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Abstract. We propose and study a nonlocal conservation law modelling traf-
fic flow in the existence of inter-vehicle communication. It is assumed that the
nonlocal information travels at a finite speed and the model involves a space-
time nonlocal integral of weighted traffic density. The well-posedness of the
model is established under suitable conditions on the model parameters and by

a suitably-defined initial condition. In a special case where the weight kernel
in the nonlocal integral is an exponential function, the nonlocal model can be

reformulated as a 2 × 2 hyperbolic system with relaxation. With the help of
this relaxation representation, we show that the Lighthill-Whitham-Richards
model is recovered in the equilibrium approximation limit.

1. Introduction.

1.1. The nonlocal space-time traffic flow model. We consider the following
nonlocal conservation law modeling traffic flow

∂tρ(t, x) + ∂x(ρ(t, x)v(q(t, x))) = 0, x ∈ R, t > 0, (1.1)

where q(t, x) =

∫ ∞

0

ρ(t− γs, x+ s)w(s) ds. (1.2)

Here, the quantity ρ(t, x) ∈ [0, 1] represents the traffic density, where ρ = 0 indicates
an empty road ahead and ρ = 1 models bumper-to-bumper traffic jam. The nonlocal
quantity q(t, x) is a weighted average of ρ(t∗, x∗) along the space-time path

t∗ = t− γs, x∗ = x+ s, for s ∈ [0,∞),

with an averaging kernel w = w(s). The vehicle velocity v = v(q(t, x)) depends on
the nonlocal traffic density q(t, x) through a decreasing function v(·). The model
(1.1)-(1.2) is the evolution associated to a past-time condition ρ(t, x) given on the
half plane t ≤ 0.
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1.2. Background and motivation. The model (1.1)-(1.2) takes inspiration from
the classical Lighthill-Whitham-Richards (LWR) model [35, 36]

∂tρ(t, x) + ∂x(ρ(t, x)v(ρ(t, x))) = 0, x ∈ R, t > 0, (1.3)

in which the vehicle velocity v = v(ρ(t, x)) depends only on the local traffic density
ρ(t, x). The LWR model (1.3) is a scalar conservation law with the flux function
f(ρ)

.
= ρv(ρ). In the instance of inter-vehicle communication [18], the flux may have

a nonlocal dependence on traffic density in order to capture each vehicle’s reaction to
downstream traffic conditions. It is useful to incorporate time delays of this traffic
density information in the distance [40, 31]. In (1.1)-(1.2), we incorporate both
nonlocal fluxes and time delays via velocities that depend on a weighted space-time
average of the traffic density, assuming that the traffic density information travels
at a constant speed γ−1.

If the choice of rescaled weights wε(s) = ε−1w(s/ε) is made, then formally the
equations (1.1)-(1.2) converge to the local equation (1.3) as ε→ 0. The main goal of
this paper is to demonstrate this in a rigorous manner via convergence of solutions.

There has recently been much research interest in nonlocal effects in phenomena
described by conversation laws; there is a wide variety of applications but a dearth
of analytical understanding. Some application areas from which nonlocal conser-
vation laws arise are traffic flows [34, 33, 8, 30, 29, 10, 9, 11], sedimentation [1],
pedestrian traffic [16, 5], material flow on conveyor belts [27, 38], and the numerical
approximation of local conservation laws [21, 20, 19, 23].

For several traffic flow models, the nonlocal mechanism is introduced in the flux
term. One such model that recovers the LWRmodel (1.3) when the effect is localized
was proposed in [2, 26]:

∂tρ(t, x) + ∂x(ρ(t, x)v(q(t, x))) = 0, x ∈ R, t > 0, (1.4)

where q(t, x) =

∫ ∞

0

ρ(t, x+ s)w(s) ds. (1.5)

Various analytical aspects of this model have been investigated, including the ex-
istence and uniqueness of solutions [2, 26, 4], existence and stability of traveling
wave solutions [37, 39], development of numerical schemes [26, 6, 25], and stability
analysis of the model in the case where the domain (road) is a closed ring [28].
Convergence of solutions of (1.4)-(1.5) to its local limit (which is the LWR model
(1.3)) was established in [4, 3] by way of an a priori BV estimate and an entropy
estimate, both of which were obtained via reformulation of the nonlocal model as
a 2× 2 relaxation system in the case of exponential weight kernels. This is not the
only mechanism that has been used to investigate the nonlocal-to-local limit; see
the works of [13, 32, 12, 14, 15, 24].

1.3. Assumptions on the model. We conduct an analogous study of the nonlocal-
to-local limit for the model (1.1)-(1.2) with suitable choices of the functions w, v
and the past-time condition. To fix ideas, we make the following assumptions on
w, v:

Assumption 1. The velocity function v ∈ C2([0, 1]) is strictly decreasing with
v(0) = vmax and v(1) = 0, where vmax > 0 represents the maximum vehicle speed.

Assumption 2. The weight kernel w ∈ C1([0,∞)) is non-negative and satisfies
∫ ∞

0

w(s) ds = 1 and w′(s) ≤ −βw(s) ∀s ≥ 0 (1.6)
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for a constant β > 0.
The average density q is taken along a space-time curve that requires traffic

density data for all past times t ≤ 0. Therefore, the model (1.1)-(1.2) shall be
equipped with a past-time condition on the lower half-plane, i.e.,

ρ(t, x) = ρ−(t, x), (t, x) ∈ (−∞, 0]× R, (1.7)

where ρ− ∈ L∞((−∞, 0]× R) is a given function.

1.4. Main results. Our first main result is the existence of Lipschitz solutions to
the past-time value problem (1.1)-(1.2)-(1.7) with Lipschitz past-time data ρ−.

Theorem 1.1. Suppose that Assumption 1 and Assumption 2 are satisfied and that

γ ≤ γmax
.
= min

{
1

3(vmax + ‖v′‖∞)
,

β

w(0) ‖v′‖∞

}
. (1.8)

Suppose that the past-time data ρ− is a bounded Lipschitz function belonging to the
class XLip,L; see definition (2.2) below. Then the past-time value problem (1.1)-
(1.2)-(1.7) admits a solution ρ that is Lipschitz continuous and satisfies (1.1)-(1.2)-
(1.7) pointwise. Furthermore, the solution ρ satisfies the uniform bounds

ρmin ≤ ρ(t, x) ≤ ρmax, (t, x) ∈ [0,∞)× R, (1.9)

where ρmin and ρmax are defined in (2.4)-(2.5) below and depend only on γ, v, w
and ρ−.

Formally, as the time-delay parameter γ approaches zero, the system (1.1)-(1.2)
approaches the nonlocal-in-space system (1.4)-(1.5). This is also true in a qualitative
sense; each of the key estimates for (1.1)-(1.2) remain valid as γ → 0, as the
bounding constants neither vanish nor blow up. Analogous statements of all of our
results hold for (1.4)-(1.5), see [4], and can be formally recovered from our results
by taking γ → 0. However, quantitatively stronger results hold for (1.4)-(1.5).
For example, the main estimates in Proposition 3.1 and Theorem 1.3 concern L1

estimates in space and time, whereas the analogous results for (1.4)-(1.5) hold for
L1 in space and C0 in time; see again [4].

The proof of Theorem 1.1 makes up Section 2. We use a fixed point argument
combined with the method of characteristics, which is heavily inspired by the proof
of [4] for the existence of solutions to the nonlocal-in-space model.

In certain modelling applications, it might only be possible to gather the traffic
data at a certain initial time. In such a case, a natural choice of past-time data via
the following extension of initial data:

ρ−(t, x) = ρ0(x), (t, x) ∈ (−∞, 0]× R, (1.10)

for a given function ρ0 : R → R. We can then treat (1.1)-(1.2)-(1.7) as an initial-
value problem, since the quantity q depends only on t ∈ (0,∞). To be precise, with
(1.10), the equation (1.2) becomes

q(t, x) =

∫ ∞

0

ρ0

(
x+

t

γ
+ s
)
w
(
s+

t

γ

)
ds+

∫ t
γ

0

ρ(t− γs, x+ s)w(s)ds. (1.11)

Under this consideration, the equations (1.1)-(1.2)-(1.7) where the past-time data
is given by the equation (1.10) are equivalent to the Cauchy problem (1.1)-(1.11)
with the initial condition ρ(0, x) = ρ0(x).
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For the particular choice (1.10) of past-time data, we establish the well-posedness
of the Cauchy problem in the setting of weak solutions, which is our second main
result.

Theorem 1.2. Suppose that Assumption 1, Assumption 2 and (1.8) are satisfied,
and let ρ0(x) be a bounded function with finite total variation belonging to the class
X ; see (3.1) below. Then there exists a unique ρ ∈ L∞([0,∞)×R) satisfying (1.9)
that is a weak solution to (1.1)-(1.11) with initial condition ρ(0, x) = ρ0(x); in other
words, ρ satisfies

∫ ∞

0

∫

R

ρ∂tϕ+ ρv(q)∂xϕ dxdt+

∫

R

ρ0(x)ϕ(0, x)dx = 0 (1.12)

for all ϕ ∈ C1
c([0,∞)× R) with q defined by (1.11).

Additionally, for any T > 0 there exists a constant C = C(γ, v, w, T ) such that
the following holds: Let ρi0(x), i = 1, 2, belong to X with ρ10 − ρ20 ∈ L1(R), and
let (ρi, qi) denote the solution pairs associated to (1.1)-(1.11) with initial condition
ρi(0, x) = ρi0(x). Then

∫ T

0

∫

R

|ρ1(t, x)− ρ2(t, x)|dxdt ≤ C(1 + TV(ρ10) + TV(ρ20))

∫

R

|ρ10(x)− ρ20(x)|dx.

(1.13)

The key tool used to prove Theorem 1.2 is the L1-stability of Lipschitz solutions;
once that is established in Proposition 3.1, the existence and uniqueness of weak
solutions follows by using Theorem 1.1 and an approximation argument.

With the well-posedness of the problem (1.1)-(1.11) in hand, we analyze the
nonlocal-to-local limit. This limit is realized in the following way: consider the
rescaled kernels wε(s) = ε−1w(s/ε). Taking ε → 0, the kernel wε converges to a
Dirac delta function, and so – formally – solutions of the nonlocal model (1.1)-(1.11)
converge to the entropy admissible solution of the local model (1.3). We make the
choice of exponential kernel function for w, defined as

w(s) = e−s, wε(s) = ε−1w(s/ε) = ε−1e−s/ε, s ∈ [0,∞). (1.14)

With w defined as in (1.14), the model (1.1)-(1.11) (and more generally (1.1)-(1.2))
can be rewritten as a relaxation system:

∂tρ+ ∂x(ρv(q)) = 0, (1.15)

∂tq − γ−1∂xq = (γε)−1(ρ− q). (1.16)

Utilizing the special features of this relaxation system formulation (1.15)-(1.16),
a uniform global BV bound on ρ that is independent of the relaxation parameter
ε can be proved, which serves as a key estimate for the compactness theory and
guarantees the existence of a limit of the solutions.

Theorem 1.3. Suppose that Assumption 1, Assumption 2 and (1.8) are satisfied,
and let ρ0 ∈ X . Assume that the weight kernel is given by the exponential functions
as in (1.14). In addition, suppose that the minimum density ρmin as defined in (1.9)
is positive, and that the following condition holds for γ and v:

(1− 2γ ‖v′‖∞) min
ρ∈[0,1]

|v′(ρ)| ≥ (1 + γvmax) ‖v
′′‖∞ . (1.17)



3460 QIANG DU, KUANG HUANG, JAMES SCOTT AND WEN SHEN

Then the unique weak solution of (1.1)-(1.11) with initial condition ρ(0, x) = ρ0(x)
satisfies

TV(ρ; [0, T ]× R) ≤ CT (1 + ρ−1
min)TV(ρ0) ∀T > 0, (1.18)

where TV(ρ; [0, T ] × R) represents the total variation of ρ on [0, T ] × R, and the
constant C = C (γ, v) is independent of ε.

The choice (1.14) is the same as the one made in [4] to analyze the nonlocal-to-
local limit for the nonlocal-in-space model (1.4)-(1.5). Our methods closely follow
theirs, but the relaxation system (1.15)-(1.16) is a genuine system of conservation
laws in the original (t, x)-coordinate system, and we additionally take this into
account. We remark that, in the case of γ = 0, the condition (1.8) holds whenever
w′(s) ≤ 0 ∀s ∈ [0,+∞), and (1.17) becomes minρ∈[0,1] |v

′(ρ)| ≥ ‖v′′‖∞. These
conditions on the functions w, v are the same as the ones proposed in [4] for the
nonlocal-in-space model (1.4)-(1.5).

Finally, we show that any limit solution of the space-time nonlocal model (1.1)-
(1.11) when ε→ 0 is the unique weak entropy solution of (1.3).

Theorem 1.4. Under the same assumptions as in Theorem 1.3, let ρε be the unique
weak solution of (1.1)-(1.11) with initial condition ρε(0, x) = ρ0(x) as in Theo-
rem 1.2. Then the solution ρε converges to the unique entropy solution of (1.3) in
L1
loc([0,∞)× R) as ε→ 0.

1.5. Organization of the paper. This paper is organized as follows. First, we
establish the existence of Lipschitz solutions from Lipschitz past-time data in Sec-
tion 2 (Theorem 1.1). In Section 3 we establish the L1 stability estimate for Lip-
schitz solutions and prove Theorem 1.2. Section 4 is devoted to the uniform BV
bound estimate of solutions based on the model’s relaxation system formulation
(Theorem 1.3), which guarantees the existence of local limit solutions. Section 5
provides the proof of entropy admissibility of the local limit solution and completes
the nonlocal-to-local limit theorem (Theorem 1.4).

2. Existence of Lipschitz solutions. This section is devoted to the proof of
Theorem 1.1.

2.1. Initial and past-time data. To begin, we make precise the conditions on
the past-time data. First, the initial values of ρ and q corresponding to a past-time
condition ρ− are denoted throughout the paper as

ρ0(x)
.
= ρ−(0, x), q0(x)

.
=

∫ ∞

0

ρ−(−γs, x+ s)w(s) ds, x ∈ R. (2.1)

Second, for a given constant L > 0 we introduce the following notation for a class
of functions for past-time data ρ− with ρ0 and q0 given by (2.1) correspondingly.

XLip,L

.
=























ρ− ∈ L
∞((−∞, 0]× R) : inf

(t,x)∈(−∞,0]×R

ρ−(t, x) > 0, sup
(t,x)∈(−∞,0]×R

ρ−(t, x) < 1,

inf
x∈R

ρ0(x)(1 + γv(q0(x))) > 0, sup
x∈R

ρ0(x)(1 + γv(q0(x))) < 1,

sup
(t,x)∈(−∞,0]×R

|(∂x − γ∂t)ρ−(t, x)| ≤ L, sup
x∈R

|∂x(ρ0(x)(1 + γv(q0(x))))| ≤ L























.

(2.2)

Now we define
g(ρ)

.
= ρ(1 + γv(ρ)), ρ ∈ [0, 1]. (2.3)
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Under the Assumption 1, we have g(0) = 0 and g(1) = 1. Moreover, it holds that
g′(ρ) > 0 for ρ ∈ [0, 1] provided γ ‖v′‖∞ < 1. In this case the function g is monotone
and we let g−1 denote the inverse function of g. We define

ρmin
.
= min

{
inf

(t,x)∈(−∞,0]×R

ρ−(t, x), g
−1

(
inf
x∈R

ρ0(x)(1 + γv(q0(x))

)}
, (2.4)

ρmax
.
= max

{
sup

(t,x)∈(−∞,0]×R

ρ−(t, x), g
−1

(
sup
x∈R

ρ0(x)(1 + γv(q0(x))

)}
, (2.5)

where ρ0 and q0 are defined in (2.1). It is clear that 0 < ρmin ≤ ρmax < 1 for any
ρ− ∈ XLip,L.

2.2. Reformulation as a fixed-point problem. The essential idea in the proof
of Theorem 1.1 is to reformulate the model as a fixed point problem and apply the
contraction mapping theorem. We first define the fixed point mapping on a proper
domain with a finite time horizon, and then show it is contractive through a priori
L∞ and Lipschitz estimates. The fixed point solution is shown to be a Lipschitz
solution to the model and it can be extended to all times t > 0.

First let us fix a time horizon [0, T ] where T > 0, and suppose ρmin, ρmax, are
as defined in (2.4)-(2.5). For any 0 ≤ ρa < ρmin and ρmax < ρb ≤ 1, we define the
domain

DT,L,ρa,ρb

.
=




ρ ∈ L∞([0, T ]× R) :

ρa ≤ ρ(t, x) ≤ ρb, (t, x) ∈ [0, T ]× R,

|(∂x − γ∂t)ρ(t, x)| ≤ 3L, (t, x) ∈ (0, T )× R,

ρ(0, x) = ρ0(x), x ∈ R




.

Then we introduce a directional derivative operator

∂y
.
= ∂x − γ∂t,

where the direction is taken along the line integral paths in (1.2), and an auxiliary
variable

z
.
= ρ(1 + γv(q)).

With the above definitions, the past-time value problem (1.1)-(1.2)-(1.7) can be
reformulated as a system to be solved on [0, T ]× R.

q(t, x) =

∫ t/γ

0

ρ(t− γs, x+ s)w(s) ds+

∫ ∞

t/γ

ρ−(t− γs, x+ s)w(s) ds, (2.6)

z(t, x) = ρ(t, x)(1 + γv(q(t, x))), (2.7)

∂tz(t, x) + ∂y

(
v(q(t, x))

1 + γv(q(t, x))
z(t, x)

)
= 0. (2.8)

This representation motivates the following step-by-step definition of a mapping
Γ : DT,L,ρa,ρb

→ L∞([0, T ]× R).

1. With a given ρ− ∈ XLip,L and for any ρ ∈ DT,L,ρa,ρb
, we define q(t, x; ρ, ρ−)

for all (t, x) ∈ [0, T ]× R as in (2.6).
2. We define z(t, x; ρ, ρ−) for all (t, x) ∈ [0, T ] × R as the solution to the linear

Cauchy problem (2.8) with the above q(t, x; ρ, ρ−) and the initial condition

z(0, x; ρ−) = ρ0(x)(1 + γv(q0(x))).
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3. With z(t, x; ρ, ρ−) and q(t, x; ρ, ρ−) defined above, we define ρ̃(t, x; ρ, ρ−) as

ρ̃(t, x; ρ, ρ−) =
z(t, x; ρ, ρ−)

1 + γv(q(t, x; ρ, ρ−))
, (t, x) ∈ [0, T ]× R.

Finally we define the mapping Γ by

Γ[ρ](t, x)
.
= ρ̃(t, x; ρ, ρ−), (t, x) ∈ [0, T ]× R.

The outline of the proof of Theorem 1.1 is to establish the following facts:

• For any ρ ∈ DT,L,ρa,ρb
, Γ[ρ] ∈ DT,L,ρa,ρb

;
• Γ is a contraction mapping on DT,L,ρa,ρb

in the L∞ norm;
• The contraction mapping theorem gives the unique fixed point ρ ∈ DT,L,ρa,ρb

,
i.e. Γ[ρ] = ρ;

• The fixed point solution is Lipschitz and it solves the system (2.6)-(2.7)-(2.8)
for t ∈ [0, T ];

• By continuation, the constructed solution for t ∈ [0, T ] can be extended to
t ∈ [0,∞) and so it solves the past-time value problem (1.1)-(1.2)-(1.7).

We remark here that the map Γ as constructed requires no relation between ρ
and ρ− at t = 0 to hold. However, the condition ρ(0, x) = ρ0(x) is imposed so that
quantities such as q(t, x) are Lipschitz with appropriate constant.

2.3. Proof of Theorem 1.1. The proof consists of six steps. In the proof, we omit
the notations ρ and ρ− in q(t, x; ρ, ρ−), z(t, x; ρ, ρ−) and ρ̃(t, x; ρ, ρ−) for simplicity,
but keep in mind that they both depend on ρ and ρ−. In addition, we use the
equation (1.2) for q to simplify the calculation, but keep in mind that the nonlocal
integral for q involves ρ− and its precise form is (2.6).

Step 1 (Characteristics). We rewrite the linear Cauchy problem (2.8) as

∂tz +
v(q)

1 + γv(q)
∂yz = z

−v′(q)

(1 + γv(q))2
∂yq. (2.9)

Given z(0, x) for x ∈ R and q(t, x) for (t, x) ∈ [0, T ] × R, (2.9) can be solved by
the method of characteristics. For a point (t, x), the characteristic curve is given
by τ 7→ (τ − γξ(τ), ξ(τ)) where ξ(τ) satisfies

dξ(τ)

dτ
=

v(q(τ − γξ(τ), ξ(τ)))

1 + γv(q(τ − γξ(τ), ξ(τ)))
, ξ(t+ γx) = x, τ ∈ R . (2.10)

It is easy to see that by definition of ρmin and ρmax that

0 ≤ ρa ≤ q(t, x) ≤ ρb ≤ 1, (t, x) ∈ [0, T ]× R. (2.11)

This implies

0 ≤
dξ

dτ
(τ) ≤ vmax and

d

dτ
[ξ − γξ(τ)] ≥ 1− γvmax > 0

for all characteristic curves. Therefore, for any given point (t, x) ∈ [0, T ] × R one
can trace the characteristic curve back to reach a unique point (0, x′) on the x-axis,
and x′ − t

γ ≤ x′ ≤ x. Integrating the characteristic ODE

d

dτ
z(τ − γξ(τ), ξ(τ))

= z(τ − γξ(τ), ξ(τ))
−v′(q(τ − γξ(τ), ξ(τ)))

(1 + γv(q(τ − γξ(τ), ξ(τ))))2
· ∂yq(τ − γξ(τ), ξ(τ)), (2.12)
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from the unique τ0 satisfying (τ0 − γξ(τ0), ξ(τ0)) = (0, x′) to τ1 = t + γx, one can
obtain the value of z(t, x).

Step 2 (L∞ and directional Lipschitz bounds). We first note that the identity

∂yq(t, x) =

∫ t/γ

0

∂yρ(t− γs, x+ s)w(s) ds+

∫ ∞

t/γ

∂yρ−(t− γs, x+ s)w(s) ds,

(t, x) ∈ [0, T ]× R,

gives
|∂yq(t, x)| ≤ 3L

for all (t, x) ∈ [0, T ]× R. In addition, integration by parts gives

∂yyq(t, x) = −w(0)∂yρ(t, x)−

∫ ∞

0

∂yρ(t− γs, x+ s)w′(s) ds, (2.13)

hence
|∂yyq(t, x)| ≤ 6w(0)L

for all (t, x) ∈ [0, T ]× R.
To give a L∞ bound on ρ̃, we note that

g(ρa) < g(ρmin) ≤ z(0, x) ≤ g(ρmax) < g(ρb), x ∈ R.

By integrating (2.12) and using the uniform bound
∥∥∥∥

−v′(q)

(1 + γv(q))2
∂yq

∥∥∥∥
∞

≤ 3 ‖v′‖∞ L,

we obtain that

g(ρa) ≤ z(t, x) ≤ g(ρb), (t, x) ∈ [0, T ]× R,

when T is sufficiently small. This together with (2.11) gives

ρa ≤ ρ̃(t, x) ≤ ρb, (t, x) ∈ [0, T ]× R. (2.14)

Now let us give a bound on ∂yρ̃. Taking the directional derivative ∂y of the
equation (2.9), we obtain

∂t(∂yz)+
v(q)

1 + γv(q)
∂y(∂yz) = ∂yz

−2v′(q)

(1 + γv(q))2
∂yq

+ z

[
2γ(v′(q))2 − v′′(q)(1 + γv(q))

(1 + γv(q))3
(∂yq)

2 +
−v′(q)

(1 + γv(q))2
∂yyq

]
. (2.15)

At time t = 0, by the equation (2.9) we write

∂yz(0, x) = (1 + γv(q(0, x)))∂xz(0, x) + z(0, x)
γv′(q(0, x))

1 + γv(q(0, x))
∂yq(0, x),

using that ρ− ∈ XLip,L we have

|∂yz(0, x)| ≤ (1 + γvmax + γ ‖v′‖∞)L ≤
4

3
L, x ∈ R.

We integrate the equation (2.15) along the characteristic curves defined in (2.10).
With the uniform bounds∥∥∥∥

−2v′(q)

(1 + γv(q))2
∂yq

∥∥∥∥
∞

≤ 6 ‖v′‖∞ L,

∥∥∥∥z
2γ(v′(q))2 − v′′(q)(1 + γv(q))

(1 + γv(q))3
(∂yq)

2

∥∥∥∥
∞

≤
(
2γ ‖v′‖

2
∞ + ‖v′′‖∞

)
9L2 · g(ρb),
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∥∥∥∥z
−v′(q)

(1 + γv(q))2
∂yyq

∥∥∥∥
∞

≤ 6w(0) ‖v′‖∞ L · g(ρb),

we deduce from a comparison argument that

supx∈R
|∂yz(t, x)| ≤ Z(t), t ∈ [0, T ], (2.16)

where Z(t) is the solution to the linear ODE

Ż = aZ + b, Z(0) =
4

3
L, (2.17)

with constant coefficients given by

a
.
=

6 ‖v′‖∞ L

1− γvmax
, b

.
=

9
(
2γ ‖v′‖

2
∞ + ‖v′′‖∞

)
L2 + 6w(0) ‖v′‖∞ L

1− γvmax
.

By choosing T sufficiently small, we obtain that |∂yz(t, x)| ≤ Z(T ) ≤ 2L for (t, x) ∈
[0, T ]× R. Then the identity

∂yρ̃(t, x)

=
(1 + γv(q(t, x)))∂yz(t, x)− γz(t, x)v′(q(t, x))∂yq(t, x)

(1 + γv(q(t, x)))2
, (t, x) ∈ [0, T ]× R,

implies that

|∂yρ̃(t, x)| ≤ 2L+ 3γ ‖v′‖∞ L ≤ 3L, (t, x) ∈ [0, T ]× R. (2.18)

The equality ρ̃(0, x) = ρ0(x) is clear from the definition. Using the obtained
L∞ and directional Lipschitz bounds (2.14)-(2.18), we conclude that there exist
L, T > 0, depending only on γ, v, L0, ρmin, ρmax, such that Γ maps DT,L,ρa,ρb

to
itself.

Step 3 (Contraction). For any ρ1, ρ2 ∈ DT,L,ρa,ρb
, and any (t, x) ∈ [0, T ]×R, we

denote by
{
t1(τ) = τ − γξ1(τ)

x1(τ) = ξ1(τ)
and

{
t2(τ) = τ − γξ2(τ)

x2(τ) = ξ2(τ)
,

the two characteristic curves satisfying

dξi(τ)

dτ
=

v(qi(τ − γξi(τ), ξi(τ)))

1 + γv(qi(τ − γξi(τ), ξi(τ)))
, ξi(t+ γx) = x, i = 1, 2.

We have

−
d|ξ1(τ)− ξ2(τ)|

dτ
≤ ‖v′‖∞ |q1(τ − γξ1(τ), ξ1(τ))− q2(τ − γξ2(τ), ξ2(τ))| ,

≤ ‖v′‖∞
(
‖∂yq1‖∞ |ξ1(τ)− ξ2(τ)|+ ‖q1 − q2‖∞

)
,

≤ ‖v′‖∞ (3L|ξ1(τ)− ξ2(τ)|+ ‖q1 − q2‖∞) .

Using Grönwall’s inequality backward in time, we obtain

|ξ1(τ)− ξ2(τ)| ≤ C0T ‖q1 − q2‖∞ , 0 ≤ t1(τ), t2(τ) ≤ t, (2.19)

with the constant C0 = C0(L, v) > 0.
Note that z1 and z2 can be solved from

∂tzi +
v(qi)

1 + γv(qi)
∂yzi = zi

−v′(qi)

(1 + γv(qi))2
∂yqi, i = 1, 2,
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along the characteristic curves (ti(τ), xi(τ)), i = 1, 2 with the same initial condition.
Using again Grönwall’s inequality and noticing (2.19), we obtain

‖z1 − z2‖∞ ≤ C1T ‖q1 − q2‖∞ ,

with the constant C1 = C1

(
L, γ, v,

∥∥∂2yq1
∥∥
∞
,
∥∥∂2yq2

∥∥
∞

)
> 0.

We have

ρ̃1(t, x)− ρ̃2(t, x)

=
z1(t, x)(1 + γv(q2(t, x)))− z2(t, x)(1 + γv(q1(t, x)))

(1 + γv(q1(t, x)))(1 + γv(q2(t, x)))
, (t, x) ∈ [0, T ]× R,

which implies

‖ρ̃1 − ρ̃2‖∞ ≤ γ ‖v′‖∞ ‖q1 − q2‖∞ + ‖z1 − z2‖∞ .

We also have

q1(t, x)− q2(t, x) =

∫ t/γ

0

(ρ1(t− γs, x+ s)− ρ2(t− γs, x+ s))w(s) ds,

which gives

‖q1 − q2‖∞ ≤
w(0)T

γ
‖ρ1 − ρ2‖∞ .

Apply (2.13) to both ∂yyq1 and ∂yyq2, one can get

‖∂yyqi‖∞ ≤ 6w(0)L, i = 1, 2.

Thanks to the above estimates, we finally deduce that

‖Γ[ρ1]− Γ[ρ2]‖∞ = ‖ρ̃1 − ρ̃2‖∞ ≤ C2T ‖ρ1 − ρ2‖∞ ,

with the constant C2 = C2(L, γ, v, w) > 0. Choosing T sufficiently small such that
C2T < 1, Γ is a contraction mapping in the L∞ norm.

By the contraction mapping theorem, there exists T ∗ > 0 such that Γ has a
unique fixed point in DT∗,L,ρa,ρb

. From now on we denote ρ as the unique solution
in DT∗,L,ρa,ρb

that satisfies (1.1)-(1.2)-(1.7) on [0, T ∗] × R. With this definition of
ρ we define z by (2.7).

Step 4 (Uniform L∞ bound). We aim to show that ρ and z satisfy the uniform
bounds

ρmin ≤ ρ(t, x) ≤ ρmax and g(ρmin) ≤ z(t, x) ≤ g(ρmax), (t, x) ∈ [0, T ∗]× R.
(2.20)

We provide a proof for the upper bounds; the lower bounds are obtained in a similar
manner.

We denote

ρm
.
= sup

(t,x)∈(−∞,T∗]×R

ρ(t, x), zm
.
= sup

(t,x)∈[0,T∗]×R

z(t, x).

It is clear that ρmax ≤ ρm ≤ 1 and g(ρmax) ≤ zm ≤ 1.
Let us fix x0 ∈ R and consider the characteristic curve τ 7→ (τ − γξ(τ), ξ(τ)) for

τ ∈ [τ0, τ1] such that

(τ0 − γξ(τ0), ξ(τ0)) = (0, x0), (τ1 − γξ(τ1), ξ(τ1)) = (T ∗, x1),
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where (T ∗, x1) is the intersection of the characteristic curve and the horizontal line
t = T ∗. For any τ ∈ [τ0, τ1], the equation (2.9) gives

d

dτ
z(τ − γξ(τ), ξ(τ)) = z

−v′(q)

(1 + γv(q))2
∂yq

∣∣∣∣
(τ−γξ(τ),ξ(τ))

.

Integrating by parts gives

∂yq(τ − γξ(τ), ξ(τ))

=

∫ ∞

0

∂yρ(τ − γξ(τ)− γs, ξ(τ) + s)w(s) ds

= −w(0)ρ(τ − γξ(τ), ξ(τ))−

∫ ∞

0

ρ(τ − γξ(τ)− γs, ξ(τ) + s)w′(s) ds

= w(0)

[∫ ∞

0

ρ(τ − γξ(τ)− γs, ξ(τ) + s)w̃(s) ds− ρ(τ − γξ(τ), ξ(τ))

]
, (2.21)

where

w̃(s)
.
= −w′(s)/w(0)

is a new weight kernel satisfying
∫ ∞

0

w̃(s) ds = 1 and w̃(s) ≥
β

w(0)
w(s) ≥ γ ‖v′‖∞ w(s) ≥ 0 for s ∈ [0,∞).

Noting that

v(q) = v(q)− v(ρm) + v(ρm) ≤ ‖v′‖∞ (ρm − q) + v(ρm) ∀q ∈ [0, ρm],

we compute

z(τ − γξ(τ), ξ(τ))

=ρ(τ − γξ(τ), ξ(τ))(1 + γv(q(τ − γξ(τ), ξ(τ))))

≤ρ(τ − γξ(τ), ξ(τ)) + γρmv(q(τ − γξ(τ), ξ(τ)))

≤ρ(τ − γξ(τ), ξ(τ)) + γρm ‖v′‖∞ (ρm − q(τ − γξ(τ), ξ(τ))) + γρmv(ρm)

≤ρ(τ − γξ(τ), ξ(τ))

+ γ ‖v′‖∞

∫ ∞

0

(ρm − ρ(τ − γξ(τ)− γs, ξ(τ) + s))w(s) ds+ γρmv(ρm)

≤ρ(τ − γξ(τ), ξ(τ)) +

∫ ∞

0

(ρm − ρ(τ − γξ(τ)− γs, ξ(τ) + s))w̃(s) ds+ γρmv(ρm)

=ρ(τ − γξ(τ), ξ(τ))−

∫ ∞

0

ρ(τ − γξ(τ)− γs, ξ(τ) + s)w̃(s) ds+ g(ρm).

It yields that
∫

∞

0

ρ(τ − γξ(τ)− γs, ξ(τ) + s)w̃(s) ds− ρ(τ − γξ(τ), ξ(τ)) ≤ g(ρm)− z(τ − γξ(τ), ξ(τ)).

This inequality combined with (2.21) gives

∂yq(τ − γξ(τ), ξ(τ)) ≤ w(0)(g(ρm)− z(τ − γξ(τ), ξ(τ))).

Furthermore, we have

0 ≤ z
−v′(q)

(1 + γv(q))2

∣∣∣∣
(τ−γξ(τ),ξ(τ))

≤ ‖v′‖∞ ,
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and hence

d

dτ
z(τ − γξ(τ), ξ(τ)) ≤ C(g(ρm)− z(τ − γξ(τ), ξ(τ))),

where C = ‖v′‖∞ w(0). Integrating the above inequality with the initial condition
z(τ0 − γξ(τ0), ξ(τ0)) = z(0, x0), we obtain that

z(τ − γξ(τ), ξ(τ)) ≤eC(τ0−τ)z(0, x0) + (1− eC(τ0−τ))g(ρm)

≤eC(τ0−τ)g(ρmax) + (1− eC(τ0−τ))g(ρm), τ ∈ [τ0, τ1].

Noting that τ1 − τ0 ≤ T∗

1−γvmax

and g(ρmax) ≤ g(ρm), we have

z(τ − γξ(τ), ξ(τ)) ≤ C1g(ρmax) + (1− C1)g(ρm), τ ∈ [τ0, τ1], (2.22)

where C1 = exp(−‖v′‖∞w(0)T∗

1−γvmax

) ∈ (0, 1). Now we let x0 run over R; the respective

characteristic curves fill the domain [0, T ∗]×R and so (2.22) is uniform to the choice
of x0, hence we have

zm ≤ C1g(ρmax) + (1− C1)g(ρm). (2.23)

Now suppose ρm > ρmax. Then we have

sup
(t,x)∈[0,T∗]×R

q(t, x) ≤ ρm = sup
(t,x)∈[0,T∗]×R

ρ(t, x),

and since v is decreasing we have for any (t, x) ∈ [0, T ∗]× R

ρ(t, x) =
z(t, x)

1 + γv(q(t, x))
≤

zm
1 + γv(ρm)

.

Therefore ρm ≤ zm
1+γv(ρm) , and so by definition of g and by (2.23)

g(ρm) ≤ zm ≤ C1g(ρmax) + (1− C1)g(ρm) =⇒ g(ρm) ≤ g(ρmax),

which contradicts ρm > ρmax. Therefore we deduce that ρm ≤ ρmax. Applying this
in (2.23) gives zm ≤ g(ρmax), and so the upper bounds in (2.20) are proved.

Step 5 (Final Lipschitz estimates). In Step 2, we obtain bounds on ∂yq and
∂yz. Using the equation (2.8), a bound on ∂tz can also be obtained and we conclude
that z is Lipschitz continuous on [0, T ]× R. To show the Lipschitz continuity of ρ,
it suffices to show that of q since ρ = z

1+γv(q) . Given the established bound on ∂yq,

we only need to show the existence of ∂xq and give a bound on it.
Let us denote

K0
.
= sup

(t,x)∈(−∞,0]×R

|∂xρ−(t, x)|, K1
.
= sup

(t,x)∈[0,T ]×R

|∂xz(t, x)|,

and

K(t, r)
.
= sup

|x0−x1|=r

|q(t, x0)− q(t, x1)|

r
∀r > 0, t ∈ [0, T ].

For any t ∈ [0, T ] and x0 6= x1, we have:

|q(t, x0)− q(t, x1)|

≤

∫ ∞

0

|ρ(t− γs, x0 + s)− ρ(t− γs, x1 + s)|w(s) ds

≤

∫ t/γ

0

|ρ(t− γs, x0 + s)− ρ(t− γs, x1 + s)|w(s) ds+K0|x0 − x1|.
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The equation ρ = z
1+γv(q) gives

|ρ(t− γs, x0 + s)− ρ(t− γs, x1 + s)|

≤|z(t− γs, x0 + s)− z(t− γs, x1 + s)|

+ γ ‖v′‖∞ |q(t− γs, x0 + s)− q(t− γs, x1 + s)|

≤K1|x0 − x1|+ γ ‖v′‖∞K(t− γs, |x0 − x1|)|x0 − x1|.

Therefore we have

K(t, r) ≤ K0 +K1 + γ ‖v′‖∞

∫ t/γ

0

K(t− γs, r)w(s) ds

= K0 +K1 + ‖v′‖∞

∫ t

0

K(t̃, r)w((t− t̃)/γ) dt̃,

for any t ∈ [0, T ] and r > 0.
Using Grönwall’s inequality, we deduce that there exists a constant K2 > 0 only

depending on K0,K1, γ, v, w such that K(t, r) ≤ K2 for any t ∈ [0, T ] and r > 0,
which gives the Lipschitz bound |∂xq(t, x)| ≤ K2 for (t, x) ∈ [0, T ]× R.

Step 6 (Continuation). We iteratively construct the solution on time intervals
[t0, t1], [t1, t2], [t2, t3], · · · from t0 = 0. At time tk (k = 0, 1, 2, · · · ), the past-time
data is given by ρ(t, x) for (t, x) ∈ [0, tk]× R and ρ−(t, x) for (t, x) ∈ (−∞, 0]× R.
Thanks to the L∞ and Lipschitz bounds obtained in Step 2, Step 4, and Step 5,
the constructed solution on the time interval [0, tk] satisfies

ρmin ≤ ρ(t, x) ≤ ρmax, g(ρmin) ≤ z(t, x) ≤ g(ρmax),

and

ρ is Lipschitz with ‖ρ‖Lip ≤ C(ρ−, γ, v, w)Z(tk),

where Z(t) is the solution of the ODE (2.17). The above estimates guarantee
that tk → ∞ as k → ∞ and the solution can be extended to the whole domain
(t, x) ∈ [0,∞)× R.

2.4. Discussion. We now make some remarks on the model assumptions and the
proof of Theorem 1.1.

Remark 2.1. The Assumption 2 requires that the weight kernel w = w(s) has
an exponential decay. Such an assumption was also used in [13] to establish the
nonlocal-to-local limit of the nonlocal-in-space model (1.4)-(1.5). In Theorem 1.1,
it is assumed that γ ‖v′‖∞ w(0) ≤ β, which together with (1.6) gives

w′(s) ≤ −γ ‖v′‖∞ w(0)w(s). (2.24)

It is worth noting that if w = w(s) satisfies the condition (2.24), the rescaled kernel
wε(s) = w(s/ε)/ε also satisfies the condition with the same parameters γ and ‖v′‖∞.
For the exponential kernel w = wε(s) defined in (1.14), the Assumption 2 is satisfied
for all ε > 0 whenever γ‖v′‖∞ < 1, which is consistent with the sub-characteristic
condition under the relaxation system formulation (1.15)-(1.16).

Remark 2.2. Let us define the function space
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X̃L
.
=





ρ0 ∈ L∞(R) :

inf
x∈R

ρ0(x) > 0, sup
x∈R

ρ0(x) < 1,

inf
x∈R

ρ0(x)(1 + γv(q0(x))) > 0, sup
x∈R

ρ0(x)(1 + γv(q0(x))) < 1,

|∂xρ0(x)| ≤ L, sup
x∈R

|∂x(ρ0(x)(1 + γv(q0(x))))| ≤ L





,

(2.25)

where the velocity q0 is written as q0(x) =
∫∞

0
ρ0(x+s)w(s) ds. Then for ρ− defined

via the extension (1.10) for a given function ρ0,

ρ− ∈ XLip,L ⇔ ρ0 ∈ X̃L. (2.26)

By the form of q we can see that even if 0 ≤ ρ0(x) ≤ 1 for all x ∈ R without
an additional condition that the constraint 0 ≤ ρ0(x)(1 + γv(q0(x))) ≤ 1 can be
violated at some point x ∈ R where ρ0(x) = 1 and q0(x) < 1. A sufficient condition

on ρ0 alone to ensure ρ0 ∈ X̃L is

0 < inf
x∈R

ρ0(x), ρ0(x) ≤
1

1 + γvmax
, |∂xρ0(x)| ≤

L

1 + γ(vmax + ‖v′‖∞)
.

In this case, the lower and upper bounds for the solutions given in Theorem 1.1
become

inf
x∈R

ρ0(x) ≤ ρ(t, x) ≤ (1 + γvmax) sup
x∈R

ρ0(x), (t, x) ∈ (0,∞)× R.

These sufficient conditions and solution bounds may not be the best possible results,
we will leave possible improvements for the future research.

3. Existence, uniqueness and stability of weak solutions. For the remain-
der of the paper we concern ourselves with a class of past-time data extended
vertically from given initial data. That is, we assume that the past-time data
ρ− ∈ L∞((−∞, 0] × R) satisfies (1.10) for a given ρ0 ∈ X , where X denotes the
class

X
.
=




ρ0 ∈ L∞(R) :

0 ≤ ρ0(x) ≤ 1,

0 ≤ ρ0(x)(1 + γv(q0(x))) ≤ 1,

TV(ρ0) <∞




. (3.1)

With this assumption we establish the L1-stability of Lipschitz solutions, from which
Theorem 1.2 follows.

Proposition 3.1 (L1-stability of Lipschitz solutions). Under Assumption 1, As-
sumption 2, and (1.8), assume that two functions ρi0 ∈ XLi

for i = 0, 1 (that is,
their Lipschitz constants are possibly different). Let ρi(t, x) for i = 0, 1 be Lipschitz
solutions to (1.1)-(1.11) with initial conditions ρi(0, x) = ρi0(x) respectively.

Then for any T > 0 there exists a positive constant C̄ = C̄(v, w, T,TV(ρ00),
TV(ρ10)) such that
∫ T

0

∫

R

(
|ρ1(t, x)− ρ0(t, x)|+ |q1(t, x)− q0(t, x)|

)
dxdt ≤ C̄

∫

R

|ρ10(x)− ρ00(x)|dx .

(3.2)

Proof. Let θ ∈ [0, 1] be a parameter; for each value of θ, define ρθ to be a Lipschitz
solution to (1.1)-(1.11) satisfying 0 ≤ ρθ ≤ 1 with initial data ρθ(0, x) := θρ0(0, x)+
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(1− θ)ρ1(0, x). At least one such solution exists by Theorem 1.1 and Remark 2.2.
Define the first order perturbations for (t, x) ∈ [0,∞)× R:

P θ(t, x)
.
= lim

h→0

ρθ+h(t, x)− ρθ(t, x)

h
, Qθ(t, x)

.
= lim

h→0

qθ+h(t, x)− qθ(t, x)

h
.

Recalling the definition of the quantity zθ = ρθ(1 + γv(qθ)) in (2.7), define its first
order perturbation as

ζθ(t, x)
.
= lim

h→0

zθ+h(t, x)− zθ(t, x)

h
.

Then

ζθ = P θ(1 + γv(qθ)) + γρθv′(qθ)Qθ, (3.3)

and ζθ satisfies the linearized equation

∂tζ
θ + ∂y[V (qθ)ζθ + zθV ′(qθ)Qθ] = 0, (3.4)

where V (q)
.
= v(q)

1+γv(q) .

From (1.11) the integral defining Qθ can be written as

Qθ(t, x) =

∫ ∞

0

P θ(0, x+ t/γ + s)w(s+ t/γ)ds+

∫ t/γ

0

P θ(t− γs, x+ s)w(s) ds .

(3.5)

We also use a consequence of the condition (1.6) on w:

w(s1) ≤ w(s0)e
−β(s1−s0) for 0 ≤ s0 ≤ s1 <∞. (3.6)

Third, we note a variant of Grönwall’s inequality

U ′(t) ≤ u(t) + CU(t) , U(0) = 0 ⇒ U(t) ≤

∫ t

0

eC(t−s)u(s)ds . (3.7)

Step 1. We show that along any finite characteristic segment, the perturbed quan-
tity zθ has bounded total variation. To be precise, define

G(x, t) :=

∫ t
γ

t
3γ

∣∣∂yzθ (t− γξ, x+ ξ)
∣∣ dξ.

We claim that there exists C depending only on v and w such that

sup
x∈R

t∈[0,T ]

G(x, t) ≤MT := TV(ρθ0) · Ce
CT (3.8)

and

sup
t∈[0,T ]

∫

R

G(x, t) dx ≤MT . (3.9)

We will prove only (3.8); (3.9) is obtained using the same procedure. From

∂y(∂tz
θ) = −∂y(V (qθ)∂yz

θ)− ∂y(V
′(qθ)zθ∂yq

θ) ,

we have
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d

dt
[G(x, t)] =

d

dt

[∫ t
γ

t
3γ

∣∣∂yzθ (t− γξ, x+ ξ)
∣∣ dξ
]

=
1

γ
|∂yz

θ(0, x+ t/γ)| −
1

3γ
|∂yz

θ(2t/3, x+ t/3γ)|

+

∫ t
γ

t
3γ

∂t
[
|∂yz

θ(t− γξ, x+ ξ)|
]
dξ

=
( 1
γ
− V (qθ)

)
|∂yz

θ|(0, x+ t/γ) +
(
V (qθ)−

1

3γ

)
|∂yz

θ|(2t/3, x+ t/3γ)

−

∫ t
γ

t
3γ

(
sgn(∂yz

θ)∂y[z
θV ′(qθ)∂yq

θ]
)
(t− γξ, x+ ξ)dξ.

Since γ‖V ‖∞ < 1
3 the second term in the integral can be dropped in the estimate,

and so

d

dt
[G(x, t)] ≤

C(v)

γ
|∂yz

θ(0, x+ t/γ)|

+

∫ t
γ

t
3γ

∣∣∂y[zθV ′(qθ)∂yq
θ]
∣∣(t− γξ, x+ ξ)dξdx.

(3.10)

We need to estimate the last integral on the right-hand side. We use (1.11) to
obtain the identities

∂y[q
θ(t− γξ, x+ ξ)] =

∫ ∞

0

∂xρ
θ(0, x+ t/γ + s)w(s+ t/γ − ξ)ds

+

∫ t/γ

ξ

∂yρ
θ(t− γs, x+ s)w(s− ξ)ds,

∂yy[q
θ(t− γξ, x+ ξ)] = −

∫ ∞

0

∂xρ
θ(0, x+ t/γ + s)w′(s+ t/γ − ξ)ds

− w(0)∂yρ
θ(t− γξ, x+ ξ)

−

∫ t/γ

ξ

∂yρ
θ(t− γs, x+ s)w′(s− ξ)ds,

from which it follows that

∫ t
γ

t
3γ

|∂y[q
θ(t− γξ, x+ ξ)]|dξ ≤ TV(ρθ0) +

∫ t
γ

t
3γ

|∂yρ
θ(t− γξ, x+ ξ)|dξ,

∫ t
γ

t
3γ

|∂yy[q
θ(t− γξ, x+ ξ)]|dξ ≤ w(0)TV(ρθ0) + 2w(0)

∫ t
γ

t
3γ

|∂yρ
θ(t− γξ, x+ ξ)|dξ.

(3.11)

In the same way, we can obtain the bound

sup
ξ∈( t

3γ
, t
γ
)

∥∥∂y[qθ(t− γξ, ·+ ξ)]
∥∥
∞

= sup
ξ∈( t

3γ
, t
γ
)

∥∥∂ξ[qθ(t− γξ, ·+ ξ)]
∥∥
∞

≤ 3w(0).

(3.12)
The estimates (3.11) and (3.12) are applied to majorize the integral on the last line
of (3.10) by
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‖V ′′‖∞‖zθ‖∞ sup
ξ∈( t

3γ
, t
γ
)

∥∥∂yqθ(t− γξ, ·+ ξ)
∥∥
∞

·

∫ t
γ

t
3γ

|∂yq
θ(t− γξ, x+ ξ)|dξ

+ ‖V ′‖∞ sup
ξ∈( t

3γ
, t
γ
)

∥∥∂yqθ(t− γξ, ·+ ξ)
∥∥
∞

·

∫ t
γ

t
3γ

|∂yz
θ(t− γξ, x+ ξ)|dξ

+ ‖V ′‖∞‖zθ‖∞

∫ t
γ

t
3γ

|∂yyq
θ(t− γξ, x+ ξ)|dξ

≤ C(v, w)

[
TV(ρθ0) +

∫ t
γ

t
3γ

|∂yρ
θ(t− γξ, x+ ξ)|dξ +

∫ t
γ

t
3γ

|∂yz
θ(t− γξ, x+ ξ)|dξ

]
.

(3.13)

Now, since z = ρ(1 + γv(q)) we have that (1− γvmax)|∂yρ| ≤ |∂yz| + γ‖v′‖∞|∂yq|,
and so along with (3.11)

∫ t
γ

t
3γ

|∂yρ
θ(t− γξ, x+ ξ)|dξ

≤

∫ t
γ

t
3γ

|∂yz
θ(t− γξ, x+ ξ)|dξ +

γ‖v′‖∞
1− γvmax

∫ t
γ

t
3γ

|∂yq
θ(t− γξ, x+ ξ)|dξ

≤ TV(ρθ0) +

∫ t
γ

t
3γ

|∂yz
θ(t− γξ, x+ ξ)|dξ +

γ‖v′‖∞
1− γvmax

∫ t
γ

t
3γ

|∂yρ
θ(t− γξ, x+ ξ)|dξ.

Since γ‖v′‖∞

1−γvmax

< 1/3 by assumption we can absorb the last term into the left-hand

side of the estimate to get

∫ t
γ

t
3γ

|∂yρ
θ(t− γξ, x+ ξ)|dξ ≤

3

2

(
TV(ρθ0) +

∫ t
γ

t
3γ

|∂yz
θ(t− γξ, x+ ξ)|dξ

)
. (3.14)

Inserting (3.14) into (3.13), the estimate for the total variation of zθ from (3.10) is
now

d

dt
[G(x, t)] ≤

C(v)

γ
|∂yz

θ(0, x+ t/γ)|+ C(v, w)TV(ρθ0) + C(v, w)G(x, t).

Then by (3.7)

G(x, t) ≤ C̄eC̄t

∫ t

0

(
TV(ρθ0) +

1

γ
|∂yz

θ(0, x+ s/γ)|

)
ds

≤ C̄eC̄tTV(ρθ0) + C̄eC̄t

∫ x+t/γ

x

|∂yz
θ(0, ξ)|dξ ≤ C̄eC̄tTV(ρθ0),

where C̄ depends only on v and w. The bound (3.8) follows.

Step 2. We prove the main result. The method is similar to Step 1. Define
E : [0,∞) → R by

E(t) :=

∫ t
γ

t
3γ

∫

R

|ζθ(t− γξ, x+ ξ)|dxdξ =
1

γ

∫ 2t
3

0

∫

R

|ζθ(τ, x)|dxdτ.

We use the linearized equation (3.4) and apply integration by parts to obtain
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d

dt
E(t) =

1

γ

∫

R

|ζθ(0, x+ t/γ)|dx−
1

3γ

∫

R

|ζθ(2t/3, x+ t/3γ)|dx

+

∫ t
γ

t
3γ

∫

R

∂t
[
|ζθ(t− γξ, x+ ξ)|

]
dxdξ

=

∫

R

[( 1
γ
− V (qθ)

)
|ζθ|(0, x+ t/γ) +

(
V (qθ)−

1

3γ

)
|ζθ|(2t/3, x+ t/3γ)

−

∫ t
γ

t
3γ

(
sgn(ζθ)∂y[z

θV ′(qθ)Qθ]
)
(t− γξ, x+ ξ)dξ

]
dx.

Since γ‖V ‖∞ < 1
3 , the second term in the integral can be dropped, and so

d

dt
E(t) ≤ C(v)

(
1

γ
‖ζθ(0, ·)‖1 +

∫

R

∫ t
γ

t
3γ

∣∣∂y[zθV ′(qθ)Qθ]
∣∣(t− γξ, x+ ξ)dξdx

)
.

(3.15)
We need to estimate the last integral on the right-hand side. We use (3.5) and (3.6)
to obtain the estimates
∫ t

γ

t
3γ

∫

R

|Qθ(t− γξ, x+ ξ)|dξ ≤ β−1‖P θ(0, ·)‖1 +

∫ t
γ

t
3γ

∫

R

|P θ(t− γs, x+ s)|dxds,

sup
ξ∈( t

3γ
, t
γ
)

|Qθ(t− γξ, x+ ξ)| ≤ ‖P θ(0, ·)‖1 + w(0)

∫ t
γ

t
3γ

|P θ(t− γs, x+ s)|ds,

∫ t
γ

t
3γ

∫

R

|∂y[Q
θ(t− γξ, x+ ξ)]|dxdξ

=

∫ t
γ

t
3γ

∫

R

|∂ξ[Q
θ(t− γξ, x+ ξ)]|dxdξ

=

∫ t
γ

t
3γ

∫

R

∣∣∣∣
∫ ∞

0

P θ(0, x+ t/γ + s)(−w′(s− ξ + t/γ))ds

+ P θ(t− γξ, x+ ξ)w(0)−

∫ t
γ

ξ

P θ(t− γs, x+ s)w′(s− ξ)ds

∣∣∣∣dxdξ

≤ ‖P θ(0, ·)‖1 + 2w(0)

∫ t
γ

t
3γ

∫

R

|P θ(t− γs, x+ s)|dxds.

(3.16)

Then (3.16), (3.12), (3.8) and (3.9) are applied to majorize the last integral in (3.15)
by

‖V ′′‖∞‖zθ‖∞ sup
ξ∈(t/3γ,t/γ)

∥∥∂yqθ(t− γξ, ·+ ξ)
∥∥
∞

·

∫ t
γ

t
3γ

∫

R

|Qθ(t− γξ, x+ ξ)|dxdξ

+ ‖V ′‖∞‖zθ‖∞

∫ t
γ

t
3γ

∫

R

|∂y[Q
θ(t− γξ, x+ ξ)]|dxdξ

+ ‖V ′‖∞

∫

R

(
sup

ξ∈( t
3γ

, t
γ
)

|Qθ(t− γξ, x+ ξ)|

)∫ t
γ

t
3γ

|∂yz
θ(t− γξ, x+ ξ)|dξdx

(3.17)
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≤ C(v, w,MT )

[
‖P θ(0, ·)‖1 +

∫ t
γ

t
3γ

∫

R

|P θ(t− γs, x+ s)|dxds

]
.

Now, as a consequence of (3.3) we have

(1− γvmax)|P
θ| ≤ |ζθ|+ γ‖v′‖∞|Qθ|, (3.18)

so with (3.16) and the conditions (1.8) on γ and v
∫ t

γ

t
3γ

∫

R

|P θ(t− γξ, x+ ξ)|dxdξ

≤
1

1− γvmax

∫ t
γ

t
3γ

∫

R

|ζθ(t− γξ, x+ ξ)|dxdξ

+
γ‖v′‖∞

1− γvmax

∫ t
γ

t
3γ

∫

R

|Qθ(t− γξ, x+ ξ)|dxdξ

≤ 2E(t) +
1

3β
‖P θ(0, ·)‖1 +

1

3

∫ t
γ

t
3γ

∫

R

|P θ(t− γs, x+ s)|dxds.

Therefore we can absorb the last term into the left-hand side of the estimate to get
∫ t

γ

t
3γ

∫

R

|P θ(t− γξ, x+ ξ)|dxdξ ≤ C(β)
(
E(t) + ‖P θ(0, ·)‖1

)
. (3.19)

Inserting (3.19) into (3.17), the estimate for the derivative of E(t) from (3.15) is
now

d

dt
E(t) ≤ C(v, w, T )

(
γ−1‖P θ(0, ·)‖1 + E(t)

)
;

the bound ‖ζθ(0, ·)‖1 ≤ C(γ, v)‖P θ(0, ·)‖1 is easily seen from (3.3) and (3.5). Ap-
plying Grönwall’s inequality and changing coordinates, we obtain

∫ T

0

∫

R

|ζθ(t, x)|dxdt ≤ C̄(v, w, T )‖P θ(0, ·)‖1. (3.20)

Now, by (3.16)
∫ T

0

∫

R

|Qθ(t, x)|dxdt

≤
γ

β
‖P θ(0, ·)‖1 +

∫ T

0

∫

R

|P θ(t, x)|dxdt

≤
γ

β
‖P θ(0, ·)‖1 + C

∫ T

0

∫

R

|ζθ(t, x)|dxdt+
γ‖v′‖∞

1− γvmax

∫ T

0

∫

R

|Qθ(t, x)|dxdt,

where we used that P θ satisfies (3.18). Since γ‖v′‖∞

1−γvmax

< 1
3 we can absorb the Qθ

term and then apply (3.20) to get
∫ T

0

∫

R

|Qθ(t, x)|dxdt ≤ C̄(v, w, T )‖P θ(0, ·)‖1.

Therefore the estimates for ζθ and Qθ combine using (3.18) to give us the estimate
for P θ: ∫ T

0

∫

R

|P θ(t, x)|dxdt ≤ C̄(v, w, T )‖P θ(0, ·)‖1.
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To conclude the proof, we use the above two inequalities to get:
∫ T

0

∫

R

(
|ρ1(t, x)− ρ0(t, x)|+ |q1(t, x)− q0(t, x)|

)
dxdt

≤

∫ 1

0

∫ T

0

∫

R

(
|P θ(t, x)|+ |Qθ(t, x)|

)
dxdtdθ

≤

∫ 1

0

C̄(T )‖P θ(0, ·)‖1dθ ≤ C̄(T )

∫

R

|ρ1(0, x)− ρ0(0, x)|dx.

Proof of Theorem 1.2. Let ρ0 ∈ X , and let ρn0 , n ∈ N, be a sequence of mollified

functions in X̃Ln
(possibly with Ln → ∞) that converge to ρ0 in L1

loc(R). By virtue
of (3.2) the corresponding solutions ρn ∈ DLn,T,ρmin,ρmax

to (1.1)-(1.11) with initial
condition ρn(0, x) = ρn0 (x) are Cauchy, and hence converge, in L1

loc([0, T ] × R) to
a function ρ. Thus ρ satisfies (1.12), and so is a weak solution. Furthermore,
we note that the weak solutions constructed in this way inherit the same stability
property (3.2), since the bounding constant in that inequality does not depend on
the Lipschitz constant of the solutions, and so uniqueness follows. To complete the
proof, given that ρn is a bounded sequence in L∞([0, T ]×R), and the weak-∗ limits
are unique, by noting the sequence ρn is obtained with initial conditions that are
mollified approximations of ρ0, we can pass through the limits to obtain the bounds
(2.4)-(2.5) for the weak solution ρ.

4. Uniform BV bound and existence of limit solutions. Towards the aim
of proving the convergence of the solutions of (1.1)-(1.11) as the weight kernel w
converges to a Dirac delta function, we consider only the exponential kernels as
defined in (1.14):

w(s) = e−s, wε(s) = ε−1w(s/ε) = ε−1e−s/ε, s ∈ [0,∞).

In this case the nonlocal model (1.1)-(1.11) can be reformulated as the relaxation
system (1.15)-(1.16), which is recalled here:

∂tρ+ ∂x(ρv(q)) = 0,

∂tq − γ−1∂xq = (γε)−1(ρ− q).

The characteristic speeds of the system are

λ1 = −γ−1 < 0, λ2 = v(q) ≥ 0.

Taking ε → 0, we expect the solution of (1.15)-(1.16) to converge to that of its
equilibrium approximation, which is the LWR model (1.3). The characteristic speed
of the limit equation (1.3) is

λ = v(ρ) + ρv′(ρ).

The condition (1.8) plus ρ ≥ ρmin > 0 ensures the strict sub-characteristic con-
dition λ1 < λ < λ2.

4.1. Uniform BV bound.

Proof of Theorem 1.3. Let us first assume ρ0 ∈ C2
c(R). In this case, ρ and q are

Lipschitz continuous and satisfy the reformulated system (1.15)-(1.16) pointwise.
Noting that ρ and 1 + γv(q) stay positive provided ρmin > 0, we construct

u = ln(ρ(1 + γv(q))), h = − ln(1 + γv(q)). (4.1)
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One can easily verify that u and h are Riemann invariants of the system (1.15)-
(1.16) corresponding to the system’s characteristic speeds λ2 = v(q) and λ1 = −γ−1,
respectively. With the new set of variables (u, h), the system (1.15)-(1.16) can be
diagonalized as

∂tu+ v(q(h))∂xu =ε−1Λ(u, h), (4.2)

∂th− γ−1∂xh =− ε−1Λ(u, h), (4.3)

where q(h)
.
= v−1

(
γ−1(e−h − 1)

)
is an increasing function, and

Λ(u, h) = v′(q(h))eh
(
eu+h − q(h)

)
. (4.4)

Note that u(0, ·), h(0, ·) ∈ C2
c(R) and u, h are Lipschitz continuous. By the

method of characteristics we see that ∂xu, ∂xh are Lipschitz continuous and com-
pactly supported. We claim that the system (4.2)-(4.3) is total variation diminish-
ing, i.e.,

d

dt

∫

R

|∂xu|+ |∂xh| dx ≤ 0. (4.5)

Indeed, differentiating (4.2)-(4.3) with respect to x gives

∂t(∂xu) + ∂x (v(q(h))∂xu) = ε−1(∂uΛ · ∂xu+ ∂hΛ · ∂xh),

∂t(∂xh) + ∂x
(
−γ−1∂xh

)
= −ε−1(∂uΛ · ∂xu+ ∂hΛ · ∂xh),

from which we obtain that

d

dt

∫

R

|∂xu|+ |∂xh| dx =

∫

R

sgn(∂xu) · ∂t(∂xu) + sgn(∂xh) · ∂t(∂xh) dx = J1 + J2,

where

J1 =

∫

R

−sgn(∂xu) · ∂x (v(q(h))∂xu) + γ−1sgn(∂xh) · ∂x(∂xh) dx

=

∫

R

δ(∂xu)v(q(h))∂xu∂
2
xu− γ−1δ(∂xh)∂xh∂

2
xh dx

= 0,

and

J2 = ε−1

∫

R

sgn(∂xu)(∂uΛ · ∂xu+ ∂hΛ · ∂xh)− sgn(∂xh)(∂uΛ · ∂xu+ ∂hΛ · ∂xh) dx

≤ ε−1

∫

R

(|Λu|+ Λu)|∂xu|+ (|Λh| − Λh)|∂xh| dx.

A direct calculation gives

∂uΛ = v′(q(h))eu+2h ≤ 0

and

∂hΛ

= e
h

[

v′′(q(h))(1 + γv(q(h)))

γv′(q(h))
(q(h)− e

u+h) + v
′(q(h))(2eu+h − q(h)) + v(q(h)) +

1

γ

]

≥ e
h

[

1

γ
− 2

∥

∥v
′
∥

∥

∞
−

(1 + γvmax) ‖v
′′‖

∞

γminρ∈[0,1] |v′(ρ)|

]

≥ 0,

where the condition (1.17) and the solution bounds 0 < eu+h = ρ ≤ 1, 0 ≤ q(h) ≤ 1
are used. With ∂uΛ ≤ 0 and ∂hΛ ≥ 0, the estimate (4.5) follows immediately.
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Thanks to the estimate (4.5), we now turn to the uniform BV bound on ρ. At
the initial time t = 0, we have

∫

R

|∂xρ(0, x)| dx =

∫

R

|∂xq(0, x)| dx = TV(ρ0).

Therefore,
∫

R

|∂xu(0, x)|+ |∂xh(0, x)| dx ≤

∫

R

1

ρ(0, x)
|∂xρ(0, x)|+

2γ|v′(q(0, x))|

1 + γv(q(0, x))
|∂xq(0, x)| dx

≤ ρ−1
min

∫

R

|∂xρ(0, x)| dx+ 2γ ‖v′‖∞

∫

R

|∂xq(0, x)| dx

≤
(
ρ−1
min + 2γ ‖v′‖∞

)
TV(ρ0).

Since the total variation of (u, h) is diminishing, it holds that
∫

R

|∂xu(t, x)|+ |∂xh(t, x)| dx ≤
(
ρ−1
min + 2γ ‖v′‖∞

)
TV(ρ0),

for any time t ≥ 0. Noting that ∂xρ = ρ(∂xu+ ∂xh), we deduce that
∫

R

|∂xρ(t, x)| dx ≤

∫

R

|∂xu(t, x)|+ |∂xh(t, x)| dx ≤
(
ρ−1
min + 2γ ‖v′‖∞

)
TV(ρ0).

Then, using (1.11) and (1.1), we have
∫

R

|∂xq(t, x)| dx ≤
(
ρ−1
min + 2γ ‖v′‖∞

)
TV(ρ0),

∫

R

|∂tρ(t, x)| dx ≤ (vmax + ‖v′‖∞)
(
ρ−1
min + 2γ ‖v′‖∞

)
TV(ρ0),

for any time t ≥ 0. Combining the above inequalities, we obtain
∫ T

0

∫

R

|∂tρ(t, x)|+ |∂xρ(t, x)| dxdt

≤ (vmax + ‖v′‖∞ + 1)
(
ρ−1
min + 2γ ‖v′‖∞

)
T · TV(ρ0),

which gives the desired uniform BV bound (1.18).
For general initial data ρ0 ∈ X , we apply an approximation argument as in

Theorem 1.2 but instead using C2
c(R) functions. By passing through the limit we

deduce that the BV bound (1.18) holds also for weak solutions of (1.1)-(1.11).

Remark 4.1. A counterexample was given in [13] to show that the total variation
of solutions to the nonlocal-in-space model (1.4)-(1.5) blow up as ε → 0 if the
initial data are not uniformly positive. We leave the same question for (1.1)-(1.11)
to future works.

4.2. Convergence to a weak solution. Now we are in a position to show the
existence of limit solutions that satisfy the limit equation (1.3) in the weak sense.
To pass the limit we need to establish the following theorem.

Theorem 4.2. Under the same assumptions as in Theorem 1.3, let ρε be the unique
weak solution of (1.1)-(1.11) with parameter ε and initial condition ρε(0, x) = ρ0(x).
There is a sequence εn → 0 and a limit function ρ? ∈ L∞([0,∞) × R) such that
ρεn → ρ? in L1

loc([0,∞)× R). Moreover, ρ? is a weak solution of (1.3).
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Proof. By Theorem 1.2 and Theorem 1.3, the family of solutions {ρε}ε>0 is uni-
formly bounded in BVloc([0,∞) × R). As a consequence, the family {ρε}ε>0 is
precompact in the L1

loc norm (see [22]). Then we can select a sequence εn → 0 such
that ρεn → ρ? in L1

loc([0,∞)× R), where the limit function ρ? ∈ L∞([0,∞)× R).
Now we claim that

∫ T

0

∫

R

|qε(t, x)− ρε(t, x)| dxdt ≤ CTε ∀T > 0, (4.6)

where the constant C = C
(
γ, v, ρ−1

min,TV(ρ0)
)
is independent of ε. Indeed, by

(1.11) we can write

qε(t, x)− ρε(t, x)

=

∫ t/γ

0

(ρε(t− γs, x+ s)− ρε(t, x))wε(s) ds+

∫ ∞

t/γ

(ρ0(x+ s)− ρ0(x))wε(s) ds

+ (ρ0(x)− ρε(t, x))

∫ ∞

t/γ

wε(s) ds,

where wε(s) = ε−1e−s/ε. Integrating the above inequality on [0, T ]×R and applying
Theorem 1.3, we obtain that

∫ T

0

∫

R

|qε(t, x)− ρε(t, x)| dxdt ≤ J1 + J2 + J3,

where

J1 =

∫ T

0

∫ t/γ

0

∫ s

0

(∫

R

|(∂x − γ∂t)ρ
ε(t− γσ, x+ σ)| dx

)
wε(s) dσdsdt

≤(1 + γ)C1

(
γ, v, ρ−1

min

)
TV(ρ0) · T

∫ ∞

0

swε(s) ds

=(1 + γ)C1

(
γ, v, ρ−1

min

)
TV(ρ0) · Tε,

J2 =

∫ T

0

∫ ∞

t/γ

∫ s

0

(∫

R

|∂xρ0(x+ σ)| dx

)
wε(s) dσdsdt

≤TV(ρ0) · T

∫ ∞

0

swε(s) ds

=TV(ρ0) · Tε,

and

J3 =

∫ T

0

(∫ t

0

(∫

R

|∂tρ
ε(τ, x)| dx

)
dτ

∫ ∞

t/γ

wε(s) ds

)
dt

≤C1

(
γ, v, ρ−1

min

)
TV(ρ0)

∫ T

0

te−
t
γε dt

≤C1

(
γ, v, ρ−1

min

)
TV(ρ0) · γTε.

Combining the above inequalities we get the desired estimate (4.6).
Therefore by (4.6) and the convergence of ρεn → ρ?, we get qεn → ρ? in

L1
loc([0,∞) × R) as εn → 0. By passing through the limit in (1.12), we deduce

that ρ? is a weak solution of (1.3).
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5. Entropy admissibility of the limit solution. In this section, we show that
the weak solution to the local model (1.3) obtained from the limit as ε → 0 of a
sequence of weak solutions to (1.1)-(1.11) is in fact the entropy admissible solution.
This completes the theory of nonlocal-to-local limit from (1.1)-(1.11) to (1.3) in the
case of exponential kernels.

Proof of Theorem 1.4. Following a similar approach as in [3], it suffices to establish
the entropy inequality for one convex entropy, see also [17]. For this purpose, we
introduce the following entropy-entropy flux pair:

η(ρ) =

∫ ρ

0

r(1 + γv(r)) dr, ψ(ρ) =

∫ ρ

0

r(1 + γv(r))(v(r) + rv′(r)) dr. (5.1)

It is straightforward to verify that ψ′(ρ) = η′(ρ)(ρv(ρ))′, and that η(ρ) is strictly
convex. We claim the following entropy inequality for the nonlocal solution ρε of
(1.1)-(1.11):

∫ ∞

0

∫

R

η(ρε(t, x))∂tϕ(t, x) + ψ(ρε(t, x))∂xϕ(t, x) dxdt

≥ −C
(
γ, v, ρ−1

min,TV(ρ0), ϕ
)
ε, (5.2)

for all nonnegative test functions ϕ ∈ C1
c((0,∞) × R), where the constant C =

C
(
γ, v, ρ−1

min,TV(ρ0), ϕ
)
is independent of ε. Assuming this claim, any limit solution

ρ∗ obtained following Theorem 4.2 satisfies the entropy inequality
∫ ∞

0

∫

R

η(ρ∗(t, x))∂tϕ(t, x) + ψ(ρ∗(t, x))∂xϕ(t, x) dxdt ≥ 0 (5.3)

for all nonnegative test functions ϕ ∈ C1
c((0,∞) × R), and thus ρ∗ is the unique

entropy admissible solution of (1.3).
Now we prove the inequality (5.2). Let us first assume that ρ0 is Lipschitz contin-

uous and show (5.2) for Lipschitz solutions. For simplicity we omit the superscript
ε in ρε. The equation (1.1) can be rewritten as

∂tρ+ ∂x(ρv(ρ)) = ∂x(ρ(v(ρ)− v(q))). (5.4)

For any nonnegative test function ϕ ∈ C1
c ((0,∞)× R), multiplying ρ(1 + γv(ρ))ϕ

on both sides of (5.4) gives

(∂tη(ρ) + ∂xψ(ρ))ϕ = ρ(1 + γv(ρ))∂x(ρ(v(ρ)− v(q)))ϕ. (5.5)

Using again the directional derivative notation ∂y = ∂x−γ∂t, we obtain the identity
ρ = q − ε∂yq. Then (5.5) becomes

(∂tη(ρ) + ∂xψ(ρ))ϕ

= γ∂t(ρ
2(v(ρ)− v(q)))ϕ+

1

2
γ∂x

(
ρ2
(
v(ρ)2 − v(q)2

))
ϕ+ ρ∂y(ρ(v(ρ)− v(q)))ϕ.

(5.6)

Integrating (5.6) and using integration by parts, we get
∫ ∞

0

∫

R

η(ρ)∂tϕ+ ψ(ρ)∂xϕdxdt = J1 + J2 + J3,

where

J1 = γ

∫ ∞

0

∫

R

ρ2(v(ρ)− v(q))∂tϕdxdt,
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J2 =
1

2
γ

∫ ∞

0

∫

R

ρ2
(
v(ρ)2 − v(q)2

)
∂xϕdxdt,

and

J3 =

∫ ∞

0

∫

R

ρ∂y(ρ(v(q)− v(ρ)))ϕdxdt

=
1

2

∫ ∞

0

∫

R

∂y(ρ
2)(v(q)− v(ρ))ϕdxdt+

∫ ∞

0

∫

R

ρ2∂y(v(q)− v(ρ))ϕdxdt

=
1

2

∫ ∞

0

∫

R

ρ2(v(ρ)− v(q))∂yϕdxdt+
1

2

∫ ∞

0

∫

R

ρ2∂y(v(q)− v(ρ))ϕdxdt

.
=

1

2
J4 +

1

2
J5.

Repeatedly using the identity ρ = q − ε∂yq and integrating by parts, we compute

J5 =

∫ ∞

0

∫

R

ρ2(v′(q)∂yq − v′(ρ)∂yρ)ϕdxdt

=

∫ ∞

0

∫

R

q2v′(q)∂yqϕ dxdt

−

∫ ∞

0

∫

R

ρ2v′(ρ)∂yρϕ dxdt− ε

∫ ∞

0

∫

R

(ρ+ q)v′(q)(∂yq)
2ϕdxdt

=

∫ ∞

0

∫

R

(W (ρ)−W (q))∂yϕdxdt− ε

∫ ∞

0

∫

R

(ρ+ q)v′(q)(∂yq)
2ϕdxdt

.
= J6 + J7,

with W (ρ)
.
=
∫ ρ

0
r2v′(r) dr.

Now we have∫ ∞

0

∫

R

η(ρ)∂tϕ+ ψ(ρ)∂xϕdxdt = J1 + J2 +
1

2
J4 +

1

2
J6 +

1

2
J7.

Since ρ, q, ϕ ≥ 0 and v′(q) ≤ 0, we have J7 ≥ 0. Moreover, it follows from (4.6) that

|J1|+ |J2|+ |J4|+ |J6| ≤ C1

(
γ, v, ρ−1

min,TV(ρ0)
)
C2(suppϕ, ‖∂tϕ‖∞ , ‖∂xϕ‖∞)ε.

Then we obtain the inequality (5.2).
The inequality (5.2) for initial data ρ0 ∈ X follows from an approximation argu-

ment as in the proof of Theorem 1.2.

Let us make some remarks on entropy pairs for the relaxation system (1.15)-
(1.16) and its equilibrium approximation (1.3). In the proof of Theorem 4.2 we
base the analysis directly on the nonlocal model (1.1)-(1.11), and do not rely on
the rigorous justification of the entropy inequality for the relaxation system (1.15)-
(1.16). However, we remark that some intuitive analysis based on the relaxation
system (1.15)-(1.16) offers insight to our choice of the entropy pair (5.1).

Following the paradigm described in [7], if (η, ψ) is any entropy-entropy flux pair
for the limiting conservation law (1.3), one can construct an entropy-entropy flux
pair (H,Ψ) for the relaxation system (1.15)-(1.16) such that

∫ ∞

0

∫

R

H(ρ, q)∂tϕ+Ψ(ρ, q)∂xϕ+ (γε)−1∂qH(ρ, q)(ρ− q)ϕdxdt ≥ 0,

for any test function ϕ ≥ 0, and when ρ = q one has

H(ρ, ρ) = η(ρ), Ψ(ρ, ρ) = ψ(ρ), ∂qH(ρ, ρ) = 0 .
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Therefore, it holds
∫ ∞

0

∫

R

η(ρ)∂tϕ+ ψ(ρ)∂xϕdxdt

≥

∫ ∞

0

∫

R

[H(ρ, ρ)−H(ρ, q)]∂tϕ+ [Ψ(ρ, ρ)−Ψ(ρ, q)]∂xϕdxdt

− (γε)−1

∫ ∞

0

∫

R

[∂qH(ρ, q)− ∂qH(ρ, ρ)](ρ− q)ϕdxdt.

Assuming H and Ψ are C2 smooth, the right hand side is O(ε) when ρ− q ≈ ε.
Provided any convex η, one can construct H by solving the following hyperbolic

Cauchy problem [7]:

ρv′(q)∂ρρH − (v(q) + γ−1)∂ρqH = 0,

H(ρ, ρ) = η(ρ), ∂qH(ρ, ρ) = 0.

We note that, with the simple choice of convex entropy η(ρ) = 1
2ρ

2, the analytic
solution H may be complicated. Instead, if we choose a different convex entropy
function:

η(ρ) =

∫ ρ

0

r(1 + γv(r)) dr

we obtain a simple solution for H as

H(ρ, q) = η(ρ) +
γ

2
ρ2[v(q)− v(ρ)].

This motivates our choice of the entropy-entropy flux pair in (5.1).

6. Concluding remarks. In this paper we propose a space-time nonlocal con-
servation law modelling traffic flow. The proposed model (1.1)-(1.2) extends the
classical LWR model by introducing nonlocal velocities in the flux function. To fit
realistic traffic scenarios, the model considers time delays in the long-range inter-
vehicle communication, and the model parameter γ corresponds to the temporal
nonlocal effects. In the limit as γ → 0, our analysis shows that the model recovers
a model involving only spatial nonlocality, which has been extensively studied in
the literature.

We provide well-posedness theories of the proposed model (1.1)-(1.2) under suit-
able assumptions on model parameters and the past-time condition. Furthermore,
in the special case of exponential weight kernels, we prove convergence from solu-
tions of the nonlocal model to the unique entropy admissible solution of the local
limit equation, i.e. the LWR model. The results established in this paper provide a
rigorous underpinning in potential implementation of the space-time nonlocal model
for the modelling of nonlocal traffic flows.

Let us make some concluding remarks on possible generalizations of the model.
An alternative model to (1.1)-(1.2) is to instead take a weighted average of vehicle
velocity. To be precise,

∂tρ(t, x) + ∂x(ρ(t, x)V (t, x)) = 0,

where V (t, x) =

∫ ∞

0

v(ρ(t− γs, x+ s))w(s) ds.

For this model, we expect that the well-posedness and nonlocal-to-local limit can be
established in a similar fashion. Furthermore, in future works we hope to consider
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more general cases where the traveling speed of nonlocal traffic information depends
on additional quantities in the model.

We would also like to conduct more mathematical analysis. In this paper we show
convergence of solutions of the space-time nonlocal model to the entropy admissible
solution of the local model in the case of exponential weight kernels. The conver-
gence result may be established on the nonlocal quantity q for more general initial
data and kernels. Such a result has been established for the nonlocal-in-space model
(1.4)-(1.5) in [14]. We hope to show more nonlocal-to-local convergence results for
the space-time nonlocal model along that direction. Furthermore, understanding
the behavior – such as the existence, uniqueness and stability – of traveling wave
solutions of the space-time nonlocal model will shed light on the long time behavior
and stability of shock waves. In the case of exponential kernels, this is equivalent
to the study of traveling waves for the relaxation system, which could be easier to
analyze. For general kernels, an integro-differential equation is satisfied by the trav-
eling wave profiles. In all cases, we expect that traveling waves are local attractors
for solutions.
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