feature
value differences observed in Section 2.A, and by extension
potential lifestyle differences between the US and Korea. In
other words, since home living environments are often quite
different between the US and Korea, the data that robotic
sensors collect in user homes may be quite different too.
Moreover, it is a distinct possibility that different sensors are
needed in the two cultural locales, to collect different types of
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TABLE V. ML RESULTS (GRADIENT BOOSTING)
US Only ULBEN, LLCBLL All Combined
Test
Modality Acc. AUC Acc. AUC Acc. AUC
Petting 94.3%  0.9655 | 63.9%  0.5000 | 80.2%  0.8945
Talking 72.0% 08300 | 50.0% 05248 | 54.5%  0.5485
Playing 91.6% 09751 | 51.4%  0.4884 | 76.4% 0.8327
Listening 58.6%  0.5421 44.4% 0.4444 | 48.7%  0.4558
TV/Radio
Moving It 60.4% 0.6788 | 45.8%  0.5000 | 50.6% 0.5548
Average 75.4%  0.7983 51.1% 0.4915 | 62.1% 0.6573
TABLE VI DL RESULTS
US Only LB ENHILCLE All Combined
Test

Modality Acc. AUC Acc. AUC Acc. AUC
Petting 75.6%  0.7234 | 49.8% 0.5099 | 61.0% 0.6854
Talking 68.4%  0.7638 48.2% 0.4745 | 52.6%  0.5842
Playing 86.2%  0.9285 68.8% 0.7076 | 67.7%  0.7899
%‘\igzgfo 748% 07781 | 49.7%  0.5056 | 652%  0.7052
Moving It 66.0%  0.6938 45.7% 0.4275 | 65.9%  0.6890
Average 75.3%  0.7752 52.4% 0.5250 | 62.5%  0.6908

features specifically relevant to the different home living
environments. We return to this topic in more detail in the
Discussion section.

Related to that, we also note that there were significant
differences in the participant interview data, where Korean
participants made more frequent negative comments about
the technology design, while US participants seemed to focus
more on the interaction in general. We discuss this in the
qualitative analysis in the next section.

C. Qualitative Interview Analysis

The coded data from the participant interviews was
analyzed using a phenomenological approach [30]. In
general, there was a high level of consistency between
Korean and US participants across the hierarchy, both at the
Code Group 1 and Code Group 2 levels (data not shown for
brevity). There were two notable exceptions to that, however.
First, Korean participants made negative comments about the
technology and suggestions for improvement more frequently
than the US participants (t-test p value = 0.018, see Table 7).
Second, US participants were more likely to make comments
about the interaction itself, versus things like the technology
design, alerts, gamification, etc. Nearly 20% of the US
comments focused on the interaction, versus 13% of Korean
comments.

It is possible that those differences in perspectives
between the US and Korea about the robotic companion pet
and EMA app system may have influenced how participants
interacted (or did not interact) with the robot. That may have
subsequently impacted the modeling results reported Section
3.B of this paper.

TABLE VIIL. CODING ANALYSIS RESULTS
Code Type Us KOR
Negative 27.9% 34.7%
Suggestion 39.3% 43.1%
Positive 30.8% 22.2%

For example, Korean participants often expressed that
they felt uncomfortable with the robotic companion pet,
mentioning that:

o “I was really worried about what should I do with
the robot, at first, as I've never raised a pet before.”

o “At the end of the day, I used to turn off my cat and
sleep, but I felt a little uncomfortable about just
shutting it off.”

. “I purposely didn't turn off the sound of the cat. 1
thought it would be better for the experiment, so I
Jjust used it at home without turning off the sound at
all... the sound was a little excessive because he
cried even at dawn.”

Many of the Korean comments seemed to relate to
participants not being used to raising pets in small living
spaces, the frequent sounds of the robot (which are
problematic given the lack of sound-proofing in many
Korean apartments), or otherwise just being uncomfortable
with the technology design in general.

Adversely, US participants tended to comment more
about the nature of the interaction and the robotic behaviors,
particularly in response to their own human behaviors (e.g.
walking through the house or while cooking). For example
US participants mentioned that:

o “I was literally walking through my house and it
would just meow when I got a little bit close to it.”

o “like it being able to maybe just roll over or
something if it wanted food, which I know doesn't eat
but, like a meow near his food bowl.”

. “but it was just like it kind of noticed the sound or
something [and] kind of did like a questionable meow
... because I was hammering something really loud,
but I had headphones in so I didn't know and then I
took them out, and [it] was like asking for attention,
right after that, like after I'd been really, really
noisy.”

Many of those US interaction comments seemed to be
focused on their expectations of real cat behavior based on
past experience, projected onto the behaviors of the robotic
companion pet. US participants also seemed to overestimate
the capabilities of the robotic companion pet in some cases,
misattributing its behaviors to capabilities the technology
does not actually have. That seemed to be reflected in their
more positive comments, and potentially have affected their
interactions with the robot as well. More broadly, this raises
interesting potential future research questions for robotic
companion pet research, in that study participants’ past
experience with real living pets might affect the results.
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IV. DISCUSSION

A. Main Summary

We conducted an intensive case study of 10 participants
in the US and South Korea to compare in-home use of
robotic companion pets across different cultural locales. We
collected a mix of quantitative and qualitative data about
each participant over the course of month. In particular, we
were interested in if any differences in interactions existed
between the two cultural settings, and how those differences
might impact modeling of those interactions.

Results showed that there were indeed significant
differences in participant perceptions of the robotic
companion pet, and that the types of interactions varied as
well. For instance, Korean participants had a more negative
view of the technology design. There were also notable
differences in the collected sensor data, with US participants
tending to move the robot around more and have noisier
home environments. Moreover, ML and DL models that were
developed in the US failed to work as well in South Korea,
which may be partially attributable to those differences listed
above.

Some of the interaction/perception differences seem to be
tied to the different home living environments in Korea
versus the US, such as smaller living spaces and lack of
sound-proofing in apartments that causes some functionality
of robotic companion pets to be suboptimal in Korean
contexts. We discuss the broader implications of these
findings in the next section.

B. Implications for Robotic Companion Pets

SARs and robotic companion pets hold great potential in
in-home settings for chronic care and aging-related issues.
However, typically research on those technologies focused on
the design and application within a specific cultural locale,
such as Japan or the US. The results here suggest that
significant  differences in lifestyle and home-living
environments may complicate the adoption of such robots.
What may be seen as a beneficial feature in one setting may
cause problems in another settings, as evidenced by the
frequent cat sounds made by the robot in this study. There
are different cultural expectations in different locales as well
(e.g. Korean cities), which feed into differences in human
behavior and the design of the built environment, even into
how rooms and buildings are architected. Indeed we would
be remiss not to point out that Korea is one of the most
densely populated countries in the world, with the Seoul area
alone having roughly 42,600 people per square mile.

Those cultural differences lead to challenges, but perhaps
opportunities as well. For example, we may need to define
culturally-relevant interaction modalities pertaining to the
specific living situations and lifestyles in Korea and the US,
as well as create specific robotic sensor suites suited to detect
those types of modalities. Such an approach could not only
help enable better models of HRI interactions (machine
learning or otherwise), but also enhance the behaviors of
robotic companions to better fit the cultural expectations of
different locales in a way that goes beyond attempting to
simply adapt the same robot to different cultures (i.e. beyond
cultural homophily).

Much previous research in HRI has argued for
“culturally-robust” or “culturally-aware” systems (including
our own), where robots are designed specifically to create
adaptable behaviors that match the value system of the local
human culture [6,17,31,32]. While that is certainly one
approach for social robots, here we take the position that it
may be necessary to create fundamentally different models of
robot behavior specifically for different cultures. Indeed, we
are seeing a similar phenomenon in a separate ongoing study
with a bilingual robot playing video games with human
interactors, where alterations in robotic socio-cognitive
behavior have different effects depending on the language
spoken (e.g. Korean versus English) [33].

C. Limitations

There are a number of limitations to this study. By
design, the study was setup as an intensive case study of a
smaller number of users, with the aim of collecting a large
amount of data about each participant over many weeks,
rather than gathering a small amount of data about many
users briefly. However, both approaches have merit and can
provide different kinds of information for researchers [34].
The results here thus tell part of the story, but more research
is needed using different study designs. To that end, we are
currently conducting a larger ongoing user study comparing
South Korea and US robotic companion pet use.

Additionally, more sophisticated modeling methods, such
as generative adversarial networks (GANSs) or variational
autoencoders (VAEs) [35] may be needed to make single
models work across diverse datasets, though it remains to be
seen whether that by itself would solve the problem. Another
approach may be to use different learning strategies, such as
“few-shot learning” [36,37] that attempts to predict similarity
rather than outright classification, averse to traditional
supervised learning. These are possibilities that as of yet
remain unanswered. We cannot rule out that larger datasets
and/or different modeling methods may produce better
results. That remains a challenge for future research in the
domain of robotic companion pets for home care.
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