
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, XXX 2023 1

Mitigating AC and DC Interference
in Multi-ToF-Camera Environments

Jongho Lee and Mohit Gupta, Member, IEEE

Abstract—Multi-camera interference (MCI) is an important challenge faced by continuous-wave time-of-flight (C-ToF) cameras. In the
presence of other cameras, a C-ToF camera may receive light from other cameras’ sources, resulting in potentially large depth errors.
We propose stochastic exposure coding (SEC), a novel approach to mitigate MCI. In SEC, the camera integration time is divided into
multiple time slots. Each camera is turned on during a slot with an optimal probability to avoid interference while maintaining high signal-
to-noise ratio (SNR). The proposed approach has the following benefits. First, SEC can filter out both the AC and DC components
of interfering signals effectively, which simultaneously achieves high SNR and mitigates depth errors. Second, time-slotting in SEC
enables 3D imaging without saturation in the high photon flux regime. Third, the energy savings due to camera turning on during only
a fraction of integration time can be utilized to amplify the source peak power, which increases the robustness of SEC to ambient light.
Lastly, SEC can be implemented without modifying the C-ToF camera’s coding functions, and thus, can be used with a wide range of
cameras with minimal changes. We demonstrate the performance benefits of SEC with thorough theoretical analysis, simulations and
real experiments, across a wide range of imaging scenarios.

Index Terms—Multi-Camera interference, Time-of-flight cameras, 3D cameras, Time-division multiple access

✦

1 INTRODUCTION

3D cameras are revolutionizing several aspects of our
lives (Fig. 1 (a)). Autonomous vehicles and delivery

robots use depth cameras to capture the geometry of the sur-
roundings for safe navigation [2], [3]. 3D sensing is needed
in interactive augmented reality (AR) [4] for providing a
truly immersive virtual experience. In these, and several
other 3D imaging applications, time-of-flight (ToF) cameras
are fast becoming the method of choice. Their compact form-
factors, low-cost, and low computational complexity have
resulted in emergence of several commodity ToF cameras
[5], [6], [7]. However, as these cameras become ubiquitous in
our daily lives, an important problem arises: multi-camera
interference (MCI). MCI is especially critical for continuous-
wave ToF (C-ToF) imaging, where light is emitted and
received continuously, and typically over a large field-of-
view (FOV). When several C-ToF cameras capture the same
scene concurrently, each sensor receives light from the light
sources of other cameras, which results in large, systematic
depth errors as shown in Fig. 1 (b) and (c).

Why is MCI an increasingly important problem now? Till
recently, ToF cameras were largely based on scanning laser
beams that illuminate only a few scene point at a time. Due
to scanning, the probability that two lasers illuminate the
same point simultaneously is relatively low, thus lowering
the chances of MCI. However, scanning-based systems re-
quire long acquisition times, and are costly, bulky and have
reliability issues due to mechanical moving parts.

To address these limitations, solid-state ToF cameras
are increasingly being preferred especially in demand-
ing real-world applications. These cameras flood-illuminate
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large scene regions without scanning, making them faster,
smaller, and cheaper. But, there is a trade-off: Several ToF
cameras flood-illuminating a scene considerably increase
the likelihood of MCI. Considering that the capabilities of
solid-state cameras are growing rapidly due to their com-
patibility with CMOS technology [8], [9], MCI is becoming
a critical issue.
Conventional approaches to reduce MCI in C-ToF cameras:
One way to mitigate MCI is to assign orthogonal coding
functions to different C-ToF camreas. For example, periodic
functions of different frequencies [10] or phases [11], [12],
[13], or pseudo-random functions [14], [15], [16]. While
these approaches can reduce interference in theory, they
have practical limitations. The intensity of light from a
camera’s source is positive, with both a constant (DC) and
an oscillating (AC) component; the depth information is
encoded in the time-shift of the AC component. Although
the AC interference can be removed by the conventional
methods, the remaining DC interference acts as additional
ambient light, resulting in higher photon noise. As the
number of interfering cameras increases, the signal-to-noise
ratio (SNR) degrades considerably, making reliable depth
estimation challenging (Fig. 1 (d)). Besides, limited number
of orthogonal frequencies and codes cannot accommodate
the growing number of ToF cameras.

How to reduce both AC and DC interference? We propose
a novel MCI reduction technique designed to mitigate both
DC and AC interference. Our approach is based on time-
division multiple access (TDMA), a well-known wireless
communication scheme which facilitates multi-user access
of a shared channel. In TDMA, a single shared channel is
divided into multiple time slots, and only a single user can
send a signal during each slot without any interference [17].
However, perfect temporal synchronization between users
is essential for TDMA, which is done by a central authority
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Fig. 1. Time-of-flight imaging in multi-camera environments. (a) Time-of-flight (ToF) cameras are becoming popular in several 3D imaging
applications where multiple ToF cameras are used simultaneously in a shared physical space. (b, c) In a multi-ToF-camera environment, interference
between ToF cameras results in large depth errors. Furthermore, high number of signal and ambient photons can cause pixel saturation (black
pixels). (d) Conventional techniques to reduce interference cannot overcome low signal-to-noise ratio (SNR) and saturation. (e) The proposed
approach achieves high SNR and reliable long-range depth imaging without saturation in high photon flux regime. The three numbers underneath
each depth estimation are the percent of inlier pixels that lie within 0.5%, 1%, and 2% of the true depth. Outlier pixels above 2% depth error and
saturated pixels are illustrated in black.

(e.g., a base station). This makes it challenging to apply
TDMA directly in multi-ToF-camera environment, where
there is no central authority for camera synchronization [15].

Stochastic exposure coding: Can we implement a TDMA-
like approach to reduce MCI without synchronization? Our
key idea is to leverage stochasticity. The proposed approach,
called stochastic exposure coding (SEC), divides the total
exposure time of each camera into multiple slots as TDMA.
However, unlike TDMA, the camera and the source are
turned on in each time slot randomly with a certain proba-
bility pON. If a slot doesn’t have a clash, i.e., only one camera
is active during that slot, both DC and AC interference are
avoided since the camera receives light only from its own
source. If a clash happens, the clash slots are discarded not
to affect depth estimation.1 We propose a compute-efficient
and accurate clash-check algorithm to identify clash slots.
What is the optimal pON for SEC? The choice of pON is
important since it determines the performance of SEC. If
pON is too low, the clashes (multiple simultaneously active
cameras) will be reduced, but the SNR will be lowered since
the cameras are inactive during most of the integration time.
If pON is too high, more clash slots will happen, resulting in
lower SNR again. We derive the optimal pON as a function
of system constraints and the number of interfering cameras
based on a detailed theoretical analysis. The optimal pON
enables each source to send light sufficiently sparsely to
mitigate interference without synchronization. Given a fixed
energy budget, this results in accurate depth estimates while
maintaining a high SNR, as shown in Fig. 1 (e).

1. This approach is similar to random-access protocols in communi-
cation such as ALOHA [18] and CSMA [19] in that packets are sent
randomly. However, while these protocols re-send packets whenever
collision happens since each packet has unique information, SEC sim-
ply discards clash slots since all slots have the same depth information.

Enhanced dynamic range: For 3D imaging under bright
sunlight, the camera source needs to emit a strong signal.
Consequently, camera pixels imaging close scene points
may receive a large number of signal and ambient photons,
potentially saturating the sensor. SEC, as a by-product of
time-slotting, prevents saturation thereby increasing the ef-
fective dynamic range resulting in correct depth estimation
for a large depth range. In addition, SEC concentrates the
source peak power into a fraction of the slots, thus enabling
reliable depth estimation for distant scene points under
high ambient light, which is challenging with conventional
approaches as shown in Fig. 1 (d) and (e).

Layered view of C-ToF coding: A key benefit of SEC is that
it does not require extensive hardware modifications. SEC
can be implemented by rapidly switching the camera off
and on during the integration time, in a way reminiscent of
temporal exposure coding for motion deblurring [20]. This
creates a layered view of C-ToF camera coding, as shown
in Fig. 2. Conventional approaches to reduce MCI operate
in the depth coding layer since they change the camera’s
coding functions at nanosecond time scales. In contrast, SEC
operates at a higher exposure coding layer by modulating the
camera and source at micro/millisecond scales.

Practical implications: SEC and existing MCI reduction ap-
proaches can be used in a complementary manner because
they operate in different layers. We show, via theoretical
analysis, simulations and real experiments that such com-
bined multi-layer coding approaches (Fig. 2) significantly
outperform existing methods. The proposed approaches
reduce both DC and AC interference, making it possible
to achieve high SNR while consuming low power. Because
they require minimal modifications to existing C-ToF sys-
tems, these approaches are broadly applicable for 3D imag-
ing in low-complexity, power-constrained mobile devices.
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Fig. 2. Layered C-ToF coding. The proposed approach operates in the
exposure coding layer, where the camera and the source are modulated
at micro/millisecond time scales. In contrast, existing MCI reduction
approaches operate in the lower depth coding layer, where modulation
is performed at nanosecond time scales.

Limitations: Since SEC requires an integration-readout-reset
cycle for each ON slot to read sensor measurements and
check the slot clashes, it can result in increased data band-
width (or a lower frame rate) and extra computation when
the number of ON slots is high. However, there exist upper
bounds for the required number of ON slots as we discuss
in Section 4.3. In multi-layer coding where SEC is combined
with the conventional MCI reduction approaches, the clash
check is not necessary and there is no sacrifice of the
frame rate as compared to the conventional MCI reduction
approaches (Section 5).

2 RELATED WORK

Multi-device interference in C-ToF imaging: Most existing
approaches for MCI reduction rely on orthogonal functions,
such as periodic functions of different modulation frequen-
cies for different cameras [10], and pseudo-noise sequences
[14], [15], [16]. Other approaches divide the total integration
time into multiple time slots and randomly assign one of
predetermined phases to each slot [11], [12], [13]. While all
these approaches reduce only AC interference, our goal is to
design methods that mitigate both AC and DC interference.
Another recent approach for handling MCI is to project light
only along a planar sheet which is scanned over the scene.
Since only a portion of the scene is illuminated at a time,
the chance of interference by other cameras is reduced [21].
Although this approach can also reduce DC interference, it
requires mechanical scanning. In contrast, our approach can
be implemented without moving parts.
Multi-path interference in C-ToF imaging: Multi-path in-
terference (MPI) is also an important problem in C-ToF
imaging, where a pixel receives light from several scene
points, causing depth error. Many solutions have been
proposed to address MPI [21], [22], [23], [24], [25], [26],
[27]. Although the goal of both MCI and MPI reduction
approaches is to mitigate the effect of unwanted signals,
their solutions are typically different. In MPI, the corrupting
signal is from the measuring camera itself, whereas in MCI,
the interfering signal is from different cameras.
Learning-based approaches in C-ToF imaging: Recently,
several learning-based methods [28], [29], [30], [31], [32]

have been proposed for C-ToF imaging. However, the goal
of these approaches is to remove depth errors by shot noise
and multi-path interference (MPI), and there is no learning-
based approach to mitigate multi-camera interference (MCI)
to our best knowledge. This is because MPI is a local artifact
which can be handled by using neighboring information
while MCI is a global artifact which is hard to remove with
learning at the moment.

3 MATHEMATICAL PRELIMINARIES

C-ToF Image Formation Model: A C-ToF camera consists
of a (typically co-located) camera and a light source [33].
The intensity of the light source is temporally modulated
as a periodic function M(t) (M(t) ≥ 0) with period T0. The
light emitted by the source travels to the scene of interest,
and is reflected back toward the camera. The radiance of the
reflected light incident on a sensor pixel p is a time-shifted
and scaled version of M(t):

R(p; t) = αPsM

(
t− 2d

c

)
, (1)

where d is the distance between the camera and the scene
point imaged at p, c is the speed of light. Ps is av-
erage power of the light source with an assumption of
1
T0

∫
T0
M(t) dt = 1. α is a scene-dependent scale factor that

contains scene albedo, reflectance properties and light fall-
off. The camera then electronically computes the correla-
tion between R(p; t) and a periodic demodulation function
D(t) (0 ≤ D(t) ≤ 1)2 with the same frequency as M(t):

C(p; d) = s

∫
T
(R(t; d) + Pa)D(t) dt, (2)

where s is a camera-dependent scale factor encapsulating
sensor gain and sensitivity, T is the total capture time, and
Pa is average power of ambient light incident on the scene
(e.g., due to sunlight in outdoor operation). In order to
estimate the scene depth, several (≥ 3) different C(p; d)
values are measured by using different pairs of modulation
and demodulation functions [33].
Example with sinusoid coding: In a C-ToF camera with
sinusoid coding, both modulation M(t) and demodulation
D(t) functions are sinusoids of the same frequency (homo-
dyne). The camera takes K ≥ 3 correlation measurements
(Eq. 2). Each measurement Ck(d), k ∈ {1, . . . ,K} is taken
by shifting the demodulation function D(t) by a different
amount ψk, while M(t) remains fixed. We drop the argu-
ment p from C(p; d) for brevity. For example, if K = 4,
[ψ1, ψ2, ψ3, ψ4] = [0, π2 , π,

3π
2 ]. The set of measurements

{Ck(d)} , k ∈ {1, . . . ,K} is defined as the measurement
waveform. For sinusoid coding, the measurement wave-
form is a sinusoid as a function of the shift ψk, as shown in
Fig. 3 (a). Let ϕ be the phase of the measurements waveform
sinusoid. Scene depth d is proportional to ϕ, and can be
recovered by simple, analytic expressions [34]. For example,
for a 4-tap sinusoid coding scheme, d is given as:

d =
c

4πf0
tan−1

(
C4 − C2

C1 − C3

)
. (3)

2. Several C-ToF camera architectures [14], [33] use a bipolar demod-
ulation functions (−1 ≤ D(t) ≤ 1). For ease of analysis, we consider
unipolar D(t) (0 ≤ D(t) ≤ 1). All the results and analysis in this paper
can be generalized to bipolar D(t). See the supplementary report.
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Fig. 3. Multi-camera interference and interference reduction in C-ToF imaging. (a) In C-ToF imaging, depth is recovered from the phases of the
measured waveforms. (b) If there are multiple cameras, interfering sources corrupt the measured waveforms, resulting in systematic depth errors.
(c) Conventional MCI reduction approaches reduce systematic errors by removing AC interference, but DC interference remains, resulting in lower
SNR and random depth errors due to higher photon noise. (d) Our approach mitigates both AC and DC interference, thus reducing both systematic
and random depth errors.

However, the estimated d by Eq. 3 differs from the true d
due to shot noise. The standard deviation of d is given as:

σ ≈ c

2
√
2πf0

√
T

√
es + ea
es

. (4)

where f0 is the modulation frequency, T is the total capture
time for each measurement, and c is the light speed. es =
sαPs and ea = sPa are the average number of electrons
generated per unit time by the camera’s own source and the
ambient source, respectively. See the supplementary report
for the derivation of Eq. 4.

3.1 Multi-Camera Interference in C-ToF Imaging
Consider a scenario where multiple C-ToF cameras are
simultaneously illuminating and imaging a scene point. The
total correlation measured by one of the cameras (referred
to as the primary camera) is given by:

Ctot(d) = C(d) +
N∑

n=1

Cn(d)︸ ︷︷ ︸
multi-camera interference

, (5)

where N is the number of interfering cameras, C(d) is
the correlation measured by the primary camera due to its
own source (Eq. 2), and Cn(d) = s

∫
T Rn(t)D(t)dt is the

measured correlation due to the nth interfering source.Rn(t)
is the radiance received by the primary camera due to light
emitted by the nth interfering source. The summation term
in Eq. 5 corrupts the true correlation C(d), thus resulting in
erroneous depth estimates.

Assuming all the sources use sinusoids of the same
frequency, the correlation values {Cn,k} , k ∈ {1, . . . ,K}
measured by the camera due to the nth source also form a
sinusoid. The total measurement {Ctot,k} , k ∈ {1, . . . ,K}
(Eq. 5) is the sum of these individual sinusoids, and thus,
also forms a sinusoid. This is shown in Fig. 3 (b). However,
since the phases ϕn of the individual sinusoids (one due
to each interfering source) may be different, the phase of

the total measurement waveform may differ from the true
phase, resulting in systematic, potentially large depth errors.

3.2 Orthogonal Coding for Mitigating Interference
One way to mitigate multi-camera interference (MCI) is to
ensure that the correlation values {Cn,k} , k ∈ {1, . . . ,K}
due to an interfering source form a constant waveform, i.e.,
Cn,k = Cn, ∀k. For example, in sinusoid coding, this can be
achieved by assigning a different modulation frequency to
each camera.3 As a result, the total measurement waveform
{Ctot,k} , k ∈ {1, . . . ,K} has the same phase as the measure-
ment waveform due to the primary source. This is because
the interfering components are constant waveforms, and
thus do not alter the phase, thereby preventing systematic
depth errors, as shown in Fig. 3 (c).

We call this AC-Orthogonal (ACO) approach since it re-
moves the AC component of the interference. However, the
offset (DC-component) of the total waveform still increases,
as shown in Fig. 3 (c). The extra offset acts as additional
ambient light, and thus lowers the SNR of the estimated
depth due to increased shot noise [11].4 For example, the
depth standard deviation for a 4-tap sinusoid-based ACO
method can be derived from Eq. 4 by adding the sum of DC
components from all interfering sources to ea:

σACO ≈ c

2
√
2πf0

√
T

√
es + ea +Nei

es
, (6)

where ei is the electron counts per unit time generated by
the interfering source (see the supplementary report for the
derivation of Eq. 6). Without loss of generality, we assume
that ei is the same for all interfering cameras. Note that
ACO is not a specific approach. Instead, it represents a
family of conventional approaches which do not mitigate DC
interference, but reduce only AC interference (Sec. 2).

3. Sinusoids of different frequencies are orthogonal functions, i.e.,
their correlation is zero, or a constant if the sinusoids have a DC offset.

4. With bipolar demodulation functions, although the DC-offset is
removed, the shot noise still increases. See the supplementary report.
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Although an ACO approach prevents systematic depth
errors due to MCI, random depth errors due to photon noise
increase as the number of interfering cameras increases
(Eq. 6). This is because each interfering source has a non-
zero DC component, contributing additional photon noise
to the correlation measurements. This raises the following
question: Is it possible to design a DC-Orthogonal (DCO)
approach, that removes both AC and DC interference?

4 STOCHASTIC EXPOSURE CODING

In this section, we describe the proposed stochastic exposure
coding (SEC) technique. SEC is a DC-orthogonal approach
since it can mitigate both DC and AC interference as shown
in Fig. 3 (d). SEC is based on the principle of time-division
multiple access (TDMA) used in communication networks to
facilitate simultaneous multi-user access to a shared chan-
nel. Consider a scenario where multiple ToF cameras are
simultaneously imaging the same scene. One way to prevent
interference is to divide the capture time into multiple slots,
and ensure that exactly one camera (and its source) is on
during any given slot. However, assigning cameras to slots
deterministically requires temporal synchronization, which
may be challenging, perhaps even infeasible, especially in
uncontrolled consumer applications.

The key idea behind the SEC is that by performing the
slot assignment stochastically, interference can be prevented
without synchronization. SEC can be considered a stochastic
version of the TDMA described above, where in each slot,
every camera is turned on with a probability pON. The on-
off decision is made independently for each slot, for every
camera, without synchronization. If a slot doesn’t produce
a clash, both DC and AC interference are avoided since the
camera receives light only from its own source as shown in
Fig. 3 (d). Since the approach is stochastic, a slot may have
clashes, which can be identified and discarded with a simple
clash-check algorithm (Section 4.2).

4.1 Optimal Slot ON Probability

The performance of the SEC is determined by the slot ON
probability p (we will use p instead of pON for brevity). If p
is high, each camera utilizes a larger fraction of the capture
time, but may lead to more clashes. On the other hand, for
a low p, clashes may be minimized, but the cameras incur
a longer dead time during which they are neither emitting
light, nor capturing measurements. Thus, a natural question
is raised: What is the optimal p? To address this, we derive
the depth standard deviation of the SEC in terms of p.

Depth standard deviation of SEC: Consider a scene being
imaged by N +1 C-ToF cameras (1 primary + N interfering
cameras). For ease of analysis, we assume the cameras are
identical. For each camera, the total capture time of a frame
(the most basic unit to estimate the depth) is divided into
multiple slots of the same duration as shown in Fig. 4.
Every slot is turned on with a probability p. In general, the
boundaries of the slots may not be aligned across cameras.
Therefore, any given slot of a camera will overlap with two
slots of another camera (Fig. 4). The probability pnoclsh that a

OFF OFF ⋯ToF
camera 1

OFF OFF ⋯ToF
camera 2

ON with 𝑝

Slot 1 Slot 𝑀
Frame capture time

ON with 𝑝

ON with 𝑝ON with 𝑝

Fig. 4. Stochastic exposure coding. A frame, the most basic unit
to estimate the depth, is divided into M number of slots. Each slot is
activated with a probability p. A depth value for the frame is estimated
from no-clash ON (activated) slots.

given slot does not produce a clash, i.e., only one camera is
active during that slot, is:

pnoclsh = p (1− p)
2N

. (7)

Assuming we can identify all the no-clash slots, the
effective exposure time for each camera, on average, is
T pnoclsh, where T is the total frame capture time. In order
to compensate for the reduced exposure time, we assume
that the peak power of the source can be amplified. Let
A be the source peak power amplification. Theoretically, A
should be 1/p, so the total energy used during the capture
time remains constant. Practically, however, A is limited by
device constraints. Thus, A = min (1/p,A0), where A0 is
the upper bound of A determined by physical constraints.

Given the effective exposure time T pnoclsh and source
power amplification A, the depth standard deviation of SEC
can be derived from Eq. 4:

σSEC ≈ c

2
√
2πf0

√
Tpnoclsh

√
Aes + ea
Aes

. (8)

See the supplementary report for the derivation of Eq. 8.
Although randomness due to slot ON probability can influ-
ence the depth standard deviations, the effect of randomness
is relatively small if a sufficient number of slots are used.

Optimal slot ON probability for SEC: The optimal slot ON
probability pSEC for SEC is obtained by minimizing σSEC:

pSEC = argmin
p
σSEC = min

(
1

2N + 1
,
1

A0

)
. (9)

See the supplementary report for the derivation. As the
number of interfering cameras N increases, the optimal slot
ON probability pSEC decreases so that the number of clashes
remains low. When the allowable source peak power am-
plification A0 increases, pSEC also decreases (if peak power
amplification is very high like a Dirac delta function, only
one random slot might be optimal to avoid interference
without reducing the SNR). If p is smaller or larger than
pSEC, the optimal SNR cannot be achieved since the effective
exposure time is reduced.

Figure 5 shows the inverse depth standard deviation
σSEC

−1 over p with different number of interfering cameras
N and different source peak power amplification A0. With-
out source peak power amplification (A0 = 1), the optimal
slot ON probability pSEC (maximizing σSEC

−1) is determined
by N . When N increases, pSEC decreases, and σSEC

−1 at pSEC
decreases (σSEC at pSEC increases). When source peak power
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Fig. 5. Optimal slot ON probability for SEC. (a) The optimal slot ON
probability pSEC for SEC is determined only by the number of interfering
cameras N when source peak power amplification is not allowed (A0 =
1). (b, c) When peak power amplification is allowed (A0 > 1), pSEC is
determined by N and A0. pSEC decreases when N and A0 increase.

amplification is allowed, pSEC is determined by N and A0

(Eq. 9). es = ea = 106 e−/s, T = 10ms, and f0 = 30MHz
were used to create Fig. 5.

4.2 Clash Check and Depth Estimation in SEC
Since SEC is a stochastic, asynchronized approach, a fraction
of the slots in each frame may still have clashes. These clash
slots need to be identified and discarded so that they do not
affect the depth computations.
Clash-check algorithm: Our clash-check algorithm is based
on a simple intuition: In a clash slot, the camera receives
light from multiple sources. Therefore, with high probabil-
ity, the total amount of light received in that slot is higher
as compared to no-clash slots. The total electron counts
generated in a given slot by incident light is proportional
to the sum of slot correlation values:

om =
K∑

k=1

cm,k, m ∈ {1, . . . ,MON} , (10)

where cm,k is the kth correlation value of the mth ON slot
(we use lower case c and upper case C to represent the
slot and frame correlations, respectively) and MON is the
number of ON slots within a frame. We compare om to
a threshold, and if om is larger, the corresponding slot is
discarded. The question is: How can we determine the clash
threshold for correct identification of the clash slots?

If there is no clash and the number of generated electrons
is sufficiently large, om can be well approximated as a
Gaussian random variable with mean om and standard
deviation σom =

√
om [35]. Thus, when there is no clash,

stochastic upper and lower bounds of om can be defined as
om ± kσom . We use the upper bound as the clash threshold
oclsh (i.e., we say that a clash happened if om > oclsh):

oclsh = om + kσom = om + k
√
om. (11)

om cannot be obtained by simply averaging measured oms
over all ON slots since some of them have clashes. Instead,
om is estimated from the minimum om, which is approxi-
mated as the lower bound of om. We define omin as:

omin = min
m

om, m ∈ {1, . . . ,MON} . (12)

From omin = om − kσom = om − k
√
om,

om = omin +
k2

2
+

√
k2omin +

k4

4
. (13)
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Fig. 6. Performance of clash-check algorithm. (a) The accuracy of
our clash-check algorithm increases with the the electron counts per
slot, which increase when es and T increase and M decreases. (b)
Even when its accuracy is lower than 1, the clash-check algorithm is
effective in filtering out the clash slots, thus improving depth estimation
performance in terms of the root-mean-square error (RMSE). Depth
estimation error with the no-clash slots identified by our clash-check
algorithm is almost the same as that with the ground-truth no-clash slots.

The clash threshold oclsh can be obtained by replacing om in
Eq. 11 with Eq. 13 (we use k=2.5). Our clash-check algorithm
is compute-efficient due to the closed form solution of oclsh.

Figure 6 shows the performance of our clash-check algo-
rithm. The accuracy of the clash-check algorithm is defined
as |A∩B|

|A∪B| , where A is a set of the no-clash slots identified
by our clash-check algorithm and B is a set of the ground-
truth no-clash slots. Figure 6 (a) shows the accuracy of our
clash-check algorithm as a function of the average number
of signal electrons per unit time es, total frame capture time
T , and total number of slots M in each frame. When one of
these parameters varies, the other parameters are fixed as es
= ea = 107 e−/s, T = 10ms, f0 = 30MHz, A0 = 9, M = 1000,
d = 3m, and N = 5. The plotted accuracy is the average
for 1000 trials. As shown in Fig. 6 (a), the accuracy of our
clash-check algorithm increases as the electron counts per
slot increase (the electron counts per slot increase when es
and T increase and whenM decreases). When its accuracy is
lower than 1 (perfectly accurate), the clash-check algorithm
is still effective in filtering out the clash slots and improves
depth estimation performance in terms of the root-mean-
square error (RMSE), as shown in Fig. 6 (b). The RMSE
values obtained from A and B are almost the same since
the contributions by the false no-clash slots are negligible.

Depth estimation in SEC: Given Mnoclsh number of no-
clash slots, the depth dm, m ∈ {1, . . . ,Mnoclsh} for each
no-clash slot is estimated first. If we use a 4-tap sinusoid
coding scheme, dm can be obtained by Eq. 3, but using slot
correlation values cm,k, k ∈ {1, . . . ,K}. The depth for each
frame is obtained by averaging dm values:

d =
1

Mnoclsh

Mnoclsh∑
m=1

dm. (14)
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Fig. 7. Required source peak power amplification for SEC. The
required source peak power amplification A for SEC to achieve better
SNR than ACO increases with the number of interfering cameras N , but
it eventually converges, for various relative ambient light strengths ra

4.3 Practical Considerations and Limitations

Being a DC-orthogonal approach, SEC achieves higher SNR
than ACO (see Section 6 for details). On the other hand, SEC
has stronger requirements: (a) It requires higher source peak
power (for the same total energy) as compared to ACO, and
(b) it needs to capture more data (multiple slots per frame).
Fortunately, as we show below, there are relatively small
upper bounds on these requirements.

Required source peak power amplification: Since the ef-
fective exposure time of SEC is shorter than ACO, the SNR
of SEC can be smaller than ACO if the source peak power
amplification A is not sufficiently large. The required A for
SEC to perform better than ACO in terms of SNR can be
estimated from σSEC ≤ σACO:

1
√
pnoclsh

√
A+ ra
A

≤
√
1 + ra +Nri, (15)

where ra = ea/es and ri = ei/es are relative ambient light
strength and relative interfering light source strength, re-
spectively. Figure 7 shows the required peak power amplifi-
cation A over different number of interfering cameras N at
different ambient light strengths ra (ri = 1 was assumed).
Although the required A increases with N , it eventually
converges, as stated in the following result:

Result 1. If the source peak power amplification of SEC is
larger than

(
e+

√
e (e+ 2rari)

)
/ri, the depth standard

deviation of SEC is always lower than ACO regardless
of the number of interfering cameras. For example, the
required A ≈ 6.3 when ra = ri = 1.

The upper bounds of the required A for different ras are
shown in Fig. 7. See the supplementary report for the proof.

Practicality of achieving high peak power: Two factors
should be considered regarding the practicality of increasing
source peak power. First, in power-constrained devices (e.g.,
cell-phones), to minimize total energy consumption, it may
be desirable to operate the light source with low average
power despite availability of higher peak power. Second,
recent studies have shown the possibility of driving low-
cost sources used in C-ToF cameras (e.g., laser diodes) with
high instantaneous peak power [36]. For example, a laser
diode emitting at NIR (830 nm) with 1.5W optical output
power was successfully overdriven up to about 25W [36].
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Fig. 8. Required number of slots for SEC. (a) More number of slots M
is required if the number of interfering cameras N increases over var-
ious allowable peak power amplification A0. (b) However, the required
number of ON slots MON eventually converges, making it possible to
achieve high frame rate for dynamic scenes.

Required number of slots: For correct depth estimation
with SEC, at least one no-clash ON slot is needed. Then an
important question is: How many slots are required during
a frame to get at least one no-clash ON slot? Let psuc be the
probability of getting at least one no-clash ON slot during
a frame. Then, psuc is defined as psuc = 1 − (1 − pnoclsh)

M .
From this, the required number of slots M given psuc is

M =
ln (1− psuc)

ln (1− pnoclsh)
, (16)

where pnoclsh is defined by Eq. 7 with p = pSEC. Figure 8
(a) shows the required number of slots M over the number
of interfering cameras N at various allowable source peak
power amplification A0 and different desired success prob-
ability psuc.

The number of ON slots that a camera would need to
capture per frame is MON = MpSEC. The required MON
increases with N , but it is eventually bounded, as follows:

Result 2. The required number of ON slots MON for SEC to
achieve the desired success probability psuc converges to
−e ln (1− psuc) regardless of the number of interfering
cameras. For example, when psuc = 0.9, the required
MON is upper bounded by 6.3.

See the supplementary report for the proof. Figure 8 (b)
shows the required MON over the number of interfering
cameras N with various desired success probability psuc and
allowable source peak power amplificationA0. The required
MON increases with N , but eventually converges.

5 MULTI-LAYER CODING FOR MITIGATING MCI
The proposed SEC creates a layered view of C-ToF camera
coding, as shown in Fig. 2. Most existing approaches for
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MCI reduction operate in the bottom depth coding layer since
they change the camera’s coding functions at nanosecond
time scales. In contrast, SEC operates at a higher exposure
coding layer by modulating the camera and source at mi-
cro/millisecond time scales. Since SEC and conventional
ACO techniques operate in different layers, these are or-
thogonal to each other, and can be used in a complementary
manner to combine the benefits of both. For example, it is
possible to use sinusoid coding with different modulation
frequencies for different cameras, while also using SEC.
In such a multi-layer integrated approach (MLC), it is no
longer necessary to discard the clash slots since they do
not introduce systematic depth errors. This makes repeated
clash check unnecessary, leading to simpler depth estima-
tion and an efficient frame structure.

Depth standard deviation of MLC: Depth standard devia-
tion of MLC σMLC can be easily derived from Eq. 8:

σMLC ≈ c

2
√
2πf0

√
Tp

√
Aes + ea +NpAei

Aes
, (17)

where A = min
(
1
p , A0

)
. Tp is the effective exposure time

of MLC, and NpAei is the sum of DC components from
all interfering sources. See the supplementary report for the
derivation of Eq. 17.

Optimal slot ON probability: The optimal slot ON proba-
bility pMLC for MLC is defined as p minimizing Eq. 17:

pMLC = argmin
p
σMLC =

1

A0
. (18)

Unlike pSEC, pMLC is independent of N . See the supplemen-
tary report for the derivation of Eq. 18.

Depth estimation in MLC: In MLC, both clash and no-clash
slots participate in depth estimation. We compute the sum
of correlation values from all ON slots within a frame:

Ck =
MON∑
m=1

cm,k, k ∈ {1, . . . ,K} , (19)

where MON is the number of ON slots in the frame. The
depth for each frame can be obtained by Eq. 3 when we use
a 4-tap sinusoid coding.

6 THEORETICAL PERFORMANCE COMPARISONS

We present theoretical comparisons between ACO, SEC and
MLC in terms of (a) depth standard deviation at the same
energy consumption and (b) required energy to achieve the
same depth standard deviation. All comparisons are relative
to an ideal ACO. We define the normalized inverse depth
standard deviations σ−1 (higher is better) as:

σ−1
SEC =

σACO

σ′
SEC

= (1− pSEC)
N

√
A0 (1 + ra +Nri)

A0 + ra
, (20)

and

σ−1
MLC =

σACO

σMLC
=

√
A0 (1 + ra +Nri)

A0 + ra + pMLCNA0ri
, (21)

(a) Normalized inverse depth standard deviation
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Fig. 9. Theoretical comparison. Different MCI reduction approaches
are compared by (a) inverse depth standard deviation at the same
energy consumption, and (b) required energy to achieve the same depth
standard deviation. The relative performance of our approaches SEC
and MLC improves with the number of interfering cameras N , allowable
peak power amplification A0, and relative ambient light power ra.

for SEC and MLC, respectively. σ′
SEC = σSEC

√
pSECA is

the compensated σSEC to meet the same energy constraint.
σ−1

ACO = 1 for ACO.
The required energy consumption to achieve the same

depth standard deviation is also compared. Let EACO, ESEC
and EMLC be the required energy consumption to achieve
the same depth standard deviation for ACO, SEC and MLC,
respectively. We define the normalized energy consumption
E as:

ESEC =
ESEC

EACO
=

1

(1− pSEC)
2N

A0 + ra
A0 (1 + ra +Nri)

, (22)

and
EMLC =

EMLC

EACO
=
A0 + ra + pMLCNA0ri
A0 (1 + ra +Nri)

, (23)

for SEC and MLC, respectively. EACO = 1 for ACO. Note
that ESEC = σ2

SEC and EMLC = σ2
MLC.

Figure 9 shows (a) σ−1 and (b) E of three MCI reduc-
tion approaches as a function of the number of interfering
cameras N , allowable peak power amplification A0, and
ambient light strength ra. When one of these parameters
varies, the other parameters are fixed as N = 5, A0 = 8,
ra = 1, and ri = 1. As we discussed, σ and E are closely
related to each other. In general, σ and E of SEC and
MLC improve when N increases due to DC interference
reduction which cannot be achieved by ACO. Although
the relative performance of SEC and MLC improves with
A0, it saturates for SEC. Lower energy consumption is one
of the key benefits of our approaches, which is critical in
power-constrained applications such as mobile devices and
autonomous vehicles.

Performance without peak power amplification: If peak
power amplification A0 is 1, and the integration time is
kept constant, the optimal ON probability of MLC is 1,
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i.e., pMLC = 1/A0 = 1. In this case, MLC becomes the same
as existing ACO approaches, with the same performance.
The more interesting comparison is when the integration
time is allowed to be increased. In this case, we can use
lower ON probabilities to avoid clashes. Specifically, we set
pMLC = 1/ (2N + 1). To keep the total energy constant, we
increase the total integration time by 2N + 1. We show the
performance of MLC without peak power amplification (A0

= 1) in Fig. 9 with dotted lines. The performance of MLC
with A0 = 1 is higher than that with A0 = 8 for large Ns
due to reduced clash probabilities. However, no peak power
amplification makes MLC vulnerable to ambient light.

SEC vs. MLC: Since MLC is a combined approach of SEC
and ACO, the applicability of MLC is limited by ACO.
For example, if the number of orthogonal frequencies for
ACO is not sufficient to handle a huge number of C-ToF
cameras, MLC is not directly applicable. One of the benefits
of MLC over SEC is a higher frame rate because MLC does
not need to read the accumulated charge of each ON slot
for the clash check. The performance of SEC and MLC
depends on the imaging conditions and system parameters.
In certain conditions, MLC can achieve better performance
than SEC, since MLC can increase the effective integration
time by retaining the clash slots in addition to the no-clash
slots. However, a large number of clash slots due to several
interfering cameras can lower the performance of MLC due
to increased DC interference, as shown in Fig. 9. In this
case, higher source peak power amplification is useful if
allowable.

7 VALIDATION BY SIMULATIONS

We have developed a physically accurate simulator for C-
ToF imaging, which can emulate MCI and several MCI
reduction approaches (ACO, SEC, and MLC). Given a scene
with ground-truth intensity and depth values, our simulator
can generate depth estimates with and without MCI reduc-
tion approaches over a wide range of operating parameters
such as the number of interfering cameras, ambient light
strength, frame capture time, modulation frequency, peak
power amplification, and light source strength. Using this
simulator, we compare the performance of different MCI
reduction approaches in different imaging scenarios.

7.1 Verification of Depth Standard Deviation

We confirm the derived depth standard deviation equations
of ACO (Eq. 6), SEC (Eq. 8), and MLC (Eq. 17) by simu-
lations. Under the various MCI environments defined by
different operating parameters, noise-free correlation val-
ues are computed by different MCI reduction approaches.
Noisy correlation values are obtained from the Poisson
distribution, and the depth is estimated from the corrupted
correlation values. This procedure is repeated 2000 times to
compute the depth standard deviations. Figure 10 shows
the depth standard deviations σ of ACO, SEC, and MLC
over the number of interfering cameras N , allowable peak
power amplification A0, modulation frequency f0, frame
integration time T , light source strength es, and ambient
light strength ea. When one of these parameters varies, the
other parameters are fixed as es = ea = 107 e−/s, T = 10ms,
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Fig. 10. Depth standard deviations by simulations and equations.
Simulation results match well with the derived equations over various
operating parameters. The proposed approaches outperform existing
methods over a range of imaging scenarios.

f0 = 10MHz, A0 = 9, total number of time slots M = 2000,
and scene depth d = 2m. In Fig. 10, solid and dotted lines
indicate the results by simulations and equations, respec-
tively. All simulation results match well with the derived
depth standard deviation equations as shown in Fig. 10.

7.2 Simulations with 3D Scenes
Comparisons over different number of interfering cam-
eras: Figure 11 compares the simulation results by different
MCI reduction approaches over different number of interfer-
ing cameras N . RMSE values are shown below the results.
Although absolute performance of all approaches decreases
with N , the relative performance of SEC and MLC increases
compared to ACO in both objective and subjective quality.
This is because the proposed approaches mitigate not only
AC interference but also DC interference, which cannot be
handled by ACO.
Dynamic range comparisons: There is a limitation on the
maximum number of photon-electrons CMOS pixels can
collect. This limit is called a full-well capacity (FWC). In
C-ToF imaging, when the light source illuminates a scene
with high signal power under high ambient light, the ToF
camera pixels imaging close scene points may receive a
large number of signal and ambient photons. If the amount
of generated photo-electrons exceeds the FWC, the pixels
are saturated. Figures 12 (a) and (b) show a long-range (∼
200m) outdoor scene under bright sunlight and its ground-
truth depth created using the CARLA simulator [37]. We
assume 10 C-ToF cameras are imaging the same scene. In
this challenging outdoor multi-camera environment, a C-
ToF camera suffers from both interference and pixel satura-
tion as shown in Fig. 12 (c). To reconstruct the whole scene
without saturation, ACO requires the unrealistically high
FWC (Fig. 12 (e)). In contrast, SEC considerably mitigates
saturation and interference in these challenging scenarios
even with two orders of magnitude lower FWC compared
to ACO. This is because SEC can reduce the accumulated
number of photo-electrons by dividing the integration time
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Fig. 11. 3D model reconstruction over different number of interfering cameras. Our approaches achieve better performance than conventional
ACO techniques in both subjective and objective quality over different number of interfering cameras N . This is because the proposed approaches
reduce not only AC interference but also DC interference, which is challenging to mitigate with ACO.
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Fig. 12. Long-range imaging under bright sunlight. (a, b) A long-range outdoor scene under bright sunlight in the multi-camera environment and
its ground-truth depth. (c) Reliable depth estimation is extremely challenging in these imaging conditions due to not only interference but also pixel
saturation. (d) Our approach considerably mitigates interference and saturation, thus achieving high accuracy reconstructions. (e) ACO requires a
high full-well capacity to overcome saturation in these scenarios. The three numbers below each depth estimation are the percent of inlier pixels
that lie within 0.5%, 1%, and 2% of the true depth. Outlier pixels above 2% depth error and saturated pixels are shown in black.
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Fig. 13. Dynamic scenes in multi-camera settings. (a, b) If large motion exists between the scene and the capturing C-ToF camera in multi-
camera environments, it causes large depth errors due to interference and motion artifacts. (c, d) Our approaches are more robust to both motion
artifacts and multi-camera interference than ACO since the effective exposure time can be reduced while achieving higher SNR.

into multiple time slots and capturing the photons for only
ON slots.

Comparisons with dynamic scenes: Motion between the
scene and the C-ToF camera in multi-camera environments
causes additional artifacts in depth estimation due to the
mixed depth values for each pixel during the exposure time.
These motion artifacts are common in all MCI reduction
approaches when capturing dynamic scenes. One approach
to mitigate the motion artifacts is to lower the exposure time.
However, this comes at the cost of lower SNR of measure-
ments. Our approaches are more robust to motion artifacts
than the conventional ACO since the effective exposure time
can be lowered while achieving higher SNR. In the worst
case when the first and the last slots are ON, our approaches
will cause the same amount of blur as ACO (but with lower
noise). Figure 13 shows the results when there exist both
MCI and motion between the scene and the capturing C-ToF
camera. We assumed small and large camera translations
along the x direction as shown in Fig. 13 (a). Large mo-
tions in multi-camera settings can cause large depth errors
due to both interference and motion artifacts (Fig. 13 (b)).
Our approach (SEC) reduces the error significantly since it
lowers effective exposure time while increasing the SNR by
removing both AC and DC interference (Figs. 13 (c) and (d)).
See the supplementary report for the parameter values used
for all simulation results.

8 HARDWARE PROTOTYPE AND EXPERIMENTS

We developed a proof-of-concept hardware prototype to
implement ACO, SEC, and MLC. Our setup consists of four
C-ToF cameras (OPT8241-CDK-EVM, Texas Instruments [6])
and four microcontrollers (Arduino UNO) to generate ran-
dom binary sequences (Figure 14). The square waves at 50%
duty cycle are used as the modulation and demodulation
functions. Since a frame is the most basic structure of the
camera to access depth values, we used a frame as a slot. For
ACO and MLC, four different modulation frequencies F =
{18, 20, 22, 24} (MHz) are used for four different cameras.
The depth values from all time slots of a primary camera
are averaged to obtain a depth value for ACO. For SEC and

Front view Top view

Fig. 14. Hardware prototype. Front and top views of our setup to
implement ACO, SEC, and MLC. The setup consists of four C-ToF cam-
eras and four microcontrollers to generate random binary sequences to
activate the cameras by given slot ON probabilities.

MLC, the cameras operate in the slave mode to be activated
by external pulses generated with an Arduino according to
the given slot ON probability by which the slot activation is
determined. The depth values from no-clash ON slots and
all ON slots are averaged to obtain depth values for SEC
and MLC, respectively. Since it is challenging to amplify
peak power of the light source for SEC and MLC, we lower
it for ACO instead using the ND-filters (NE10A-B, Thorlabs)
with an optical density 1.0 (achievable A0 is 8 in our cases),
while keeping the total energy consumption the same.

Results with multi-frequency coding scheme: One of the
key benefits of our approach is its ability to be used with
any C-ToF coding scheme. To demonstrate this capability,
we used a multi-frequency coding scheme with two fre-
quencies [38]. We use the set of modulation frequencies
F = {18, 20, 22, 24} (MHz) as the base frequencies, and
D = {27, 30, 33, 36} (MHz) as the de-aliasing frequencies.
Figure 15 shows the color image and ground truth depth
map of a face mannequin along with interference result and
estimated depth maps by three approaches. Depth at the
regions with lowest 1% number of photons is not recovered,
and shown in black as outliers. For each approach, % of
inliers and RMSE values (in m) for inliers are represented on
the results. Although systematic depth errors are removed
by all approaches, our approaches show significantly re-
duced noise compared to ACO.

Energy consumption comparison: We obtain depth estima-
tion results with different energy consumption and com-
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Fig. 15. Performance comparison via real experiments. Multi-
frequency coding is used in the three different approaches. The % of
inliers (non-black pixels) and RMSE values (in m) at the inliers are
represented for comparison between approaches.
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Fig. 16. Depth estimation comparison over different energy con-
sumption. Our approaches show better performance at lower energy
consumption than the conventional approach. The % of inliers (non-
black pixels) and RMSE values (in m) at the inliers are represented for
comparison between approaches.

Ground-truth depthScene Ambient light

Multi-camera interference
0.1 m 3.6 m

ACO SEC (proposed)

19%, 0.172 96%, 0.089

Fig. 17. Robustness to ambient light. In the proposed approaches
(SEC and MLC), the saved energy by activating the C-ToF camera
during only a fraction of integration time can be used to amplify the
source peak power. This enables reliable depth estimation under strong
ambient light. The % of inliers (non-black pixels) and RMSE values (in
m) at the inliers are represented for comparison between approaches.

pare them between different approaches. Different energy
consumption is achieved by changing slot integration time:
low energy (0.83ms), medium energy (1.83ms), and high
energy (2.83ms). Multi-frequency mode is deactivated and
the set of modulation frequencies F are used as the base
frequencies. Figure 16 shows the depth estimation results
by different approaches over different energy consumption
along with color image, ground truth depth map and inter-
ference result. Our approaches can obtain better results than
ACO with only 30% of the energy consumed for ACO.

Robustness to ambient light: Since a C-ToF camera is active
during only a fraction of integration time in SEC and MLC,
the saved energy can be used to amplify the source peak
power, given a fixed energy constraint (when source peak
power amplification is allowed in the system). The source
peak power amplification achieves higher robustness to
ambient light. In order to increase the effect of ambient
light, we reduce the source energy such that depth of only
foreground objects can be estimated robustly in ACO. The
same source energy is used for ACO and our approach
(SEC). As shown in Fig. 17, our approach provides more
reliable depth estimation result than ACO under strong
ambient light by a work lamp.

9 DISCUSSION AND FUTURE OUTLOOK

We propose stochastic exposure coding, a novel approach
for mitigating both both AC and DC components of multi-
camera interference in C-ToF imaging. This capability en-
ables high precision depth estimation with low energy con-
sumption. We demonstrate the performance benefits of the
proposed approach with theoretical analysis, simulations,
and real experiments. The proposed approach operates in
an independent layer in C-ToF coding such that it can be
incorporated with a wide range of C-ToF coding functions,
and various hardware platforms.
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