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ABSTRACT. We propose and study a nonlocal conservation law modelling traf-
fic flow in the existence of inter-vehicle communication. It is assumed that the
nonlocal information travels at a finite speed and the model involves a space-
time nonlocal integral of weighted traffic density. The well-posedness of the
model is established under suitable conditions on the model parameters and by
a suitably-defined initial condition. In a special case where the weight kernel
in the nonlocal integral is an exponential function, the nonlocal model can be
reformulated as a 2 X 2 hyperbolic system with relaxation. With the help of
this relaxation representation, we show that the Lighthill-Whitham-Richards
model is recovered in the equilibrium approximation limit.

1. Introduction.

1.1. The nonlocal space-time traffic flow model. We consider the following
nonlocal conservation law modeling traffic flow

Op(t,x) + 0z (p(t, z)v(q(t,x))) =0, x€R, t>0, (1.1)
where q(t,x) = /0 p(t — s,z + s)w(s) ds. (1.2)

Here, the quantity p(t, x) € [0, 1] represents the traffic density, where p = 0 indicates
an empty road ahead and p = 1 models bumper-to-bumper traffic jam. The nonlocal
quantity ¢(t,x) is a weighted average of p(t*, x*) along the space-time path

t"=t—ns, z"=ux+s, for s € [0, 0),

with an averaging kernel w = w(s). The vehicle velocity v = v(q(¢,x)) depends on
the nonlocal traffic density ¢(¢,z) through a decreasing function v(:). The model
(1.1)-(1.2) is the evolution associated to a past-time condition p(t,x) given on the
half plane t < 0.
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1.2. Background and motivation. The model (1.1)-(1.2) takes inspiration from
the classical Lighthill-Whitham-Richards (LWR) model [35, 36]

Op(t,x) + 0z (p(t, x)v(p(t,x))) =0, xR, t>0, (1.3)

in which the vehicle velocity v = v(p(t, z)) depends only on the local traffic density
p(t,z). The LWR model (1.3) is a scalar conservation law with the flux function
f(p) = pv(p). In the instance of inter-vehicle communication [18], the flux may have
a nonlocal dependence on traffic density in order to capture each vehicle’s reaction to
downstream traffic conditions. It is useful to incorporate time delays of this traffic
density information in the distance [40, 31]. In (1.1)-(1.2), we incorporate both
nonlocal fluxes and time delays via velocities that depend on a weighted space-time
average of the traffic density, assuming that the traffic density information travels
at a constant speed 'y_l.

If the choice of rescaled weights w.(s) = e tw(s/e) is made, then formally the
equations (1.1)-(1.2) converge to the local equation (1.3) as € — 0. The main goal of
this paper is to demonstrate this in a rigorous manner via convergence of solutions.

There has recently been much research interest in nonlocal effects in phenomena
described by conversation laws; there is a wide variety of applications but a dearth
of analytical understanding. Some application areas from which nonlocal conser-
vation laws arise are traffic flows [34, 33, 8, 30, 29, 10, 9, 11], sedimentation [1],
pedestrian traffic [16, 5], material flow on conveyor belts [27, 38], and the numerical
approximation of local conservation laws [21, 20, 19, 23].

For several traffic flow models, the nonlocal mechanism is introduced in the flux
term. One such model that recovers the LWR model (1.3) when the effect is localized
was proposed in [2, 26]:

Op(t, ) + 0u(p(t, x)v(g(t, ) =0, z€R, t>0, (1.4)

where  ¢(t,x) = /000 p(t, x4+ s)w(s) ds. (1.5)

Various analytical aspects of this model have been investigated, including the ex-
istence and uniqueness of solutions [2, 26, 4], existence and stability of traveling
wave solutions [37, 39], development of numerical schemes [26, 6, 25], and stability
analysis of the model in the case where the domain (road) is a closed ring [28].
Convergence of solutions of (1.4)-(1.5) to its local limit (which is the LWR model
(1.3)) was established in [4, 3] by way of an a priori BV estimate and an entropy
estimate, both of which were obtained via reformulation of the nonlocal model as
a 2 x 2 relaxation system in the case of exponential weight kernels. This is not the
only mechanism that has been used to investigate the nonlocal-to-local limit; see
the works of [13, 32, 12, 14, 15, 24].

1.3. Assumptions on the model. We conduct an analogous study of the nonlocal-
to-local limit for the model (1.1)-(1.2) with suitable choices of the functions w,v
and the past-time condition. To fix ideas, we make the following assumptions on
w, v:

Assumption 1. The velocity function v € C?([0,1]) is strictly decreasing with
v(0) = Umax and v(1) = 0, where vmax > 0 represents the mazimum vehicle speed.

Assumption 2. The weight kernel w € C*([0,00)) is non-negative and satisfies

/Ooou)(s) ds=1 and w'(s) <—PBw(s) Vs>0 (1.6)
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for a constant 8 > 0.

The average density ¢ is taken along a space-time curve that requires traffic
density data for all past times ¢ < 0. Therefore, the model (1.1)-(1.2) shall be
equipped with a past-time condition on the lower half-plane, i.e.,

p(t,x) =p_(t,x), (t,z)€ (—00,0] xR, (1.7)
where p_ € L*>((—o0,0] x R) is a given function.

1.4. Main results. Our first main result is the existence of Lipschitz solutions to
the past-time value problem (1.1)-(1.2)-(1.7) with Lipschitz past-time data p_.

Theorem 1.1. Suppose that Assumption 1 and Assumption 2 are satisfied and that
. 1 B
Y < Ymax = mln{ ) } . (18)
3(Umax + [[v/[l o) w(0) [[v']]

Suppose that the past-time data p_ is a bounded Lipschitz function belonging to the
class Xiip 1; see definition (2.2) below. Then the past-time value problem (1.1)-
(1.2)-(1.7) admits a solution p that is Lipschitz continuous and satisfies (1.1)-(1.2)-
(1.7) pointwise. Furthermore, the solution p satisfies the uniform bounds

Pmin < p(t, ) < pmax, (L, 2) € [0,00) X R, (1.9)

where pmin and pmax are defined in (2.4)-(2.5) below and depend only on v, v, w
and p—.

Formally, as the time-delay parameter y approaches zero, the system (1.1)-(1.2)
approaches the nonlocal-in-space system (1.4)-(1.5). This is also true in a qualitative
sense; each of the key estimates for (1.1)-(1.2) remain valid as v — 0, as the
bounding constants neither vanish nor blow up. Analogous statements of all of our
results hold for (1.4)-(1.5), see [4], and can be formally recovered from our results
by taking v — 0. However, quantitatively stronger results hold for (1.4)-(1.5).
For example, the main estimates in Proposition 3.1 and Theorem 1.3 concern L!
estimates in space and time, whereas the analogous results for (1.4)-(1.5) hold for
L! in space and CY in time; see again [4].

The proof of Theorem 1.1 makes up Section 2. We use a fixed point argument
combined with the method of characteristics, which is heavily inspired by the proof
of [4] for the existence of solutions to the nonlocal-in-space model.

In certain modelling applications, it might only be possible to gather the traffic
data at a certain initial time. In such a case, a natural choice of past-time data via
the following extension of initial data:

p*(@‘r) = p()($)7 (tvx) € (_0070] X Rv (110)

for a given function py : R — R. We can then treat (1.1)-(1.2)-(1.7) as an initial-
value problem, since the quantity ¢ depends only on ¢ € (0,00). To be precise, with
(1.10), the equation (1.2) becomes

q(t,z) = /000 po(x—l— % + s)w(s + %)ds + /o; p(t — s,z + s)w(s)ds. (1.11)

Under this consideration, the equations (1.1)-(1.2)-(1.7) where the past-time data
is given by the equation (1.10) are equivalent to the Cauchy problem (1.1)-(1.11)
with the initial condition p(0,z) = po(z).
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For the particular choice (1.10) of past-time data, we establish the well-posedness
of the Cauchy problem in the setting of weak solutions, which is our second main
result.

Theorem 1.2. Suppose that Assumption 1, Assumption 2 and (1.8) are satisfied,
and let po(x) be a bounded function with finite total variation belonging to the class
X; see (3.1) below. Then there exists a unique p € L*([0,00) x R) satisfying (1.9)
that is a weak solution to (1.1)-(1.11) with initial condition p(0,x) = po(x); in other
words, p satisfies

/ / pOrp + pv(q)Opep dudt + / po(z)p(0,z)dx =0 (1.12)
0 R R

for all ¢ € CL([0,0) x R) with q defined by (1.11).

Additionally, for any T > 0 there exists a constant C = C(y,v,w,T) such that
the following holds: Let pi(z), i = 1,2, belong to X with p} — p3 € LY(R), and
let (p',q") denote the solution pairs associated to (1.1)-(1.11) with initial condition
04(0,2) = pi(x). Then

T
/ / M6, 2) — Pt )| ddt < C(1+ TV (pd) + TV(p2)) / 1PA(x) — PR ()| de.
oo . (1.13)

The key tool used to prove Theorem 1.2 is the L!-stability of Lipschitz solutions;
once that is established in Proposition 3.1, the existence and uniqueness of weak
solutions follows by using Theorem 1.1 and an approximation argument.

With the well-posedness of the problem (1.1)-(1.11) in hand, we analyze the
nonlocal-to-local limit. This limit is realized in the following way: consider the
rescaled kernels w.(s) = e lw(s/e). Taking e — 0, the kernel w. converges to a
Dirac delta function, and so — formally — solutions of the nonlocal model (1.1)-(1.11)
converge to the entropy admissible solution of the local model (1.3). We make the
choice of exponential kernel function for w, defined as

S

w(s)=e™®,  w.(s)=ctw(s/e) = te 5, se€0,00). (1.14)

With w defined as in (1.14), the model (1.1)-(1.11) (and more generally (1.1)-(1.2))
can be rewritten as a relaxation system:

Orp + 9:(pv(q)) = 0, (1.15)
Oq— 7 "0eq = (ve) M (p—q). (1.16)

Utilizing the special features of this relaxation system formulation (1.15)-(1.16),
a uniform global BV bound on p that is independent of the relaxation parameter
€ can be proved, which serves as a key estimate for the compactness theory and
guarantees the existence of a limit of the solutions.

Theorem 1.3. Suppose that Assumption 1, Assumption 2 and (1.8) are satisfied,
and let pg € X. Assume that the weight kernel is given by the exponential functions
as in (1.14). In addition, suppose that the minimum density pmin as defined in (1.9)
is positive, and that the following condition holds for v and v:

(1= 29 [[0/l.0) min [/ ()] = (1 + 70max) "] - (1.17)
p€(0,1]
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Then the unique weak solution of (1.1)-(1.11) with initial condition p(0,zx) = po(x)
satisfies

TV (p;[0,T] x R) < CT(1 + pi )TV(po) VT >0, (1.18)

where TV (p; [0, T] x R) represents the total variation of p on [0,T] X R, and the
constant C = C (vy,v) is independent of .

The choice (1.14) is the same as the one made in [4] to analyze the nonlocal-to-
local limit for the nonlocal-in-space model (1.4)-(1.5). Our methods closely follow
theirs, but the relaxation system (1.15)-(1.16) is a genuine system of conservation
laws in the original (t,z)-coordinate system, and we additionally take this into
account. We remark that, in the case of v = 0, the condition (1.8) holds whenever
w'(s) < 0 Vs € [0,+00), and (1.17) becomes min,¢[o,17[v'(p)| > [[v”||. These
conditions on the functions w, v are the same as the ones proposed in [4] for the
nonlocal-in-space model (1.4)-(1.5).

Finally, we show that any limit solution of the space-time nonlocal model (1.1)-
(1.11) when € — 0 is the unique weak entropy solution of (1.3).

Theorem 1.4. Under the same assumptions as in Theorem 1.3, let p° be the unique
weak solution of (1.1)-(1.11) with initial condition p*(0,x) = po(x) as in Theo-
rem 1.2. Then the solution p° converges to the unique entropy solution of (1.3) in
L ([0,00) x R) as e — 0.

loc

1.5. Organization of the paper. This paper is organized as follows. First, we
establish the existence of Lipschitz solutions from Lipschitz past-time data in Sec-
tion 2 (Theorem 1.1). In Section 3 we establish the L! stability estimate for Lip-
schitz solutions and prove Theorem 1.2. Section 4 is devoted to the uniform BV
bound estimate of solutions based on the model’s relaxation system formulation
(Theorem 1.3), which guarantees the existence of local limit solutions. Section 5
provides the proof of entropy admissibility of the local limit solution and completes
the nonlocal-to-local limit theorem (Theorem 1.4).

2. Existence of Lipschitz solutions. This section is devoted to the proof of
Theorem 1.1.

2.1. Initial and past-time data. To begin, we make precise the conditions on
the past-time data. First, the initial values of p and ¢ corresponding to a past-time
condition p_ are denoted throughout the paper as

po(z) = p_(0,z), qo(z)= /OOo p—(—7vs,x + s)w(s) ds, x € R (2.1)

Second, for a given constant L > 0 we introduce the following notation for a class
of functions for past-time data p_ with py and gy given by (2.1) correspondingly.

NLip, L
p— € L7((—00,0] x R) : inf p—(t,xz) >0, sup p—(t,x) < 1,
(t,)€(—00,0] xR (t,z)€(—o00,0] XR
- inf po(z)(1+7v(g0(2))) > 0, sup po(@)(1 +yv(go(2))) <1,
ks T€
sup  [(0z =70:)p-(t,x)] < L, sup|9z(po(x)(1 4 yv(qo(x))))| < L
(t,z)€(—o0,0] xR z€eR
(2.2)

Now we define
9(p) = p(L+v(p)), pe[0,1]. (2.3)
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Under the Assumption 1, we have ¢g(0) = 0 and g(1) = 1. Moreover, it holds that
g'(p) > 0 for p € [0,1] provided v [[v'|| ., < 1. In this case the function g is monotone
and we let g~! denote the inverse function of g. We define

puin =min{ it o (), o7 (i @)1 o)) o (24)

(t,z)€(—00,0] xR

Prmax = maX{ sup p_(t,x), g7 <SUp po(z)(1+ vv(qo(w))) } , (25)
(t,z)€(—00,0] xR T€R

where py and g are defined in (2.1). It is clear that 0 < pmin < Pmax < 1 for any

p— € XMip,L-

2.2. Reformulation as a fixed-point problem. The essential idea in the proof
of Theorem 1.1 is to reformulate the model as a fixed point problem and apply the
contraction mapping theorem. We first define the fixed point mapping on a proper
domain with a finite time horizon, and then show it is contractive through a priori
L and Lipschitz estimates. The fixed point solution is shown to be a Lipschitz
solution to the model and it can be extended to all times ¢ > 0.

First let us fix a time horizon [0,T] where T' > 0, and Suppose Pmin, Pmax, are
as defined in (2.4)-(2.5). For any 0 < pg < pmin and pmax < pp < 1, we define the
domain

pa < p(t,x) < pp, (t,x) € [0,T] xR,
DrLopapy = p€LZ([0,T] x R) : [(0x —v0)p(t,x)| < 3L, (t,x) € (0,T) xR,
p(0,2) = po(z), z €R

Then we introduce a directional derivative operator
ay = 82 - 'Yata

where the direction is taken along the line integral paths in (1.2), and an auxiliary
variable

z = p(1+v(q)).

With the above definitions, the past-time value problem (1.1)-(1.2)-(1.7) can be
reformulated as a system to be solved on [0,7] x R.

oo

t/y
q(t,x) = /0 p(t — s,z + s)w(s) ds+/t/ p—(t — s,z + s)w(s)ds, (2.6)

z(t, @) = p(t, 2) (1 +yv(g(t, 2))), (2.7)
v(q(t, )) _
Oz(t, ) + 0y ( ))z(t,x)> =0. (2.8)

1+0(q(t, 7))
This representation motivates the following step-by-step definition of a mapping
I DT>L,pa,pb — LOO([O,T] X R)
1. With a given p_ € Xpip 1 and for any p € Dr 1, p,. We define q(t, z; p, p—)
for all (¢,2) € [0,T] x R as in (2.6).
2. We define z(t,x; p, p—) for all (t,z) € [0,T] x R as the solution to the linear
Cauchy problem (2.8) with the above ¢(t, z; p, p—) and the initial condition

2(0, 25 p—) = po(x)(1 + yv(go(w))).
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3. With z(t, z; p, p—) and q(t, x; p, p—) defined above, we define p(t, x; p, p—) as
i S(tip,0-)
pt,x;p,p-) = , (6x) €[0,T] xR.
( =17 vu(q(t, s p, p-)) G,z) € .71

Finally we define the mapping I" by
Plol(t ) = plt,asp,p), (t) € [0,T] x R.

The outline of the proof of Theorem 1.1 is to establish the following facts:

e Forany p € Dr.1,p,.py> Ulp] € D1.Lpa.pn

I' is a contraction mapping on Dr 1 ,, ,, in the L norm;

The contraction mapping theorem gives the unique fixed point p € Dr 1 . s>
ie. I[p] = p;

The fixed point solution is Lipschitz and it solves the system (2.6)-(2.7)-(2.8)
for ¢ € [0, T7;

By continuation, the constructed solution for ¢ € [0,7] can be extended to
t € [0,00) and so it solves the past-time value problem (1.1)-(1.2)-(1.7).

We remark here that the map I' as constructed requires no relation between p
and p_ at t = 0 to hold. However, the condition p(0,z) = po(z) is imposed so that
quantities such as ¢(t, z) are Lipschitz with appropriate constant.

2.3. Proof of Theorem 1.1. The proof consists of six steps. In the proof, we omit
the notations p and p_ in q(t, z; p, p—), 2(t, z; p, p—) and p(t, x; p, p—) for simplicity,
but keep in mind that they both depend on p and p_. In addition, we use the
equation (1.2) for ¢ to simplify the calculation, but keep in mind that the nonlocal
integral for ¢ involves p_ and its precise form is (2.6).

Step 1 (Characteristics). We rewrite the linear Cauchy problem (2.8) as

v(9) —v'(q)
—————0yz = z2———50,4. 2.9
L+au(g) " " (1 +v()* 29
Given z(0,z) for x € R and ¢(¢,z) for (t,x) € [0,T] x R, (2.9) can be solved by
the method of characteristics. For a point (¢,z), the characteristic curve is given
by 7 — (7 — v&(7),&(7)) where £(7) satisfies

4(r) __wlalr 1), €() L
dr  Tilal—gm.ee)y e se reRe 20

It is easy to see that by definition of pynin and pmax that
0<ps<qlt,x)<p,<1, (t,x)€]0,T]xR. (2.11)

8152 +

This implies
dg

d
0 —= <w and —

=0 (T) > Umax dT[
for all characteristic curves. Therefore, for any given point (¢,z) € [0,7] X R one
can trace the characteristic curve back to reach a unique point (0,z’) on the z-axis,

and ' — % < 2’ < z. Integrating the characteristic ODE

é- - 75(7-)] Z 1- YVmax > 0

& 2lr (), ()

= 2(1 — v&(7), £(7)) —v'(g(T —€(7),£(7)))

T+ v(ar =€), eI

ayq(T - 75(7_)7 6(7—))7 (2‘12)
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from the unique 7y satisfying (70 — ¥&(70),£(70)) = (0,2") to 71 = t + vz, one can
obtain the value of z(¢, x).
Step 2 (L*° and directional Lipschitz bounds). We first note that the identity

t/vy

Oyq(t,z) = ) Oyp(t —vs,x + s)w(s) ds + /t/ Oyp—(t — s,z + s)w(s)ds,
8!

(t,x) €0,T] x R,

gives
|0yq(t, z)| < 3L
for all (¢,x) € [0,T] x R. In addition, integration by parts gives

Opaltsa) = ~w(O)dp(t,a) — [ Dyplt = s,z + )u'(5) ds (2.13)
0

hence
|0yya(t, z)| < 6w(0)L

for all (t,z) € [0,T] x R.

To give a L™ bound on p, we note that
9(pa) < g(pmin) < 2(0,2) < g(pmax) < 9(pp), = ER.
By integrating (2.12) and using the uniform bound

<30l L

’ oo

H 1+ vv O
we obtain that
9(pa) < 2(t,x) < g(pp), (t,7) €0, T] xR,
when T is sufficiently small. This together with (2.11) gives
pa < p(t,z) < pp, (t,z)€]0,T] xR. (2.14)

Now let us give a bound on 9,p. Taking the directional derivative 0, of the
equation (2.9), we obtain

8t(8y2)+1 n 'yv(q) ay(ay ) ( (q))Q yq
2y(v'(q))? —v"(q )(1+w(q)) , . v
(1 J'_’YU( )) (ay ) + (1 —|—’7’U(Q))2 6yyq . (215)

At time ¢t = 0, by the equation (2.9) we write

+z

v’ (q(0,2)) 5

0yz(0,z) = (1 +vv(q(0,)))0,2(0, ) + 2(0, z) T+ 10(q(0,2)) ,q(0, ),

using that p_ € Ari, 1, we have
4
10y2(0, )] < (1 + Yomax + 7 [[V']|) L < §L’ z eR.

We integrate the equation (2.15) along the characteristic curves defined in (2.10).
With the uniform bounds

H 112,;) 9; yCILO S6”7/”00‘[’
2’7(’0/((1))2 —v ( ) 1 +9v(g )) 2 2 " 2
HZ (14 yv(q))? (9yq) . = (2’YHU % + llv ||oo) 9L - g(ps),
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< 6w(0) [[v'l L - g(pp),

—v'(q)
z——F——0
H (T u(@) L
we deduce from a comparison argument that
Sup,er |0y2(t, 2)| < Z(t), te[0,T], (2.16)

where Z(t) is the solution to the linear ODE

. 4
Z=aZ+0b, Z(0)= gL, (2.17)
with constant coefficients given by
2
Sl L (I ) 2 4 60 0) Yl 2
“= 1 — YUmax n 1 — YUmax '

By choosing T sufficiently small, we obtain that |9,z (t,z)| < Z(T) < 2L for (t,x) €
[0,7] x R. Then the identity
Iyp(t, )
(1 +v(g(t, 2)))0yz(t, ) — vz(t )v'(q(t, 2))9yq(t, )

) (1 +7ola(t,)? o BT RE

implies that
0,5t 2)| < 2L+ 3y V| L < 3L, (t2) €[0,T] xR (218)

The equality p(0,2) = po(x) is clear from the definition. Using the obtained
L and directional Lipschitz bounds (2.14)-(2.18), we conclude that there exist
L,T > 0, depending only on v, v, Lo, Pmin, Pmax, such that I' maps Dr to
itself.

sPasPb

Step 3 (Contraction). For any p1,p2 € Dr 1 p,,p,, and any (¢, z) € [0,T] x R, we
denote by

z1(7) = &i(7) z2(7) = &2(7) ’
the two characteristic curves satisfying
dgi(r) _  w(a(r =16i(7),&(7)))
dr L4 yv(qi(T — v&i(1),&(7)))
We have

LSO G <)t 2600, 600) — ol 160, &),

<l (19yall o 1€2(7) = &2(7)] + llor — a2l »
<Vl BLIEL(T) = &2(T) + a1 — a2l -

Using Gronwall’s inequality backward in time, we obtain
1€1(7) = &) < CoT lla1 — @2/l . 0 < ta(7),t2(7) <, (2.19)

with the constant Cy = Co(L,v) > 0.
Note that z; and 29 can be solved from
v(g:) —v'(g:) -
Opzi + —————0yzi = 2i———=0yq;, 1=1,2,
T T (g (1+70(g:))? "

{um:r—wsl(f) - {t2(7)=7—7£2(7)
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along the characteristic curves (¢;(7), x;(7)), i = 1,2 with the same initial condition.
Using again Grénwall’s inequality and noticing (2.19), we obtain

21 — 22l < C1T g1 — @2l »

with the constant Cy = C} (L,’y,v, ||8§q1||oo , HﬁquHOO) > 0.
We have

p1(t, @) — pa(t, )
ozt ) (1 +yu(ga(t, @) — z2(t, ) (1 4+ yv(q(t, x))) )
R (1 y0(ar ()1 + (et 2) . (o) €[0.T) xR,

which implies
151 = P2lloe < 71Vl lar — @2llo + [121 — 22| -
We also have
t/y
q(t,x) — qt,z) = / (p1(t —vs, x4+ s) — pa(t — s,z + 8))w(s) ds,
0

which gives
w(0)T

lan — @2l < o1 — P2l o -

Apply (2.13) to both Jyyq1 and Jyyqo, one can get
10yyaill . < 6w(0)L, i=1,2.
Thanks to the above estimates, we finally deduce that

IT[p1] = Tlp2]lloe = 11 = p2llo < CoT'[lp1 — p2ll

with the constant Co = Cy(L, 7, v, w) > 0. Choosing T sufficiently small such that
CoT < 1, T is a contraction mapping in the L°° norm.

By the contraction mapping theorem, there exists 7" > 0 such that I' has a
unique fixed point in Dr- 1 ,, p,- From now on we denote p as the unique solution
in D+ 1,p,.p, that satisfies (1.1)-(1.2)-(1.7) on [0,77] x R. With this definition of
p we define z by (2.7).

Step 4 (Uniform L*> bound). We aim to show that p and z satisfy the uniform
bounds

Pmin S p(tax) S Pmax and g(pmin) S Z(t,l‘) S g(pmax)> (t7il7) € [07T*] X R
(2.20)

We provide a proof for the upper bounds; the lower bounds are obtained in a similar
manner.
We denote

Pm = sup p(t, ), Zm = sup  z(t, ).
(t,z)€(—o00,T*| xR (t,z)€[0,T*]xR

It is clear that pmax < pm < 1 and g(pmax) < zm < 1.
Let us fix 9 € R and consider the characteristic curve 7 +— (1 — v¢(71),&(7)) for
T € [r0,71] such that

(0 —7€(70),&(70)) = (0,m0), (71 —~E(1),&(m1)) = (T, 21),
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where (T, x1) is the intersection of the characteristic curve and the horizontal line
t =T*. For any 7 € [19, T1], the equation (2.9) gives

d . — _ v :
52 (T = 2E(7),€6(7)) T @2 e

Integrating by parts gives
dya(r —1€(7),&(7))

/ Ayp(T —7E(7) — v8,6(7) +

) + s)w(s)ds
0

—w(0)p(r = 7E(7),&(7)) = [ p(T = &(7) — s, &(7) + s)w'(s) ds

(
— w(0) [ / " o — () — s, E(r) + s)i(s) ds — plr —E(r). £ (@2.21)

where
w(s) = —w'(s)/w(0)

is a new weight kernel satisfying

/OO w(s)ds=1 and w(s) > iw(s) >y ||| w(s) >0 fors e [0,00).
0 w(0)

Noting that
v(g) = v(q) = v(pm) + v(pm) < V'l (Pm — @) + v(pm) Vg € [0, pu],

we compute

(1 = ~€(7),&(7))
=p(1 —7E(7),&(7)) (1 + yv(g(T — ¥&(7),4(7))))
<p(1 = 7E(7),&(7)) +vpmv(a(T — 7&(7),£(7)))
<p(T = E(7), (7)) + VP [V ]| o (P — a(7 — ¥E(7),€(7))) + VP ()
<p(r —7&(1),&(7))

+ 71V [l /Ooo(p —p(1 = E(7) —78,8(7) + 5))w(s) ds + ¥pmv(pm)
<p(T —~E(7),&(7)) + /Ooo(pm —p(1 = 78(7) —v8,&(7) + 8))w(s) ds + VpmV(pm)
6= [

=p(T —&(T p(T —¥E(T) —v5,8(7) + 5)w(s) ds + g(pm)-

It yields that
/O p(r = 7E(7) = 78,£(7) + 8)w(s) ds — p(T — YE(7),£(7)) < g(pm) — 2(T —1E(7), £(7))-
This inequality combined with (2.21

) gives
9yq(T — (1), &(7)) < w(0)(g(pm) — 2(T = ¥E(7),&(7)))-
Furthermore, we have
—v'(q)

<, w0 < 1’|
2 0o’
(L 4+70(0)? | (e (r) .60
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and hence
d
2727 = 8(7), £(7)) < Clg(pm) — 2(1 = 78(7), £(7))),
where C' = ||v/||, w(0). Integrating the above inequality with the initial condition

2(10 — v€(70),&(70)) = 2(0, ), we obtain that
2(1 = 9E(7),€(1)) <€ 2(0,30) + (1 — €07 g(prm)
<e“ ) g(pmax) + (1 — e )g(pm), 7T € [0, 71].

Noting that 71 — 19 < and ¢(pmax) < g(pm), we have

1=YVmax
Z(T - 7&(7—)?5@—)) < Clg(pmax) + (1 - Cl)g(pm)? TE [7—0) Tl]v (222)
where C} = exp(—””;”j‘jrif(?)w) € (0,1). Now we let xyp run over R; the respective

characteristic curves fill the domain [0, 7*] xR and so (2.22) is uniform to the choice
of xg, hence we have

Zm < C19(Pmax) + (1 = C1)g(pm). (2.23)
Now suppose py > pmax- Lhen we have
sup  q(t,z) <pm=  sup  p(t ),
(t,z)€[0,T*] xR (t,z)€[0,T*] xR

and since v is decreasing we have for any (¢,z) € [0,7%] x R
Z(t7 I) ZIn
plt,z) = < .
) = ettt ) = T lom)
and so by definition of g and by (2.23)

Zm
Therefore Pm S m,

9(pm) < z2m < C1g(Pmax) + (1 — C1)g(pm) = 9(pm) < 9(Pmax)s

which contradicts py, > pmax. Therefore we deduce that py, < pmax- Applying this
in (2.23) gives zm < g(pPmax), and so the upper bounds in (2.20) are proved.

Step 5 (Final Lipschitz estimates). In Step 2, we obtain bounds on 9,¢ and
0Oyz. Using the equation (2.8), a bound on 0,z can also be obtained and we conclude
that z is Lipschitz continuous on [0, 7] x R. To show the Lipschitz continuity of p,
it suffices to show that of ¢ since p = m. Given the established bound on 9,¢,
we only need to show the existence of ¢ and give a bound on it.

Let us denote

KO = sup |a”fp— (tv‘r)|7 Kl = sup |6T2(t7$)|5
(t,x)e(—o00,0] xR (t,z)€[0,T)xR
and
t —q(t
K(t,r) = sup la(t, 20) TQ( 2] Vr >0, te[0,T].

|zo—z1|="
For any ¢ € [0,T] and g # x1, we have:
lq(t, z0) — q(t, 1)

o0

< | et =78, o +8) = p(t — s, 21 + 5)|w(s) ds

< lp(t — s, 20 + 8) — p(t — vs,21 + s)|w(s) ds + Kolxg — z1].

/Ot
/0/7
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. . .
The equation p = = ol Sives

lp(t — s, @0 + 5) — p(t — s, 1 + 5)|
<|z(t —vs,z0 + 8) — 2(t — vs,x1 + 9)|

vl lalt = s, 20 + 5) = q(t = vs,21 + 5)]
<Kilvo — o] + v [Vl K(t = s, |z — 21])|wo — 21

Therefore we have
t/y
K(t,r) < Ko+ K +7HU’HOO/ K(t — s, m)w(s)ds
0

— Ko+ K1+ |v']|. /0 K ryw((t — 1) /) di,

for any t € [0, 7] and r > 0.

Using Gronwall’s inequality, we deduce that there exists a constant Ko > 0 only
depending on Ky, K1,v,v,w such that K(¢,r) < Ky for any ¢t € [0,7] and r > 0,
which gives the Lipschitz bound |9,q(t,z)| < K3 for (¢,z) € [0,T] x R.

Step 6 (Continuation). We iteratively construct the solution on time intervals
[to, t1], [t1,t2], [t2,t3], -+ from to = 0. At time t; (k = 0,1,2,---), the past-time
data is given by p(t, x) for (¢,2) € [0,tx] x R and p_(¢,z) for (t,x) € (—o0,0] x R.
Thanks to the L* and Lipschitz bounds obtained in Step 2, Step 4, and Step 5,
the constructed solution on the time interval [0, t;] satisfies

Pmin S P(t,x) S Pmax g(pmin) S Z(t71') S g(pmax)v
and
p is Lipschitz with [|p[|y;, < C(p—,v,v,w)Z(tx),

where Z(t) is the solution of the ODE (2.17). The above estimates guarantee
that t, — oo as Kk — oo and the solution can be extended to the whole domain
(t,x) € [0,00) x R.

2.4. Discussion. We now make some remarks on the model assumptions and the
proof of Theorem 1.1.

Remark 2.1. The Assumption 2 requires that the weight kernel w = w(s) has
an exponential decay. Such an assumption was also used in [13] to establish the
nonlocal-to-local limit of the nonlocal-in-space model (1.4)-(1.5). In Theorem 1.1,
it is assumed that v ||| ., w(0) < B, which together with (1.6) gives

w'(s) < =7 ||V o, w(0)w(s). (2.24)

It is worth noting that if w = w(s) satisfies the condition (2.24), the rescaled kernel
we(s) = w(s/e)/e also satisfies the condition with the same parameters v and |[v'|| .
For the exponential kernel w = w,(s) defined in (1.14), the Assumption 2 is satisfied
for all € > 0 whenever v|[v'||, < 1, which is consistent with the sub-characteristic
condition under the relaxation system formulation (1.15)-(1.16).

Remark 2.2. Let us define the function space
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Xy =
inf po(z) >0, suppo(z) <1,
z€R z€R
so(R) . inf 1 1 1
po € L=(R) : [of po(@)(1+70(a0(@))) > 0, sup po()(1 +7v(qo(@))) < 1,

|02p0(z)| < L, Sup |0z (po () (1 + yv(go(2))))| < L
(2:25)
where the velocity ¢ is written as go(x) = fooo po(z+s)w(s)ds. Then for p_ defined
via the extension (1.10) for a given function py,
p_ € XupL & po€ XL (2.26)

By the form of ¢ we can see that even if 0 < po(x) < 1 for all x € R without
an additional condition that the constraint 0 < po(x)(1 4+ yv(go(x))) < 1 can be
violated at some point x € R where po(z) = 1 and go(x) < 1. A sufficient condition
on po alone to ensure py € Xy, is

‘ S L / ‘
L4 7 (Omax + [[v]l0)

In this case, the lower and upper bounds for the solutions given in Theorem 1.1
become

0 < inf po(2), po(@) < » |0zpo(z)

T 1+ YUmax

inf po(z) < p(t,2) < (14 Yvmax)sup po(z), (t,2) € (0,00) x R.

zeR z€R
These sufficient conditions and solution bounds may not be the best possible results,
we will leave possible improvements for the future research.

3. Existence, uniqueness and stability of weak solutions. For the remain-
der of the paper we concern ourselves with a class of past-time data extended
vertically from given initial data. That is, we assume that the past-time data
p— € L*°((—00,0] x R) satisfies (1.10) for a given py € X, where X denotes the
class
0 < £0 (.’t) < 1’
X =4 po € L(R) : 0< po(x)(1+7v(qo(x))) <1, 5. (3.1)
TV(po) < o0

With this assumption we establish the L!-stability of Lipschitz solutions, from which
Theorem 1.2 follows.

Proposition 3.1 (L!-stability of Lipschitz solutions). Under Assumption 1, As-
sumption 2, and (1.8), assume that two functions p} € Xp, for i = 0,1 (that is,
their Lipschitz constants are possibly different). Let p'(t,z) fori = 0,1 be Lipschitz
solutions to (1.1)-(1.11) with initial conditions p*(0,x) = p(x) respectively.

Then for any T > 0 there exists a positive constant C = C(v,w, T, TV (pf),
TV (p})) such that

T —
/ / (10" (1.2) = (. 2)] + la' (t.2) — (1. 2)] ) ot < C / 1PA(x) — P () d.
o Jr R (3.2)

Proof. Let 6 € [0,1] be a parameter; for each value of 6, define p’ to be a Lipschitz
solution to (1.1)-(1.11) satisfying 0 < p? < 1 with initial data p?(0, ) := 0p°(0, )+
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(1 —0)p'(0,x). At least one such solution exists by Theorem 1.1 and Remark 2.2.
Define the first order perturbations for (¢,z) € [0,00) x R:

p0+h(t,$) 7p6(t7x) q0+h(t,l‘) B qe(taz)
h—0 h h=0 h '

Recalling the definition of the quantity 2/ = p?(1 4+ yv(¢?)) in (2.7), define its first
order perturbation as

20 (t,x) — 20(t, x)

h—0 h
Then
¢* = P(1+0(¢")) + 70" (¢")Q°, (3.3)
and (? satisfies the linearized equation
0i¢% + 0,[V(d")¢? +2°V'(¢")Q%) = 0, (3.4)

where V(q) = 1:,53)([1).

From (1.11) the integral defining Q@ can be written as

o /vy
Q(t, ) :/ PG(O,x—i—t/v—i—s)w(s—i—t/v)ds—i—/ POt —ys,2 4 s)w(s) ds.
0 0

(3.5)
We also use a consequence of the condition (1.6) on w:
w(sy) < w(so)e_ﬁ(sl_SO) for 0 < sg < 81 < 00. (3.6)
Third, we note a variant of Grénwall’s inequality
t
U'(t) < ult) + CUW),U0) =0 = Ut)< / Cl=y(s)ds. (3.7
0

Step 1. We show that along any finite characteristic segment, the perturbed quan-
tity 2Y has bounded total variation. To be precise, define

G(z,t) == /j ‘Oyzg (t—vf,x—i—«f)’d{.

3y

We claim that there exists C' depending only on v and w such that

sup G(x,t) < My :=TV(ph) - CeCT (3.8)
t€[0,T]
and
sup / G(z,t)dz < Mrp. (3.9)
te[0,T] JR

We will prove only (3.8); (3.9) is obtained using the same procedure. From
8y(at20) = _8y(v(qe)3yze) - 8y(V/(q€)Z93yqe) )

we have
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Gl =4 [ [ 102 =g+ ) df]

3y

1 1
= ;\33126(0,95 +t/7)] - gmyze(?t/&l’ +1/37)]

o+

+ [ a0t -+ €] de

3y

1 1
- (; = V(g)18,2°10, + t/7) + (V(a) - 5) 10y2°](2t/3,2 +t/37)

2=

—~ / (sgn(0,2%)0, [z°V'(¢")0,4%1) (t — 7€, + €)dE.

3y
Since 7|V« < 3 the second term in the integral can be dropped in the estimate,
and so

d C(v)
%[G(Z‘v t)] < ~y

+/ﬂ%wwm%mma—%w+®%m.

_t
3y

10,27 (0,2 +t/7)]

(3.10)

We need to estimate the last integral on the right-hand side. We use (1.11) to
obtain the identities
0,la"(t~2ta + O = [ 0up Ot/ + S)uls + 1/~ ds
0
/vy

+ AP’ (t — s, + 8)w(s — €)ds,
3

Ayyld® (t — 7€, + &) =—/0 9up? (0,2 +t/y + s)w'(s+1t/y—€)ds
—w(0)9yp’ (t — 7€,z + &)

t/vy
[ 0 s 95— ),
13

from which it follows that

t

] 10uld e =g+ Ollde < TV + [T 10u0 ¢ = g + Ol

[ 10nla (¢ =26+ €))dg < wOTV(68) + 20(0) [ 10,6t~ 26,2+ )l

(3.11)
In the same way, we can obtain the bound

sup Hay[qa(t —~E -+ f)]HOO = sup H@g[qe(t — 7€, -+ 5)]”00 < 3w(0).
el ¢ el ¢
(3.12)
The estimates (3.11) and (3.12) are applied to majorize the integral on the last line

of (3.10) by
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IIV”IIOQIIZGIIOOE sup )||3yq9(t—7§,-+£)||oo~/ |0yq” (t — &,z + &) d¢
c(t t t

3y 3y

+ 1Vl sup ||8yq9<tw§,-+g)lloo~/” 10, 2% (t — 7€, + €)|d¢
ce(L,t t

3y 3y

IVl [ 10"t = 6+ Ol

3y

i)+ [l nga s Olds+ [ 1o, wg,womg] .
" " (3713)

< C(v,w)

Now, since z = p(1 + yv(q)) we have that (1 — Yomax)|9yp| < |0yz| + 7[|v'|| 0| Oyl
and so along with (3.11)

o+

[, 10us ¢ = rm+ 1

3y

< /: 0, 2° (t — 7€, 2 + €)|dE + 17”1;1|)|00/~ 09" (t =&,z + €)|dg

t
max —_—
ax J 3

3y ~

% V' || oo
STV + [ 10,20 e g+ 1Y

max

[ 10t = r.+ €)1

3y

Since ﬁ“;#lf < 1/3 by assumption we can absorb the last term into the left-hand

side of the estimate to get

[ 1ot =aga+ o< (TV@S) N v£,$+£)|d£> - @)

3y 3y

Inserting (3.14) into (3.13), the estimate for the total variation of 2¢ from (3.10) is
now

d C(v)

Gloan <=

Then by (3.7)

10,2°(0, 2 4+ t/7)| + C(v,w)TV(p§) + C(v,w)G(x, ).

ot
Gla.t) < € [ (Vi) + 210,00+ 5/ ) s
0

o . pEtt/y o
< CCTV(pf) + Ce [ 10,0, < CeC TV,

x

where C' depends only on v and w. The bound (3.8) follows.
Step 2. We prove the main result. The method is similar to Step 1. Define
E :[0,00) = R by

1

,_ > 004 _1 ¥ 0
B(t) = / /R 69t = €, + ldadg = - /0 /R ¢ (r, )\ dadr.

We use the linearized equation (3.4) and apply integration by parts to obtain
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Doy =t [ L [y
GB0 == [ 1000+ t/ldn = o [ 16@/30+ 430l

5 0
+/3t7 /R@t[IC (t — &, @ + €)|] dwdg

[

— [ VIR (¢~ 2+ €1

3y

/

1 1
S V@) |10+ 1)+ (V') = 5o )IcI@e/3, o+ 1/3)

Since 7||V |« < %, the second term in the integral can be dropped, and so
d 1 5
4 B(1) < o) (7“49(0, Mo+ [ [Tl v i@ -6+ s>d§dx> .
m /g

(3.15)
We need to estimate the last integral on the right-hand side. We use (3.5) and (3.6)
to obtain the estimates

/;/IQe(t—v&HS)Id&Sﬂ‘l\lPe(Ow)Hﬁr/;/\Pe(t—vswﬂ)ldﬂcds,
£ Jr £ Jr

sup [0t =16+ €] < [P0, +w(0) [ 1Pt 5,0+ 5)lds,

¢els5 g 35

[ 1@t e + elasa

= [ [ 1oei? =gz + €

)|
2 2T

I

A /OOO PO,z +t/y+s)(—w' (s — £ +t/v))ds

+ POt — 7€,z + )w(0) — /; POt — s, x4 s)w'(s — €)ds|dxde
3

< ||P9(O,.)||1—|—2w(0)/7 / |PO(t — s, 2 + s)|dxds.
£ Jr

(3.16)

Then (3.16), (3.12), (3.8) and (3.9) are applied to majorize the last integral in (3.15)
by

IV leclflloe _ s (087 =2+ )] //|Q"tws,x+s>|dxd5
e(t

it/

~

2

+||V'Hoo|\z9||oo/ Alay[Qe(t—v§7x+€)]ldxd€

+||VI||OO/R<5 (sup IQQ(t—A/&fEJr&)I) /i 10, 2% (t — v&, @ + €)|dédx
S

37 35

(3.17)
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< C(v,w, Mr)

1P%(0, )]l + /7 / |PY(t — s,z + s)|dxds
+ Jr
3y

Now, as a consequence of (3.3) we have

(1 = Y0ma) [P?] < 1¢7] + 71100 [ Q7). (3.18)
so with (3.16) and the conditions (1.8) on 7 and v

/ / POt — €, + ) dude

RS L
< / [ 160 =g+ )ldua

+M>°/:/R|Q9(t—7§,$+§)|d$df

1- YVmax

§2E(t)+£|\Pe( M+ 3 //|P‘9t—’ysx+s)|dxds

Therefore we can absorb the last term into the left-hand side of the estimate to get
t
:
/ / |PY(t — ~v&, x4 €)|dade < C(B) (E(t) + ||P%(0, )Hl) . (3.19)
L JR
3y

Inserting (3.19) into (3.17), the estimate for the derivative of E(t) from (3.15) is
now

SB() < Co,w,T) (74P, |+ B(0)

the bound ||¢%(0,-)||1 < C(v,v)||P?(0,-)||1 is easily seen from (3.3) and (3.5). Ap-
plying Gronwall’s inequality and changing coordinates, we obtain

T
/0 /R|§9(t,ac)|dasdt < C(v,w,T)||P°(0,-)];. (3.20)

Now, by (3.16)

/OT/RQe(t,xﬂdxdt

T
< ZHPG(O,-)H1+/ /|P9(t,x)|dxdt

/ T
Hpe( M +c/ /|§9 (ta)|dedt + 1 Al / /|Q‘9(t,m)|dmdt,
’vaax R

where we used that P? satisfies (3.18). Since % < % we can absorb the Q’
term and then apply (3.20) to get

/T/ QY (t, ) |dxdt < C(v,w, T)||P?(0,-)|:.
o Jr

Therefore the estimates for ¢? and Q? combine using (3.18) to give us the estimate
for P?:

T
/ /|P9(t,x)|dxdtgé(v,w,T)HPG(o,.)Hl.
0 R
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To conclude the proof, we use the above two inequalities to get:

T
Jﬁ ]£(|pl<t,x>4—-p°<t,x>\-+|q1<t,x><—-q°(t,x>nctrdt

</O1 /OT/R<|P9(t,x)|+Qe(t,x)|>dxdtd0

< [ e@iPo. 1o < ) [ 101(0.0) = (0.0l

Proof of Theorem 1.2. Let py € X, and let pf, n € N, be a sequence of molliﬁeE]l
functions in Xy, (possibly with L,, — oc) that converge to po in LL _(R). By virtue
of (3.2) the corresponding solutions p™ € Dr, 7 p.in,pmae 10 (1.1)-(1.11) with initial
condition p"(0,z) = p§(x) are Cauchy, and hence converge, in Ll ([0,T] x R) to
a function p. Thus p satisfies (1.12), and so is a weak solution. Furthermore,
we note that the weak solutions constructed in this way inherit the same stability
property (3.2), since the bounding constant in that inequality does not depend on
the Lipschitz constant of the solutions, and so uniqueness follows. To complete the
proof, given that p™ is a bounded sequence in L>°([0, T] x R), and the weak-x limits
are unique, by noting the sequence p™ is obtained with initial conditions that are
mollified approximations of pg, we can pass through the limits to obtain the bounds

(2.4)-(2.5) for the weak solution p. O

4. Uniform BV bound and existence of limit solutions. Towards the aim
of proving the convergence of the solutions of (1.1)-(1.11) as the weight kernel w
converges to a Dirac delta function, we consider only the exponential kernels as
defined in (1.14):

s 1 —s/e
b

w(s) =e”?, we(s) = e tw(s/e) = te s €0, 00).

In this case the nonlocal model (1.1)-(1.11) can be reformulated as the relaxation
system (1.15)-(1.16), which is recalled here:

9ep + 0z(pv(q)) = 0,
Oiq =~ 0eq = (ve) "M (p — a)-
The characteristic speeds of the system are
M =-—1<0, X=uv(g)>0.
Taking ¢ — 0, we expect the solution of (1.15)-(1.16) to converge to that of its
equilibrium approximation, which is the LWR model (1.3). The characteristic speed
of the limit equation (1.3) is
A=v(p) + pv'(p)-
The condition (1.8) plus p > pmin > 0 ensures the strict sub-characteristic con-
dition A1 < A < Ao.
4.1. Uniform BV bound.

Proof of Theorem 1.3. Let us first assume py € C2(R). In this case, p and q are
Lipschitz continuous and satisfy the reformulated system (1.15)-(1.16) pointwise.
Noting that p and 1 + yv(q) stay positive provided pmin > 0, we construct

u=I(p(l+v(q))), h=-In(l+7yv(g). (4.1)
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One can easily verify that u and h are Riemann invariants of the system (1.15)-

(1.16) corresponding to the system’s characteristic speeds Ao = v(g) and A\; = —y 1,

respectively. With the new set of variables (u, h), the system (1.15)-(1.16) can be
diagonalized as

Oru + v(q(h))0pu =~ A(u, h), (4.2)
Oth —y710,h = — e A(u, h),
where g(h) =v~! (y"'(e™" — 1)) is an increasing function, and
Al h) = v/ (g()e" (e+ — g(1)) (4.4

Note that u(0,-),h(0,:) € C2(R) and u,h are Lipschitz continuous. By the
method of characteristics we see that O,u,d,h are Lipschitz continuous and com-
pactly supported. We claim that the system (4.2)-(4.3) is total variation diminish-
ing, i.e.,

i/ 10| + |0uh] dz < 0. (4.5)
dt Jg
Indeed, differentiating (4.2)-(4.3) with respect to z gives
04(0pu) 4 0y (v(q(h))Opu) = e (OuA - Dpu + O A - Oh),
O (0sh) + 0y (= 10sh) = —e 1 (OuA - Opu+ OpA - O, h),

from which we obtain that
d
@/ |0z u| + |0xh| dx = / sgn(0yu) - 04 (0zu) 4+ sgn(dzh) - 0¢(0:h) dx = Jy + Ja,
R R
where

T = [ —sgn(0cu) - 0r (o(a(m)Dr) + ™ sgn(0eh) - 0:(0,1) da

- / 5(Da)0(q(h))Dwuidu — 4~ 5(Duh)0shO2h da
R
=0

and
Jy=¢e! / sgn(0,u) (Oy A - Oy + OpA - Oph) — sgn(9,h) (Ou A - Opu + Op A - O,h) dx
R
<ot /(|Au| + A)[Dutt] + ([An] — A)|Buh] da.
R

A direct calculation gives

O = ' (q(h))e* T <0

and
onA
_ w [v7(a(r) (1 + yv(g(h))) _outhy 4o Quth _ v 1
=e { ~v' (q(h) (a(h) )+ (g(h))(2 q(h)) + (q(h))+7
T (om0l
Ze{ L s ey 7 3]
>0,

where the condition (1.17) and the solution bounds 0 < e¥*" = p <1, 0 < g(h) < 1
are used. With 9,A <0 and 9,A > 0, the estimate (4.5) follows immediately.
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Thanks to the estimate (4.5), we now turn to the uniform BV bound on p. At
the initial time ¢ = 0, we have

/ 1020, )] dx = / 19,4(0,2)| dz = TV (po).
R R

Therefore,

b

290/ (4(0,2))]
/R B,u(0, )| + 9, h(0, 2)| dx < / 0.0+ TR

1+ yv(q(0, z))
<pil, / 190 0, 2)] da + 27 ]| / 1924(0, )| da
R R

< (Pmain + 27 17"l 0) TV (p0).

Since the total variation of (u, h) is diminishing, it holds that

1024(0, z)| dx

[ 1ouutt,a)| +10ah(t. ) do < (phy + 29 ]1.0) TV o).
R

for any time ¢ > 0. Noting that 9,p = p(9,u + 9.h), we deduce that

[ 1osptt.n)ldo < [ 10su(t.)] + okt )] dz < (o + 21 10']) TV ().
R R

Then, using (1.11) and (1.1), we have
[ 1osatt. ) do < (2 + 27 [9'1.) TV o),
R

/R [0ep(t, )] dz < (vmax + 1]l o) (Prain + 27 [10']lc) TV (p0),

for any time ¢ > 0. Combining the above inequalities, we obtain

T
/ / 000 (t, )| + D plt, 2)) dcdt
0 R
< (Umas+ [0/l + 1) (0 + 29 [0/ 10) T - TV (po),

which gives the desired uniform BV bound (1.18).

For general initial data py € X, we apply an approximation argument as in
Theorem 1.2 but instead using C?(R) functions. By passing through the limit we
deduce that the BV bound (1.18) holds also for weak solutions of (1.1)-(1.11). O

Remark 4.1. A counterexample was given in [13] to show that the total variation
of solutions to the nonlocal-in-space model (1.4)-(1.5) blow up as ¢ — 0 if the
initial data are not uniformly positive. We leave the same question for (1.1)-(1.11)
to future works.

4.2. Convergence to a weak solution. Now we are in a position to show the
existence of limit solutions that satisfy the limit equation (1.3) in the weak sense.
To pass the limit we need to establish the following theorem.

Theorem 4.2. Under the same assumptions as in Theorem 1.3, let p° be the unique
weak solution of (1.1)-(1.11) with parameter € and initial condition p°(0,z) = po(x).
There is a sequence £, — 0 and a limit function p* € L*([0,00) x R) such that
P — p* in LL ([0,00) x R). Moreover, p* is a weak solution of (1.3).

loc
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Proof. By Theorem 1.2 and Theorem 1.3, the family of solutions {p°}.s0 is uni-

formly bounded in BVi..([0,00) x R). As a consequence, the family {p°}.~¢ is

precompact in the Li _ norm (see [22]). Then we can select a sequence &, — 0 such

that p» — p* in Ll ([0, 00) x R), where the limit function p* € L>([0,00) x R).
Now we claim that

T
/ / l¢® (¢, z) — p°(t, z)| dedt < CTe VT >0, (4.6)
o Jr

where the constant C = C' ('y,v,pr;iln,TV(po)) is independent of . Indeed, by
(1.11) we can write

qs(t7 x) - ps(t’ .13)

t/y 0o
= [t s) - oD st [ (polo+5) = pl))us) ds
0 t/y
x) — p°(t,x we(s)ds,
+ (polx) — p=( ))/W (5)

where w, (s) = e~'e~%/¢. Integrating the above inequality on [0, 7] x R and applying
Theorem 1.3, we obtain that

T
/ / lg°(t, x) — p°(t, )| dedt < J; + Jo + J3,
o Jr

where
T pt/y s
Ji :/ / / (/ [(Or — vOp)p"(t — yo,2 4 0)| dx) we(s) dodsdt
o Jo 0 \JR
<(1+7)C1 (7,0, pin) TV (po) - T/ swe(s) ds
0
:(1 + 7)01 (’73 v, pr:nln) TV(pO) ' T€7
T oS s
7 :/ / / (/ 10upo(@ + )| d:v) we(s) dodsdt
o JiyyJo \Jr
<TV(po) -T/ swe(s)ds
0
=TV(po) - T,
and

Js /OT </Ot (/Rmtps(ﬂscﬂdl’) dT/t:wE(s) ds> dt

T
<C; (’Y,U,p;iln) TV(pO)/ te™ e dt
0

<C1 (7,0, prain) TV (p0) - 7 Te.

Combining the above inequalities we get the desired estimate (4.6).

Therefore by (4.6) and the convergence of p*» — p*, we get ¢*» — p* in
Li.([0,00) x R) as €, — 0. By passing through the limit in (1.12), we deduce
that p* is a weak solution of (1.3). O
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5. Entropy admissibility of the limit solution. In this section, we show that
the weak solution to the local model (1.3) obtained from the limit as ¢ — 0 of a
sequence of weak solutions to (1.1)-(1.11) is in fact the entropy admissible solution.
This completes the theory of nonlocal-to-local limit from (1.1)-(1.11) to (1.3) in the
case of exponential kernels.

Proof of Theorem 1.4. Following a similar approach as in [3], it suffices to establish
the entropy inequality for one convex entropy, see also [17]. For this purpose, we
introduce the following entropy-entropy flux pair:

W(P)—/Opr(lJrW(?"))dh w(P)—/Op?"(1+’w(7"))(v(7“)+7"v'(7“))d7"' (5.1)

It is straightforward to verify that ¢'(p) = n'(p)(pv(p))’, and that n(p) is strictly
convex. We claim the following entropy inequality for the nonlocal solution p® of
(1.1)-(1.11):

/ / (1, 2))up(t, @) + (o7 (1, 2))Dup(t, ) dedt

> -C (ry’ v, pmin’ TV(po), 90) g, (52)

for all nonnegative test functions ¢ € CL((0,00) x R), where the constant C' =
C (fy, v, p;ﬁln, TV(po), cp) is independent of €. Assuming this claim, any limit solution
p* obtained following Theorem 4.2 satisfies the entropy inequality

/ / (1, 2))Prp(t, ) + (" (1, 2))Dap(t, 2) dadt > 0 (5.3)

for all nonnegative test functions ¢ € CL((0,00) x R), and thus p* is the unique
entropy admissible solution of (1.3).

Now we prove the inequality (5.2). Let us first assume that pg is Lipschitz contin-
uous and show (5.2) for Lipschitz solutions. For simplicity we omit the superscript
¢ in p°. The equation (1.1) can be rewritten as

Op + 0x(pv(p)) = 9:(p(v(p) — v(q)))- (5.4)

For any nonnegative test function ¢ € C! ((0,00) x R), multiplying p(1 + vyv(p))¢p
on both sides of (5.4) gives

(0m(p) + 9:0(p))p = p(1 +yv(p))0x(p(v(p) — v(q)))wp- (5.5)

Using again the directional derivative notation 8y = 0, —0;, we obtain the identity
p =q —€9yq. Then (5.5) becomes

(0im(p) + 09 (p))w

= 70:(p*(v(p) — v(q)))p + %WI (p* (v(p)? = v(9)?)) ¢ + pdy(p(v(p) — v(q)))e.
(5.6)

Integrating (5.6) and using integration by parts, we get

/ / n(p)0rp + Y(p)Ozp drdt = Jy + Jo + J3,
0 R

J1 = 7/ / v(q))0p dxdt,

where
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1 o0
J2 = 57/ /02 (v(p)? — v(q)?) Ouep dudt,
0 R

and
I3 = /ooo/Rpay(P(v(Q) —v(p)))pdxdt
=5 | Lo v [ [ 20,00 - o) e
3| e - [ ] 0,0 - o) duas

1 1
= —Js+ =Js.
5 4+2 5

Repeatedly using the identity p = ¢ — €0yq and integrating by parts, we compute

Js = / / p*(v'(q)0yq — ' (p)Oyp)ep dadt
0 R

:/ /q2v'(q)6chpdxdt
o Jr

—/OOO/ﬂ@p2v,(pﬁyp@d$dt_5/000/R(P-HI)U'(Q)(@yq)Qapdxdt

— [ [ - wapaedsat—c [ [ o+ @) @070 do
o JRr o JRr
= Jg + J7,
with W(p) = [ r2v'(r) dr.
Now we have

o 1 1 1
/ / n(p)dp + (p)Opdrdt = Jy + Jo + S Ja + S Js + 57
o JRr 2 2 2
Since p, g, ¢ > 0 and v'(¢) < 0, we have J; > 0. Moreover, it follows from (4.6) that

|J1] + | J2| + |Ja] + [J6] < C1 (7,0, ptns TV (p0)) C2(suppe, 04|l oo » 10201l o0 )E-

Then we obtain the inequality (5.2).
The inequality (5.2) for initial data py € X follows from an approximation argu-
ment as in the proof of Theorem 1.2. ]

Let us make some remarks on entropy pairs for the relaxation system (1.15)-
(1.16) and its equilibrium approximation (1.3). In the proof of Theorem 4.2 we
base the analysis directly on the nonlocal model (1.1)-(1.11), and do not rely on
the rigorous justification of the entropy inequality for the relaxation system (1.15)-
(1.16). However, we remark that some intuitive analysis based on the relaxation
system (1.15)-(1.16) offers insight to our choice of the entropy pair (5.1).

Following the paradigm described in [7], if (1, ) is any entropy-entropy flux pair
for the limiting conservation law (1.3), one can construct an entropy-entropy flux
pair (H, V) for the relaxation system (1.15)-(1.16) such that

/ / H(p,q)0rp + ¥(p,q)0up + (v) " 04 H (p,q)(p — @)p dwdt > 0,
o Jr
for any test function ¢ > 0, and when p = ¢ one has

H(p,p) =n(p), ¥(p,p) =4(p), 9qH(p,p)=0.
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Therefore, it holds

/m/n@Ww+w@ﬁwdwt

0 R

2/ /[H(p,p) — H(p,q)]0:p + [Y(p, p) — ¥ (p,q)] 0 dadt
0 R

—wa*lmémﬂm@—@ﬂmmmhw¢mw

Assuming H and ¥ are C? smooth, the right hand side is O(¢) when p — g ~ ¢.
Provided any convex 7, one can construct H by solving the following hyperbolic
Cauchy problem [7]:

pv' (q)0ppH — (v(q) + 7 ")0pgH = 0,
H(p,p) =n(p), 0qH(p,p) =0.

We note that, with the simple choice of convex entropy 7(p) = 5 p?, the analytic
solution H may be complicated. Instead, if we choose a different convex entropy

function:
n@)=%;ﬂl+vdﬂﬁ#

we obtain a simple solution for H as

H(p,q) = n(p) + 3.p°[v(a) — v(p)].

This motivates our choice of the entropy-entropy flux pair in (5.1).

6. Concluding remarks. In this paper we propose a space-time nonlocal con-
servation law modelling traffic flow. The proposed model (1.1)-(1.2) extends the
classical LWR model by introducing nonlocal velocities in the flux function. To fit
realistic traffic scenarios, the model considers time delays in the long-range inter-
vehicle communication, and the model parameter  corresponds to the temporal
nonlocal effects. In the limit as v — 0, our analysis shows that the model recovers
a model involving only spatial nonlocality, which has been extensively studied in
the literature.

We provide well-posedness theories of the proposed model (1.1)-(1.2) under suit-
able assumptions on model parameters and the past-time condition. Furthermore,
in the special case of exponential weight kernels, we prove convergence from solu-
tions of the nonlocal model to the unique entropy admissible solution of the local
limit equation, i.e. the LWR model. The results established in this paper provide a
rigorous underpinning in potential implementation of the space-time nonlocal model
for the modelling of nonlocal traffic flows.

Let us make some concluding remarks on possible generalizations of the model.
An alternative model to (1.1)-(1.2) is to instead take a weighted average of vehicle
velocity. To be precise,

atp(trx) + ax(p(tv .Z’)V(t,:t)) =0,
where V(t,x) = /0 v(p(t —vs,z + s))w(s) ds.

For this model, we expect that the well-posedness and nonlocal-to-local limit can be
established in a similar fashion. Furthermore, in future works we hope to consider
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more general cases where the traveling speed of nonlocal traffic information depends
on additional quantities in the model.

We would also like to conduct more mathematical analysis. In this paper we show
convergence of solutions of the space-time nonlocal model to the entropy admissible
solution of the local model in the case of exponential weight kernels. The conver-
gence result may be established on the nonlocal quantity g for more general initial
data and kernels. Such a result has been established for the nonlocal-in-space model
(1.4)-(1.5) in [14]. We hope to show more nonlocal-to-local convergence results for
the space-time nonlocal model along that direction. Furthermore, understanding
the behavior — such as the existence, uniqueness and stability — of traveling wave
solutions of the space-time nonlocal model will shed light on the long time behavior
and stability of shock waves. In the case of exponential kernels, this is equivalent
to the study of traveling waves for the relaxation system, which could be easier to
analyze. For general kernels, an integro-differential equation is satisfied by the trav-
eling wave profiles. In all cases, we expect that traveling waves are local attractors
for solutions.
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