
  

  

Abstract— This paper presents an intensive case study of 10 

participants in the US and South Korea interacting with a 

robotic companion pet in their own homes over the course of 

several weeks. Participants were tracked every second of every 

day during that period of time. The fundamental goal was to 

determine whether there were significant differences in the 

types of interactions that occurred across those cultural 

settings, and how those differences affected modeling of the 

human-robot interactions.  We collected a mix of quantitative 

and qualitative data through sensors onboard the robot, 

ecological momentary assessment (EMA), and participant 

interviews. Results showed that there were significant 

differences in how participants in Korea interacted with the 

robotic pet relative to participants in the US, which impacted 

machine learning and deep learning models of the interactions.  

Moreover, those differences were connected to differences in 

participant perceptions of the robot based on the qualitative 

interviews.  The work here suggests that it may be necessary to 

develop culturally-specific models and/or sensor suites for 

human-robot interaction (HRI) in the future, and that simply 

adapting the same robot’s behavior through cultural 

homophily may be insufficient.  

 

I. INTRODUCTION 

A. Background 

Novel forms of robotic companions have been a growing 
area of research over the past decade, particularly for 
applications related to in-home chronic health conditions and 
aging-related issues [1,2].  Within the field of human-robot 
interaction (HRI), many of these companions take on the 
form factor of robotic pets, intended to provide social support 
and enhance cognitive functioning through social interaction.  
Such socially-assistive robots (SARs) are thus critical in 
many places that are faced with a rapidly increasing elderly 
population and/or greater awareness of the impact of mental 
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health on physical health, in order to facilitate community-
based health approaches [3-5].  

However, open questions remain as to appropriate types 
of interactions that such robotic pets need to entail during 
these applications.  For instance, how should the robotic pet 
behave in user homes in response to a person with dementia, 
or a younger person suffering from chronic depression and 
anxiety?  Moreover, another question is whether the robot’s 
behavior should be dependent on situational factors, such a 
geographical location or cultural setting.  Indeed, previous 
research has shown that situated robot use in different 
cultural locales has a major impact on how the same robots 
are perceived and utilized by different groups of people [6,7]. 
However, many previous studies (see Section 1.B below) are 
limited to either controlled lab experiments or retrospective 
real-world data based purely on user recall, so a challenge 
still exists to explore these questions in real-time in real-
world settings. That challenge is two-fold, entailing the need 
for approaches that can monitor HRI interactions that occur 
in real-time as well as identification of appropriate modeling 
methods relevant to robotic companions in-the-wild [8].   

In this paper, we explore these questions in users in the 
United States and South Korea interacting with a robotic pet 
in their own homes over several weeks.  We purposely 
adopted a case study approach, focusing on intensively 
tracking a smaller number of users over a longer period of 
time (every second of every day for 3 weeks), rather than 
gathering a small amount of data about many users briefly, to 
account for intra-person behavior variation. The fundamental 
goal was to determine whether there were significant 
differences in the types of interactions that occurred across 
different cultural settings, and how those differences affected 
modeling of real-world human-robot interactions. 

B. Prior Work 

There is existing previous research that has explored 
inter-group differences for various types of interactions 
between humans and robots [9-17]. That research has 
explored different types of groups (e.g. cultural, age, gender) 
across various settings (e.g. home, work, healthcare, military, 
education).  For instance, Andreasson et al. (2018) examined 
gender differences regarding robot touch [9], while other 
groups have explored the effects of pre-existing negative 
attitude differences towards robots between genders [10].  
Other researchers have asked whether HRI varies across age 
groups.  For example, since older adults have slower reaction 
times, a question is whether that might lead to differences in 
human-robot collaborative task performance [11]. Another 
question is whether teenagers respond differently to social 
robots than adults [12]. 
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Some research has also looked at cultural differences in 
HRI interactions, such as children’s expressiveness during 
gameplay across different cultures [13] or moral judgments 
between US and Japan [14].  In a comparison specifically 
between the US and Korea, Lee & Sabanovic (2014) found 
that participants in South Korea envision robots as 
companions for the family, while US participants see home 
robots as individual assistants and modern appliances [6].  
Other researchers have looked at the combination of cultural 
differences with other factors.  For example, Rudovic et al. 
examined how engagement with a social robot varied in 
children with autism between Serbia and Japan, finding 
significant differences [15]. Fraune et al. (2015) showed that 
Japanese and US participants respond differently to groups of 
robots, relative to an individual robot [16]. 

Interestingly, however, past results in cross-cultural 
robotics have indicated that cultural homophily (e.g. agents 
adapted to a specific set of cultural attributes) alone does not 
necessarily always correspond to higher ratings of a robot by 
human participants [17].  This suggests that the impact of 
culture on HRI is not so simple as identifying differences. 
The real question is how such differences might impact our 
models of robot interactive behavior in real-world settings.  

II.  METHODS 

A. Setting, Users & Robot Description 

The study involved a sample of 10 users, with 5 recruited 
from the greater Seoul area in South Korea and 5 recruited 
from the US Midwest.  Participants were in the age range of 
20-35, and included 7 females and 3 males. All participants 
were recruited from the general population and were living 
alone.  The study was approved separately by the IRBs at 
Indiana University (US) and Hanyang University (Korea). 

Each participant was given a robotic pet for home use, in 
this case the Hasbro Joy-For-All robotic therapy pet 
(https://joyforall.com/) equipped with a robotic sensor collar 
(see Figure 1). The collar, which was developed at Indiana 
University’s R-house robotics lab, contained sensors capable 
of detecting light, sound, and motion [18,19].  Sensor data 
was collected roughly every second of every day across the 
3-week study period, while data about interaction modalities 
was simultaneously collected via use of a mobile app 
(described in Section 2.B). Equipment failure with the sensor 
collar during two participants (one in the US and one in 
Korea) led to partial data loss that was identified during the 
analysis phase, so they were excluded from the results below 
(leaving 8 participants with complete data). 

B. Experimental Design 

Along with collecting the sensor data described in Section 
2.A, the experiment utilized a sampling method known as 
ecological momentary assessment (EMA) to gather real-time 
data about interactions occurring between the robotic pet and 
human participant [20].  EMA works by randomly sampling 
each user's behavior multiple times throughout the day over a 
period of time (days, weeks, months).  EMA has been shown 
to be a powerful tool for monitoring everyday user behaviors 
by gathering real-time data via smartphones [21,22], as well 
as interactive robots [8,23]. For EMA in this study, we 
employed the PiLR mobile app (https://pilrhealth.com/). The  

Figure 1.  Joy-For-All robot and sensor collar 

EMA app was setup to ping users via their smartphone 
roughly 5-7 times per day (referred to as “stimulus 
prompts”), arriving randomly during set time periods (e.g. 
morning, late afternoon, early evening) 

The EMA prompts collected data about the interaction 
modality (the type of behavior) and proximity (whether the 
interaction occurred near/far to the robot).  The interaction 
modalities were defined based on previous research with 
robotic pets in in-home settings [18,19,24,25], and included 
both active interactions directly with the robot (e.g. petting, 
talking, playing) as well as indirect passive interactions (e.g. 
watching television, eating together with the robot). Beyond 
the interaction-focused stimulus questions above, we 
incorporated additional psychological assessment questions 
to gauge user perception and emotional response post-
interaction. As such, the study period was divided into 
baseline, intervention, post-intervention phases. 

Each participant was enrolled into an approximately 3-
week long study period, including ~16 day intervention phase 
of sensor data collection plus a 2-day pre/post questionnaire 
phase to establish a baseline and for final assessment.  The 
18-item pre-intervention questionnaire assessed the user’s 
current daily habits and behavioral routines, while a similar 
post-intervention questionnaire assessed changes. After the 3- 
week period with the robot, there was a subsequent follow-up 
interview conducted by a research assistant to gather 
qualitative data about the participant’s experience during the 
study with the robotic pet and EMA app.  The full survey and 
questionnaires (referred to as the SoREMA instrument [8]) 
are available online on the author’s website: 
http://www.caseybennett.com/uploads/SoREMA_Survey_Qu
estionnaire.docx  

To summarize, including the follow-up interview during 
the week after the robot deployment study period, there was 
approximately a total 1-month study involvement for 
each participant. During this time, a mix of both 
quantitative and qualitative data was collected (using a 
convergent parallel mixed method approach [26]).  This 
included pre- and post-intervention questionnaires, robotic 
sensor data, EMA interaction data, and recorded interviews.  

Some EMA prompts resulted in users reporting no 
interaction occurring (roughly 65% of time) and were thus 
excluded from further analysis. That is to be expected with 
real-world use of robots. Additionally, some modalities were 
only rarely performed and so excluded. This left us with a 
sample of 152 interactions across five modalities: petting, 
playing, moving the SAR (from one location to another),  
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TABLE I.  FEATURE LIST 

Category Features Description 

Accelerometer accel_x, accel_z, accel_y Raw average readings from accelerometer in x, y 

(lateral) and z (up/down) directions 

Light & Sound Sensor light_val, sound_val Raw average readings from light and sound sensors 

Motion motion_detect Percentage of time robot was detected as "in-motion" 

(above some noise threshold) in any coordinate direction 
(x, y, z) 

Rotation arc Average amount of rotation motion during interaction 

Orientation orient Orientation during the interaction in which the robot 

spent the max time (i.e. mode) 

Sound Category Quiet, Moderate, Loud Percentage of time that specific sound categories were 

detected, using sound sensor manufacturer specified 
thresholds 

Sound Transitions Quiet-Moderate, Quiet-Loud, Moderate-Quiet, 

Moderate-Loud, Loud-Quiet, Loud-Moderate 

Frequency of detected transitions between sound 

categories during interaction 

Orientation Category Landscape Right, Landscape Left, Portrait Up, 

Portrait Down, Flat 

Percentage of time that specific orientation categories 

were detected, using accelerometer manufacturer-

specified thresholds 

Orientation Transitions orient_shift Frequency of detected transitions between orientation 
categories 

Any Detection awake Percentage of time that a "signal" was detected by any 

sensor (above some noise threshold) on the robotic 

collar 

   

talking to the SAR, watching TV/radio (or other media, e.g. 
YouTube).  Each “interaction” represented a 15-minute time 
period (users were specifically directed by the EMA prompts 
to report interactions for that entire time range), so the 152 
interactions constituted nearly 40 hours of total 
interaction data. The modalities were not mutually 
exclusive, so for instance a participant could be petting the 
SAR while talking to it. Indeed, participants reported 
approximately 2.5 modality types per interaction (higher 
among Korean vs. US participants). This was intended 
though, in order to reflect real-world settings where people 
often do multiple things at a time without a clear start/stop 

C. Analysis Approach 

The analysis in this paper is broken into 3 parts: 1) a 
general analysis of interaction patterns between the groups 
using descriptive statistics, 2) a machine learning & deep 
learning analysis, 3) a qualitative analysis of participant 
interview data. 

First, we examined the overall differences in interaction 
behaviors between participants in the US and Korea, using 
descriptive statistics to give a high-level overview of the data. 

Second, we utilized machine learning (ML), deep 
learning (DL), and XgBoost models that were originally 
developed on the US data in previous work [8].  The aim is 
to examine whether the same models work on the Korean 
data or not, or adversely whether different models would be 
needed for each cultural locale.  The details of these 
approaches have been described in previous work, but in 
short the EMA data became the "targets" (i.e. interaction 
modalities) while the sensor data became the "features" for 
the ML and DL models.  For simplicity we collapsed the 
dataset into a series of binary classification predictions (e.g. 
petting vs. not petting) rather than attempt a complex multi-
class classification problem.  Due to target class imbalance, 
the data was re-balanced using SMOTE [27]. 

Features in the dataset (see Table 1) included motion in 
the x/y/z directions, rotational motion (arc), light/sound 
values, orientation, and transitions between sound/orientation 
categories (e.g. loud to quiet, portrait to landscape).  For 
predicting the EMA target, the feature data for that 15-minute 
time period was sliced into 15-second-long overlapping 
windows, with 50% overlap (similar to [28]). The way these 
features were handled depends on the type of modeling 
method.  In general, the standard ML approaches calculated 
averages or percentages/frequencies for each feature across 
the entire interaction (the "time window") resulting a single 
row of data for each target, whereas DL approaches utilized 
smaller time slices as the windows so that each interaction 
was broken into many windows. For DL, the data can be 
visualized as a mutli-dimensional array, with a row for each 
second of data ("y" dimension), a column for each sensor 
data feature ("x" dimension), and each 15-second window 
being a third "z" dimension (see Figure 2). 

Figure 2.  Keras Data Input 

 

 

Standard ML approaches were performed using the 
python package Scikit-Learn (https://scikit-learn.org). 
Multiple modeling methods were attempted: Random Forest, 
Gradient Boosting, Neural Networks, and Support Vector 
Machines (SVM). Models were generally run using the 
default parameters in Scikit.  Results were evaluated using 5-
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fold cross-validation based on accuracy and AUC metrics. 
DL modeling was performed using the python package Keras 
(https://keras.io/), which is a deep learning library based on 
TensorFlow. The data was fed into a DL model consisting of 
a single 2D convolutional neural network layer (CNN) with 
kernel size set to 1 and using a ReLU activation function, 
followed by a single recurrent layer (LSTM) with 50 units 
[29].  The idea was that the CNN could parse out "invariant 
representations" of pattern signatures occurring anywhere in 
the interaction, followed by the LSTM detecting critical 
"sequences" of those patterns over time.  A final fully 
connected "Dense" layer using a sigmoidal activation 
function was used to make the final binary classification 
predictions. To evaluate performance, 20% of the data was 
held out as a "test set" for each classification run.   

TABLE II.  INTERVIEW QUALITATIVE CODING HEIRACHY 

Code Group 1 Code Group 2 

Robot/Collar 

Charging 

Design 

Interactions 

EMA App 

Alerts 

Gamifications 

Incentivizing 

Interactions 

Leaderboard 

Overall Experiment 

Challenges 

Feelings 

Interactions 

 
Third, we performed a qualitative analysis of the 

participant interviews.  These were first coded by two 
independent coders using the Atlas TI software 
(https://atlasti.com/), using a coding scheme developed for 
the project that included a hierarchy of codes.  The top level 
of the hierarchy distinguished comments related to the 
robot/collar, the EMA app, and the experiment itself.  Below 
those top level codes was a second level with codes for 
design, interactions, alerts, incentives, challenges, 
charging/battery issues, and desire for leaderboards or other 
types of gamification with the robot.  The code hierarchy can 
be seen in Table 2.  The codes in “Code Group 2” were 
further broken into positive, negative, or suggestions for 
improvement.  Interrater reliability between the two coders 
was calculated as 0.67, implying moderate agreement.   

III. RESULTS 

A. General Interaction Analysis 

General patterns of interaction modalities by cultural 
locale (US or Korea) can be seen in Table 3.  Reported 
modalities were fairly consistent between the two groups, 
outside of Petting and Playing.  That may be a linguistic or 
definitional difference in understanding of the terms.  It had 
no bearing on the rest of the analysis here, but may be of 
interest for future research.   

As can be seen in Table 1, there are numerous features in 
the dataset.  We analyzed the average values for those across 
all interactions for the Korean and US groups.  Mostly the 

values were consistent across groups, but there were a few 
notable differences for light, sound, and motion (arc) which 
are shown in Table 4.  In short, US participants appeared to 
move the robotic pet around more frequently, and had higher 
levels of noise in the environment.  Conversely, the Korean 
participants exhibited less movement and noise, but higher 
ambient light levels.  Our interpretation was that this might 
be due to different living environments and lifestyles between 
the two locales, e.g. Korean living spaces tend to be smaller 
and more compact than US living spaces (thus less need to 
move around in Korea).  However, the exact reasons for these 
differences are still unclear and need more research. 

TABLE III.  INTERACTION MODALITY FREQUENCY 

Cultural 

Locale Petting Talking Playing 

TV / 

Radio 

Moved 

It 

US  38.0% 15.2% 3.8% 19.0% 23.9% 
KOR 25.7% 19.9% 17.8% 19.4% 17.3% 

TABLE IV.  NOTABLE FEATURE DIFFERENCES 

Cultural 

Locale 

Interact-

ion Cnt 

Sound 

val 

Light 

val arc 

Motion 

detect 

US 80 89.48 189.4 0.059 0.201 

KOR 72 59.24 590.0 0.011 0.010 

Grand 

Total 152 75.18 378.9 0.036 0.111 

    

B. ML & DL Modeling 

In previous work, we have been able to build ML and DL 
models that achieved approximately 75-80% accuracy in 
detecting interaction modalities in user homes in the US 
based on this EMA approach and sensor features [8].  One 
question we had was whether that same approach would 
work in Korea, particularly given the differences in 
feature values that we observed (Section 2.A).  To evaluate 
this, we applied the same ML and DL models trained on US 
data to the Korean data collected here. Additionally, we 
combined all the US and Korean data together as if it were 
one single training sample and attempted to re-create the 
same models.  The results can be seen in Table 5 (ML) and 
Table 6 (DL).  For brevity, we only show the gradient 
boosting results for ML here.  We did employ other modeling 
methods, including random forests and SVM, but the patterns 
were consistently the same. 

As can be seen in the tables, using the trained models 
from the US on the Korean data was not successful.  There 
was slightly more success when combining the US & Korean 
data together as one sample, but it was still suboptimal, with 
accuracy and AUC values 10% less than the original models.  
Our interpretation here is that this may be due to the feature 
value differences observed in Section 2.A, and by extension 
potential lifestyle differences between the US and Korea.  In 
other words, since home living environments are often quite 
different between the US and Korea, the data that robotic 
sensors collect in user homes may be quite different too.  
Moreover, it is a distinct possibility that different sensors are 
needed in the two cultural locales, to collect different types of  
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TABLE V.  ML RESULTS (GRADIENT BOOSTING) 

  
US Only 

US Train, KOR 

Test 
All Combined 

Modality Acc. AUC Acc. AUC Acc. AUC 

Petting 94.3% 0.9655 63.9% 0.5000 80.2% 0.8945 

Talking 72.0% 0.8300 50.0% 0.5248 54.5% 0.5485 

Playing 91.6% 0.9751 51.4% 0.4884 76.4% 0.8327 

Listening 
TV/Radio 

58.6% 0.5421 44.4% 0.4444 48.7% 0.4558 

Moving It 60.4% 0.6788 45.8% 0.5000 50.6% 0.5548 

Average 75.4% 0.7983 51.1% 0.4915 62.1% 0.6573 

TABLE VI.  DL RESULTS 

  
US Only 

US Train, KOR 

Test 
All Combined 

Modality Acc. AUC Acc. AUC Acc. AUC 

Petting 75.6% 0.7234 49.8% 0.5099 61.0% 0.6854 

Talking 68.4% 0.7638 48.2% 0.4745 52.6% 0.5842 

Playing 86.2% 0.9285 68.8% 0.7076 67.7% 0.7899 

Listening 
TV/Radio 

74.8% 0.7781 49.7% 0.5056 65.2% 0.7052 

Moving It 66.0% 0.6938 45.7% 0.4275 65.9% 0.6890 

Average 75.3% 0.7752 52.4% 0.5250 62.5% 0.6908 

 
 

features specifically relevant to the different home living 
environments. We return to this topic in more detail in the 
Discussion section. 

Related to that, we also note that there were significant 
differences in the participant interview data, where Korean 
participants made more frequent negative comments about 
the technology design, while US participants seemed to focus 
more on the interaction in general. We discuss this in the 
qualitative analysis in the next section. 

C. Qualitative Interview Analysis 

The coded data from the participant interviews was 
analyzed using a phenomenological approach [30]. In 
general, there was a high level of consistency between 
Korean and US participants across the hierarchy, both at the 
Code Group 1 and Code Group 2 levels (data not shown for 
brevity). There were two notable exceptions to that, however.  
First, Korean participants made negative comments about the 
technology and suggestions for improvement more frequently 
than the US participants (t-test p value = 0.018, see Table 7). 
Second, US participants were more likely to make comments 
about the interaction itself, versus things like the technology 
design, alerts, gamification, etc. Nearly 20% of the US 
comments focused on the interaction, versus 13% of Korean 
comments. 

It is possible that those differences in perspectives 
between the US and Korea about the robotic companion pet 
and EMA app system may have influenced how participants 
interacted (or did not interact) with the robot. That may have 
subsequently impacted the modeling results reported Section 
3.B of this paper. 

TABLE VII.  CODING ANALYSIS RESULTS 

Code Type US KOR 

Negative 27.9% 34.7% 

Suggestion 39.3% 43.1% 

Positive 30.8% 22.2% 

 
 
For example, Korean participants often expressed that 

they felt uncomfortable with the robotic companion pet, 
mentioning that:  

• “I was really worried about what should I do with 
the robot, at first, as I've never raised a pet before.”  

• “At the end of the day, I used to turn off my cat and 
sleep, but I felt a little uncomfortable about just 
shutting it off.”  

•  “I purposely didn't turn off the sound of the cat. I 
thought it would be better for the experiment, so I 
just used it at home without turning off the sound at 
all… the sound was a little excessive because he 
cried even at dawn.” 

Many of the Korean comments seemed to relate to 
participants not being used to raising pets in small living 
spaces, the frequent sounds of the robot (which are 
problematic given the lack of sound-proofing in many 
Korean apartments), or otherwise just being uncomfortable 
with the technology design in general. 

Adversely, US participants tended to comment more 
about the nature of the interaction and the robotic behaviors, 
particularly in response to their own human behaviors (e.g. 
walking through the house or while cooking). For example 
US participants mentioned that:  

• “I was literally walking through my house and it 
would just meow when I got a little bit close to it.” 

• “like it being able to maybe just roll over or 
something if it wanted food, which I know doesn't eat 
but, like a meow near his food bowl.” 

• “but it was just like it kind of noticed the sound or 
something [and] kind of did like a questionable meow 
... because I was hammering something really loud, 
but I had headphones in so I didn't know and then I 
took them out, and [it] was like asking for attention, 
right after that, like after I’d been really, really 
noisy.” 

Many of those US interaction comments seemed to be 
focused on their expectations of real cat behavior based on 
past experience, projected onto the behaviors of the robotic 
companion pet.  US participants also seemed to overestimate 
the capabilities of the robotic companion pet in some cases, 
misattributing its behaviors to capabilities the technology 
does not actually have. That seemed to be reflected in their 
more positive comments, and potentially have affected their 
interactions with the robot as well.  More broadly, this raises 
interesting potential  future research questions for robotic 
companion pet research, in that study participants’ past 
experience with real living pets might affect the results. 
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IV. DISCUSSION 

A. Main Summary 

We conducted an intensive case study of 10 participants 
in the US and South Korea to compare in-home use of 
robotic companion pets across different cultural locales.  We 
collected a mix of quantitative and qualitative data about 
each participant over the course of month.  In particular, we 
were interested in if any differences in interactions existed 
between the two cultural settings, and how those differences 
might impact modeling of those interactions. 

Results showed that there were indeed significant 
differences in participant perceptions of the robotic 
companion pet, and that the types of interactions varied as 
well.  For instance, Korean participants had a more negative 
view of the technology design. There were also notable 
differences in the collected sensor data, with US participants 
tending to move the robot around more and have noisier 
home environments. Moreover, ML and DL models that were 
developed in the US failed to work as well in South Korea, 
which may be partially attributable to those differences listed 
above.  

Some of the interaction/perception differences seem to be 
tied to the different home living environments in Korea 
versus the US, such as smaller living spaces and lack of 
sound-proofing in apartments that causes some functionality 
of robotic companion pets to be suboptimal in Korean 
contexts. We discuss the broader implications of these 
findings in the next section. 

B. Implications for Robotic Companion Pets 

SARs and robotic companion pets hold great potential in 
in-home settings for chronic care and aging-related issues.  
However, typically research on those technologies focused on 
the design and application within a specific cultural locale, 
such as Japan or the US.  The results here suggest that 
significant differences in lifestyle and home-living 
environments may complicate the adoption of such robots.  
What may be seen as a beneficial feature in one setting may 
cause problems in another settings, as evidenced by the 
frequent cat sounds made by the robot in this study.  There 
are different cultural expectations in different locales as well 
(e.g. Korean cities), which feed into differences in human 
behavior and the design of the built environment, even into 
how rooms and buildings are architected.  Indeed we would 
be remiss not to point out that Korea is one of the most 
densely populated countries in the world, with the Seoul area 
alone having roughly 42,600 people per square mile. 

Those cultural differences lead to challenges, but perhaps 
opportunities as well.  For example, we may need to define 
culturally-relevant interaction modalities pertaining to the 
specific living situations and lifestyles in Korea and the US, 
as well as create specific robotic sensor suites suited to detect 
those types of modalities. Such an approach could not only 
help enable better models of HRI interactions (machine 
learning or otherwise), but also enhance the behaviors of 
robotic companions to better fit the cultural expectations of 
different locales in a way that goes beyond attempting to 
simply adapt the same robot to different cultures (i.e. beyond 
cultural homophily).  

Much previous research in HRI has argued for 
“culturally-robust” or “culturally-aware” systems (including 
our own), where robots are designed specifically to create 
adaptable behaviors that match the value system of the local 
human culture [6,17,31,32]. While that is certainly one 
approach for social robots, here we take the position that it 
may be necessary to create fundamentally different models of 
robot behavior specifically for different cultures.  Indeed, we 
are seeing a similar phenomenon in a separate ongoing study 
with a bilingual robot playing video games with human 
interactors, where alterations in robotic socio-cognitive 
behavior have different effects depending on the language 
spoken (e.g. Korean versus English) [33].   

C. Limitations 

There are a number of limitations to this study.  By 
design, the study was setup as an intensive case study of a 
smaller number of users, with the aim of collecting a large 
amount of data about each participant over many weeks, 
rather than gathering a small amount of data about many 
users briefly.  However, both approaches have merit and can 
provide different kinds of information for researchers [34].  
The results here thus tell part of the story, but more research 
is needed using different study designs.  To that end, we are 
currently conducting a larger ongoing user study comparing 
South Korea and US robotic companion pet use. 

Additionally, more sophisticated modeling methods, such 
as generative adversarial networks (GANs) or variational 
autoencoders (VAEs) [35] may be needed to make single 
models work across diverse datasets, though it remains to be 
seen whether that by itself would solve the problem. Another 
approach may be to use different learning strategies, such as 
“few-shot learning” [36,37] that attempts to predict similarity 
rather than outright classification, averse to traditional 
supervised learning.  These are possibilities that as of yet 
remain unanswered.  We cannot rule out that larger datasets 
and/or different modeling methods may produce better 
results.  That remains a challenge for future research in the 
domain of robotic companion pets for home care. 
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