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Abstract

Mergers play a complex role in galaxy formation and evolution. Continuing to improve our understanding of these
systems requires ever larger samples, which can be difficult (even impossible) to select from individual surveys.
We use the new platform ESA Datalabs to assemble a catalog of interacting galaxies from the Hubble Space
Telescope science archives; this catalog is larger than previously published catalogs by nearly an order of
magnitude. In particular, we apply the Zoobot convolutional neural network directly to the entire public archive
of HST F814W images and make probabilistic interaction predictions for 126 million sources from the Hubble
Source Catalog. We employ a combination of automated visual representation and visual analysis to identify a
clean sample of 21,926 interacting galaxy systems, mostly with z< 1. Sixty-five percent of these systems have no
previous references in either the NASA Extragalactic Database or Simbad. In the process of removing
contamination, we also discover many other objects of interest, such as gravitational lenses, edge-on protoplanetary
disks, and “backlit” overlapping galaxies. We briefly investigate the basic properties of this sample, and we make
our catalog publicly available for use by the community. In addition to providing a new catalog of scientifically
interesting objects imaged by HST, this work also demonstrates the power of the ESA Datalabs tool to facilitate
substantial archival analysis without placing a high computational or storage burden on the end user.

Unified Astronomy Thesaurus concepts: Interacting galaxies (802); Computational methods (1965); Catalogs (205)

Supporting material: machine-readable table

1. Introduction

Interacting and merging galaxies are important to our current
theory of Λ cold dark matter (ΛCDM) cosmology, in which
structure typically assembles hierarchically (Abadi et al. 2003;
Springel et al. 2005; De Lucia & Blaizot 2007; Guo &
White 2008). Galaxy interaction leads to highly disturbed
morphologies (Toomre & Toomre 1972; Hernández-Toledo
et al. 2005; Wallin et al. 2016), intense starbursts (Mihos &
Hernquist 1996; Springel 2000; Saitoh et al. 2009; Moreno
et al. 2021), and, potentially, quenching of some systems
(Hopkins et al. 2013; Smethurst et al. 2018; Hani et al. 2020;
Das et al. 2022). In general, galaxies undergoing interaction are
observed to have higher star formation rates than those that
exist in the field (Ellison et al. 2008; Scudder et al. 2012;
Pearson et al. 2019). Interaction also has a direct impact on the
gas angular momentum within each galaxy, causing it to
decrease. This, potentially, leads to funnelling of gas into into
their nuclear regions and igniting activity. This could be a
connection with active galactic nuclei (AGNs; Ellison et al.
2008, 2011; Li et al. 2008; Comerford et al. 2015). However,

such a connection remains debated (Alonso et al. 2007;
McKernan et al. 2010; Marian et al. 2020). Thus, under-
standing galaxy interaction is crucial to testing theories of
galaxy evolution itself.
Interacting galaxies have long been explored with different

samples of galaxies. Examples include constraining merger
rates as a function of redshift (Lotz et al. 2008), inferring the
contribution of minor mergers to the cosmic star formation
budget (Kaviraj 2014a, 2014b), and examining interactions as a
function of their local environments, internal properties, and
AGN activity (Darg et al. 2010a). These studies (and many
others; for further examples, see Barton et al. 2000; Alonso
et al. 2004; Ellison et al. 2013; Holincheck et al. 2016; Silva
et al. 2021) illustrate the complex parameter space involved in
understanding the role of interaction in galaxy evolution. Thus,
to effectively study interacting galaxies, we need observed data
sets of such a size that they can sample a wide range of various
parameters of interest.
The first large-scale catalogs of interacting galaxies are from

the mid 20th century (Vorontsov-Velyaminov 1959, 1977;
Arp 1966). These catalogs primarily used visual inspection to
identify mergers (e.g., de Mello et al. 1997; Nair &
Abraham 2010) and generally found from hundreds to
thousands of systems. The largest set of interacting galaxies
identified by a single expert classifier contains 2565 relatively
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nearby systems (Arp & Madore 1987). Citizen science
techniques can extend this number, as was presented by Darg
et al. (2010b) who used them to find a catalog of 3003
interacting galaxies.

The inclusion of automated classification shows promise to
continue this expansion. The use of machine learning in
classifying galaxy morphology is well established (Ardizzone
et al. 1996; Abd El Aziz et al. 2017; Barchi et al. 2020; Ghosh
et al. 2020; Cheng et al. 2021). The workhorse algorithm is the
convolutional neural network (CNN; for an introduction, see
O’Shea & Nash 2015), most often used in image recognition
and feature extraction. CNNs can be used for general
classification (e.g., early- versus late-type galaxies) or to
extract specific morphological features of galaxies, such as bars
and spiral arms; many works have demonstrated their
effectiveness at this (e.g., Ackermann et al. 2018; Jacobs
et al. 2019; Bickley et al. 2021; Buck & Wolf 2021; Walmsley
et al. 2022a). Pearson et al. (2022) demonstrated the power of
CNNs for finding interacting and merging galaxies specifically,
finding 2109 in 5.4 deg2 of Hyper Suprime-Cam imagery—a
large sample for the small area covered.

However, issues with using CNNs in classifying interacting
galaxies have been found on numerous occasions. The primary
concern, is that—without due care—classifying interacting
galaxies by morphology alone can be highly contaminated. For
example, CNNs often confuse chance alignments of galaxy
pairs on the sky for interacting systems. This leads to many
predicted interacting systems being thrown away after visual
inspection (in some cases up to 60%; Bottrell et al. 2019;
Pearson et al. 2022).

In this work, we aim to use machine learning to create a
large, high-confidence catalog of interacting systems, drawn
entirely from existing astronomical imagery. We search
through the European Space Agency’s Hubble Space Tele-
scope (HST) Science Archive9 using a CNN to predict whether
an image contains an interacting system, from among the 126
million extended objects in the Hubble Source Catalog
(Whitmore et al. 2016, hereafter HSC). The feature extraction
we implement is focused on finding tidal features or
morphological disturbance caused by the interaction. The tidal
features prioritized include tidal tails, tidal bridges, or tidal
debris. As stated previously, this runs the risk of introducing
high levels of contamination by close pairs. We thus implement
further automated and manual methods, which significantly
reduce this. The systems we find are often in the background of
previous deep surveys (such as the Cosmic Evolution Survey,
COSMOS, Scoville et al. 2007; the Great Observatories
Origins Deep Survey, GOODS, Giavalisco et al. 2004; and
the Pancromatic Hubble Andromeda Treasury Survey, PHAT,
Dalcanton et al. 2012), where spectroscopic coverage varies.
Therefore, while our final catalog reduces contamination to
∼3%, definitively removing all contamination by close pairs
remains a challenge following this work.

This paper is laid out as follows: Section 2 describes
the HSC and all of the criteria we applied to create the images
we predict over. It also introduces ESA Datalabs10; a new
platform that allows the user to directly access the Hubble
Science Archive. Section 3 gives an in-depth description of the
Zoobot CNN we utilize for our predictions, and how it differs

from a commonly used CNN. Section 4 explains the process of
creating the training set for our CNN to find interacting
galaxies, and Section 5 shows how well it performed and
provides the diagnostics of the CNN. We also use Section 5 to
investigate the contamination in our catalog. Section 6
describes our results and discusses the final catalog as well as
defines interesting systems or objects that we have found. We
also explore some basic properties of the catalog here. Finally,
Section 7 summarizes our results and conclusions.
Where necessary, we use a flat ΛCDM cosmology with

H0 = 70 km s−1Mpc−1 and ΩM= 0.3. Hereafter in this paper,
when referring to an interacting galaxy, we are referring to a
galaxy that has undergone one or multiple flybys by a
secondary galaxy and caused tidal disturbance. A merging
galaxy is the final state of these flybys, where two or more
systems have coalesced to form a highly morphologically
irregular system.

2. Data

2.1. The Hubble Archives and ESA Datalabs

The observational data is directly from the Hubble Science
Archive and is accessed from the new ESA Datalabs platform.
The repository contains approximately 100 TB of data from
HST. This repository spans all HST instruments and filters.
ESA Datalabs provides a direct interface between users and the
data. On this platform, every observations’ FITS file can be
accessed. To streamline our pipeline, we applied criteria to the
observations as not all filters have the same number of
observations, some instruments are not as sensitive to the low
surface brightness regime as others, or the field of view of
certain instruments would not be ideal for measuring galaxy
morphology. Finally, we do not conduct source extraction from
each FITS file ourselves but use the HSC to define the center of
each source cutout.
The criteria we apply are: the observational data must be

from the Advanced Camera for Surveys (ACS), it must be final
product data of HST (i.e., within a .drc file, where the data has
been drizzle combined and had charge-transfer-efficiency
corrections applied; Avila et al. 2015), observed within the
F814W filter, and must be flagged as an extended source in
the HSC. This offloads sky subtraction, cosmic-ray rejection,
and charge efficiency calculations to the original HST pipeline
and removes costly steps from our cutout creation process. We
utilize all final product data of the F814W filter from HST as
this was the filter that contained the most FITS files, and
therefore observations. The F814W filter contained 9527 final
product FITS files, which could be used for source extraction,
whereas the closest second (the F606W filter) contained
≈6000. By using the filter with the most files, we are confident
that we cover a majority of the HSC. Applying this criteria
gives 126 million sources to predict over.
We must create 126 million source cutouts from 9507

different FITS files. Creating a data set of cutouts at this
magnitude in conventional methods (such as AstroQuery or
Table Access Protocol, TAP, services) would be impractical
due to making many network calls and long FITS file
download times. Instead, we use the ESA Datalabs platform,
which is due to be released in Q3 of 2023. This platform has
been developed to allow us to “mount” the Hubble Science
Archive onto it. In practice, this provides access to the entire
Hubble Science Archives as local files for the user to

9
See http://hst.esac.esa.int/ehst/.

10
https://datalabs.esa.int/
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manipulate while on the platform. This bypasses network calls
to servers to download our required FITS files, a process that
could have taken minutes per download. Having direct access
to the files, and quickly matching source coordinates to FITS
files (described in Section 2.2) allows us to open an FITS file
and create all source cutouts from it without having to close or
reopen it. Therefore, we were able to create on the order of
10,000 cutouts in the same order of time taken to download a
single file.

The source cutouts were created as F814W grayscaled
150× 150 (7 5× 7 5) pixel images using the HSC source
coordinates as the center. The image size was set and
standardized to streamline the pipeline. The majority of cutouts
are centered on the source but, in a minority, misalignment
between source and image center occurs. This is a result of the
drizzling process, with incorrect alignment sometimes being
significant. However, the target source was always present in
the cutout and we, therefore, did not attempt to rectify this. To
scale the images, we used a ZScaleInterval with a hard set
contrast of 0.05 and a linear stretch following the default
parameters in the Astropy (Astropy Collaboration et al.
2013, 2018) package. These were binned to 300× 300 pixels
(pixel resolution is 3 25× 3 25) with a linear interpolation
from the CV2 python package. The images were created at
150× 150 to minimize storage required on the early version of
ESA Datalabs being used. Creating the images at half the size
allowed us to scale up to 300× 300 pixels without any effects
of the interpolation.

2.2. The Shapely Python Package

A large computational expense in our pipeline was matching
FITS files to sources. Conventionally, the Astropy CON-

TAINS function would be used to match source coordinates to
the FITS file WCS. We instead use the Shapely

11 Python
package. Shapely is a geometry oriented package primarily
focused on geospatial data. We found converting the FITS
image footprints into Shapely Polygons and the source
coordinates to Shapely Points and then checking if they
overlapped had significant speed up. Per iteration, Astropy’s
CONTAINED_BY function matches a source to an FITS file on
the order of 500 ms. Using Shapely’s CONTAINS function,
the same process is on the order of 6 μs.

3. Utilizing a Convolutional Neural Network

We must choose a CNN that would best suit our needs to
classify them into interacting galaxies or not. We select the
newly developed CNN Zoobot (Walmsley et al.
2022a, 2022b). Zoobot is a CNN specifically trained to
classify galaxies based on morphology into many different
types (spiral, disk, elliptical, barred, nonbarred, etc). We retrain
it to only classify galaxies into interacting or noninteracting.
Instead of training Zoobot from scratch and creating a new
model, we use transfer learning to fine-tune existing Zoobot

models to classify our data for our particular question. This
allows us to retain information from Zoobot’s previous
training. More importantly, it requires a significantly smaller
training set to achieve high accuracy.

3.1. Zoobot

The version of Zoobot we use is a deep CNN that was
trained and tested on Galaxy Zoo volunteer classifications over
three different Galaxy Zoo: Dark Energy Camera Legacy
Survey (DECaLS, GZD; described in Dey et al. 2019)
campaigns. These were GZD-1, GZD-2, and GZD-5—each
number corresponding to the DECaLS data release. For
training Zoobot, DECaLS imaging was selected using the
NASA-Sloan Atlas (NSA), which was itself constructed with
Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8)
images. This also introduced implicit cuts to the training data,
as SDSS cannot get to the depths of DECaLS. This introduces
implicit magnitude and redshift cuts on the training data.
Specifically, SDSS DR8 and the NSA cover galaxies brighter
than mr> 17.77 and closer than z < 0.15. In Section 3.2 we
describe using transfer learning to use Zoobot effectively
outside of this magnitude and redshift range.
Walmsley et al. (2022a) used the 249,581 volunteer

classifications from the GZD-5 campaign to train Zoobot to
answer all 34 questions (example shown in Figure 4 of
Walmsley et al. 2022a) in the remaining campaigns. GZD-5
was used as it had a slightly different volunteer decision tree,
having an expanded question on potential different galaxy
merger stages. Each galaxy image had been shown to
volunteers as a three-color (g,r,z) of 424× 424 cutout. Each
image pixel scale was an interpolation between the measured
Petrosian 50%- and 90%-light radius. The measured full
Petrosian radius had to be at least 3″ to be shown to the
volunteers. When inputting into Zoobot, these cutouts were
scaled and grayscaled to 300× 300× 1 images, averaging over
the three-color channels to remove color information and avoid
biasing the morphology predictions. Zoobot utilized the
Adam (Kingma & Ba 2014) optimizer to train.
By training Zoobot in this way, combining the approach of

answering many questions at once with Bayesian representa-
tion learning, it learns a generalizable summary of many types
of galaxies. These generalized summaries are lower-dimen-
sional descriptions of galaxy types and are referred to as
representations. These representations change depending on the
galaxy type, morphology, or environment in an image and lead
to similar images being closer together in a representation
space than dissimilar ones. This representation approach on a
very broad classification problem is found to increase accuracy
and generality of Zoobot, giving it an edge over conventional
CNNs. A more detailed breakdown of this approach, as well as
further details about Zoobots’ architecture, can also be found
in Walmsley et al. (2022a).
Zoobot was trained to give a prediction score to an image

of a galaxy based on the question it is answering. The type of
prediction score is set by the user’s choice of the model final
layer in Zoobot. We elect to use a SOFTMAX output, which
returns an output score as a float between 0 and 1. This
prediction score is not a probability score, although it may
seem analogous. A well-behaved prediction score will map to
probability, though not necessarily linearly. The mapping
between prediction score and probability is not considered in
this work, and we use the prediction score as an indicator of
Zoobotʼs confidence that a source is an interacting galaxy.
We are only interested in the “Is the galaxy merging or

disturbed?” question from the Galaxy Zoo: DECaLS workflow,
where the answer can be “merging,” “major disturbance,”
“minor disturbance” or “none,” and we only want our version11

Shapely docs: https://shapely.readthedocs.io/en/stable/manual.html.
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of Zoobot to return the answer to this. Our version of
Zoobot is also not trained to predict over HST data, which
differs from DECaLS data (different resolutions, filter band-
widths, etc). If we were to use our version of Zoobot as
downloaded, we would likely lose accuracy. We utilize transfer
learning to optimize accuracy of just our question as well as to
classify HST data. Since this work, Zoobot has been trained
on HST data so the transfer learning step would not be needed
in future with the new models. How we apply transfer learning
is discussed in Section 3.2, but an excellent review and
discussion of applying transfer learning for detecting galaxy
mergers can be found in Ackermann et al. (2018).

3.2. Transfer Learning

Transfer learning (or fine-tuning) is a method of applying the
same machine-learning model to a similar problem that it was
originally trained on. Rather than having to completely retrain
all parameters in a model and essentially create a new one, we
can use the original model architecture and the parameters it
has learned from its previous training. In the case of Zoobot,
we keep the parameters it has learned from training on the
DECaLS data set and freeze all sections of the model
responsible for feature extraction and recognition.

We construct a classification section that maximizes
accuracy and only allow the weights of this section to change.
As the classification section has fewer parameters than the
feature extraction section (the classification section contains
86,209 parameters compared to the feature extraction sections’
4,048,989 parameters), we need significantly less data to
completely retrain it (in our case, a factor of 15 less). Once this
retraining is complete, the weights of the feature extraction
sections of the model can be unfrozen and tweaked using our
smaller data set with a very low learning rate to further boost
overall model accuracy.

An example of taking an existing model and applying it to a
new problem with transfer learning is shown in Walmsley et al.
(2022c). Here, they take the trained model and fine-tune it to
finding ring galaxies. They retain an accuracy of 89% while
only needing to train the model on 103 ring galaxies. This
significantly reduces computational expense and training time
of the model, while keeping the required training set very
small. Interacting galaxies are rare, and interacting galaxy
catalogs not expansive. So retraining the full network on
hundreds of thousands of interacting galaxies is not feasible.
Using transfer learning, and following the example from
Walmsley et al. (2022c), we only need to create a training set of
103–104 interacting galaxies to achieve an accuracy of ≈90%.

4. Creating the Training Set

We create a large training set of interacting galaxies
following the criteria described in Section 2 to train our model.
Therefore, we need a large, labeled set of interacting and
noninteracting galaxies. We elect to follow the methodology of
fine-tuning as described in Walmsley et al. (2022c), and aim to
create a balanced training set. This has the advantage that it
significantly improves the performance and accuracy of
machine-learning classifiers, but the disadvantage that it can
bias our final model if few interacting galaxies exist compared
to the general population. However, such a bias will be
mitigated by using a high prediction cutoff to define an
interacting galaxy. This is discussed in Section 5.1. To create

this large training set, we use the Galaxy Zoo collaboration
(initial data release described in Lintott et al. 2008).

4.1. Interacting Galaxies and Galaxy Zoo

The data in Galaxy Zoo is volunteer classifications on galaxy
images spanning multiple projects. We incorporate classifica-
tions from all major Galaxy Zoo projects; Galaxy Zoo 1
(Lintott et al. 2008), Galaxy Zoo 2 (Willett et al. 2013), Galaxy
Zoo: Hubble (Willett et al. 2017), Galaxy Zoo: CANDELS
(Simmons et al. 2017), and GZD (Walmsley et al. 2022a).
These projects contain a total of 1,367,760 labeled galaxy
images that we must extract the interacting galaxies from. We
only use labels that are from citizen scientists, and no labels
generated by previous versions of Zoobot. We apply three
criteria to each interacting or noninteracting label. First, it must
have greater than 20 volunteer votes on it. Applying this allows
us to use a statistically robust weighted vote from a crowd
answer rather than trusting any volunteers individually.
Second, the calculated weighted vote (i.e., the combination of
the 20 or greater votes) must then be greater than 75% in favor
of being an interacting galaxy or less than or equal to 25% for it
not to be; this ensured purity in our training set. If the question
given to volunteers was more specific (such as “Is this a minor
disturbance?” and “Is this a major disturbance?”), then if either
answer was the majority vote we classified it as an interacting
galaxy. Third, the object must exist in the Hubble footprint so
that we could make a cutout of it.
Checking if each training source existed in the Hubble

footprint was only possible in an efficient way because of ESA
Datalabs. Rather than querying every coordinate and making
network calls to TAP services, we extract every final product
F814W observation footprint and check if each labeled galaxy
exists in at least one file. We make this check by creating a
Shapely Polygon for each observational footprint and a
Shapely Point for each labeled galaxy central coordinate.
Using the Shapely Polygon CONTAINS function, we check if
a labeled galaxy’s Point overlaps with an observations’
footprint Polygon. This returns a list of files that contain the
training source. If a training source was not found in any
observational footprint, we discarded it. We make no attempt
here to check if our sources have other photometry available to
them, and only create one-color images with the F814W data.
We provide the images to Zoobot as one-color grayscaled
cutouts.
Upon applying these criteria, we found 3167 labeled

interacting galaxies in Galaxy Zoo: Hubble project, the largest
contribution to our training set. These were paired with 3167
labeled noninteracting systems (following the previous criteria)
to balance the training set. From all other projects, we found
869 labeled interacting systems that fit the creation criteria. The
primary limiting factor for Galaxy Zoos 1 and 2 was that many
found interacting galaxies did not exist in the Hubble footprint.
For Galaxy Zoo: CANDELS and GZD, the limiting factor was
the required calculated weighted vote. These labeled interacting
systems were then paired with 869 labeled noninteracting
systems, ensuring that each labeled noninteracting system came
from the same project as its labeled interacting system
counterpart.
Each of these projects has a varied redshift range: Galaxy

Zoo: Hubble is z< 1, Galaxy Zoo: CANDELS 1< z< 3, and
Galaxy Zoos 1 and 2 and GZD are z< 0.15. This introduces a
redshift bias into our model, where the morphology and
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brightness of interacting sources change with z> 1. This is
only partially rectified by including Galaxy Zoo: CANDELS,
which provided 322 labeled interacting systems.

From all Galaxy Zoo projects, we find a training set of 4036
labeled interacting galaxies and combine them with their
matched 4036 labeled noninteracting galaxies, giving a total
training set size of 8072. Figures 1 and 2 show six examples of
our labeled interacting and noninteracting galaxy training set.
As we require Zoobot to learn to weight tidal features or
disturbances highly, it is important that such structures
dominate the training set. Previous works, such as Pearson
et al. (2022), have found that final catalogs produced by CNNs
are often heavily contaminated by sources that are simply close
pairs by projection effects and chance alignment in the sky. By
focusing our CNN on tidal features, we aim to minimize this
contamination. We ran an initial test of the prediction pipeline
on the first 500,000 sources that had been created from
the HSC to initially test our Zoobot model. We investigate
any source that was given a prediction score �0.75 and, to
further increase the size of our training set, conduct one step of
active learning.

4.2. One Active Learning Cycle

To enlarge our training set further, we conduct one step of
active learning to find interacting galaxies. An active learning
cycle involves an “expert” checking the predictions made by
the model, correcting any incorrect predictions and then

feeding it back into the model as additional labeled images to
a training set. We complete fine-tuning of Zoobot on our
initial training set of 8072 galaxies and make predictions on the
first 500,000 sources from the HSC (created under the criteria
previously discussed). We visually inspect the sources
Zoobot gives a prediction score of �0.75 to and correct
any wrong predictions. These corrected labeled sources and
those Zoobot correctly labeled are then added to the training
set. Not only does this step allow us to add more labeled
interacting galaxies to the training set, but it also allows us to
evaluate Zoobotʼs behavior and check if it consistently
predicts a type of source or galactic morphology incorrectly.
From the first 500,000 sources, a total of 6198 sources were

given a prediction score of �0.75. We correct the predictions
Zoobot made and balance this set to 5698. During this cycle,
a large number of globular clusters/star fields/open clusters
were given a very high prediction score. Figure 2 shows an
example of these contaminating star fields. We created sources
of 1250 star fields and added these into the training set, labeling
them as noninteracting. Adding the balanced 5698 sources plus
the 1250 star fields to our training set gave us an unbalanced
training set of 15,020 sources. To then balance the training set,
we took 1250 labeled interacting galaxies from the Galaxy
Zoo: Hubble project and made random image augmentations
with the TensorFlow Python package. These augmentations
were simple rotations, cropping, and resizing. With these extra
sources, our training set contains 16,270 sources. Of these,
50% (8135) were labeled images of interacting galaxy systems.

Figure 1. Example images of the labeled interacting galaxy systems used to train Zoobot. Each galaxy had a weighted vote fraction �0.75 in Galaxy Zoo. Top row:
three examples from the Galaxy Zoo: Hubble project of the training set. Bottom row: three examples from the other Galaxy Zoo projects. These are, from left to right,
Galaxy Zoo 2, Galaxy Zoo CANDELS, and GZD. The priority with this training set was that the interactors had clear tidal features and disruption so Zoobot would
learn to highly weight them and not misclassify close pairs.
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5. Diagnostics

5.1. Model Performance

Upon fine-tuning Zoobot, we validate its performance. We
reuse the validation set that Zoobot automatically creates
when training. This set is created by putting aside a random set
of 20% of the training set. Zoobot then uses it to validate its
performance in training. We record which images Zoobot

selected, and extract these from the training set for further
diagnostics. This provides us with a validation set of 3270
images, containing 1648 noninteracting galaxies and 1622
interacting galaxies.

Zoobot gave a prediction score between 0 and 1 to each of
the validation images, and Figure 3 shows the resulting
distribution. This distribution shows that our model has high
confidence in what is or is not an interacting system due to the
high counts at very low and very high probability scores. It is
likely the use of a balanced training set, and the very low
volunteer score needed to define a source as noninteracting that
leads to a strongly bimodal prediction score distribution. Using
a balanced training set is an intrinsic trade-off between ease of
training and potential biases introduced. Having a balanced
data set does not reflect reality, and leads Zoobot to
overpredict interacting galaxies. Using very stringent volunteer
classification cutoffs also leaves few ambiguous systems in the
validation set, further enhancing this bimodality.

The prediction score must be reduced to a binary classifica-
tion for our problem. We use Figure 3 to define a prediction

score above which a source is classified as an interacting
galaxy. We measure the accuracy of Zoobot for different
cutoffs, where the accuracy is the fraction of labels correctly
predicted over the total number of labels predicted on. Figure 4
shows this change in accuracy. We find that our model is most
accurate with a prediction score cutoff of 0.55 with an accuracy
of 88.2%. Figure 4 also shows the change in the purity of our
catalog with changing prediction cutoff. Here, purity is the ratio
of the number of true interacting galaxies to total sources in the
final catalog. These scores can be combined into the F1 score
of our model, shown in Figure 15 inAppendix A.
Figure 5 also shows a measure of accuracy for our model at

different cutoffs using confusion matrices. Importantly, it also
shows how our model is getting labels wrong: either giving
false positives (where a labeled noninteracting galaxy is
predicted to be interacting) or false negatives (where a labeled
interacting galaxy is predicted to be a noninteracting). The
number of incorrect positive and negative predictions change
based on the prediction cutoff, with a very low cutoff giving
many false positives and a very high cutoff giving many false
negatives. Figure 5 shows that with a cutoff of 0.50, we would
return a high level contamination in our final catalog. Of the
1622 galaxies predicted to be interacting, 218 would be
noninteracting systems—approximately 13%. Our main aim in
this work is to present a highly pure, large interacting galaxy
catalog that can be used for statistical exploration of interacting
galaxy parameter space. Therefore, we use a very stringent
cutoff of 0.95.

Figure 2. Example images of the labeled noninteracting galaxy systems used to train Zoobot. Top row: three examples from the Galaxy Zoo: Hubble project of the
training set. Bottom row: three examples from the other Galaxy Zoo projects. These are, from left to right, Galaxy Zoo 2, Galaxy Zoo CANDELS, and a star field from
the active learning cycle. Star fields/globular clusters/open clusters existed throughout the HSC flagged as extended sources. One thousand two hundred and fifty
images of star fields were added to the training set so Zoobot would give them a very low score.
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Using a cutoff of 0.95 reduces contamination significantly.
Figure 5 shows the final contamination in our validation
catalog would be ≈2%, where Figure 4 shows that we are
maximizing the purity in our sample at the expense of
accuracy. The aim of this work is not to create a general tool
to be used by the community, but to find a large catalog of
interacting galaxies. As we are investigating 126 million
sources, despite removing ≈50% of interacting galaxies from

the final catalog, we are certain that we can find a catalog larger
than previous works.
Using such a high cutoff also reduces any risk of any biases

introduced by using a balanced training set. While using such a
training set often increases the accuracy and speeds up training,
it can bias the model toward one conclusion. In our case, the
true rate of interacting galaxies will be much smaller than 50%.
Therefore, our model will be biased to labeling a source as an
interacting galaxy. This will be particularly true for edge cases,
which could be ambiguous to even an expert classifier. By
using such a high cutoff score, this bias will be mitigated by
only labeling the most clearly interacting objects as interacting.

5.2. Duplication Removal

The fully trained Zoobot made predictions on ≈126
million extended sources from the HSC that had passed our
creation criteria. Of these, 195,688 sources were given a score
of 0.95 or greater, ≈0.2% of the total number of sources. Upon
visually inspecting a subset of sources, it is clear that our
Zoobot model had predicted for an interacting galaxy even if
it was not the central (and, therefore, target) source in the
image. This is due to the misalignment of sources from the
center in the training set as described in Section 4. Zoobot
learned to classify an image as an interacting galaxy if it
contained one, and not just if it was the central source.
Therefore, many interacting systems were duplicated in our
final catalog, appearing in cutouts where the central source was
not interacting.
Another source of further duplication was the HSC itself. In

the HSC, many extended objects have multiple source IDs
applied to them. This is due to bright clumps in extended
sources being assigned a new ID, sources that had been found

Figure 3. The distribution of prediction scores given to our validation set of
3270 labeled sources set aside by Zoobot in training. These were split into
1648 noninteracting sources and 1622 interacting sources. As can be seen from
the distribution, our model is often confident when a source does or does not
contain an interacting galaxy by the strong bimodality. This is likely due to the
very stringent vote weightings used when selecting the training set. Using this
distribution, we decide the prediction score to use as a cutoff to give us our
final binary classification: interacting galaxy or not.

Figure 4. A measure of accuracy and purity against prediction score. The
accuracy (in blue) is a direct measure of the number of sources Zoobot

correctly predicted vs. the total number of predictions made. The measure of
purity (in orange) is the number of predictions Zoobot correctly made vs. the
total number of predictions for an interacting galaxy. The cutoff score (in red)
shows the point above which we would define an interacting galaxy and below
which we would not. At this point, the accuracy appears lower due to Zoobot

making many false-negative predictions while successfully making true-
negative predictions. This is confirmed by the maximization of purity. Due to
the number of sources Zoobot is predicting over, the size of the catalog will
exceed any previous catalogs. Therefore, we use this very conservative cutoff
to maximize purity over the completeness of our catalog. These measures can
also be shown with the F1 score. Figure 15 shows this change with prediction
cutoff in Appendix A.

Figure 5. Confusion matrices of four different cutoffs of prediction score
defining a binary classification of interacting galaxy or not. Confusion matrices
break down our accuracy measurement into how Zoobot is misclassifying
sources. At a cutoff of 0.50, the accuracy is highest at 88.2%. However, at this
cutoff, ≈10% of our final catalog would contain contamination. We elect to use
the very stringent prediction cutoff of 0.95 for the rest of this work, as it will
return the lowest contamination.
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but did not exist in reality, or background sources that existed
in extended systems. We find that of the 195,688 Source IDs
given a prediction score of 0.95 or greater, approximately 3.6
Source IDs, were matched to a single real object. To refine the
catalog and remove the duplication, we use spatial clustering of
each source with agglomerative clustering (an introduction and
description of hierarchical clustering, including agglomerative
clustering, can be found in Nielsen 2016).

Agglomerative clustering is a method of hierarchical
clustering based on a distance metric between the sources.
We set the maximum distance between points to define a
cluster, i.e., any sources within a defined distance on the sky
from each other will be merged under one source ID. This
approach means we do not need any knowledge of how many
clusters of sources exist in the data set or the level of
duplication within it, as would be the case in many other
clustering approaches. We create distance matrices of the
angular separation of every source using the Astropy Python
package. These projected sky separations are then used as a
Euclidean distance in the clustering algorithm with a EUCLI-

DEAN_LINKAGE. The new ID of a cluster is the first source ID
in the cluster.

Initially, we utilize a limiting sky separation of 1 5 to
remove the duplication. This reduced the size of our potential
catalog to 54,757 interacting galaxy candidates. We then
applied contamination removal as described in Section 5.3.
Once contamination removal was completed, the catalog size
was 41,065 interacting galaxies. Visual inspection found
further duplication, indicating our initial de-duplication had
not been aggressive enough. To ensure the catalog was of
unique systems, we opted to use a final aggressive limiting sky
separation of 5″ completely removing the duplication in our
catalog. This aggressive de-duplication further reduced the size
of our catalog to 27,720 candidate interacting systems.
However, we could be certain that each of these candidate
systems was unique. Figure 6 shows a full breakdown of the
steps in our de-duplication and contamination removal process.

5.3. Bad Predictions and Removal

After the initial step of de-duplication, we begin removal of
contamination from the catalog. A major, and expected, source
of contamination is by close pairs of galaxies. These are
systems where chance alignment in the sky appears that

galaxies are close together but are actually at different redshifts.

Other sources of contamination include large central galaxies

with satellite galaxies about them, star fields with extended

sources in them, and objects with strange morphologies that

Zoobot predicted were tidal features.
Upon applying the clustering by sky projection of 1 5, the

catalog contained 54,757 candidate interacting galaxies. Our

primary concern is contamination by close pairs. Creating

catalogs of interacting galaxies with CNNs is notorious for

suffering from this problem, where a significant number of

candidates must be removed from otherwise large final catalogs

(Bottrell et al. 2019; Pearson et al. 2022). The decisive way to

remove this contamination is to compare redshift measurements

of each galaxy in the candidate interacting system. However,

this is impractical for our catalog where the majority of

candidates have no redshift measurements. To find close pairs,

and remove them effectively, we take advantage of the

representations Zoobot learns of each image. As described

previously, Zoobot was trained to answer every question in

GZD simultaneously for every galaxy. It therefore learns a

generalizable representation of many kinds of galaxies. In this

representation space, morphologically similar galaxies will

exist close together in clusters while those that are dissimilar

will be farther apart. We extract the features Zoobot has

learned of each candidate, and plot its representation.
We remove the classification head of Zoobot and directly

output the final layer of the feature learning section of the

model. This gives 1280 features (the representations) for each

of our 27,720 candidate systems. However, there will be much

redundant information in this very high-dimensional feature

space. We compress this using incremental principal comp-

onent analysis (Ross et al. 2008). An excellent demonstration

of using this approach can be found in Walmsley et al. (2022c).

We reduce the dimensionality from 1280 to 40 (as in Walmsley

et al. 2022c), and input the resultant components into the auto-

encoder UMAP (McInnes et al. 2018). UMAP projects the 40

dimensional components of each candidate system onto a 2D

manifold. The position of each galaxy on this manifold is

directly linked to its visual morphology. Close pairs have

similar visual features, which will then appear as a cluster in

our representation space.
Figure 7 shows the representation distribution of our 54,757

candidates after compression with UMAP. A random image in

each bin has been selected to show the morphology of the

objects within the bin. There are three clear gradients that exist

in the representation distribution: one of source size, one of the

source inclination, and one of image contrast between the

source and the background. The gradient of source size is clear

from left to right. This is also true of contrast between the

source and background. The gradient of source inclination is

from top to bottom. The top shows very inclined sources, and

even the diffraction spikes of stars, while along the bottom we

find face-on sources that take up a larger part of the cutout

center. At the very bottom of the figure (away from the main

body), a cluster of very poorly contrasted sources with the

background that are face-on can be found. The gradients of

inclination and source size are expected, while that of contrast

is less so. This gradient is likely a result of how we created our

images using a linear stretch with fixed contrast. The effect of

this is that dimmer sources have brighter backgrounds, a

particular issue at high redshift.

Figure 6. Flow diagram of our contamination and duplication removal process.
De-duplication used agglomerative clustering based on sky separation. The first
step of de-duplication uses a cutoff of 1 5. This significantly reduced
duplication in the catalog, as well as the size of the catalog to 54,757
interacting galaxies. We then applied contamination removal to this de-
duplicated catalog. Upon visual inspection, a small number of duplicated
systems still existed in the catalog. To ensure a pure catalog of unique systems,
we applied an agglomerative clustering again with a cutoff of 5″. This gave us a
catalog of 27,720 unique interacting systems. The final step to ensure purity
was visual inspection by coauthor D.O.R., removing any remaining
contamination. This gave the final pure catalog of 21,926 unique interacting
systems.
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Figure 7 has many areas of similar morphology. On the left,
we have isolated objects: disturbed spirals or large galaxies
with tidal disturbance to them. Along the bottom, we see
isolated bright objects with satellites about them. On the
bottom right, we see our area of representation space
dominated by close pairs. In the center, we see the population
of interacting galaxies that Zoobot was trained to find. The
areas of representation space that are dominated by clear
sources of contamination are cut. Figure 8 shows a scatter plot

of the representation distribution and the cuts we make. They
are made such that any source with a Y-mapping of
−2� Y� 4.75 will be kept in the catalog. The choice of these
cuts has been made by eye, and then bootstrapping the
remaining images to check contamination removed. After
applying these cuts, we retain 41,065 systems in our catalog.
We estimate ≈25% of sources in the greater-than-0.95-

prediction bin are close pairs. This may seem lower than
previous works, but is due to our very conservative prediction

Figure 7. The representation distribution of 54,757 candidate interacting galaxies. This distribution is the compressed 2D representation of the 1280 dimensional
representation that Zoobot has learned for each image. Each image is a randomly selected one from sources within each bin in the distribution. The X- and Y-axes on
this plot are the 2D mapping on the manifold given by UMAP for the 40 dimensional principal components of each source, and not physical parameters. Three
gradients are clear in this distribution: first; from left to right there is a distinct gradient in the contrast of the images. The images to the left are local galaxies with low
redshift, while those on the right are dimmer sources at much higher redshift. This is an effect of how the images are created using a linear scaling function and a fixed
contrast. The second feature, also from left to right, is a gradient of larger source size to smaller source size. This is a feature Zoobot has learned based on the redshift
of the source as well. The third, from top to bottom, is a gradient of the inclination of the source. With the most inclined (and even diffraction spikes) of the sources
appearing at the top, while at the bottom the sources are face-on. Along the bottom of the representation plot, there are close paired sources as well as many star fields.
Along the very top, there is contamination in the form of isolated stars in star fields. Thus, we make aggressive cuts along the top and bottom of our representation
space to remove as much contamination in a general way. The full representation plot, with all sources and the cuts, is shown in Figure 8.
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cutoff. The general cuts to our population based on their
position in representation space make it very likely that we
retain some close pairs in the catalog, while also removing
interacting galaxy systems.

As described in Section 5.2, we then apply a 5″ to the 41,065
remaining candidates, further reducing our catalog to 27,720
systems. With such an aggressive sky projection cut, many
individual interacting galaxies are now identified under the
same ID as the secondary galaxy in the system. To remove
remaining contamination in the catalog, a final visual
classification step was conducted. This visual inspection was
conducted by coauthor D.O.R. Any systems removed at this
stage were classified into three categories: interacting system,
contamination, and gems. The gems subcategory became
necessary as many sources of contamination that were being
removed were objects of other astrophysical interest, and is
described in Section 6.2.

6. Results and Discussion

6.1. An Interacting Galaxy Catalog

Upon de-duplication and contamination removal described
in Sections 5.2 and 5.3, our final catalog contains 21,926
interacting systems. Figure 9 shows a random sample of 50 of
the systems from our catalog. In these examples we can see
highly distorted or currently interacting systems, precisely what
we trained Zoobot to highly predict. Some cutouts are of the
full interacting system, containing both the primary and
secondary galaxies in the interaction. Some source cutouts
only show one of the interacting galaxies, though these systems
remain highly disturbed. Due to the constraints in our training
set,highly weighting disturbance or tidal features in our
predictions, we are sampling interaction from all epochs except
the approach to the initial pass. At this initial stage, there will
be no tidal features formed or disturbance in the disks as the

two galaxies approach each other. Separating them from close
pairs would be difficult without kinematic or redshift informa-
tion, not available for the majority of these sources.
We investigate which of the systems in our catalog have

previous references in astrophysical literature. To search the
literature, we use the AstroQuery Python package with a
coordinates-based search of cutoff radius 5″. We search the
astronomical databases Simbad (Wenger et al. 2000), the
NASA Extragalactic Database (NED; NASA/IPAC Extraga-
lactic Database 2019), and VizieR (Ochsenbein et al. 2000) for
references to our interacting systems. These return either a list
of references, or an empty list showing no references associated
with the system. We find that 7522 of our systems have at least
one reference associated with them, while 14,404 do not. A flag
exists in the catalog data release, which shows whether a
system has references associated with it or it could be
considered a “new” system. We, however, do not claim that
we discovered these systems. These systems have always
existed in the backgrounds of large surveys or observations and
been discovered by others; it is only with ESA Datalabs that we
can apply a methodology such as in this work to extract those
systems from these observations. We also do not claim that
these unreferenced systems are particularly interesting or
phenomenal. It is most likely that these systems are the very
faint background galaxies in surveys or observations whose
main objective was something other than finding interacting
galaxies. This will be further discussed in Section 6.3.
Figure 10 shows the distribution of our catalog in the sky.

HST is able to observe the majority of the sky, so the catalog
sources are scattered throughout it. We find that the sources
cluster in different parts of the sky that correspond to major
surveys conducted using the HST involving ACS/WFC and
the F814W filter. We also mark the centers of the seven surveys
that correspond to the major clustering of interacting systems in
the sky. These were the COSMOS, the GOODS North,
GOODS South, PHAT, CANDELS, AEGIS, and Spitzer Space
Telescope FLSv Region (Morganti et al. 2004) surveys.
The full catalog and data product are found on Zenodo at the

following DOI where it is freely accessible to the community:
doi:10.5281/zenodo.7684876. Table 1 shows an example of
the data and format of the 50 sources shown in Figure 9. We
also bootstrap the final catalog as an estimate of contamination
remaining. As described in Section 5.3, the final step of
contamination removal was visual inspection by coauthor D.O.
R. of the 27,720 candidate interacting systems to remove the
remaining 5794 contaminants from the final catalog. Visual
inspection by a single expert at this scale is not perfect. We
extract random sources from the catalog in batches of 500 and
manually reclassify them again. This bootstrapping reveals that
≈3% of our interacting system in the final catalog remains
contaminated.

6.2. The Gems

By conducting a visual inspection of the 27,720 candidate
systems, we were able to directly identify many other objects of
astrophysical interest. As Zoobot was trained to highly
predict objects with irregular morphologies, we also find many
other astrophysical objects with strange morphologies that may
be of interest to the community. We call these sources of
contamination “gems.” We make 16 subcategories of these:
AGN/quasars, submillimeter galaxies, galaxy groups, high-
redshift galaxies, jellyfish galaxies, galaxy jets, gravitational

Figure 8. Scatter plot showing the precise distribution of each representation of
sources in the remaining 54,757 sources. This is the unbinned version of
Figure 7. The two red lines show the cutoffs utilized to remove the majority of
close pairs by projection as well as the very obvious contamination of stars and
stellar fields at the top of the representation distribution. The number of
candidate interacting systems in the catalog was reduced to 41,065 systems.
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Figure 9. An example of 50 of the final interacting systems found with Zoobot. These were selected randomly from the de-duplicated and de-contaminated 21,926
sources. Each of these examples have extended tidal features and distortion. Not all of the final interacting systems have two galaxies within them (for example, image
2), but are clearly very disturbed by a tidal event. These were kept in as they would form a large part of the interacting galaxy population and would be flagged as
disturbed or interacting in Galaxy Zoo. Each of these images is a one-color image using the F814W HST filter.
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lenses/lensing galaxies, Lyα emitters, overlapping galaxies,

edge-on protoplanetary disks, radio halos, ringed galaxies,

supernova remnants, transitional young stellar objects, young

stellar clusters, and unknown objects.
Each subcategory has been defined by checking Simbad and

VizieR for references within a 5″ radius of each source and

using astrophysical literature for a definition of the source.

Coauthor D.O.R. classified any unreferenced objects by

morphological similarity to other defined objects. The plat-

forms ESASky12 (Merín et al. 2017.), NED, and the SDSS

were also used to investigate any unreferenced objects.
ESASky was of paramount importance as we could investigate
many objects across a range of wavelengths with many
instruments.

The only objects that were classified by other means than

visual morphology were AGN/quasars, submillimeter galaxies,

and the six unknown objects. We attempt to confirm the

unreferenced AGN/quasars as candidates by investigating the

source in Chandra or XMM-Newton for hard or soft X-Ray

emission. The submillimeter candidates were also investigated

using Herschel or Planck measurements. If there was a positive

signal in their positions, they were classified as such. Further

work will be needed to confirm these classifications.
The final category that required further inspection was that of

the unknown objects. These are objects that have unusual

morphology, which marks them out from the rest of the sample;

but there are no references associated with them in Simbad or

VizieR. They also did not appear in NED, meaning they could

not be confirmed to be galaxies. These objects are shown in

Appendix C.
Table 2 shows a breakdown of the total number of objects

found and the number that were referenced or unreferenced.

We have released catalogs of each subcategory in the same

format as that of the main catalog without the interaction

prediction column. Each of these catalogs can also be found at
the same Zenodo link.

6.3. Source Redshifts and Photometry

We investigate the redshift distribution and photometric
properties of sources in our catalog. We extract all sources with
preexisting data, querying Simbad, VizieR, the HSC via the
Milkulski Archive for Space Telescopes (MAST), and NED.
Our queries use a 5″ search radius within the Python package
AstroQuery. The existing data from each of these databases
has undergone heterogeneous selection and analysis procedures
by the various studies we extract them from; we do not try to
reconcile these here. Rather than a detailed physical analysis of
these sources, our priority in this subsection is to highlight how
to explore and use this catalog, as well as any difficulties that
may arise.
Of the 21,926 interacting systems in our high-confidence

sample, 3037 of the 7522 referenced sources have a measured
redshift. Figure 11 shows the redshift distribution of this subset
of our catalog. We found that 42.5% of the sources have a
redshift z� 0.5, 45.1% have a redshift 0.5< z< 1, and 12.4%
have a redshift z> 1. In fact, a small fraction (15) of these
sources are found to be at z� 5. Upon investigation of these
sources, two of their redshifts have been measured photome-
trically, while the remaining 13 sources did not have the
method of measurement recorded in the archive. Therefore, this
finding of very-high-redshift interacting galaxies is uncertain
at best.
It is important to note that the small sample with redshift

information is affected by the selection biases of the combined
studies publishing these values, and therefore the distribution
may not be representative of the full sample. In addition, above
redshift z= 1, the F814W filter begins to only capture rest-
frame UV flux, and therefore z> 1 galaxies with low star
formation rates are more likely to fall below the flux limits of
our detection images. Sampling only the rest-frame UV also
changes a galaxy’s observed brightness and morphology

Figure 10. Sky distribution of our catalog, with marked positions of well-known deep surveys conducted by HST. HST is able to observe almost the entire sky, and
therefore the interacting galaxies are scattered throughout. Large clusters of sources are found in the locations of surveys. This shows that often our sources are in the
background of larger surveys and observations.

12
ESASky: https://sky.esa.int/
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(e.g., Ferreira et al. 2022)—the latter being how Zoobot

identifies interacting galaxies. For example, tidal features
whose initial starburst has faded may be undetected; con-
versely, a single galaxy with irregular star-forming clumps may
appear to be multiple interacting galaxies, which we noted as a
particular source of contamination during the visual inspection
stage. High-redshift interacting galaxies that are detected
initially by Zoobot but have unusual morphologies compared
to z∼ 1 sources may be removed during prediction (Section 3),
given that fine-tuning is based primarily on the z 1 imagery

of Galaxy Zoo: Hubble. Therefore, the currently measured
redshift distribution in Figure 11 is likely due to some
combination of selection bias and training bias.
Figure 12 shows the basic parameter space sampled by the

subsample of the catalog with existing photometry and
redshifts. We show the distributions of redshift with the
measured apparent F814W magnitude and the calculated
absolute F814W magnitude. The faintest objects are, as
expected, observed at approximately the limiting magnitude
of the deepest observations in our catalog. Other observations

Table 1

An Example of the Format of the Final Catalog for the 50 Example Images Presented in This Paper

Image No. SourceID R.A. (deg) Decl. (deg) Interaction Prediction References Status

(1) (2) (3) (4) (5) (6) (7)

1 4001014298177 261.292845 37.162387 0.983999 No entry Unreferenced

2 4001444190958 183.527536 33.183451 0.998016 [1994PASP..106..646K] Referenced

3 4000809226818 93.960150 −57.813401 0.982266 [2019ApJ...878...66C] Referenced

4 4553390202 73.581297 2.903528 0.968280 No entry Unreferenced

5 4000907600174 259.037474 59.657617 0.999978 No entry Unreferenced

6 4575187799 150.001883 2.731942 0.974649 [2007ApJS..172...99C] Referenced

7 4000717342023 149.527791 2.126945 0.993912 [2007ApJS..172...99C] Referenced

8 4001174802281 28.593114 −59.643515 0.982890 No entry Unreferenced

9 4182689774 186.709991 21.835419 0.973232 [2016ApJS..224....1R, 2011ApJS..193....8B] Referenced

10 4000958398690 186.719496 23.961225 0.999288 No entry Unreferenced

11 4266881925 344.730228 −34.799824 1.000000 No entry Unreferenced

12 4001084105393 150.128198 2.623949 0.982739 [2018ApJ...858...77H, 2007ApJS..172...99C] Referenced

13 4000961670486 345.337556 −38.985521 0.954961 No entry Unreferenced

14 4000719687395 338.173538 31.189718 0.974724 No entry Unreferenced

15 4001435343326 331.771500 −27.826175 0.986885 No entry Unreferenced

16 4001268932937 8.856781 −20.271978 0.986329 No entry Unreferenced

17 4651336656 149.836709 2.141702 0.984389 [2007ApJS..172...99C] Referenced

18 4000877021787 116.211231 39.462563 0.979178 No entry Unreferenced

19 4000878525229 149.834893 2.516816 0.963694 [2007ApJS..172...99C, 2009ApJS..184..218L] Referenced

20 6000290755870 186.774907 23.866311 0.981961 No entry Unreferenced

21 4000806637434 210.253419 2.854869 0.960790 No entry Unreferenced

22 4001215753971 135.898809 50.487130 0.998386 No entry Unreferenced

23 4000813961830 163.678042 −12.776815 0.958405 [2005ApJ...630..206F] Referenced

24 4001200639012 54.037618 −45.170026 0.991404 No entry Unreferenced

25 4000921402261 150.417634 2.313781 0.990775 [2018ApJ...858...77H, 2012ApJ...753..121K] Referenced

26 4001224732336 337.217339 −58.444885 0.955972 No entry Unreferenced

27 4000781402752 216.968619 34.575819 0.974076 No entry Unreferenced

28 4001283017901 120.202582 36.058927 0.994169 [2016ApJS..224....1R] Referenced

29 4000833486119 116.260049 39.457642 0.971092 No entry Unreferenced

30 4000949659908 146.342493 68.730869 0.961113 No entry Unreferenced

31 4000982920478 53.084832 −27.765379 0.983472 [2010A&A...512A..12B] Referenced

32 4001189505548 192.492491 2.436292 0.992574 No entry Unreferenced

33 4001060882070 89.700725 −73.049783 0.962839 No entry Unreferenced

34 4000889750512 151.176470 41.214096 0.962205 No entry Unreferenced

35 6000322363510 53.149367 −27.823945 0.963889 [2016ApJ...830...51S] Referenced

36 4000722901091 28.257843 −13.928090 0.982778 No entry Unreferenced

37 6000198293960 264.488431 60.101798 0.986865 No entry Unreferenced

38 4001095660911 258.587670 59.970358 0.955193 No entry Unreferenced

39 4000972775076 330.960020 18.796346 0.989131 No entry Unreferenced

40 4001132466571 126.545810 26.456196 0.997077 No entry Unreferenced

41 4000933395648 312.810365 2.288410 0.976252 No entry Unreferenced

42 4000932940918 218.066960 32.997228 0.990737 No entry Unreferenced

43 4001048433104 93.880689 −57.754746 0.957755 No entry Unreferenced

44 4001039919651 53.111470 −27.673717 0.994424 [2011ApJ...743..146C] Referenced

45 4001282607544 333.765783 −14.006097 0.999520 No entry Unreferenced

46 4000922341052 260.723839 58.849293 0.995477 No entry Unreferenced

47 4000731518210 194.869144 14.146223 0.994651 No entry Unreferenced

48 4001082523786 311.703084 −12.869002 0.976454 No entry Unreferenced

49 4000767041112 149.784518 2.172233 0.991335 [2007ApJS..172...99C] Referenced

50 4001024667142 150.661685 1.718587 0.967865 [2007ApJS..172...99C] Referenced
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have brighter limits; those wishing to select a uniform or

volume-limited sample from our catalog must consider the

variable flux limits across the sample.
We finally investigate sources from our high-confidence

sample that have multiband photometry, focusing on com-

monly observed filters. By construction, 100% of the sample

has F814W measurements, with 45% of the catalog having

F606W and only 11% having measured fluxes in F475W.

Table 3 summarizes the filter coverage of our catalog. We

found that 6.1% (1336 sources) have complete three-band

photometric information in the HSC. We use these to create

examples of color images from the catalog (using the algorithm

of Lupton et al. 2004). We used a scaling factor Q= 2 and

α= 0.75, with (F814W, F606W, F475W) as RGB channels

and multiplicative factors of (1.25, 0.95, 2). The resultant

images are shown in Appendix B.
We extract the measured magnitudes of the F606W and

F814W filters, giving us two-band photometry for 9876

sources. Cross referencing with each source that had a redshift

yields 2993 sources from our catalog. We calculate the color of

each source and plot it against the absolute magnitude in the

F814W filter. Figure 13 shows the resulting color–magnitude

distribution in panel (A). The resultant distribution is very hard

to interpret due to the high scatter of the sources. We

extrapolate from this panel that there is little contamination

from sources other than galaxies. If levels of contamination

Table 2

A Breakdown of Gems Found in the Visual Inspection Stage of Contamination

Category

Total

Found Referenced Unreferenced

(1) (2) (3) (4)

AGN/Quasars 35 21 14

Submillimeter Galaxies 11 8 3

Galaxy Groups 6 6 0

High-redshift Galaxies 10 7 3

Jellyfish Galaxies 18 5 13

Galaxy Jets 25 10 15

Gravitational Lenses/Lensing

Galaxies

189 64 125

Lyα Emitters 1 1 0

Overlapping Galaxies 221 92 129

Edge-on Protoplanetary Disks 9 2 7

Radio Halos 1 1 0

Ringed Galaxies 6 1 5

Supernova Remnants 4 3 1

Transitional Young Stellar

Objects

2 1 1

Unknown Objects 6 0 6

Young Stellar Clusters 2 1 1

Note. Each gem category has been classified based on the references associated

with each object.

Figure 11. The redshift distribution of a subsample of our catalog. Of the 7583
referenced systems, 3037 of them had redshift measurements in the NED,
MAST, or Simbad. This redshift distribution shows that our model confidently
predicted interacting systems primarily for z < 1 systems. This was anticipated,
as the model was primarily trained on systems at these redshifts. There are 15
sources with a reported z > 5.

Figure 12. The distribution of redshift with magnitude for all sources with
available data. This shows the parameter space we are sampling in this catalog.
Panel (A) shows that the majority of our sources are dim, background sources
at low redshift. Panel (B) shows the faintest objects we find are at the limiting
magnitudes of the different surveys this data is from.

Table 3

Percent of Sources in the Final Catalog That Have Observations in the Relevant
Hubble Filter

Filter (s) Sources Covered

(1) (2)

F814W 100%

F606W + F814W 45.0%

F475W + F814W 11.0%

F475W + F606W + F814W 6.1%
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were high, we would expect a second locus of sources with a
very different color–magnitude distribution.

Plotting the color–magnitude distribution in this way
captures a wide range of rest-frame wavelengths in the
observed filters, which is the primary reason that panel (A) of
Figure 13 is hard to interpret. In this first-look study, we do not
have full spectral energy distributions (SEDs) of most sources,
so K-correction of individual colors within this sample would
involve assuming a template SED for each galaxy. Given that a
high fraction of galaxies in our sample of mergers may deviate
from standard SED templates, we wish to avoid this method.
Instead, we choose redshift ranges within which to examine
subsamples, such that the observed F606W and F814W bands
cover consistent rest-frame colors within that subsample.
Figure 13(B) shows only sources with z< 0.18, within which
the observed filters can be taken to be approximately rest-frame
filters, which we define as at least 50% of the flux captured in
the observed band being emitted at rest-frame wavelengths
covered by that band. At 0.24< z< 0.56, the observed F606W
filter captures at least 50% rest-frame F475W flux, and the
observed F814W filter captures at least 50% rest-frame F606W
flux, so Figure 13(C) is approximately a rest-frame
F475W− F606W versus F606W plot. At 0.62< z< 1,
Figure 13(D) is approximately a rest-frame near-UV (NUV)-
blue plot (F336W–F475W versus F475W).

The galaxies in panel (B) are observed in approximately the
rest-frame F606W and F814W filters. Nearly all are blue
systems (by general definitions at various redshifts; e.g.,

Kauffmann et al. 2003; Whitaker et al. 2012; Schawinski
et al. 2014). This is expected for interacting systems with
enough gas to fuel a starburst. The lack of many red systems is
due to few gas-poor (“dry”) interactions in the (relatively) local
volume (López-Sanjuan et al. 2009). In Figure 13(C), the
F606W and F814W filters are still detecting rest-frame optical
(F475W and F606W) emission, and we find a much broader
population. There are both blue and red interacting systems,
with the redder mergers occurring in more-luminous (likely
higher mass) systems, broadly consistent with expectations
(van Dokkum 2005; Lotz et al. 2008). The rest-frame filters
approximately captured in panel (D) (F336W and F475W)

sample emission across the 4000Å break. Sensitivity to NUV
means this panel effectively splits systems according to very
recent star formation history (Schawinski et al. 2014; Smethurst
et al. 2015). There is a significant spread in color, with
equivalent red and blue systems. We, therefore, find many
young blue systems undergoing star formation and brighter,
elliptical, massive systems also undergoing interaction in
this bin.
This initial examination of the subsample of systems with

easily retrievable redshifts has revealed that the interacting
galaxies in the sample broadly agree with previous studies of
colors in merging systems. This demonstrates the underlying
promise of the catalog. A detailed study is beyond the scope of
this work, but there is considerable potential for new
astrophysical insights using this high-confidence catalog with
nearly an order-of-magnitude more sources than those
previously published.

7. Conclusion

We present a large, pure catalog of 21,926 interacting galaxy
systems found from the HSC. This catalog is a factor of 6 larger
than previous works. Each interacting system was found using
the European Space Agency’s new platform ESA Datalabs,
which allowed us to directly apply an advanced CNN—
Zoobot—to the entire Hubble science archive. This corre-
sponds to predicting over 126 million sources. The compiled
catalog has a contamination rate of ≈3% as found by
bootstrapping. Table 1 shows an example of 50 entries in our
new catalog, Figure 9 shows the corresponding images. The
new catalog and all corresponding images can be downloaded
from Zenodo: doi:10.5281/zenodo.7684876.
Each of our interacting galaxies was given a prediction score

�0.95 by Zoobot, with such a conservative score chosen to
limit contamination and maintain purity in the catalog.
Contamination was removed by applying cuts in representation
space (shown by Figure 8) and visual inspection. Upon visual
inspection, many contaminating images were found to be
objects of other astrophysical interest. These have been
compiled into separate catalogs, and Table 2 shows a
breakdown of the objects found. These subcatalogs have been
released alongside our interacting galaxy catalog. With the
priority of purity in this catalog creation, we will aim in future
work to use it in the statistical analysis of interacting galaxies
and begin linking the underlying parameters of interaction to
the complex physical processes that occur in them. A
secondary purpose of this catalog is to serve as a training set
for future models that may wish to search for interacting or
merging galaxies.
With the use of ESA Datalabs, this project was conducted

quickly. The entire process, from creating the source cutouts, to

Figure 13. The color–magnitude distribution of sources with a redshift
measurement associated. Panel (A) shows the distribution of all galaxies,
without controlling for redshift or dust extinction. The remaining panels then
split these sources into distinct redshift bins where the F606W and F814W
filters are observing in different rest frames. Panel (B) shows the color–
magnitude distribution in the local universe, where the rest-frame observations
are F606W and F814W flux. This bin reveals a blue population. Panel (C)
shows the redshift bin where at 50%–100% of observed F606W and F814W
flux is rest-frame F475W and F606W flux. This bin reveals a larger distribution
of interacting galaxies, with a dominating population of blue systems and a
minor population of red systems. Panel (D) shows the redshift bin where 50%–

100% of observed F606W and F814W flux is rest-frame F336W and F475W
flux. These filter bands are very sensitive to star formation, and reveal a broad
distribution in color of red and blue systems.
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training Zoobot, to making predictions on 126 million
sources, took three months to complete. Using conventional
methods, such as AstroQuery or TAP services, downloading
the data would have likely taken on this timescale. By bringing
the user to the data, rather than vice versa, catalogs of a similar
size—and many times larger than previous catalogs—of many
different objects can be created quickly.

None of the interacting systems in this work are “new”;
every one of them exists in the background of large-scale HST
surveys and observations since their release. However, the
method to directly search for them has been impractical until
the release ESA Datalabs. By directly applying machine
learning to existing astrophysical data repositories, a new
method of creating significantly larger catalogs has been
achieved.

This shows the importance of archival work, and the power
that ESA Datalabs will bring to the field of astronomy. ESA
Datalabs is expected to be released in Q3 and with it, the ability
for large-scale exploration of archival data. It will be released
with introductory tutorials, step-by-step guides, and different
Python environments for ease of use for different telescopes
and instruments the ESA is involved in. It will have a full
cluster of graphical processing units (GPUs) at its disposal and
a storage capability in the range of hundreds of terabytes. In
future, this entire project—from training set creation to
predictions—could be conducted on ESA Datalabs.

Such a setup as ESA Datalabs also allows for the creation of
large observational catalogs, comparable to that we create from
cosmological simulations. This is incredibly important to
further constraining already existing results. In the current
period of astronomy where large survey instruments are
awaiting first light, or the beginning of future telescopes is
uncertain, the ability to get ever more information out of the
archives is paramount.
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Appendix A
Further Model Diagnostics

In Section 5 we presented diagnostic properties of our
model. These include the accuracy measurements, purity
measurements, as well as confusion matrices at different
cutoffs of our model. Here, we present the receiver operating
characteristic (ROC) curves, the precision-recall (PR) curves,
and measures of true and false-positive rates versus the cutoff
threshold.
Figure 14 shows the ROC and PR curves of the final

Zoobot model we applied to the Hubble archives. The ROC
shows the rate of change of finding true positives and false
positives with changing cutoff. The PR curve shows the
changes of precision against recall. Precision is the ratio of true
positives (interacting galaxies correctly predicted as so) to the
sum of true and false positives (noninteracting galaxies
incorrectly predicted as interacting). The recall is then the
ratio of true positives to the sum of true positives and false
negatives (interacting galaxies that have been misclassified as
noninteracting). The red crosses in both plots shows how the
model was behaving when we used a cutoff of 0.95.
These are both as expected. Both curves show that the model

behaves well, and are much better than a random classifier
(which would have a 1:1 relation). The ROC plot shows that
we are minimizing our false-positive rate when using a
prediction score cutoff of 0.95. However, we are misclassifying
approximately 50% of interacting galaxies as noninteracting
galaxies. The contamination rate in our final catalog (false-
positive rate) will be very low (close to zero in this ideal
validation set). The PR curve shows a similar result. Here, we
are operating with high precision (finding a pure catalog) while
keeping our recall minimal.
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We also present the changing F1 score for the model used in
this work, shown in Figure 15. The F1 score is twice the ratio
of precision multiplied by recall upon precision summed to
recall. This combines our measure of accuracy and purity into a
single metric. The cutoff we use in this work is at the point

where the F1 score has begun to decline. This is because we are
beginning to lose recall rapidly, but gaining significantly in
precision. As discussed in Section 5, this was an acceptable
trade-off in this work for a very large, pure interacting galaxy
catalog.

Figure 14. The receiver-operator and precision-recall curve for the Zoobot model that was used to explore the Hubble archives.These curves measure the relevant
rates or characteristics based on the changing cutoff applied to how Zoobot defines an interacting galaxy. The red crosses are where the prediction score cutoff is for
this work. We can see in the receiver-operator curve that the prediction score cutoff we use would have an incredibly low false-positive rate, while it would be
misclassifying ≈50% of interacting galaxies. This also shown in the precision-recall curve where our recall is ≈50%.

Figure 15. The F1 score found during the diagnostics of the model used in this work. The F1 score is a measure combining accuracy and purity into one metric. The
cutoff we use is at the point where the F1 score begins to rapidly decline. This point is shown by the red vertical line.
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Appendix B
Examples of Sources with Three-band Information

Of the full catalog of 21,926 interacting systems, only 1336

of them had obtained all three-band information. Six examples

are shown in Figure 16. These were created using the Lupton

et al. (2004) algorithm, with a scaling factor Q= 2 and

α= 0.75, with (F814W, F606W, F475W) as RGB channels

and multiplicative factors of (1.25, 0.95, and 2).

Figure 16. Example of six interacting systems in the catalog with full three-band imagery.
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Appendix C
Unknown Objects

From the final catalog, there were six sources that we could

not visually identify. These objects were also not referenced

anywhere in astrophysical literature. F814W cutouts of the six

objects are shown in Figure 17. Their Source IDs are shown in

the upper left of each image, and a separate catalog has been

released of these with all other objects. This catalog can be

found at the data release on Zenodo.
Four of the six objects (40001156424176, 4001368788120,

4001418076626, and 6000398415347) have a bright central

source, followed by a low-surface brightness tail. Initially, it

was assumed that these were solar system objects such as

comets. This, however, could not be confirmed. The first of

these four sources is also thought to potentially be a highly

disrupted system with a significantly elongated tidal feature.

The final two unknown sources (6000186797547 and

6000341449179) have no clear central source, though there is

extended structure to them. These are likely to be highly

irregular galaxies, but no confirmation could be found.
These objects are released to the community for identifica-

tion and investigation, as the authors cannot find definitive

agreement on what they are.

Figure 17. The six unknown systems found in this work. These have no reference in Simbad or in NED, and their morphology could not be classified by the authors.
Investigation into these six objects is presented to the community, with the authors hoping that future work and investigation can be conducted.
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Table 4

Twenty Examples of the Accompanying Data Table of Observations Used

Proposal ID Observation ID Observation Date DOI References

(1) (2) (3) (4) (5)

8183 hst_8183_54_acs_wfc_f814w_j59l54 18/07/2002 https://doi.org/10.5270/esa-88k8vcj

9075 hst_9075_2a_acs_wfc_f814w_j6fl2a 24/07/2002 https://doi.org/10.5270/esa-gsxhb4b

9351 hst_9351_11_acs_wfc_f814w_j8d211 31/03/2003 https://doi.org/10.5270/esa-5lba8bo

9361 hst_9361_03_acs_wfc_f814w_j8d503 22/07/2003 https://doi.org/10.5270/esa-ecmnqgh

9363 hst_9363_09_acs_wfc_f814w_j8d809 02/07/2002 https://doi.org/10.5270/esa-ethtec5

9367 hst_9367_02_acs_wfc_f814w_j8ds02 10/06/2003 https://doi.org/10.5270/esa-3j404ll

9373 hst_9373_02_acs_wfc_f814w_j6la02 05/07/2002 https://doi.org/10.5270/esa-ztsq94u Rejkuba et al. (2005)

9376 hst_9376_02_acs_wfc_f814w_j8e302 13/07/2002 https://doi.org/10.5270/esa-h90iavd Keel et al. (2006)

9381 hst_9381_02_acs_wfc_f814w_j8fu02 13/03/2003 https://doi.org/10.5270/esa-vlapyea

9400 hst_9400_04_acs_wfc_f814w_j6kx04 29/05/2003 https://doi.org/10.5270/esa-39rnout

9403 hst_9403_02_acs_wfc_f814w_j8fp02 09/07/2002 https://doi.org/10.5270/esa-k5mv9ct

9405 hst_9405_6k_acs_wfc_f814w_j8iy6k 22/05/2003 https://doi.org/10.5270/esa-zy9phm1

9409 hst_9409_03_acs_wfc_f814w_j6n203 29/06/2003 https://doi.org/10.5270/esa-vjngw7r Goudfrooij et al. (2004)

9411 hst_9411_09_acs_wfc_f814w_j8dl09 11/02/2003 https://doi.org/10.5270/esa-debpiln

9427 hst_9427_13_acs_wfc_f814w_j6m613 21/10/2002 https://doi.org/10.5270/esa-bw1b97v

9438 hst_9438_01_acs_wfc_f814w_j6me01 16/01/2003 https://doi.org/10.5270/esa-e5eaam5 Gregg & West (2017)

9450 hst_9450_02_acs_wfc_f814w_j8d402 25/08/2002 https://doi.org/10.5270/esa-9ttmykz York et al. (2005)

9453 hst_9453_02_acs_wfc_f814w_j8f802 03/12/2002 https://doi.org/10.5270/esa-1xvyjfy Brown et al. (2003)

9454 hst_9454_11_acs_wfc_f814w_j8ff11 23/03/2003 https://doi.org/10.5270/esa-xsdowj9

(This table is available in its entirety in machine-readable form.)

Appendix D

Acknowledging PIs

In the final section of this work, we wish to acknowledge all

of the PIs whose observations we have used. A machine

readable table containing the proposal IDs, the DOIs and the

full observation filename accompanies this work. In this MRT,

the specific filename in ESA Datalabs is also specified so that

the observation can be easily found. The Astroquery Python

package can also be used with this filename to download each

observation. This MRT contains details of every observation

we used. Table 4 presents each observation for which a

reference was recommended to use by the PI so that we could

formally acknowledge them. It also states their DOI, observa-

tion date and proposal ID, while the filenames are omitted.
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