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Quickest Anomaly Detection in Sensor Networks
With Unlabeled Samples

Zhongchang Sun and Shaofeng Zou

Abstract—The problem of quickest anomaly detection in net-
works with unlabeled samples is studied. At some unknown time, an
anomaly emerges in the network and changes the data-generating
distribution of some unknown sensor. The data vector received by
the fusion center at each time step undergoes some unknown and
arbitrary permutation of its entries (unlabeled samples). The goal
of the fusion center is to detect the anomaly with minimal detection
delay subject to false alarm constraints. With unlabeled samples,
existing approaches that combines local cumulative sum (CuSum)
statistics cannot be used anymore. Several major questions include
whether detection is still possible without the label information, if
so, what is the fundamental limit and how to achieve that. Two
cases with static and dynamic anomaly are investigated, where
the sensor affected by the anomaly may or may not change with
time. For the two cases, practical algorithms based on the ideas
of mixture likelihood ratio and/or maximum likelihood estimate
are constructed. Their average detection delays and false alarm
rates are theoretically characterized. Universal lower bounds on
the average detection delay for a given false alarm rate are also
derived, which further demonstrate the asymptotic optimality of
the two algorithms.

Index Terms—Quickest change detection, unlabeled samples,
permuted samples, asymptotically optimal, fundamental limits.

I. INTRODUCTION

IN SENSOR networks, samples may lack label information
such as identity due to, e.g., malicious attacks and limited

communication resources. For example, wireless ad-hoc sensor
networks are usually vulnerable to spoofing attacks [2], and
samples received by the fusion center may then lose their label
information. Furthermore, in Internet-of-things (IoT) networks,
where devices are commonly small and low-cost sensing devices
powered by battery with limited communication bandwidth, and
are usually deployed in a massive scale, the communication
overhead of identifying individual sensors increases drastically
with the number of sensors [3]. However, these battery-powered
IoT devices are usually expected to survive for years without
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battery change. In this case, message that is delivered to the
fusion center may be constrained not to contain the identity
information. Furthermore, in social sensing applications, partic-
ipants may choose to be anonymous in order to protect privacy,
i.e., sharing the data without including identity information.
Motivated by these applications, there is a recent surge of interest
in the problem of signal processing with unlabeled data (see
e.g., [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17]), which refers to various signal processing problems
where the data vector undergoes an unknown permutation of its
entries, and the original position of each datum in the vector is
unknown.

In this paper, we investigate the problem of quickest anomaly
detection in sensor networks with unlabeled samples. Specifi-
cally, at some unknown time, an anomaly emerges in the network
and leads to a change in the data-generating distribution of
some unknown sensor. The fusion center sequentially receives
unlabeled (arbitrarily permuted) samples from all the sensors
at each time step. The goal of the fusion center is to detect
the anomaly as quickly as possible, subject to false alarm con-
straints. This problem is of particular relevance to applications
where an anomaly affects some sensor in the network, and the
affected sensor may change over time [18], e.g., surveillance
system, intrusion detection, environmental change detection,
rumor detection, and seismic wave detection.

A. Contributions and Major Challenges

We first focus on the static anomaly, where the sensor affected
by the anomaly does not change with time, but which sensor is
affected is still unknown. We consider the detection delay under
the worst-case affected sensor. The goal here is to minimize the
detection delay subject to false alarm constraints. The major
challenges here are two-fold. First of all, the labels of the
samples are unknown and time-varying. Second, even if the
labels are known, i.e., each sample is associated with its sensor,
the sensor the anomaly affects is still unknown. For this problem,
we construct a generalized mixture CuSum (GM-CuSum) algo-
rithm. The basic idea is to estimate the unknown identity of the
affected sensor using the maximum likelihood estimate (MLE),
and further employ a mixture likelihood w.r.t. all possible labels.
We prove that the GM-CuSum is second-order asymptotically
optimal.1

1An algorithm is second-order asymptotically optimal if as the false alarm
rate goes to zero, its detection delay is within an O(1) term of the best possible
detection delay.
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We then focus on a general and more challenging setting with
dynamic anomaly, where the sensor affected by the anomaly
changes with time. Here, we refer to the sequence of sensors
affected by the anomaly over time as the trajectory of the
anomaly. We consider the detection delay under the worst-case
trajectory. Compared to the static setting, the additional chal-
lenge is that the affected sensor changes with time, and thus
the change is not persistent at any particular sensor. Therefore,
estimating the identity of the affected sensor over time is not
applicable. We then propose a weighted approach to address this
challenge, and find the optimal weight to construct a weighted
mixture CuSum algorithm. We prove that the weighted mixture
CuSum algorithm is first-order asymptotically optimal.2 We
also discuss two computationally efficient approximations for
large-scale networks.

We also conduct extensive numerical experiments to demon-
strate the performance of our proposed algorithms. The numer-
ical results show that for the static setting, our GM-CuSum
algorithm outperforms a heuristic uniformly weighted mixture
CuSum algorithm; the optimal weighted mixture CuSum algo-
rithm also performs well for the static setting; and for the dy-
namic setting, our optimal weighted mixture CuSum algorithm
outperforms an uniformly weighted one and the GM-CuSum
algorithm. These numerical results validate our theoretical op-
timality results.

B. Related Work

The quickest change detection (QCD) problem in sensor
networks with labeled samples was extensively studied in the
literature, e.g., [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], where the fusion center knows the identity
of each sample, i.e., knows which sensor that each sample is
from. Therefore, one CuSum algorithm can be implemented at
each sensor and then be combined to make the decision. This
type of algorithms were shown to be asymptotically optimal
for various settings. In this paper, we investigate the setting
with unlabeled samples, where at each time step samples are
arbitrarily permuted, and the permutation is time-varying. The
fusion center does not know which sensor each sample comes
from, and then cannot implement a CuSum algorithm for each
sensor.

Various learning and inference problems with unlabeled data
have been studied in the literature [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], which mainly focus
on the offline setting with non-sequential data. Here we only
review several closely related ones on detection problems. In [6],
hypothesis testing with unlabeled samples was studied, where
two practical algorithms, the unlabeled log-likelihood ratio test
and the generalized likelihood ratio test were proposed. A more
specific problem was studied in [7] where samples follow the
Bernoulli distribution and an approximated log-likelihood test
based on the central limit theorem was proposed. In [4], the
binary hypothesis testing problem with unlabeled samples was

2An algorithm is first-order asymptotically optimal if as the false alarm rate
goes to zero, the ratio between its detection delay and the best possible detection
delay goes to 1.

studied, and an optimal mixture likelihood ratio test (MLRT)
was developed. In [5], the bandwidth-constrained QCD problem
with unlabeled samples was investigated, where each sensor
sends 1-bit quantized feedback to the fusion center. In [17],
the QCD problem with unlabeled samples was studied where
the change affects all the sensors simultaneously. In this paper,
we investigate a practical scenario where an anomaly may not
affect all the sensors, which is of particular interest in the
distributed setting, and the anomaly may also be dynamic and
affect different sensors at different times, e.g., a moving target
in surveillance systems.

Existing studies of quickly detecting a dynamic change mostly
focus on the labeled setting, e.g., [31], [32], [33]. Our problem
is similar to the one in [33] but we focus on the unlabeled
setting. Our major challenge is due to the additional ambiguity
of unknown labels. The QCD problem with a slowly changing
post-change distribution was studied in [34], [35], whereas in
this paper, the anomaly can move arbitrarily fast.

With unlabeled samples, our problem is also related to the
composite QCD problem with unknown pre- and post-change
parameters e.g., [22], [36], [37], [38]. Our work is different from
the existing literature since the unknown parameters, i.e., the
identity and the label of the affected sensor, are time-varying.
Therefore, the generalized likelihood approach which estimates
the unknown parameters using their MLEs may not perform
well. Moreover, unlike studies in [36], [37], [38] where the
distributions are assumed to belong to the exponential family,
we do not have any assumptions on the distributions.

II. PROBLEM FORMULATION

Consider a network monitored in real time by a set of n
heterogeneous sensors. These sensors can be clustered into
K types, and each type k has nk sensors, 1 ≤ k ≤ K. The
data-generating distributions of samples from type k sensors
are denoted by pθ,k, θ ∈ {0, 1}, which are known to the fusion
center. At some unknown time ν, an anomaly emerges in the
network, and changes the data-generating distribution of one
sensor. The fusion center does not know which type of sensor is
affected. If a sensor of type k is affected by the anomaly, then
its samples are generated by p1,k, otherwise, by p0,k. The goal
is to detect the anomaly as quickly as possible subject to false
alarm constraints. We focus on the case with unlabeled samples,
where the data vector at each time step undergoes an unknown
permutation of its entries, and the original position of each datum
in the vector is unknown to the fusion center. In other words, the
fusion center does not know which type of sensors that each
sample comes from, and therefore, does not know the sample’s
exact data-generating distribution.

Based on whether the sensor is affected by the anomaly and
the type of the sensor, we rearrange the sensors into 2K groups.
The first K groups consists of sensors that are not affected by
the anomaly; and the second K groups consists of sensors that
are affected by the anomaly. Specifically, for sensors in group
1 ≤ k ≤ K, their samples are generated by p0,k, and for sensors
in group K < k ≤ 2K, their samples are generated by p1,k−K .
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In this paper, we use capital letters to denote random vari-
ables and lower case letters to denote their realizations. De-
note by Xn[t] = {X1[t], . . . , Xn[t]} the n arbitrarily permuted
samples at time t received by the fusion center. We assume that
X1[t], . . . , Xn[t] are independent, and Xn[t1] is independent
from Xn[t2] for any t1 �= t2. Note that Xi[t] is not necessarily
the sample from sensor i since samples are permuted/unlabeled.
The results in our paper hold for both continuous and discrete
random variables Xi[t].

Let K = {1, 2, . . . ,K}. Denote by s[t] ∈ K ∪ {0} the type
of the affected sensor at t. For notational convenience, we use
s[t] = 0 to denote the case when there is no anomaly, i.e.,
t < ν. Let s � {s[t]}∞t=1 denote the trajectory of the anomaly.
Here s is unknown to the decision maker. Even if the tra-
jectory of the anomaly s is given, the distribution of Xn[t]
still cannot be fully specified due to lack of label informa-
tion. To characterize the distribution of Xn[t], we define a
label function σ

s[t]
t : {1, . . . , n} → {1, . . . ,K, s[t] +K}. This

function associates sample Xi[t], 1 ≤ i ≤ n, to group j for
some j ∈ {1, 2, . . . ,K,K + s[t]}, i.e., specifies the probability
distribution of Xi[t]. Specifically, if σs[t]

t (i) = j, then

Xi[t] ∼
{
p0,j , if 1 ≤ j ≤ K,
p1,j−K , if K < j ≤ 2K.

(1)

Here σ
s[t]
t can be interpreted as the inverse of the permutation

applied to the data vector. We further note that σs[t]
t is unknown

to the decision maker.
LetΩs =

{
σ
s[1]
1 , . . ., σ

s[∞]
∞
}

be the labels when the trajectory

of the anomaly is s, which is unknown. Let Ps,ν
Ωs

and Es,ν
Ωs

denote
the probability measure and the corresponding expectation when
the change point is at ν and the samples received by the fusion
center are permuted according to the label Ωs (see Appendix A
for more details). We further let P∞

Ω and E∞
Ω denote the proba-

bility measure and the corresponding expectation when there is
no change, i.e., ν = ∞, where Ω = Ωs with s[t] = 0, ∀t ≥ 1.

We extend Lorden’s criterion [39], and define the worst-case
average detection delay (WADD) and the worst-case average
running length (WARL) for any stopping time τ :

WADD(τ) = sup
ν≥1

sup
s

sup
Ωs

esssupEs,ν
Ωs

[(τ − ν)+|Xn[1, ν − 1]],

WARL(τ) = inf
Ω

E∞
Ω [τ ], (2)

where Xn[t1, t2] = {Xn[t1], . . . , X
n[t2]}, for any t1 ≤ t2 and

(τ − ν)+ = max{τ − ν, 0}. Let f : X → R be a real-valued
function and (X,X , μ) be a probability space. The essential
supremum is then defined as

esssupf = inf {a ∈ R : μ({x : f(x) > a}) = 0}. (3)

The goal is to design a stopping rule that minimizes the WADD
subject to a constraint on the WARL:

inf
τ :WARL(τ)≥γ

WADD(τ), (4)

TABLE I
SUMMARY OF NOTATIONS

where γ > 0 is a pre-specified threshold. Here the false alarm
constraint is to guarantee that under all possible sample permu-
tations, the average running length to a false alarm is always
lower bounded by γ.

A stopping time T is second-order asymptotically optimal if
WARL(T ) ≥ γ and for large γ

WADD(T ) = inf
τ :WARL(τ)≥γ

WADD(τ) +O(1). (5)

A stopping time T is first-order asymptotically optimal if
WARL(T ) ≥ γ and for large γ

WADD(T ) = inf
τ :WARL(τ)≥γ

WADD(τ) (1 + o(1)). (6)

In Table I, we summarize important notations in this paper.

III. STATIC ANOMALY

We first investigate the case with static anomaly, i.e., the
sensor affected by the anomaly does not change with time. In this
case, for any t ≥ ν, s[t] = k for some unknown type k. Then,
for all j ∈ {1, 2, . . . ,K, k +K}, there are ( n

n1,...,nk−1,...,nK ,1)
possible σk

t ’s to associate each sample with a data-generating
distribution, and we denote the collection of all possible labels
by Sn,k (see Appendix A for more details). Before the anomaly
emerges, i.e., t < ν, Xn[t] follows the distribution

P0,σ0
t
(Xn[t])

Δ
=

n∏

i=1

p0,σ0
t (i)

(Xi[t]), (7)

for some unknown σ0
t ∈ Sn,0. At time t ≥ ν, s[t] = k, Xn[t]

follows the distribution

Pk
σk
t
(Xn[t])

Δ
=

∏

i:σk
t (i)≤K

p0,σk
t (i)

(Xi[t])

×
∏

i:σk
t (i)>K

p1,σk
t (i)−K(Xi[t]), (8)

for some unknown σk
t ∈ Sn,k. Let Ωk =

{σ0
1 , . . . , σ

0
ν−1, σ

k
ν , . . . , σ

k
∞} be the labels over time, when

the anomaly emerges at ν (similarly defined as ΩS). Let Pk,ν
Ωk

denote the probability measure when the change point is at ν
and the samples are generated according to (7), (8) and Ωk.
Further let Ek,ν

Ωk
denote the corresponding expectation.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on September 26,2023 at 14:50:01 UTC from IEEE Xplore.  Restrictions apply. 



876 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

The WADD for a stopping time τ can be written as

WADD(τ) = sup
ν≥1

sup
k

sup
Ωk

esssupEk,ν
Ωk

[(τ − ν)+|Xn[1, ν − 1]].

The WARL is defined in the same way as in (2).
The goal is to design a stopping rule that minimizes the WADD

subject to a constraint on the WARL:

inf
τ :WARL(τ)≥γ

WADD(τ). (9)

A. Universal Lower Bound on WADD

We first derive a universal lower bound on WADD for any τ
satisfying the false alarm constraint: infΩ E∞

Ω [τ ] ≥ γ.
Let Ik = D(P̃k||P̃0) denote the Kullback-Leibler

(KL) divergence between two mixture distributions
P̃k = 1

|Sn,k |
∑

σ∈Sn,k
Pk
σ and P̃0 = 1

|Sn,0|
∑

σ∈Sn,0
P0,σ. Here,

P̃k is the uniform mixture of all possible labels when the
affected sensor is type k. Let I∗ = min1≤k≤K Ik. We then have
the following theorem.

Theorem 1: As γ → ∞,

inf
τ :WARL(τ)≥γ

WADD(τ) ≥ log γ

I∗
+O(1). (10)

The proof of Theorem 1 can be found in Appendix B. The
main challenge in the proof of Theorem 1 is due to the worst-
case over all labels and affected sensors in WADD and WARL.
From Theorem 1, it can be seen that the WADD for problem
(9) is lower bounded by log γ

I∗ +O(1) for any stopping rule that
satisfies the constraint on WARL. Theorem 1 motivates us to
find the k that minimizes Ik, i.e., achieves I∗, and design an
algorithm to achieve this universal lower bound.

B. Generalized Mixture CuSum Algorithm

In this section, we construct an algorithm that achieves the
universal lower bound asymptotically.

When there are unknown parameters, MLE is commonly used
to estimate the unknown parameters. In the static setting, k does
not change with time, however, σk

t changes with time, thus a
direct MLE for σk

t at each time t may not work well.
If k is known, then our problem is invariant under the group of

transformations of all possible labels (permutations), that is, our
problem is independent of the order of collected samples at each
time. Therefore, our problem is related to the invariant theory
in [40, Section 6]. This motivates us to take a mixture approach
w.r.t. the unknown labels, and then take a MLE approach w.r.t.
the unknown affected sensor.

Let W [t] = maxk∈K max1≤j≤t

∑t
i=j log

P̃k(Xn[i])

P̃0(Xn[i])
. We then

define the GM-CuSum stopping time as follows:

TG = inf{t : W [t] ≥ b}, (11)

where b > 0 is the threshold. Here W [t] can be updated effi-
ciently. We keep K CuSums in parallel. Note that this can be

done recursively. Let Wk[t] = max1≤j≤t

∑t
i=j log

P̃k(Xn[i])

P̃0(Xn[i])
.

The test statistic W [t] has the following recursion:

W [t+ 1] = max
k∈K

{
(Wk[t])

+ + log
P̃k(Xn[t+ 1])

P̃0(Xn[t+ 1])

}
, (12)

where Wk[0] = 0, ∀k. We then take their maximum as W [t].
In the following theorem, we show 1) the WARL lower bound

of TG and 2) the WADD upper bound of TG.
Theorem 2: 1) Let b = log(Kγ) in (11). Then WARL(TG) ≥

γ; and 2) As γ → ∞, WADD(TG) ≤ log γ
I∗ +O(1).

The proof of Theorem 2 can be found in Appendix C.
The proof of the lower bound on WARL is based on Doob’s
submartingale inequality [41] and the optional sampling the-
orem [41]. The major challenge lies in that we consider the
worst-case label. A key property we develop and use in the proof
is that under the pre-change distribution P0,σ0

t
, for anyk ∈ K, the

expectation of the mixture likelihood ratio E0,σ0

[
log P̃k(Xn)

P̃0(Xn)

]

is invariant for different σ0’s.
Theorem 2 suggests that to meet the WARL constraint, b

should be chosen such that b = logKγ.
Based on Theorems 1 and 2, we then establish the second-

order asymptotic optimality of TG.
Theorem 3: TG is second-order asymptotically optimal for

the problem in (9).
The asymptotic optimality of TG can be derived similarly

under the Pollak’s criterion [42]. We omit the details here.

IV. QUICKEST DYNAMIC ANOMALY DETECTION

In this section, we consider the general problem with a
dynamic anomaly, where the sensor affected by the anomaly
changes with time. The GM-CuSum algorithm designed for
static anomaly may not work well anymore since the sensor
affected by the anomaly changes with time.

A. Universal Lower Bound on WADD

Define the following weighted mixture distribution:
P̃β(Xn) =

∑K
k=1 βkP̃k(Xn), where β = {βk}Kk=1, 0 ≤ βk

≤ 1 and
∑K

k=1 βk = 1. Denote by Iβ the KL divergence
between P̃β and P̃0. Let β∗ = argminβ Iβ.

For the universal lower bound on WADD, we have the fol-
lowing theorem.

Theorem 4: As γ → ∞, we have that

inf
τ :WARL(τ)≥γ

WADD(τ) ≥ log γ

Iβ∗
(1 + o(1)). (13)

The proof of Theorem 4 can be found in Appendix D. From
Theorem 4, the WADD for the problem in (4) is lower bounded
by log γ

Iβ∗ (1 + o(1)) for large γ. This motivates us to apply the

optimal weight β∗ to design an algorithm that can achieves the
WADD lower bound asymptotically. Moreover, we have that
I∗ ≥ Iβ∗ which implies that a dynamic anomaly is more difficult
to detect than a static anomaly.
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B. Weighted Mixture CuSum

In the static setting, the unknown affected sensor can be esti-
mated by its MLE. However, in the dynamic setting, the affected
sensor changes with time, and the MLE approach may not work
well. Theorem 4 motivates us to tackle the unknown anomaly
trajectory using a weighted approach where the probability that
thek-th group is affected by the anomaly isβ∗

k . We then construct
our optimal weighted mixture CuSum algorithm as follows.
Define the log of weighted mixture likelihood ratio using β∗:

�β∗(Xn) = log
P̃β∗

(Xn)

P̃0(Xn)
. (14)

It can be easily shown that �β∗(Xn) is invariant to any
permutations on Xn, i.e., for any permutation π(Xn) =
(Xπ(1), Xπ(2), . . . , Xπ(n)), �β∗(Xn) = �β∗(π(Xn)). This is
due to the fact that �β∗(Xn) takes the sum over all possible
labels thus is invariant to the actual permutation.

We then construct the following optimal weighted mixture
CuSum algorithm:

Tβ∗(b) = inf

⎧
⎨
⎩t : max

1≤j≤t+1

t∑

i=j

�β∗ (Xn[i]) ≥ b

⎫
⎬
⎭ . (15)

Let Ŵ [t] = max1≤j≤t+1

∑t
i=j �β∗(Xn[i]), then Ŵ [t+ 1] =

(Ŵ [t])+ + �β∗(Xn[t+ 1]), and Ŵ [0] = 0.
Different from the way that we handle the unknown label σ,

here, for the unknown type of the affected sensor, we take the
mixture according to β∗ instead of a uniform distribution over
K. As will be shown later both theoretically in Theorem 6 and
numerically in Section VI, taking a uniform mixture overK may
not lead to the optimal performance.

Let Ẽk and Ẽ0 denote the expectation under the probability
P̃k and P̃0 respectively. The following property of β∗ plays an
important role in developing the asymptotic optimality of the
weighted mixture CuSum algorithm.

Lemma 1: For any k ∈ K, Ẽk
[
log P̃β∗

(Xn)

P̃0(Xn)

]
≥ Iβ∗ .

The proof of Lemma 1 can be found in Appendix E.
In the following, we provide a heuristic explanation of

how Ŵ [t] evolves in the pre- and post-change regimes.
We first argue that Ek

σk [�β∗(Xn)] is invariant for different
σk’s. Specifically, let Ek

σk denote the expectation under Pk
σk ,

where a sensor of type k is affected, and the data received
is labeled according to σk. For any π, let σ̂k = σk ◦ π.
Then Ek

σk [�β∗(π(Xn))] = Ek
σk◦π[�β∗(Xn)] = Ek

σ̂k [�β∗(Xn)].
For any σ̂k ∈ Sn,k, aπ can always be found so thatσk ◦ π = σ̂k.
Thus, for any σk, σ̂k ∈ Sn,k, Ek

σ̂k [�β∗(Xn)] = Ek
σk [�β∗(Xn)].

Therefore, Ek
σk [�β∗(Xn)] is invariant for different σk’s. Then,

under the pre-change distribution P0,σ0
t
, the expectation of the

weighted mixture likelihood ratio E0,σ0
t
[�β∗(Xn)] is invariant

for different σ0
t ’s. This implies that

E0,σ0
t

[
log

P̃β∗
(Xn)

P̃0(Xn)

]
= −D

(
P̃0||P̃β∗

)
≤ 0. (16)

Therefore, before the change time ν, Ŵ [t] has a negative drift.
Similarly, from Lemma 1, after the change time ν, under any
group assignment Ωs and trajectory s, Ŵ [t] has a positive drift
whose expectation is no less than Iβ∗ , and evolves towards ∞.

The following theorem establishes 1) the WARL lower bound
of Tβ∗ , and 2) the WADD upper bound of Tβ∗ .

Theorem 5: 1) For Tβ∗ defined in (15), let b = log γ, then
WARL(Tβ∗) ≥ γ. 2) As γ → ∞, we have that WADD(Tβ∗) ≤
log γ
Iβ∗ (1 + o(1)).

The proof of Theorem 5 can be found in Appendix F. The
proof is based on the Weak Law of Large Numbers for the
weighted mixture likelihood ratio (similar to [37]). The major
challenge lies in that here we are interested in the worst-case
label and the worst-case anomaly trajectory. In our problem, the
label and the affected sensor change with time. Therefore, it’s
challenging to explicitly characterize the worst-case label and
anomaly trajectory for Tβ∗ . To show the asymptotically optimal
performance of Tβ∗ , instead of finding the worst-case label and
anomaly trajectory, we apply the symmetric property of Tβ∗

and Lemma 1 to show that the WADD and WARL of Tβ∗ are
bounded under all possible labels and trajectories.

We then establish the first-order asymptotic optimality of Tβ∗

in the following theorem.
Theorem 6: Tβ∗ is first-order asymptotically optimal for prob-

lem (4).
Proof: Combining Theorems 4 and 5, we establish the first-

order asymptotic optimality of Tβ∗ . �
The asymptotic optimality of Tβ∗ can be derived similarly

under the Pollak’s criterion [42]. We omit the details here.
If we apply Tβ∗ (designed for the dynamic setting) to the

static setting, the WADD of Tβ∗ can also be upper bounded
by log γ

Iβ∗ (1 + o(1)). However, Tβ∗ may not be asymptotically
optimal. On the other hand, in the dynamic setting, the sensor
affected by the anomaly changes with time, and thus the MLE
may not work well. Therefore, the optimal weighted mixture
CuSum algorithm works better than the GM-CuSum.

V. COMPUTATIONAL COMPLEXITY AND EFFICIENT

APPROXIMATION

In the previous sections, we proved that the GM-CuSum
algorithm and the optimal weighted mixture CuSum algorithm
are asymptotically optimal. However, the test statistic involves
computing the mixture likelihood over all possible σ

s[t]
t , which

is expensive when n is large.
At each time t, we have

( n
n1,...,ns[t]−1,...,nK ,1

)
possible σs[t]

t ’s.
Consider the case with large n, and assume that limn→∞

nk

n =
αk, which is a constant. Let α = [α1, . . . , αK ]T . Consider
discrete distributions,3 and denote by X the support set of the
samples. From the exponential bound on the size of the type

3Samples in sensor networks are usually quantized before transmitting to
fusion center to reduce the power consumption.
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class [43], we have that

2
nH

([
n1
n ,...,

ns[t]−1

n ,...,
nK
n , 1

n

])

(n+ 1)|X | ≤
( n
n1,...,ns[t]−1,...,nK ,1

)

≤ 2
nH

([
n1
n ,...,

ns[t]−1

n ,...,
nK
n , 1

n

])

,

where H denotes the Shannon entropy. We then have that

lim
n→∞

H

([
n1

n
, . . . ,

ns[t] − 1

n
, . . . ,

nK

n
,
1

n

])
= H(α).

Therefore, the computational complexity of the GM-CuSum and
the optimal weighted mixture CuSum increase exponentially
with n, which is expensive for large n.

In this following, we discuss two computationally efficient
methods to approximate the test statistics of the GM-CuSum
and the optimal weighted mixture CuSum when n is large, and
then evaluate their performance in Section VI-D.

The first method is based on the method of types [43]. Let
ΠXn denote the empirical distribution of Xn and let T (ΠXn)
denote the type class of ΠXn . For any k, we have that [4]

log
P̃k(Xn)

P̃0(Xn)
= log

P̃k(T (ΠXn))

P̃0(T (ΠXn))
. (17)

From the generalized Sanov’s theorem [4], [17], the probability
of types log P̃k(T (ΠXn)) can further be approximated by the
following optimization problem

− inf
U=[U1,...,UK+1]

T∈(PX )K+1

φTU=ΠXn

K∑

j=1,j �=k

njD(Uj ||p0,j)

+ (nk − 1)D(Uk||p0,k) +D(UK+1||p1,k), (18)

where φ =
[
n1

n , . . . , nk−1
n , . . . , nK

n , 1
n

]T
and PX denotes the

probability simplex onX . Problem (18) is a convex optimization
problem whose computational complexity is independent of n.
Therefore, the computation of test statistics of the GM-CuSum
algorithm and the optimal weighted mixture CuSum algorithm
can be converted to solving convex optimization problems and
the overall complexity at each time step is only linear in the
number of sensors.

The second method is to estimate the unknown labels using
the MLE and to use the generalized likelihood ratio test (GLRT)
to approximate the mixture likelihood ratio [6]. Computing the
GLRT is a special case of the assignment problem and efficient
algorithms have been developed. In [6], two efficient greedy
algorithms were proposed to solve the assignment problem
approximately with complexity O(n2). Therefore, at each time
t, the test statistics of the GM-CuSum and the optimal weighted
mixture CuSum algorithm can be approximated with computa-
tional complexity O(Kn2).

Fig. 1. Static setting: n = 4,K = 4.

VI. NUMERICAL RESULTS

A. Static Anomaly Detection

We first consider the static setting, and compare our GM-
CuSum with a uniformly weighted mixture CuSum

TB = inf

⎧
⎨
⎩t : max

1≤j≤t

t∑

i=j

log

1
|K|
∑

k∈K P̃k(Xn[i])

P̃0(Xn[i])
≥ b

⎫
⎬
⎭

and the optimal weighted mixture CuSum. We plot the WADD
as a function of the WARL under the worst-case static trajectory.
We also plot the asymptotic lower bound log γ

I∗ .
We first compare the three algorithms under the Gaussian

distributions. There are four types of sensors and each type con-
tains one sensor. For the type I sensor, the pre- and post-change
distributions are N (−1, 1) and N (2, 1), for the type II sensor,
the pre- and post-change distributions are N (1, 1) and N (3, 1),
for the type III sensor, the pre- and post-change distributions
are N (−1, 1) and N (3, 1), for the type IV sensor, the pre- and
post-change distributions are N (1, 1) and N (−1, 1) respec-
tively. The optimal weight for our weighted mixture CuSum
algorithm is solved by Monte-Carlo. It can be seen from Fig. 1
that with the same false alarm rate, our GM-CuSum has the
lowest WADD, which implies that it detects the anomaly with the
smallest detection delay. Moreover, the slope of the GM-CuSum
matches the lower bound, which validates that the GM-CuSum is
asymptotically optimal. The optimal weighted mixture CuSum
algorithm also has a good performance in the static setting.

We then compare the three algorithms under the binomial
distributions. We consider two cases with different K. For the
case where there are two types of sensors, for type I sensors, the
pre- and post-change distributions areB(10, 0.2) andB(10, 0.5),
for type II sensors, the pre- and post-change distributions are
B(10, 0.8) and B(10, 0.6), respectively. Here B denotes bino-
mial distribution, the first parameter denotes the number of trials
and the second parameter denotes the success probability of each
trial. We plot the results for the case where each type has four
sensors in Fig. 2. For the case where there are four types of
sensors, for type I sensors, the pre- and post-change distributions
are B(10, 0.2) and B(10, 0.8), for type II sensors, the pre- and
post-change distributions areB(10, 0.3) andB(10, 0.6), for type
III sensors, the pre- and post-change distributions are B(10, 0.5)
and B(10, 0.9), for type IV sensors, the pre- and post-change
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Fig. 2. Static setting: n = 8,K = 2.

Fig. 3. Static setting: n = 8,K = 4.

distributions are B(10, 0.4) and B(10, 0.7) respectively. We plot
the results for the case where each type has two sensors in Fig. 3.
We use Monte-Carlo to obtain the optimal weight for our optimal
weighted mixture CuSum algorithm. It can be seen from Figs. 2
and 3 that with the same false alarm rate, our GM-CuSum has the
lowest WADD, which implies that it detects the anomaly with
the smallest detection delay. Moreover, the relationship between
the WADD and log of the WARL is linear, and the slope of the
GM-CuSum matches with the one of the lower bound, validating
its asymptotic optimality.

B. Dynamic Anomaly Detection

For detecting the dynamic anomaly, we use the same param-
eters of distributions as in the static setting.

We compare our optimal weighted mixture CuSum algorithm
with a uniformly weighted mixture CuSum, i.e., replace β∗ in
(15) withβ =

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
and the GM-CuSum under the Gaus-

sian distribution. We plot the average detection delay (ADD)
and the average run length (ARL) for some randomly generated
trajectories since the worst-case trajectory is difficult to simulate.
It can be seen from Fig. 4 that the weighted mixture CuSum
algorithm outperforms the uniformly weighted mixture CuSum
algorithm and the GM-CuSum. Therefore, in the dynamic set-
ting, the optimal weighted mixture CuSum algorithm detects
the presence of the anomaly with the lowest detection delay.
Moreover, the slope of our optimal weighted mixture CuSum
algorithm matches with the one of the lower bound, which
validates its asymptotic optimality.

Fig. 4. Dynamic setting: n = 4,K = 4.

Fig. 5. Dynamic setting: n = 8,K = 2.

Fig. 6. Dynamic setting: n = 8,K = 4.

We then compare the three algorithms using the binomial
distributions as in the static setting. It can be seen from Figs. 5
and 6 that our optimal weighted mixture CuSum algorithm
outperforms the uniformly weighted mixture CuSum algorithm
and the GM-CuSum since with the same false alarm rate, the
optimal weighted mixture CuSum algorithm has the smallest
detection delay. The relationship between the ADD and log of
the ARL is linear. Moreover, the slope of our optimal weighted
mixture CuSum algorithm matches the theoretical lower bound,
which demonstrates its asymptotic optimality. It can also be
observed that the GM-CuSum algorithm does not perform well
under the dynamic setting.

C. Moving Target Detection With Unlabeled Samples

In this section, we consider a practical application of target
detection [7], [44]. For simplicity, consider a 3× 3 grid. One
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Fig. 7. Moving target detection.

sensor is deployed at the center of each cell. The fusion center
can only collect unlabeled data. Before the target presents, at
each time, sensors will send exponentially distributed samples
with mean 1 to the fusion center. When the target appears,
the distribution of each sample changes to another exponential
distribution with an elevated mean, depending on the distance
between the cell and the target. The target moves across differ-
ent cells at different time. In this case, the mixture likelihood
P̃k(Xn) can be computed when the target lies in a specific cell
and the GM-CuSum algorithm and the optimal weighted mixture
CuSum algorithm can further be designed. We compare the
GM-CuSum algorithm, the uniformly weighted mixture CuSum
algorithm and the optimal weighted mixture CuSum algorithm.
From Fig. 7, with the same false alarm rate, our optimal weighted
mixture CuSum has the smallest detection delay which implies
that it detects the presence of the target quickly, e.g., with an
ARL of 103, it only takes about 3.5 samples to detect the target.

D. Computationally Efficient Approximation

In this section, we implement the computationally efficient
approximation in Section V by replacing the test statistics in
uniformly weighted mixture CuSum algorithm, GM-CuSum
algorithm and optimal weighted mixture CuSum with the value
of the optimization problem in (18) and demonstrate their per-
formance when n is large.

Let n = 60,K = 3 and n1 = n2 = n3 = 20. After the
anomaly emerges, the distribution of all the sensors of an un-
known type changes. Our GM-CuSum algorithm and optimal
weighted mixture CuSum algorithm can be designed with a
slight modification of the mixture likelihood P̃k(Xn). For type
I sensors, the pre- and post-change distributions are B(10, 0.45)
and B(10, 0.6), for type II sensors, the pre- and post-change
distributions are B(10, 0.4) and B(10, 0.6), and for type III
sensors, the pre- and post-change distributions are B(10, 0.7)
andB(10, 0.55) respectively. The optimal weight for our optimal
weighted mixture CuSum algorithm is obtained by Monte-Carlo.
We consider the static setting, and plot the WADD as a function
of the WARL. It can be seen from Fig. 8 that the GM-CuSum has
the smallest WADD given the same WARL. Also the WADD is
small (it only takes around 1.6 samples to detect the target for
a given a WARL at 4× 102). Moreover, our GM-CuSum has

Fig. 8. Static setting: n = 60,K = 3.

Fig. 9. Dynamic setting: n = 60,K = 3.

the best performance for detecting the static anomaly when n is
large.

We then consider the dynamic setting, we plot the ADD as
a function of ARL for some random trajectories. It can be seen
from Fig. 9 that with the same ARL, our optimal weighted
mixture CuSum algorithm has the smallest detection delay and
thus has the best performance for detecting the dynamic anomaly
when n is large.

VII. CONCLUSION

In this paper, we studied the problem of quickest detection
of an anomaly in networks with unlabeled samples. We first
investigated the case with a static anomaly. A GM-CuSum
algorithm was proposed and shown to be second-order asymp-
totically optimal. We then extended our study to the case with
a dynamic anomaly, that is, the affected sensor changes with
time. We proposed an optimal weighted mixture CuSum algo-
rithm, and proved that it is first-order asymptotically optimal.
Our approaches provide useful insights for general (sequential)
statistical inference problems with unlabeled samples.

APPENDIX A

Before the anomaly emerges, i.e., t < ν, there are nk sen-
sors in group k, ∀1 ≤ k ≤ K, and 0 sensors in group k,
∀K < k ≤ 2K. Then, there are in total ( n

n1,...,nK) possible σs[t]
t :

{1, . . . , n} → {1, . . . ,K} satisfying |{i : σs[t]
t (i) = k}| = nk,

for any k = 1, . . . ,K. We denote the collection of all such
labels by Sn,0. After the anomaly emerges, i.e., t ≥ ν, one
sensor of type s[t] �= 0 is affected by anomaly. Therefore, the
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number of sensors in group s[t] and s[t] +K are ns[t] − 1 and 1

respectively. Then, there are ( n
n1,...,ns[t]−1,...,nK ,1) possibleσs[t]

t :
{1, . . . , n} → {1, . . . ,K, s[t] +K} satisfying

∣∣∣
{
i : σ

s[t]
t (i) = k

}∣∣∣ =

⎧
⎪⎪⎨
⎪⎪⎩

nk, if 1≤k≤Kand k �= s[t],
nk − 1, if k = s[t],
1, if k = s[t] +K,
0, otherwise.

We then denote the collection of all such labels by Sn,s[t].
Before the anomaly emerges, i.e., t < ν, the samples Xn[t]

follows the distribution

P0,σ0
t
(Xn[t]) =

n∏

i=1

p0,σ0
t (i)

(Xi[t]), (19)

for some unknown σ0
t ∈ Sn,0. At time t ≥ ν, Xn[t] follows the

distribution

P s[t]

σ
s[t]
t

(Xn[t])
Δ
=

∏

i:σ
s[t]
t (i)≤K

p
0,σ

s[t]
t (i)

(Xi[t])

×
∏

i:σ
s[t]
t (i)>K

p
1,σ

s[t]
t (i)−K

(Xi[t]), (20)

for some unknown σ
s[t]
t ∈ Sn,s[t].

APPENDIX B
PROOF OF THEOREM 1

Consider a simple QCD problem with a pre-change distri-
bution P̃0 and a post-change distribution P̃k, respectively. Let

W̃ADDk(τ) = sup
ν≥1

esssupẼk,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]
,

ÃRL(τ) = Ẽ∞[τ ], (21)

where Ẽk,ν denotes the expectation when the change is at ν, the
pre- and post-change distributions are P̃0 and P̃k, and X̃n[t] for
1 ≤ t ≤ ν − 1 are i.i.d. from P̃0, Ẽ∞ denotes the expectation
when samples are generated according to P̃0.

For any 1 ≤ k ≤ K, consider another QCD problem with
a pre-change distribution P0,σ0

t
and a post-change distribution

Pk
σk
t

, respectively. For this pair of pre- and post-change distribu-
tions, define

WADDk(τ) = sup
ν≥1

sup
Ωk

esssupEk,ν
Ωk

[
(τ − ν)+|Xn[1, ν − 1]

]
,

WARL(τ) = inf
Ω

E∞
Ω [τ ]. (22)

For any 1 ≤ k ≤ K and any τ satisfying WARL(τ) ≥ γ, it
can be shown that

WADD(τ) = sup
k∈K

WADDk(τ)

≥ sup
ν≥1

sup
Ωk

esssupEk,ν
Ωk

[
(τ − ν)+|Xn[1, ν − 1]

]

≥ sup
ν≥1

esssupẼk,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]

= W̃ADDk(τ). (23)

The second inequality is due to the fact that for any τ ,

WADDk(τ) ≥ W̃ADDk(τ) [17, eq. (18)]. Similarly, we have
that for any τ , WARL(τ) ≤ ÃRL(τ) [17, eq. (18)]. It then
follows that for any k ∈ K,

inf
τ :WARL(τ)≥γ

WADD(τ) ≥ inf
τ :̃ARL(τ)≥γ

W̃ADDk(τ)

≥ log γ

Ik
+O(1), as γ → ∞. (24)

The last inequality is due to the universal lower bound on WADD
for a simple QCD problem [37]. We then have that

inf
τ :WARL(τ)≥γ

WADD(τ) ≥ log γ

I∗
+O(1), as γ → ∞. (25)

APPENDIX C
PROOF OF THEOREM 2

For any m ≥ 0, let r0 = 0 and define the stopping time

rm+1 = inf

{
t > rm : sup

k

t∑

i=rm+1

log
P̃k(Xn

i )

P̃0(Xn
i )

≤ 0

}
. (26)

For any permutation π(Xn) = (Xπ(1), Xπ(2), . . . , Xπ(n)),

we have that log P̃k(Xn)

P̃0(Xn)
= log P̃k(π(Xn))

P̃0(π(Xn))
. For any π, let

σ̂0 = σ0 ◦ π, where “◦” denotes the composition of two func-

tions. Then E0,σ0

[
log P̃k(π(Xn))

P̃0(π(Xn))

]
= E0,σ0◦π

[
log P̃k(Xn)

P̃0(Xn)

]
=

E0,σ̂0

[
log P̃k(Xn)

P̃0(Xn)

]
. For any σ̂0 ∈ Sn,0, a π can always be

found so that σ0 ◦ π = σ̂0. Thus, for any σ0, σ̂0 ∈ Sn,0,

E0,σ̂0

[
log P̃k(Xn)

P̃0(Xn)

]
= E0,σ0

[
log P̃k(Xn)

P̃0(Xn)

]
.

We then have that for any σ0 ∈ Sn,0,

E0,σ0

[
P̃k(Xn)

P̃0(Xn)

]
=

1

| Sn,0 |
∑

σ0∈Sn,0

E0,σ0

[
P̃k(Xn)

P̃0(Xn)

]

=

∫
P̃k(xn)

P̃0(xn)
· P̃0(x

n)dxn = 1. (27)

Therefore, for any Ω and t > rm,

E∞
Ω

[ t+1∏

i=rm+1

P̃k(Xn
i )

P̃0(Xn
i )

∣∣∣∣Ft

]

= E∞
Ω

[ t∏

i=rm+1

P̃k(Xn
i )

P̃0(Xn
i )

∣∣∣∣Ft

]
· E0,σ0

[
P̃k(Xn

t+1)

P̃0(Xn
t+1)

∣∣∣∣Ft

]

=
t∏

i=rm+1

P̃k(Xn
i )

P̃0(Xn
i )

· E0,σ0

[
P̃k(Xn

t+1)

P̃0(Xn
t+1)

]

=
t∏

i=rm+1

P̃k(Xn
i )

P̃0(Xn
i )

. (28)
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Therefore,

{∏t
i=rm+1

P̃k(Xn
i )

P̃0(Xn
i )

,Ft, t > rm

}
is a martingale un-

der P∞
Ω for any Ω with mean 1.

We then have that for any Ω,

P∞
Ω

{
sup
k

t∑

i=rm+1

log
P̃k(Xn

i )

P̃0(Xn
i )

≥ b for some t > rm

∣∣∣∣Frm

}

≤
K∑

k=1

P∞
Ω

{ t∏

i=rm+1

P̃k(Xn
i )

P̃0(Xn
i )

≥ eb for some t > rm

∣∣∣∣Frm

}

≤ K

E0,σ0

[
P̃k(Xn

rm+1)

P̃0(Xn
rm+1)

]

eb
= Ke−b, (29)

where the last inequality is due to Doob’s submartingale inequal-
ity [41] and the optional sampling theorem [41].

Let M=inf

{
m≥0 :rm<∞, supk

∑t
i=rm+1 log

P̃k(Xn
i )

P̃0(Xn
i )

≥

b for some t > rm

}
. We have that for any Ω,

P∞
Ω (M ≥ m+ 1|Frm)

≥ P∞
Ω

{
sup
k

t∑

i=rm+1

log
P̃k(Xn

i )

P̃0(Xn
i )

< b for all t > rm

∣∣∣∣Frm

}

≥ 1−Ke−b. (30)

We then have that for any Ω,

P∞
Ω (M > m) = E∞

Ω

[
P∞
Ω (M ≥ m+ 1|Frm) · 1{M≥m}

]

≥
(
1−Ke−b

)
P∞
Ω (M > m− 1)

≥
(
1−Ke−b

)m
. (31)

It then follows that

WARL(TG) = inf
Ω

E∞
Ω [TG] ≥ inf

Ω
E∞

Ω [M ]

≥ inf
Ω

∞∑

m=0

P∞
Ω (M > m) ≥

∞∑

m=0

(
1−Ke−b

)m
=

eb

K
. (32)

Let b = logKγ, we have that WARL(TG) ≥ γ. Let Tk be the
mixture CuSum algorithm for problem in (22):

Tk = inf

{
t : max

1≤j≤t

t∑

i=j

log
P̃k(Xn[i])

P̃0(Xn[i])
≥ b

}
. (33)

It then follows that for any 1 ≤ k ≤ K,

WADDk(TG) = sup
ν≥1

sup
Ωk

esssupEk,ν
Ωk

[(TG − ν)+|Xn[1, ν − 1]]

≤ sup
ν≥1

sup
Ωk

esssupEk,ν
Ωk

[(Tk − ν)+|Xn[1, ν − 1]]

≤ log b

Ik
+O(1), (34)

where the last equality is because of the exact optimality of the
mixture CuSum algorithm (see Theorem 1 in [17]).

To satisfy the WARL constraint, set b = logKγ, we have

WADD(TG) = sup
k∈K

WADDk(TG) ≤ sup
k∈K

WADDk(Tk)

= sup
k∈K

logKγ

Ik
+O(1) =

log γ

I∗
+O(1), as γ → ∞. (35)

APPENDIX D
PROOF OF THEOREM 4

For any trajectory s and stopping time τ , define the WADD
and WARL

WADDs(τ) = sup
ν≥1

sup
Ωs

esssupEs,ν
Ωs

[(τ − ν)+|Xn[1, ν − 1]],

ARL(τ) = inf
Ω

E∞
Ω [τ ]. (36)

Consider QCD problem with a pre-change distribution P̃0 =
1

|Sn,0|
∑

σ0∈Sn,0
P0,σ0 and a post-change distribution P̃ s[t] =

1
|Sn,s[t]|

∑
σs[t]∈Sn,s[t]

P s[t]

σs[t] , respectively. For this pair of pre- and
post-change distributions and any trajectory s, define

W̃ADDs(τ) = sup
ν≥1

esssupẼs,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]
,

ÃRL(τ) = Ẽ∞[τ ]. (37)

where Ẽs,ν denotes the expectation when change point is ν,
before the change point, the data follows distribution P̃0 and
after the change point, at time t, the data follows the distribution
P̃ s[t], and X̃n[1, ν − 1] are i.i.d. from P̃0; and Ẽ∞ denote the
expectation when the data follows distribution P̃0.

Consider another QCD problem with pre-change distribution
P̃0 and post-change distribution P̃β∗

. Under this pair of pre- and
post-change distributions, define

W̃ADDβ∗(τ) = sup
ν≥1

esssupẼβ∗,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]
,

ÃRL(τ) = Ẽ∞[τ ]. (38)

In QCD problems, ARL only depends on the pre-change distri-
bution. Therefore, for any stopping time τ , problems in (2) and
(36) have the same ARL, problems in (37) and (38) have the
same ARL. Let Cγ denotes the collection of all stopping times
τ that satisfy ARL(τ) ≥ γ and C̃γ denotes the collection of all

stopping times τ that satisfy ÃRL(τ) ≥ γ. Our goal is to prove
that

inf
τ∈Cγ

WADD(τ) ≥ inf
τ∈C̃γ

W̃ADDβ∗(τ) ∼ log γ

Iβ∗
(1 + o(1)). (39)

Construct a new sequence of random variables
{
X̂n[t]

}∞

t=1
.

Before the change point, X̂n[t] are i.i.d. according to the mixture
distribution P̃0 = 1

|Sn,0|
∑

σ0∈Sn,0
P0,σ0 . After the change point,

i.e., t ≥ ν, X̂n[t] follows the distribution P s[t]

σ
s[t]
t

for some σs[t]
t ∈

Sn,s[t]. Specifically,

X̂n[t] ∼
{

P̃0, if t < ν,

P s[t]

σ
s[t]
t

, if t ≥ ν.
(40)
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For any stopping time τ and any s, let

ŴADDs(τ) = sup
ν≥1

sup
σ
s[ν]
ν ,...,σ

s[∞]
∞

esssup

Ês,ν

σ
s[ν]
ν ,...,σ

s[∞]
∞

[
(τ − ν)+|X̂n[1, ν − 1]

]
, (41)

where Ês,ν

σ
s[ν]
ν ,...,σ

s[∞]
∞

denotes the expectation when the data is

distributed according to (40).

Let W̃ADD(τ) = sups W̃ADDs(τ). To prove (39), we first
show that for any s, WADDs(τ) = ŴADDs(τ), and then show

that ŴADDs(τ) ≥ W̃ADDs(τ). We complete our proof by

showing that for any τ and β, W̃ADD(τ) ≥ W̃ADDβ(τ).
Step 1: Denote by M the collection of all {σ0

1 , . . ., σ
0
ν−1},

and μ is an element in M. When the trajectory is s, denote by
Ns the collection of all {σs[ν]

ν , . . ., σ
s[∞]
∞ }, and ω is an element

in Ns. Then, the WADDs can be written as

WADDs(τ) = sup
ν≥1

sup
Ωs

esssupEs,ν
Ωs

[(τ − ν)+|Xn[1, ν − 1]]

= sup
ν≥1

sup
ω∈Ns

sup
μ∈M

esssupEs,ν
ω [(τ − ν)+|Xn[1, ν − 1]],

where Es,ν
ω denotes the expectation when change point is ν,

the trajectory is s, and after the change point, the data follows
distribution

∏∞
t=ν P s[t]

σ
s[t]
t

. We note that X̂n[t] and Xn[t], for

t ≥ ν, have the same distribution P s[t]

σ
s[t]
t

. Therefore, the dif-

ference between WADDs and ŴADDs lies in that they take
esssup with respect to different distributions, i.e., the distri-
butions of Xn[1, ν − 1] and X̂n[1, ν − 1] are different. Let
fω(X

n[1, ν − 1]) denote Es,ν
ω [(τ − ν)+|Xn[1, ν − 1]]. Then,

WADDs and ŴADDs can be written as

WADDs(τ) = sup
ν≥1

sup
ω∈Ns

sup
μ∈M

esssupfω (Xn[1, ν − 1]) ,

ŴADDs(τ) = sup
ν≥1

sup
ω∈Ns

esssupfω
(
X̂n[1, ν − 1]

)
. (42)

It then suffices to show that for any ω ∈ Ns,

sup
μ∈M

esssupfω (Xn[1, ν − 1]) = ess sup fω
(
X̂n[1, ν − 1]

)
.

For any ω ∈ Ns and μ ∈ M, let

bω,μ = esssupfω (Xn[1, ν − 1])

= inf {b : Pμ (fω(X
n[1, ν − 1]) > b) = 0} , (43)

where Pμ denotes the probability measure when the data is
generated from P0,σ0

1
, . . .,P0,σ0

ν−1
before change point ν.

Let b∗ω = esssupfω
(
X̂n[1, ν − 1]

)
. It can be shown that

b∗ω = inf

{
b :

∫

xn[1,ν−1]

1{fω(xn[1,ν−1])>b}

×d

ν−1∏

t=1

P̃0(x
n(t)) = 0

}

= inf

⎧
⎨
⎩b :

∫

xn[1,ν−1]

1{fω(xn[1,ν−1])>b}

× d
1

| M |
∑

μ∈M
Pμ(x

n[1, ν − 1]) = 0

⎫
⎬
⎭

= inf

⎧
⎨
⎩b :

1

| M |
∑

μ∈M
Pμ (fω (Xn[1, ν − 1]) > b) = 0

⎫
⎬
⎭ .

It then follows that for any μ ∈ M, and ω ∈ Ns,
Pμ(fω(X

n[1, ν − 1]) > b∗ω) = 0. Therefore, for any μ ∈ M,
we have that bω,μ ≤ b∗ω . Then

sup
μ∈M

bω,μ ≤ b∗ω. (44)

Conversely, for any μ ∈ M, we have that Pμ(fω(X
n[1, ν −

1]) > supμ∈M bω,μ) = 0. Then, 1
|M|
∑

μ∈M Pμ(fω(X
n[1, ν −

1]) > supμ∈M bω,μ) = 0. This further implies that

b∗ω ≤ sup
μ∈M

bω,μ. (45)

Combining (44) and (45), we have that supμ∈M bω,μ =
b∗ω, and thus supμ∈M esssupfω(Xn[1, ν − 1]) =

esssupfω(X̂n[1, ν − 1]). This implies that for any τ ,

WADDs(τ) = ŴADDs(τ). (46)

Step 2: The next step is to show ŴADDs(τ) ≥ W̃ADDs(τ).

We first show that supω∈Ns
esssupfω

(
X̂n[1, ν − 1]

)
≥

esssup supω∈Ns
fω

(
X̂n[1, ν − 1]

)
. Denote by P̃ ν the proba-

bility measure when the change is at ν, the pre- and post-change
distributions are P̃0 and P̃ s[t] at time t, respectively. Let b̂ =

supω∈Ns
esssupfω

(
X̂n[1, ν − 1]

)
. For any ω ∈ Ns, we have

that P̃ ν
(
fω

(
X̂n[1, ν − 1]

)
> b̂
)
= 0. Since Ns is countable,

and a countable union of sets of measure zero has measure zero,
we then have that

P̃ν

(
sup
ω∈Ns

fω

(
X̂n[1, ν − 1]

)
> b̂

)

≤ P̃ ν
(
∪ω∈Ns

{
fω

(
X̂n[1, ν − 1]

)
> b̂
})

= 0. (47)

Therefore,

b̂ ≥ esssup sup
ω∈Ns

fω

(
X̂n[1, ν − 1]

)
. (48)

Before the change point ν, X̂n[t] and X̃n[t] follow the same
distribution. For any T ≥ ν + 1, we have that

sup
{σs[ν]

ν ,...,σ
s[T ]
T }

∈Sn,s[ν]×,...,×Sn,s[T ]

T∑

t=ν+1

(t− ν)

× Ps,ν

σ
s[ν]
ν ,...,σ

s[T ]
T

(τ = t|X̂n[1, ν − 1])
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≥
T∑

t=ν+1

(t− ν)
1

| Sn,s[ν] | × · · · × | Sn,s[T ] |

×
∑

{σs[ν]
ν ,...,σ

s[T ]
T }

∈Sn,s[ν]×,...,×Sn,s[T ]

Ps,ν

σ
s[ν]
ν ,...,σ

s[T ]
T

(
τ = t|X̂n[1, ν − 1]

)

=
T∑

t=ν+1

(t− ν)P̃s,ν
(
τ = t|X̃n[1, ν − 1]

)
, (49)

where Ps,ν

σ
s[ν]
ν ,...,σ

s[T ]
T

denotes the probability measure when

change point is ν, the trajectory is s, the observations from time
ν to time T are generated according to P s[ν]

σ
s[ν]
ν

, . . .,P s[T ]

σ
s[T ]
T

. As

T → ∞, we have that

fω

(
X̂n[1, ν − 1]

)
≥ Ẽs,ν

[
(τ − ν)+|X̃n[1, ν − 1]

]
, (50)

From (48) and (50), we have that

ŴADDs(τ) ≥ esssupẼs,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]

= W̃ADDs(τ). (51)

Combining (46) and (51), it follows that

WADDs(τ) = ŴADDs(τ) ≥ W̃ADDs(τ). (52)

This holds for any trajectory s. It then follows that

WADD(τ) ≥ sup
ν≥0

sup
s

esssupẼs,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]

= W̃ADD(τ). (53)

Step 3: The last step is to show that for any τ and any β,

W̃ADD(τ) ≥ W̃ADDβ(τ). Firstly, we will show that

sup
s

esssupẼs,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]

≥ esssup sup
s

Ẽs,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]
. (54)

Let c = sups esssupẼs,ν [(τ − ν)+|X̃n[1, ν − 1]]. Denote by
Λs the collection of all trajectory s. For any s, we have that

P̃ ν
(

Ẽs,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]
> c
)
= 0. (55)

Since Λs is countable, it then follows that

P̃ ν

(
sup
s

Ẽs,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]
> c

)

≤ P̃ ν
(
∪s∈Λs

{
Ẽs,ν

[
(τ − ν)+|X̃n[1, ν − 1]

]
> c
})

= 0.

Therefore,

c = sup
s

esssupẼs,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]

≥ esssup sup
s

Ẽs,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]
. (56)

For any T ≥ ν + 1, we have that

sup
s

T∑

t=ν+1

(t− ν)P̃ s[ν],...,s[T ]
(
τ = t|X̃n[1, ν − 1]

)

≥
T∑

t=ν+1

(t− ν)
∑

{s[ν],...,s[T ]}∈Λ⊗(T−ν+1)
s

βs[ν] × · · · × βs[T ]

× P̃ s[ν],...,s[T ]
(
τ = t|X̃n[1, ν − 1]

)

=

T∑

t=ν+1

(t− ν)P̃β,ν
(
τ = t|X̃n[1, ν − 1]

)
, (57)

where P̃ s[ν],...,s[T ] denotes the probability measure when the
trajectory is s, the observations from time ν to time T are
generated according to P̃ s[ν], . . ., P̃ s[T ]. As T → ∞, we have

sup
s

Ẽs,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]

≥ Ẽβ,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]
. (58)

From (56) and (58), we have that

W̃ADD(τ) ≥ esssupẼβ,ν
[
(τ − ν)+|X̃n[1, ν − 1]

]

= W̃ADDβ(τ). (59)

Combining (53) and (59), we have that for any τ and β

WADD(τ) ≥ W̃ADD(τ) ≥ W̃ADDβ(τ). (60)

For any T ≥ 1, we have that

inf
{σ0

1 ,...,σ
0
T }∈Sn,0

⊗T

T∑

t=1

tP∞
σ0
1 ,...,σ

0
T
(τ = t)

≤
T∑

t=1

t
1

| Sn,0 |T
∑

{σ0
1 ,...,σ

0
T }∈Sn,0

⊗T

P∞
σ0
1 ,...,σ

0
T
(τ = t)

=

T∑

t=1

tP̃∞(τ = t). (61)

As T → ∞, we have that ARL(τ) ≤ ÃRL(τ).
Therefore, for any stopping time τ satisfying ARL(τ) ≥ γ, it

will also satisfy ÃRL(τ) ≥ γ. We then have that Cγ ⊆ C̃γ .
Since (60) holds for any β, it holds for β∗. Problem (38) is a

classical QCD problem. We have that for large γ [37],

inf
τ∈Cγ

WADD(τ) ≥ inf
τ∈C̃γ

W̃ADDβ∗(τ) ∼ log γ

Iβ∗
(1 + o(1)).

APPENDIX E
PROOF OF LEMMA 1

The minimization of Iβ is to solve the following problem:

inf
β

Iβ
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s.t. − βk ≤ 0, for k ∈ [1,K],

K∑

k=1

βk − 1 = 0. (62)

This is a convex optimization problem with linear constraints.
Define the Lagrange function L(β, η,μ):

L(β, η,μ) = Iβ + η

(
K∑

k=1

βk − 1

)
−

K∑

k=1

μkβk. (63)

The minimizer β∗ satisfies the Karush–Kuhn–Tucker(KKT)
conditions: μk, β

∗
k ≥ 0, μkβ

∗
k = 0,

∑K
k=1 β

∗
k − 1 = 0 and

∂L

∂βk
|β∗ = Ẽk

[
log

P̃β∗
(Xn)

P̃0(Xn)

]
+ 1 + η − μk = 0, (64)

where Ẽk denotes the expectation under the distribution P̃k.
When β∗

k > 0, we have μk = 0. Therefore, for any k, k′ ∈ K
with β∗

k, β
∗
k′ > 0, we have

Ẽk

[
log

P̃β∗
(Xn)

P̃0(Xn)

]
= Ẽk′

[
log

P̃β∗
(Xn)

P̃0(Xn)

]
= −(1 + η).

The set K can be divided into two disjoint parts K1 and K2:
β∗
k > 0 if k ∈ K1 and β∗

k = 0 if k ∈ K2. We have that

Iβ∗ =
∑

k∈K1

β∗
kẼk

[
log

P̃β∗
(Xn)

P̃0(Xn)

]

= Ẽk

[
log

P̃β∗
(Xn)

P̃0(Xn)

]
, for all k ∈ K1. (65)

For all k ∈ K2, β∗
k = 0. By the KKT conditions, we have that

μk ≥ 0. Therefore, for anyk ∈ K2, Ẽk[log P̃β∗
(Xn)

P̃0(Xn)
] + 1 + η =

μk ≥ 0. We then have that for any k ∈ K2,

Ẽk

[
log

P̃β∗
(Xn)

P̃0(Xn)

]
≥ Iβ∗ . (66)

APPENDIX F
PROOF OF THEOREM 5

Due to the fact that max1≤k≤t+1

∑t
i=k �β∗(Xn

i ) has initial
value 0 and remains non-negative, the delay is the largest when
the change happens at ν = 0. Therefore, for any s, we have

WADDs(Tβ∗) = sup
Ωs

Es,0
Ωs

[Tβ∗ ]. (67)

For any T ≥ ν + 1, we have that

sup
{σs[1]

1 ,...,σ
s[T ]
T }

∈Sn,s[1]×,...,×Sn,s[T ]

T∑

t=1

tPs,0

σ
s[1]
1 ,...,σ

s[T ]
T

(Tβ∗ = t)

=
T∑

t=1

t
1

| Sn,s[1] | × · · · × | Sn,s[T ] |

×
∑

{σs[1]
1 ,...,σ

s[T ]
T }

∈Sn,s[1]×,...,×Sn,s[T ]

Ps,0

σ
s[1]
1 ,...,σ

s[T ]
T

(Tβ∗ = t)

=

T∑

t=1

tP̃s,0(Tβ∗ = t). (68)

As T → ∞, we have that supΩs
Es,0

Ωs
[Tβ∗ ] = Ẽs,0[Tβ∗ ] =

W̃ADDs(Tβ∗). For any s, we have WADDs(Tβ∗) =

W̃ADDs(Tβ∗). Therefore, WADD(Tβ∗) = W̃ADD(Tβ∗) by
taking sup over s on both sides. It then follows that

WADD(Tβ∗) = W̃ADD(Tβ∗) = sup
s

Ẽs,0[Tβ∗ ]. (69)

Let 0 < ε < Iβ∗ and nb =
b

Iβ∗−ε . For any trajectory s, from the
sum-integral inequality, we have that

Ẽs,0

[
Tβ∗

nb

]
=

∫ ∞

0

P̃s,0

(
Tβ∗

nb
> x

)
dx

≤
∞∑

t=1

P̃s,0(Tβ∗ > tnb) + 1. (70)

For any s, we have that

P̃s,0(Tβ∗ > tnb) = P̃s,0

⎛
⎝ max

1≤k≤tnb

max
1≤i≤k

k∑

j=i

�β∗(Xn
j ) < b

⎞
⎠

≤ P̃s,0

⎛
⎝ max

1≤i≤mnb

mnb∑

j=i

�β∗(Xn
j ) < b,∀m ∈ [t]

⎞
⎠

≤ P̃s,0

⎛
⎝

mnb∑

j=(m−1)nb+1

�β∗(Xn
j ) < b,∀m ∈ [t]

⎞
⎠

= P̃s,0

(
mnb∑

j=(m−1)nb+1


β∗ (Xn
j )

nb
< Iβ∗ − ε, ∀m ∈ [t]

)

=

t∏

m=1

P̃s,0

(
mnb∑

j=(m−1)nb+1


β∗ (Xn
j )

nb
< Iβ∗ − ε

)
. (71)

It then follows that

sup
s

∞∑

t=1

P̃s,0(Tβ∗ > tnb)

≤ sup
s

∞∑

t=1

t∏

m=1

P̃s,0

(
mnb∑

j=(m−1)nb+1


β∗ (Xn
j )

nb
< Iβ∗ − ε

)
.

Then we will bound P̃s,0
( ∑mnb

j=(m−1)nb+1

β∗ (Xn

j )

nb
< Iβ∗ − ε

)
.

Let Ism
= Ẽs,0

[ ∑mnb
j=(m−1)nb+1


β∗ (Xn
j )

nb

]
. From (65) and

(66),

Ism
=

1

nb

mnb∑

j=(m−1)nb+1

Ẽs[j]
[
�β∗(Xn

j )
]
≥ Iβ∗ . (72)

It then follows that for any s and m

P̃s,0

(
mnb∑

j=(m−1)nb+1


β∗ (Xn
j )

nb
< Iβ∗ − ε

)
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≤ P̃s,0

(
mnb∑

j=(m−1)nb+1


β∗ (Xn
j )

nb
< Ism

− ε

)

≤ P̃s,0

(
∣∣∣

mnb∑
j=(m−1)nb+1


β∗ (Xn
j )

nb
− Ism

∣∣∣ > ε

)
. (73)

Assume that maxk∈[1,K] Ẽk[�β∗(Xn)2] < ∞. Let σ2 =
maxk∈[1,K] VarP̃k(�β∗(Xn)) where VarP̃k denotes the variance

under the distribution P̃k. By Chebychev’s inequality,

P̃s,0

(
∣∣∣

mnb∑
j=(m−1)nb+1


β∗ (Xn
j )

nb
− Ism

∣∣∣ > ε

)

≤ VarP̃s

(
mnb∑

j=(m−1)nb+1


β∗ (Xn
j )

nb

)
1

ε2

=
1

ε2n2
b

mnb∑

j=(m−1)nb+1

VarP̃s[j](�β∗(Xn
j ))

≤

mnb∑
j=(m−1)nb+1

σ2

n2
bε

2
=

σ2

nbε2
. (74)

Let δ = σ2

nbε2
. From (70) and (74), we have that

sup
s

Ẽs,0

[
Tβ∗

nb

]
≤ 1 + sup

s

∞∑

t=1

P̃s,0(Tβ∗ > tnb)

≤ 1 +
∞∑

t=1

(
σ2

nbε2

)t

= 1 +
∞∑

t=1

δt =
1

1− δ
. (75)

Therefore, we have

sup
s

Ẽs,0 [Tβ∗ ] ≤ b

(Iβ∗ − ε)(1− δ)
. (76)

(76) holds for all ε. It then follows that as b → ∞,

WADD(Tβ∗) = sup
s

Ẽs,0 [Tβ∗ ] ≤ b

Iβ∗
(1 + o(1)). (77)

For the ARL lower bound, for any T ≥ 1, we have that

inf
{σ0

1 ,...,σ
0
T }∈Sn,0

⊗T

T∑

t=1

tP∞
σ0
1 ,...,σ

0
T
(Tβ∗ = t)

=

T∑

t=1

t
1

| Sn,0 |T
∑

{σ0
1 ,...,σ

0
T }∈Sn,0

⊗T

P∞
σ0
1 ,...,σ

0
T
(Tβ∗ = t)

=
T∑

t=1

tP̃∞(Tβ∗ = t). (78)

As T → ∞, we have that WARL(Tβ∗) = ÃRL(Tβ∗). Tβ∗ is the
CuSum algorithm for a simple QCD problem with pre-change
distribution P̃0 and post-change distribution P̃β∗

. From the
optimal property of CuSum algorithm in [39] and [45], we have
that when b = log γ, WARL(Tβ∗) = ÃRL(Tβ∗) ≥ γ.
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