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Controlling the connectivity and rigidity of kirigami,
i.e. the process of cutting paper to deploy it into an
articulated system, is critical in the manifestations
of kirigami in art, science and technology, as it
provides the resulting metamaterial with a range
of mechanical and geometric properties. Here, we
combine deterministic and stochastic approaches
for the control of rigidity in kirigami using the
power of k choices, an approach borrowed from
the statistical mechanics of explosive percolation
transitions. We show that several methods for
rigidifying a kirigami system by incrementally
changing either the connectivity or the rigidity of
individual components allow us to control the nature
of the explosive transition by a choice of selection
rules. Our results suggest simple lessons for the design
of mechanical metamaterials.

1. Introduction
Kirigami, the art of cutting paper to make it morph
into different shapes via articulated local rotations while
preserving global connectivity, has been extensively
studied in recent years as a new paradigm for
mechanical metamaterials with applications to a range of
problems in science and engineering [1,2]. Deterministic
approaches to kirigami have primarily focused on
understanding the geometry and mechanical response
of periodic cut patterns, with tiles ranging from simple
regular polygons [3] to more general wallpaper group
patterns [4–6]. Complementing this, the design of

2023 The Author(s) Published by the Royal Society. All rights reserved.
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non-periodic kirigami patterns modulates the geometry [7–11] and the topology [12–14] of the cut
patterns to achieve different geometric and mechanical properties.

Since kirigami requires the presence of cuts, a natural question is that of bond and rigidity
percolation as a function of the topology of the cuts. Inspired by the question of rigidity
percolation in bond networks [15–17], we recently explored the control of the rigidity and
connectivity of kirigami patterns by changing the pattern topology, either deterministically or
stochastically [13]. In particular, we established a constructive theorem for deterministically
rigidifying a kirigami pattern using a minimum number of tile connections. Separately, we also
explored a stochastic analogue of this question and showed that rigidity and connectivity arise via
a percolation transition controlled by the fraction of tile connections. Given the rough similarities
between the observed connectivity patterns obtained using the deterministic approach and using
the stochastic approach near the phase transition, it is natural to ask whether we can interpolate
between the deterministic and the stochastic control of connectivity and rigidity. In addition to
being of intrinsic interest, the answer to the question is likely to be of relevance in the context of
practical control of the rigidity of mechanical metamaterials.

In this study, we show how the concept of explosive percolation [18–23] provides a natural way
to parameterize this transition. Explosive percolation was first studied in random networks as a
way to tune the nature of the percolation transition by adding/subtracting edges in a network
one by one using the power of two choices. At the simplest level, this follows from a choice to
create/break only one edge randomly at each step by sampling two (or more) random edges and
selecting one based on certain selection rules. The set of rules can then be used to qualitatively
change the nature of the percolation transition [24]. As we will see, by using different rules for
how to connect kirigami tiles, we can naturally move between the deterministic and the stochastic
approaches to control the rigidity of the pattern, just as in explosive percolation. To simplify
our discussion, we focus on quad kirigami patterns with L × L quadrilateral tiles (figure 1a) and
consider the following approaches to control the pattern rigidity:

(i) Fixing the tile rigidity and changing the pattern topology by adding a connection between
two tiles in each step (figure 1b). This connection-based method is described in §2.

(ii) Fixing the pattern topology and changing the tile rigidity by fixing either the angles
or vertex coordinates of a component in each step (figure 1c). These angle-based and
coordinated-based methods are described in §§3 and 4, respectively.

For each approach, we show how the power of k choices can lead to significantly different
percolation transitions.

2. Connection-based method
Consider an L × L quad kirigami pattern, where all L × L tiles are disconnected and rigid; for most
of our numerical experiments, we let L= 5, 10, 15, 20. Then, the kirigami pattern has a total degrees
of freedom (DOF) of 3L2. In every step, we add a connection between two neighbouring tiles,
creating a linkage. We note that adding a connection is equivalent to enforcing xi = xj and yi = yj
for two nodes (xi, yi) and (xj, yj), and hence, the total DOF decreases by at most 2. In earlier work
[13], we have shown that by adding appropriate connections between neighbouring tiles, one can
rigidify the entire kirigami pattern in the most efficient way, i.e. with the smallest number of links,
added deterministically. In contrast, if we add the connections randomly one by one, we observe a
linear to sublinear transition in the total DOF of the pattern as the number of connections increases
[13], with a percolation transition that signifies the switch in behaviour.

If instead of a random connection choice, we consider k random candidate connections every
time and choose one among them based on some selection rule, this provides a degree of control
over the rigidity percolation and leads to highly unusual effects. Here, we consider the number
of choices from k= 1 to k= 25, and for each pair (L, k), we perform 200 simulations to add
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(a) (b)

(c)

Figure 1. Rigidity control in kirigami. (a) A standard rotating squares pattern, with all tiles being squares connected in an
ordered manner. (b) Fixing the rigidity of all tiles and changing the connectivity of them can lead to a change in the rigidity
of the overall structure. Here, the tile connections are highlighted in red. (c) Keeping the standard connectivity and changing
the rigidity of certain components can also lead to a change in the overall structure rigidity as illustrated by the two examples
shown. Here, the tiles that are allowed to be floppy are highlighted in green. It is noteworthy that as shown in the second
example, enforcing the rigidity of all boundary tiles does not necessarily constrain the rigidity of the interior tiles. In other
words, there can be multiple floppy modes in such patterns.

connections to an L × L kirigami system gradually. We note that there are in total 4L(L − 1)
possible connections between all neighbouring tiles in an L × L pattern. In each step, we sample
k unused connections as the candidates and pick one of them to add based on a certain selection
rule. We then compute the total DOF of the current pattern using the rank of the infinitesimal
rigidity matrix [25], noting that the pattern is rigid if and only if the total DOF is exactly equal to
3, the total number of global DOF for planar systems. The aforementioned process is continued
until all 4L(L − 1) connections are added. Denoting r as the percentage of total connections added,
we consider the number of rigid patterns among all 200 simulations for different r values and
quantify the probability of getting a rigid pattern P ∈ [0, 1] as r increases from 0 to 1. We consider
two selection rules:

(1) Most efficient connection rule: We always choose the connection that gives the minimum
total DOF among all k choices, i.e. in the most efficient way of rigidifying the pattern.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 M

ay
 2

02
3 



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220798

..........................................................

By adopting both the stochastic sampling of connections and this deterministic selection
rule, we can significantly accelerate the rigidity percolation.

(2) Least efficient connection rule: Conversely, if we always choose the connection that gives
the maximum total DOF among all k stochastically sampled connections, i.e. in the least
efficient way of rigidifying the pattern, we can significantly delay the rigidity percolation.

As shown in figure 2a, by using the most efficient connection rule and increasing the number
of choices k from 1 (corresponding to a single random choice) all the way to 25 for different
pattern sizes L= 5, 10, 15, 20, we note that the transition associated with the rapid increase in the
probability of getting a rigid pattern becomes sharper and also occurs earlier at around r= 0.4.
By contrast, using the least efficient connection rule, a sharp transition in P from 0 to 1 occurs
much later at around r= 1 (figure 2b). In this latter case, the patterns are not rigid until almost
all possible connections are added. We can also consider the change in the normalized total DOF
(d − 3)/(3L2 − 3) for each simulation, where d is the total DOF of the pattern. For the most efficient
connection rule, we can see in figure 3a that the linear–sublinear transition in the normalized DOF
becomes very sharp, and all patterns become rigid at around r= 0.4 for large k. By contrast, the
least efficient connection rule significantly slows down the transition in the normalized DOF, and
none of the patterns are rigid until r is close to 1 (figure 3b).

Moving towards a more quantitative analysis of the connection-based method, we define the
critical percentage of connections rc as the value of r with P= 1/2 and study how rc changes with
k for the two selection rules. For the most efficient connection rule, it was proved in [13] that for
the deterministic case, the minimum number of steps needed for rigidifying an L × L kirigami
(where L≥ 2) in the connection-based method is �(3L2 − 3)/2�. Therefore, the theoretical lower
bound for rc is

rmin(L) = �(3L2 − 3)/2�
4L(L − 1)

, (2.1)

so that limL→∞ rmin(L) = 3/8 = 0.375. It is natural to ask whether the most efficient connection rule
approaches the deterministic rule as the number of choices k increases. By using our largest system
size L= 20, we note that rmin(20) = 599/1520 ≈ 0.3941; for this system, varying k and asking how
rc varies, in figure 4a, we use a log-log plot and see that log(rc − rmin) ∼C log k with C≈ −0.89,
suggesting that rc → rmin as k→ ∞ via a simple power law behaviour.

For the least efficient connection rule, it is easy to see that the overall kirigami pattern is not
necessarily rigid if there are two missing connections in any corner tile. Therefore, the upper
bound for rc should be close to 1 in the theoretical deterministic case. Here, we again consider
L= 20 and assess how 1 − rc changes with the number of choices k. From the log-log plot in
figure 4b, we see that 1 − rc drops significantly when k> 1, demonstrating the effectiveness of
the power of k choices. However, the result is only marginally improved as we further increase
k. A possible reason is that if we have multiple candidate connections, then it is likely that we
can delay getting a rigid pattern by not selecting any corner connection among them (unless all
k choices are corner connections). This suggests that using the least efficient selection rule with
k= 2 is already sufficient for achieving an explosive percolation in practice.

3. Angle-based method
Another approach to achieve rigidity percolation is to keep the topology (i.e. the tile connectivity)
of a kirigami pattern fixed and change the rigidity of certain components in it. Here, we assume
that the kirigami pattern has the standard rotating squares topology and that all tiles have equal
side length. Then, the rigidity of a tile can be determined by whether the angles in it are uniquely
determined. In particular, from the equal edge length assumption, all tiles and holes must be
rhombi, and hence, the four angles in each of them must be in the form (α, π − α, α, π − α) for
some α (figure 5a). Therefore, each of them is uniquely determined if one of its angles is uniquely
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Figure 2. Explosive rigidity percolation achieved using the connection-based method. (a) By using the power of k choices and
the most efficient connection rule, we can accelerate the rigidity percolation, with a very sharp transition in the probability of
getting a rigid pattern P from 0 to 1 at around r = 0.4, where r is the percentage of connections added. (b) By using the power
of k choices and the least efficient connection rule, we can delay the rigidity percolation and achieve a very sharp transition in
P from 0 to 1 at around r = 1.

determined. Now, note that every interior node is shared by four tiles and holes. We have

α + β + γ + δ = 2π , (3.1)

where α, β, γ and δ are the angles around an interior node as shown in figure 5a. This shows
that a tile or hole is uniquely determined if the other three tiles and holes have been uniquely
determined. Finally, the entire kirigami pattern is rigid if and only if all tiles and holes are
uniquely determined.
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Figure3. Thenormalized total DOFs for the connection-basedmethod,whered is the total DOFanddmax = 3L2 is themaximum
DOF in an L × Lpattern. (a) The results obtainedusing themost efficient connection rule for all 200 simulations for each L,where
each curve represents one simulation. (b) The results obtained using the least efficient connection rule for all 200 simulations
for each L.

With this idea in mind, we consider an L × L kirigami pattern with L2 tiles and (L − 1)2 holes in
total. In every step, we choose a component (either a tile or a hole) in the pattern that has not been
chosen before. If the component is not yet uniquely determined, we prescribe an arbitrary angle
in it to fix its geometry. We can then check how many tiles and holes are uniquely determined
based on the above angle sum constraints (see figure 5b for an example). Note that if the chosen
component is already uniquely determined, we simply keep it unchanged and proceed to the next
step. The process continues until all Nmax = L2 + (L − 1)2 = 2L2 − 2L + 1 tiles and holes become
uniquely determined, i.e. the pattern becomes rigid.

Again, the aforementioned process of rigidifying a kirigami can be controlled by randomly
sampling k components (holes or tiles) and choosing one among them based on a prescribed
deterministic selection rule in every step. Two selection rules are considered:
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Figure 4. Analyses of different selection rules for the connection-based method. (a) A log-log plot of the number of choices
k and the difference rc − rmin for the most efficient connection rule, with L= 20. Each dot corresponds to one choice of k
(k = 1, 2, 5, 10, 25), and the red line is the best-fit straight line. (b) A log-log plot of the number of choices k and the difference
1 − rc for the least efficient connection rule, with L= 20.

(a) (b)

α
β

γ
δ

π-α

Figure 5. The angle-based method. (a) An illustration of the relationship between different angles. (b) An example pattern
with the explicitly rigidified tiles and holes highlighted in red. As indicated by the blue arrows, the hole highlighted in yellow is
uniquely determined, i.e. implicitly rigidified.

(1) Most efficient angle rule: Among the k choices of tiles or holes, we choose the one for which
fixing its angles gives the maximum total rigid tile and hole count.

(2) Least efficient angle rule: Among the k choices of tiles or holes, we choose the one for which
fixing its angles gives the minimum total rigid tile and hole count.

To test the performance of the two aforementioned rules, here we again consider
L= 5, 10, 15, 20 and different values of k from k= 1 to k= 25. For each pair (L, k), we perform 200
simulations to prescribe the angles of the tiles and holes gradually and examine the probability
of getting a rigid pattern P. As shown in figure 6a, the rigidity percolation can be significantly
accelerated using the most efficient angle rule, with a sharp transition in P occurring at r= 0.2
or even smaller. By contrast, it can be observed in figure 6b that the percolation is significantly
delayed to occur at around r= 1 using the least efficient angle rule. Interestingly, this time the
sharp transition in P is not exactly from 0 to 1. Instead, there is first a small increase in P at a
smaller r, and then a sharp increase to 1 at around r= 1.
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Figure 6. Explosive rigidity percolation achieved using the angle-based method. (a) By using the power of k choices and the
most efficient angle rule, we can accelerate the rigidity percolation and achieve a very sharp transition in the probability of
getting a rigid pattern P from 0 to 1 at around r = 0.2, where r is the percentage of tiles and holes with the rigidity explicitly
specified. (b) By using the power of k choices and the least efficient angle rule, we can delay the rigidity percolation and get a
very sharp transition in P from 0 to 1 at around r = 1.

To explain this, we consider how the total rigid tile and hole count N changes as r increases
for every simulation. For the most efficient angle rule, one can see that N/Nmax increases in a
highly nonlinear manner at small r when k> 1 is used (figure 7a), and all patterns become rigid
shortly after the nonlinear increase. By contrast, the least efficient angle rule favours tiles or holes
that do not affect the total rigid count. At the early stage of each simulation, tiles and holes that
are independent of the other ones will be preferred, and hence, N/Nmax increases linearly with
none of the patterns being rigid (figure 7b), causing a plateau of P= 0 for small r. However, once r
reaches certain values, the new choices of tiles and holes may introduce some dependency of the
previous components, which may immediately rigidify a large region or even the entire pattern
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Figure 7. The normalized total rigid tile and hole count for the angle-based method, where N is the total rigid count and
Nmax = L2 + (L − 1)2 = 2L2 − 2L + 1 is the total number of tiles and holes in an L × L pattern. (a) The results obtained
using themost efficient angle rule for all 200 simulations for each L, where each curve represents one simulation. (b) The results
obtained using the least efficient angle rule for all 200 simulations for each L.

in some simulations, resulting in P> 0. In case the chosen component rigidifies the entire pattern,
N/Nmax will be equal to 1 throughout the remaining steps. In case the chosen component does
not rigidify the entire pattern, the tiles and holes that have not yet been chosen but are implicitly
rigidified by the previously chosen ones will now be more preferred, as choosing them will not
cause any increase in the total rigid tile and hole count. Therefore, one can see that N/Nmax

remains slightly below 1 for a large number of simulations in figure 7b, causing a second plateau
of P< 1 for a certain period of r in figure 6b. Finally, as r→ 1, most of the ‘redundant’ tiles and
holes have already been chosen and explicitly rigidified, and so the remaining choices of the tiles
and holes will make the entire pattern rigid and lead to another sharp transition in P from the
plateau value to 1.
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(a)

(b)

Figure 8. Sharp change in rigidity by the angle-based method. (a) A 5 × 5 example where the red tiles and holes are already
rigidified and the yellow hole is the next chosen component (i). As indicated by the blue arrows, the newly rigidified hole will
rigidify other tiles and holes via the angle sum constraint and lead to a large region of rigid tiles and holes (ii). (b) Another
5 × 5 example pattern with the rigid tiles and holes highlighted in red. After rigidifying the newly chosen hole (highlighted in
yellow), the entire pattern will become rigid via a series of angle sum constraints (blue arrows) after exactly 4L − 3 steps.

To illustrate the aforementioned idea, figure 8a shows a 5 × 5 example with several rigidified
tiles and holes (highlighted in red). Once a newly chosen hole (highlighted in yellow) is rigidified,
the rigidity of some other tiles and holes will also be enforced by the angle sum constraint (as
indicated by the blue arrows), thereby leading to a large rigid region. Those implicitly rigidified
tiles and holes will then be preferred under the least efficient angle rule in the subsequent steps,
as choosing them does not further increase the total rigid tile and hole count. Figure 8b shows
another 5 × 5 example with all rigidified tiles and holes (highlighted in red) being independent,
and hence, the overall pattern is achieving minimal rigidity, with the total rigid tile and hole count
being exactly 4L − 4 after 4L − 4 steps. However, if the hole highlighted in yellow is rigidified in
the next step, it will rigidify all other tiles and holes via the angle sum constraint as indicated by
the blue arrows, thereby leading to a rigid pattern after 4L − 3 steps.

We now analyse the two sets of simulation results more quantitatively. For the most efficient
angle rule, we again define the critical percentage of explicitly rigidified tiles and holes rc as the
value of r with P= 1/2 and study how rc changes with k. Note that in the deterministic case, we
have the following result:

Proposition 3.1. The minimum number of steps needed for rigidifying an L × L pattern (where L≥ 2)
in the angle-based method is 4L − 3.

Proof. We prove the statement by induction.
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Figure 9. Analyses of different selection rules for the angle-basedmethod. (a) A log-log plot of the number of choices k and the
difference rc − rmin for the most efficient angle rule, with L= 20. Each dot corresponds to one choice of k (k = 1, 2, 5, 10, 25),
and the red line is the best-fit straight line. (b) A log-log plot of the number of choices k and the difference 1 − rc for the least
efficient angle rule, with L= 20.

For L= 2, it is easy to see that the pattern is not uniquely determined unless all 4 + 1 = 5 =
4 × 2 − 3 tiles and holes are fixed.

Now, suppose the statement is true for L and consider an (L + 1) × (L + 1) pattern. By the
induction hypothesis, rigidifying the top left L × L sub-pattern requires at least 4L − 3 steps. For
the remaining 2L + 1 tiles and 2L − 1 holes in the bottommost and rightmost layers, note that
the three corner tiles (top right, bottom left and bottom right) have to be rigidified explicitly
as they cannot be implicitly rigidified using any of the angle sum constraints. Also, even after
rigidifying the L × L sub-pattern and the three corner tiles, one can see that the hole adjacent to
the bottom right corner tile is still not uniquely determined, and hence, at least one more step
is needed. Therefore, rigidifying any (L + 1) × (L + 1) pattern requires at least 4L − 3 + 3 + 1 =
4L + 1 = 4(L + 1) − 3 steps, and an explicit example of a rigid pattern with 4(L + 1) − 3 steps can
be constructed as shown in figure 8b. This completes the proof. �

Consequently, the theoretical lower bound for rc is

rmin(L) = 4L − 3
2L2 − 2L + 1

. (3.2)

In particular, limL→∞ rmin(L) = 0. As shown in the log-log plot for L= 20 in figure 9a, log k and
log(rc − rmin) form a linear relationship with slope ≈ −0.61. This suggests that rc → rmin as k→
∞, which is close to 0 for large L. In other words, we can significantly accelerate the rigidity
percolation using the most efficient angle rule.

For the least efficient angle rule, note that the four corner tiles are always floppy unless
explicitly rigidified. Therefore, in theory, it takes 2L2 − 2L + 1 steps following the least efficient
angle rule to ensure that the entire pattern is rigid. In other words, the theoretical upper bound
for the critical r is 1. Now, note that because of the presence of the plateau of P, it may not be
suitable to use P= 1/2 to capture the sharp transition. Instead, here, we define rc as the value of
r with P= (1 + plateau value)/2. As shown in the log-log plot for L= 20 in figure 9b, there is a
significant decrease in 1 − rc as k> 1 is used, which again shows the effectiveness of the power
of k choices. The change in the difference is much less significant as we further increase k, which
can be explained by the fact that one can easily delay getting a rigid pattern by not selecting any
corner tile among the k choices as long as k> 1. This suggests that using k= 2 is already sufficient
for deferring the rigidity percolation in practice.
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Figure 10. An illustration of the rigidity propagation rule in the coordinate-based method. Rigidifying the tile and hole in the
upper leftmakes an additional four tiles and holes neighbouring them rigid. Rigidifying the two red tiles on the right sidemakes
the two neighbouring holes rigid. Rigidifying the two opposite red tiles at the bottom left corner makes the hole in between
them rigid.

4. Coordinate-based method
In addition to associating rigidity with whether component (tile or hole) angles are uniquely
determined, one may also allow vertex coordinates to be determined. Here, we assume that
all tiles are parallelograms. If the vertex coordinates of a component are uniquely determined,
the component is considered to be rigid. Rigidity spreads throughout the pattern faster in this
formulation because of the extra information the coordinates provide.

More specifically, rigidity in the kirigami pattern will propagate via a local rule analogous
to the angle sum rule in the angle-based method. If a component X has three vertices which
share coordinates with vertices of some rigid components, then component X becomes uniquely
determined (figure 10). This is because knowing the coordinates of three vertices uniquely
determines the location of the last one if the tile or hole is a parallelogram as we assume.

We simulate the coordinate-based method again by selecting one tile (unlike in the angle-based
method, we only select tiles) per round to explicitly rigidify. Tiles that were previously explicitly
rigidified are not eligible to be sampled, but tiles that are considered rigid only from the local rule
propagation are eligible. To implement explosive percolation, we again adopt both the stochastic
sampling of k candidate tiles and a deterministic selection rule to determine which to rigidify.
Two selection rules are considered:

(1) Most efficient coordinate rule: Among the k choices of tiles, we choose the one for which
fixing the vertex coordinates of it gives the maximum total rigid tile and hole count.

(2) Least efficient coordinate rule: Among the k choices of tiles, we choose the one for which
fixing the vertex coordinates of it gives the minimum total rigid tile and hole count.

Note that there are in total L2 tiles in an L × L pattern, and hence, the total number of steps is L2.
Again, we consider L= 5, 10, 15, 20 and different choices of k, and perform 200 simulations for

each pair (L, k). Similar to the angle-based method, the most efficient coordinate rule significantly
accelerates the rigidity percolation, with a sharp transition at around r= 0.36, 0.23, 0.20, 0.16
for L= 5, 10, 15, 20, respectively (figure 11a), while the least efficient coordinate rule pushes the
percolation back to around r= 1 (figure 11b). We also consider the normalized total rigid tile and
hole count for each simulation. For the most efficient rule, it can be observed in figure 12a that the
increase in N/Nmax is even sharper than that in the angle-based method. By contrast, for the least
efficient rule, we can see in figure 12b that the delaying effect here is not as significant as that in
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Figure 11. Explosive rigidity percolation achieved using the coordinate-based method. (a) By using the power of k choices and
themost efficient coordinate rule, we can accelerate the rigidity percolation, with a sharp transition in the probability of getting
a rigid pattern P from 0 to 1 at around r = 0.36, 0.23, 0.20, 0.16 for L= 5, 10, 15, 20, respectively. (b) By using the power of k
choices and the least efficient coordinate rule, we can delay the rigidity percolation, with a sharp transition in the P from 0 to 1
at around r = 1. Here, r is the percentage of tiles randomly made rigid.

the angle-based method. The reason is that with the local rule in the coordinate-based method,
more tiles and holes are implicitly rigidified in every step.

To quantitatively analyse the results, we first establish the following deterministic result:

Proposition 4.1. The minimum number of steps needed for rigidifying an L × L pattern (where L≥ 2)
in the coordinate-based method is 2L if L is even and 2L − 1 if L is odd.

Proof. We prove the statement by induction using a similar argument as in proposition 3.1.
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Figure 12. The normalized total rigid tile and hole count for the coordinate-basedmethod, where N is the total rigid count and
Nmax = L2 + (L − 1)2 = 2L2 − 2L + 1 is the total number of tiles and holes in an L × L pattern. (a) The results obtained
using the most efficient coordinate rule for all 200 simulations for each L, where each curve represents one simulation. (b) The
results obtained using the least efficient coordinate rule for all 200 simulations for each L.

For L= 2, 3, note that the four corner tiles in an L × L pattern have to be rigidified explicitly as
they cannot be implicitly rigidified using the local rule. Therefore, we need at least four steps. This
shows that the statement is true for L= 2. For L= 3, note that the central tile is still not rigid, and
hence, we need at least one more step, i.e. 5 = 2 × 3 − 1 steps. It is easy to check that rigidifying
the four corner tiles and the central tile indeed gives a rigid pattern. Hence, the statement is also
true for L= 3.

Now, suppose the statement is true for L and consider an (L + 2) × (L + 2) pattern. By the
induction hypothesis, rigidifying the central L × L sub-pattern requires at least 2L steps (if L is
even) or 2L − 1 steps (if L is odd). For the remaining tiles and holes at the boundary layers, again
we note that the four corner tiles have to be rigidified explicitly. Therefore, rigidifying that any
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(a)

(b)

Figure 13. Explicit examples of achieving a rigid pattern in the coordinate-basedmethod using theminimumnumber of steps.
(a) A 4 × 4 patternwhere the 2 × 4= 8 red tiles in (i) are explicitly rigidified. As indicated by the blue arrows, the rigidity will
propagate via the local rules, yielding a rigid pattern. (b) A 5 × 5 patternwhere the 2 × 5 − 1= 9 red tiles in (i) are explicitly
rigidified. As indicated by the blue arrows, the rigidity will propagate via the local rules, yielding a rigid pattern.

(L + 2) × (L + 2) pattern requires at least 2L + 4 = 2(L + 2) steps (if L is even) or 2L − 1 + 4 = 2L +
3 = 2(L + 2) − 1 steps (if L is odd), and explicit examples can be constructed as shown in figure 13
by rigidifying the two tile diagonals. This completes the proof.

�

Therefore, the theoretical lower bound for rc is

rmin(L) =
{

(2L − 1)/L2 if L is odd,
(2L)/L2 = 2/L if L is even.

(4.1)

In particular, limL→∞ rmin(L) = 0. As for the theoretical upper bound, we have rmax = 1 as the
corner tiles are always floppy unless explicitly rigidified.

For the most efficient coordinate rule, we define rc as the critical r with P= 1/2. As shown in
the log-log plot for L= 20 in figure 14a, log k and log(rc − rmin) form a linear relationship with
slopes ≈ −0.74, which suggests that rc → rmin as k→ ∞, and hence, the most efficient coordinate
rule can effectively accelerate the rigidity percolation. For the least efficient coordinate rule, we
follow our approach in the analysis of the angle-based method and define rc as the value of r
with P= (1 + plateau value)/2. From the log-log plot in figure 14b, we can again see a significant
decrease in 1 − rc as k> 1 is used, which implies that the power of k choices can effectively defer
the rigidity percolation.
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Figure 14. Analyses of different selection rules for the coordinate-based method. (a) A log-log plot of the number of choices
k and the difference rc − rmin for the most efficient coordinate rule, with L= 20. Each dot corresponds to one choice of k
(k = 1, 2, 5, 10, 25), and the red line is the best-fit straight line. (b) A log-log plot of the number of choices k and the difference
1 − rc for the least efficient coordinate rule, with L= 20.
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Figure 15. The probability of getting a nearly rigid pattern with up to four floppy components using the least efficient rule.
(a) The angle-based method. (b) The coordinate-based method.

5. Rigidity of the kirigami pattern with a few components ignored
As shown in the aforementioned results, the least efficient rule can significantly delay the
occurrence of the sharp transition in the probability of getting a rigid pattern for both the angle-
based method and the coordinate-based method. It is noteworthy that in both methods, the
kirigami structures are never fully rigid until all the four corner tiles are explicitly rigidified.
However, one may consider the floppiness of the corner tiles as an exception and want to focus
on the overall rigidity of the structures with a few components ignored. Here, we allow up to
four components to be floppy for a pattern to be counted as ‘nearly rigid’ and recompute the
probability of getting a nearly rigid pattern P′ in our previously shown simulations using the
least efficient rule. As shown in figure 15, the trends of P′ look very different from the trends of P

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 M

ay
 2

02
3 



17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220798

..........................................................

in figures 6b and 11b. For instance, for L= 20, there is a transition in P′ from 0 to 0.8 at about r= 0.4
for the angle-based method, which is much sharper than the transition in P from 0 to 0.2. Similarly,
there is a transition in P′ from 0 to 0.6 at about r= 0.2 for the coordinate-based method, which is
much sharper than the corresponding transition in P from 0 to about 0.05. This suggests that a
large number of patterns are actually rigid except for a few components. The transitions match
the explosive jump in the normalized total rigid tile and hole count we observed in figures 7b and
12b.

6. Discussion
In this work, we have shown how explosive rigidity percolation in kirigami can be achieved by
changing either the tile connectivity or the rigidity of individual components. Specifically, by
using the power of k choices and simple selection rules associated with the choice of connection
between tiles, changing internal angles or vertex coordinates, we can significantly accelerate
or delay the occurrence of the rigidity percolation transition in kirigami. Our methods can be
naturally applied for the design of kirigami with connection defects and mechanically constrained
kirigami structures with floppy components. More broadly, our shift in perspective from a purely
deterministic or stochastic approach to a hybrid approach may be useful for the design of a wider
class of mechanical metamaterials.

As we have seen, the form of the explosive rigidity percolation is intimately connected to the
presence of corners of the quad kirigami patterns. Natural next steps include the study of rigidity
percolation in kirigami structures without topological corners, such as patterns created on a disk
or an annulus, for which the discrepancy between the transition in P and that in P′ might be much
smaller. In a different direction, just as deterministic and stochastic controls of rigidity have also
been considered separately in both origami patterns [26] and prismatic assemblies [27], it would
be natural to extend the current study to analyze and control explosive percolation behaviours in
these systems as well.
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