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Quickest Anomaly Detection in Sensor Networks
With Unlabeled Samples

Zhongchang Sun

Abstract—The problem of quickest anomaly detection in net-
works with unlabeled samples is studied. At some unknown time, an
anomaly emerges in the network and changes the data-generating
distribution of some unknown sensor. The data vector received by
the fusion center at each time step undergoes some unknown and
arbitrary permutation of its entries (unlabeled samples). The goal
of the fusion center is to detect the anomaly with minimal detection
delay subject to false alarm constraints. With unlabeled samples,
existing approaches that combines local cumulative sum (CuSum)
statistics cannot be used anymore. Several major questions include
whether detection is still possible without the label information, if
so, what is the fundamental limit and how to achieve that. Two
cases with static and dynamic anomaly are investigated, where
the sensor affected by the anomaly may or may not change with
time. For the two cases, practical algorithms based on the ideas
of mixture likelihood ratio and/or maximum likelihood estimate
are constructed. Their average detection delays and false alarm
rates are theoretically characterized. Universal lower bounds on
the average detection delay for a given false alarm rate are also
derived, which further demonstrate the asymptotic optimality of
the two algorithms.

Index Terms—Quickest change detection, unlabeled samples,
permuted samples, asymptotically optimal, fundamental limits.

1. INTRODUCTION

N SENSOR networks, samples may lack label information
I such as identity due to, e.g., malicious attacks and limited
communication resources. For example, wireless ad-hoc sensor
networks are usually vulnerable to spoofing attacks [2], and
samples received by the fusion center may then lose their label
information. Furthermore, in Internet-of-things (IoT) networks,
where devices are commonly small and low-cost sensing devices
powered by battery with limited communication bandwidth, and
are usually deployed in a massive scale, the communication
overhead of identifying individual sensors increases drastically
with the number of sensors [3]. However, these battery-powered
IoT devices are usually expected to survive for years without
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battery change. In this case, message that is delivered to the
fusion center may be constrained not to contain the identity
information. Furthermore, in social sensing applications, partic-
ipants may choose to be anonymous in order to protect privacy,
i.e., sharing the data without including identity information.
Motivated by these applications, there is a recent surge of interest
in the problem of signal processing with unlabeled data (see
e.g., [4], [5], [6], [71, [81, [91, [101, [11], [12], [13], [14], [15],
[16], [17]), which refers to various signal processing problems
where the data vector undergoes an unknown permutation of its
entries, and the original position of each datum in the vector is
unknown.

In this paper, we investigate the problem of quickest anomaly
detection in sensor networks with unlabeled samples. Specifi-
cally, at some unknown time, an anomaly emerges in the network
and leads to a change in the data-generating distribution of
some unknown sensor. The fusion center sequentially receives
unlabeled (arbitrarily permuted) samples from all the sensors
at each time step. The goal of the fusion center is to detect
the anomaly as quickly as possible, subject to false alarm con-
straints. This problem is of particular relevance to applications
where an anomaly affects some sensor in the network, and the
affected sensor may change over time [18], e.g., surveillance
system, intrusion detection, environmental change detection,
rumor detection, and seismic wave detection.

A. Contributions and Major Challenges

We first focus on the static anomaly, where the sensor affected
by the anomaly does not change with time, but which sensor is
affected is still unknown. We consider the detection delay under
the worst-case affected sensor. The goal here is to minimize the
detection delay subject to false alarm constraints. The major
challenges here are two-fold. First of all, the labels of the
samples are unknown and time-varying. Second, even if the
labels are known, i.e., each sample is associated with its sensor,
the sensor the anomaly affects is still unknown. For this problem,
we construct a generalized mixture CuSum (GM-CuSum) algo-
rithm. The basic idea is to estimate the unknown identity of the
affected sensor using the maximum likelihood estimate (MLE),
and further employ a mixture likelihood w.r.t. all possible labels.
We prove that the GM-CuSum is second-order asymptotically
optimal.!

! An algorithm is second-order asymptotically optimal if as the false alarm
rate goes to zero, its detection delay is within an O(1) term of the best possible
detection delay.
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We then focus on a general and more challenging setting with
dynamic anomaly, where the sensor affected by the anomaly
changes with time. Here, we refer to the sequence of sensors
affected by the anomaly over time as the trajectory of the
anomaly. We consider the detection delay under the worst-case
trajectory. Compared to the static setting, the additional chal-
lenge is that the affected sensor changes with time, and thus
the change is not persistent at any particular sensor. Therefore,
estimating the identity of the affected sensor over time is not
applicable. We then propose a weighted approach to address this
challenge, and find the optimal weight to construct a weighted
mixture CuSum algorithm. We prove that the weighted mixture
CuSum algorithm is first-order asymptotically optimal.> We
also discuss two computationally efficient approximations for
large-scale networks.

We also conduct extensive numerical experiments to demon-
strate the performance of our proposed algorithms. The numer-
ical results show that for the static setting, our GM-CuSum
algorithm outperforms a heuristic uniformly weighted mixture
CuSum algorithm; the optimal weighted mixture CuSum algo-
rithm also performs well for the static setting; and for the dy-
namic setting, our optimal weighted mixture CuSum algorithm
outperforms an uniformly weighted one and the GM-CuSum
algorithm. These numerical results validate our theoretical op-
timality results.

B. Related Work

The quickest change detection (QCD) problem in sensor
networks with labeled samples was extensively studied in the
literature, e.g., [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], where the fusion center knows the identity
of each sample, i.e., knows which sensor that each sample is
from. Therefore, one CuSum algorithm can be implemented at
each sensor and then be combined to make the decision. This
type of algorithms were shown to be asymptotically optimal
for various settings. In this paper, we investigate the setting
with unlabeled samples, where at each time step samples are
arbitrarily permuted, and the permutation is time-varying. The
fusion center does not know which sensor each sample comes
from, and then cannot implement a CuSum algorithm for each
Sensor.

Various learning and inference problems with unlabeled data
have been studied in the literature [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], which mainly focus
on the offline setting with non-sequential data. Here we only
review several closely related ones on detection problems. In [6],
hypothesis testing with unlabeled samples was studied, where
two practical algorithms, the unlabeled log-likelihood ratio test
and the generalized likelihood ratio test were proposed. A more
specific problem was studied in [7] where samples follow the
Bernoulli distribution and an approximated log-likelihood test
based on the central limit theorem was proposed. In [4], the
binary hypothesis testing problem with unlabeled samples was

2 An algorithm is first-order asymptotically optimal if as the false alarm rate
goes to zero, the ratio between its detection delay and the best possible detection
delay goes to 1.
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studied, and an optimal mixture likelihood ratio test (MLRT)
was developed. In [5], the bandwidth-constrained QCD problem
with unlabeled samples was investigated, where each sensor
sends 1-bit quantized feedback to the fusion center. In [17],
the QCD problem with unlabeled samples was studied where
the change affects all the sensors simultaneously. In this paper,
we investigate a practical scenario where an anomaly may not
affect all the sensors, which is of particular interest in the
distributed setting, and the anomaly may also be dynamic and
affect different sensors at different times, e.g., a moving target
in surveillance systems.

Existing studies of quickly detecting a dynamic change mostly
focus on the labeled setting, e.g., [31], [32], [33]. Our problem
is similar to the one in [33] but we focus on the unlabeled
setting. Our major challenge is due to the additional ambiguity
of unknown labels. The QCD problem with a slowly changing
post-change distribution was studied in [34], [35], whereas in
this paper, the anomaly can move arbitrarily fast.

With unlabeled samples, our problem is also related to the
composite QCD problem with unknown pre- and post-change
parameters e.g., [22], [36], [37], [38]. Our work is different from
the existing literature since the unknown parameters, i.e., the
identity and the label of the affected sensor, are time-varying.
Therefore, the generalized likelihood approach which estimates
the unknown parameters using their MLEs may not perform
well. Moreover, unlike studies in [36], [37], [38] where the
distributions are assumed to belong to the exponential family,
we do not have any assumptions on the distributions.

II. PROBLEM FORMULATION

Consider a network monitored in real time by a set of n
heterogeneous sensors. These sensors can be clustered into
K types, and each type k has ny sensors, 1 < k < K. The
data-generating distributions of samples from type k sensors
are denoted by pg ., 6 € {0, 1}, which are known to the fusion
center. At some unknown time v, an anomaly emerges in the
network, and changes the data-generating distribution of one
sensor. The fusion center does not know which type of sensor is
affected. If a sensor of type k is affected by the anomaly, then
its samples are generated by p; i, otherwise, by po ;. The goal
is to detect the anomaly as quickly as possible subject to false
alarm constraints. We focus on the case with unlabeled samples,
where the data vector at each time step undergoes an unknown
permutation of its entries, and the original position of each datum
in the vector is unknown to the fusion center. In other words, the
fusion center does not know which type of sensors that each
sample comes from, and therefore, does not know the sample’s
exact data-generating distribution.

Based on whether the sensor is affected by the anomaly and
the type of the sensor, we rearrange the sensors into 2K groups.
The first K groups consists of sensors that are not affected by
the anomaly; and the second K groups consists of sensors that
are affected by the anomaly. Specifically, for sensors in group
1 < k < K, their samples are generated by p 1., and for sensors
in group K < k < 2K, their samples are generated by py k.
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In this paper, we use capital letters to denote random vari-
ables and lower case letters to denote their realizations. De-
note by X" [t] = {X1[t],..., X,,[t]} the n arbitrarily permuted
samples at time ¢ received by the fusion center. We assume that
Xi[t], ..., X,[t] are independent, and X™[¢;] is independent
from X™[t5] for any 1 # to. Note that X;[t] is not necessarily
the sample from sensor % since samples are permuted/unlabeled.
The results in our paper hold for both continuous and discrete
random variables X;[t].

Let £ = {1,2,...,K}. Denote by s[t] € KU {0} the type
of the affected sensor at ¢. For notational convenience, we use
s[t] =0 to denote the case when there is no anomaly, i.e.,
t < v. Let s = {s[t]};°, denote the trajectory of the anomaly.
Here s is unknown to the decision maker. Even if the tra-
jectory of the anomaly s is given, the distribution of X™|t]
still cannot be fully specified due to lack of label informa-
tion. To characterize the distribution of X™[t], we define a
label function o™ : {1,...,n} = {1,..., K, s[t] + K}. This
function associates sample X;[t], 1 <i <mn, to group j for
some j € {1,2,..., K, K + s[t]}, i.e., specifies the probability
distribution of X;[t]. Specifically, if o} " (i) = 7, then

ifl <j<K,

. ~ pU,j7
Xilt] { it K < j < 2K. M

P1,j-K,

Here o ® can be interpreted as the inverse of the permutation
applied to the data vector. We further note that o} (e
to the decision maker.

s[1] 5[o0]

LetQ, = {01 e 0o

is unknown

} be the labels when the trajectory

of the anomaly is s, which is unknown. Let IP’S’: and Eg: denote
the probability measure and the corresponding expectation when
the change point is at  and the samples received by the fusion
center are permuted according to the label Q25 (see Appendix A
for more details). We further let Pg° and E’ denote the proba-
bility measure and the corresponding expectation when there is
no change, i.e., v = oo, where 2 = Qg with s[t] = 0,Vt > 1.

We extend Lorden’s criterion [39], and define the worst-case
average detection delay (WADD) and the worst-case average
running length (WARL) for any stopping time 7:

WADD(7) = sup sup sup esssupE " [(7 — v) T |X"[1,v — 1]],
v>1 s Qg °

WARL(7) = ingg[T], (2)

where X" [t1, to] = {X"[t1], ..., X™[t2]}, for any t; < t5 and
(1 —v)" = max{r — ,0}. Let f: X — R be a real-valued
function and (X, X', 1) be a probability space. The essential
supremum is then defined as

esssupf =inf{a € R: p({z: f(x) >a})=0}. (3)

The goal is to design a stopping rule that minimizes the WADD
subject to a constraint on the WARL:

inf  WADD(r), (4)
T:WARL(7)>~

TABLE I
SUMMARY OF NOTATIONS

Symbol Definition

n Number of sensors

K Number of different types

n Number of sensors of type k

s[t] Type of the affected sensor at time ¢

s = {s[t]}22, | Trajectory of the anomaly

crf [t Label function that associates sample to group

Qg Labels when the trajectory of the anomaly is s
IP’?Z’:(IEE’:) Probability measure (expectation) when the change

point is at v and the samples are permuted according
to the label Qg

Pey (ES) Probability measure (expectation) when there is no
change
D(P||Q) Kullback-Leibler (KL) divergence between two

distributions P and Q.

where v > 0 is a pre-specified threshold. Here the false alarm
constraint is to guarantee that under all possible sample permu-
tations, the average running length to a false alarm is always
lower bounded by ~.

A stopping time 7' is second-order asymptotically optimal if
WARL(T') > ~ and for large

WADD(T) = inf

i WADD(7) +0(1).  (5)

A stopping time 7' is first-order asymptotically optimal if
WARL(T') > -y and for large ~y

WADD(T) = inf

T:WARL(7)>7 WADD(7) (1 +o(1)).  (6)

In Table I, we summarize important notations in this paper.

III. STATIC ANOMALY

We first investigate the case with static anomaly, i.e., the
sensor affected by the anomaly does not change with time. In this
case, for any ¢t > v, s[t] = k for some unknown type k. Then,
forall j € {1,2,..., K,k + K}, there are (n,,... np-1,...nx.1)
possible o}’’s to associate each sample with a data-generating
distribution, and we denote the collection of all possible labels
by Sy, 1 (see Appendix A for more details). Before the anomaly
emerges, i.e., t < v, X"[t] follows the distribution

Po 00 (X"[t]) £ [T po.0oe (Xilt). ()
=1

for some unknown o? € S, . At time t > v, s[t] = k, X"[t]
follows the distribution

Ph(X"M) =[] Poore Gl

iof (i) <K
X H Pk - (Xilt]), (3)
iol (i) >K
for some unknown o € Sn k. Let O =
{09,...,09 1,0k ... ,0%} be the labels over time, when

the anomaly emerges at v (similarly defined as ()g). Let IPS:’
denote the probability measure when the change point is at v
and the samples are generated according to (7), (8) and 2.
Further let ]Eé: denote the corresponding expectation.
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The WADD for a stopping time 7 can be written as

WADD(7) = sup sup sup esssupIEQ (7 — )" X"[1,v —1]].
vl ko Q
The WARL is defined in the same way as in (2).
The goal is to design a stopping rule that minimizes the WADD
subject to a constraint on the WARL:
inf WADD(7). )
T:WARL(T)>~

A. Universal Lower Bound on WADD

We first derive a universal lower bound on WADD for any 7
satisfying the false alarm constraint: info EZ[7] > +.

Let I, = D(Py||Py) denote the Kullback-Leibler
(KL) divergence between two mixture distributions
kE_ o 1
P \Sn m ZUGS p P* and Py = 5ol Zaesn,o Py . Here,

P* is the uniform mixture of all possible labels when the
affected sensor is type k. Let I* = min; <<k I,. We then have
the following theorem.

Theorem 1: As v — o0,

inf

WADD(7) >
T:WARL(7)>~

lolm +O(1). (10)

The proof of Theorem 1 can be found in Appendix B. The
main challenge in the proof of Theorem 1 is due to the worst-
case over all labels and affected sensors in WADD and WARL.
From Theorem 1, it can be seen that the WADD for problem
(9) is lower bounded by 101# + O(1) for any stopping rule that
satisfies the constraint on WARL. Theorem 1 motivates us to
find the k£ that minimizes Iy, i.e., achieves I*, and design an
algorithm to achieve this universal lower bound.

B. Generalized Mixture CuSum Algorithm

In this section, we construct an algorithm that achieves the
universal lower bound asymptotically.

When there are unknown parameters, MLE is commonly used
to estimate the unknown parameters. In the static setting, k does
not change with time, however, af changes with time, thus a
direct MLE for of at each time ¢ may not work well.

If k is known, then our problem is invariant under the group of
transformations of all possible labels (permutations), that is, our
problem is independent of the order of collected samples at each
time. Therefore, our problem is related to the invariant theory
in [40, Section 6]. This motivates us to take a mixture approach
w.r.t. the unknown labels, and then take a MLE approach w.r.t.
the unknown affected sensor.

Let Wt] = maxyex maxi<j< Z PE(xX[i]) . We then

i=3 108 5, i)
define the GM-CuSum stopping time as follows:

Te = inf{t : W[t] > b}, (11)

where b > 0 is the threshold. Here W [t] can be updated effi-

ciently. We keep K CuSums in parallel. Note that this can be

Og ]Bk Xn [Z]

done recursively. Let Wi[t] = maxj<j<; S0 N TR
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The test statistic W [t] has the following recursion:

+1]) 1
b

where W, [0] = 0, Vk. We then take their maximum as W[t].

In the following theorem, we show 1) the WARL lower bound
of T and 2) the WADD upper bound of T¢.

Theorem2: 1)Letb = log(K+~y)in(11). Then WARL(7¢) >
~;and 2) As y — 0o, WADD(Tg) < %87 + O(1).

The proof of Theorem 2 can be found in Appendix C.
The proof of the lower bound on WARL is based on Doob’s
submartingale inequality [41] and the optional sampling the-
orem [41]. The major challenge lies in that we consider the
worst-case label. A key property we develop and use in the proof
is thatunder the pre-change distribution P, 50, forany k& € K, the

Pk(X™) }
Po(X™)

™k n
Wt + 1] = max {<Wk[ﬂ>* +log Ia; (X"[t

expectation of the mixture likelihood ratio Eg 5o [log

is invariant for different o°

Theorem 2 suggests that to meet the WARL constraint, b
should be chosen such that b = log K.

Based on Theorems 1 and 2, we then establish the second-
order asymptotic optimality of T¢.

Theorem 3: T¢ is second-order asymptotically optimal for
the problem in (9).

The asymptotic optimality of T can be derived similarly
under the Pollak’s criterion [42]. We omit the details here.

IV. QUICKEST DYNAMIC ANOMALY DETECTION

In this section, we consider the general problem with a
dynamic anomaly, where the sensor affected by the anomaly
changes with time. The GM-CuSum algorithm designed for
static anomaly may not work well anymore since the sensor
affected by the anomaly changes with time.

A. Universal Lower Bound on WADD

_ Define the following weighted mixture distribution:
PA(X™) = 30, BPH(X™), where 8= {5i}[S,. 0< fi
<1 and Zszl Br = 1. Denote by Ig the KL divergence
between PP and Py. Let * = arg ming I5.

For the universal lower bound on WADD, we have the fol-
lowing theorem.

Theorem 4: As vy — oo, we have that

inf  WADD(r) > 13g7(1 +to(1).  (13)

T:WARL(T)>~ B*

The proof of Theorem 4 can be found in Appendix D. From
Theorem 4, the WADD for the problem in (4) is lower bounded
by 105 2 (1 + o(1)) for large ~. This motivates us to apply the
optimal weight 3* to design an algorithm that can achieves the
WADD lower bound asymptotically. Moreover, we have that
I* > Iz~ which implies that a dynamic anomaly is more difficult
to detect than a static anomaly.
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B. Weighted Mixture CuSum

In the static setting, the unknown affected sensor can be esti-
mated by its MLE. However, in the dynamic setting, the affected
sensor changes with time, and the MLE approach may not work
well. Theorem 4 motivates us to tackle the unknown anomaly
trajectory using a weighted approach where the probability that
the k-th group is affected by the anomaly is 3. We then construct
our optimal weighted mixture CuSum algorithm as follows.
Define the log of weighted mixture likelihood ratio using 3*:

lg-(X™) = log —

- (14)
Po(X™)

It can be easily shown that {g«(X™) is invariant to any
permutations on X", i.e., for any permutation w(X") =
(X.,r(l), XW(Q), ey X.,r(n)), fﬁ* (Xn) = Eﬁ* (W(Xn)) This is
due to the fact that £g«(X™) takes the sum over all possible
labels thus is invariant to the actual permutation.

We then construct the following optimal weighted mixture
CuSum algorithm:

t
* = 1 . % iy >
Tg+(b) =inf ¢ ¢ : lgr?gt)ilzﬁg (X™[i]) > b (15)
i=j

Let W[t] = maxi<j<ei1 3or; lg (X"[i]), then W[t +1] =
(W)t + L (X[t + 1]), and W[0] =

Different from the way that we handle the unknown label o,
here, for the unknown type of the affected sensor, we take the
mixture according to 3* instead of a uniform distribution over
K. As will be shown later both theoretically in Theorem 6 and
numerically in Section VI, taking a uniform mixture over C may
not lead to the optimal performance.

Let ]E" and [E( denote the expectation under the probability
P* and IP’O respectively. The following property of 3* plays an
important role in developing the asymptotic optimality of the
weighted mixture CuSum algorithm.

Lemma 1: For any k € K, EF {log ((XXH))} > Ig-.

The proof of Lemma 1 can be found in Appendix E.

In the following, we provide a heuristic explanation of
how /W[t] evolves in the pre- and post-change regimes.
We first argue that EX,[¢g-(X™)] is invariant for different
o*’s. Specifically, let E¥, denote the expectation under P*,
where a sensor of type k is affected, and the data received

is labeled according to o*. For any m, let &k =ckor.

Then EF, [fﬁ*( m(X™")] = ELy, [le (X™)] = EE[(g(X™)].
For any ok e Sn ks a7r can always be found so that ok om = &k,
Thus, for any o, 6% € Sy, i, E%, [(g- (X™)] = EF, [(5-(X™)].

Therefore, E¥, [85* (X™)] is invariant for different Jk’s Then,
under the pre- change distribution Py o0, the expectation of the
weighted mixture likelihood ratio IEO’(;? [¢g+(X™)] is invariant
for different o’s. This implies that

D (]ﬁoHﬁﬁ*) <0. (16

Therefore, before the change time v, W[t] has a negative drift.
Similarly, from Lemma 1, after the change time v, under any
group assignment {25 and trajectory s, W[t] has a positive drift
whose expectation is no less than Ig-, and evolves towards oo.

The following theorem establishes 1) the WARL lower bound
of Tig+, and 2) the WADD upper bound of Tj3-.

Theorem 5: 1) For Tjg« defined in (15), let b = log~y, then
WARL(T+) > 7. 2) As v — oo, we have that WADD(7z+) <
(L +o(1)).

The proof of Theorem 5 can be found in Appendix F. The
proof is based on the Weak Law of Large Numbers for the
weighted mixture likelihood ratio (similar to [37]). The major
challenge lies in that here we are interested in the worst-case
label and the worst-case anomaly trajectory. In our problem, the
label and the affected sensor change with time. Therefore, it’s
challenging to explicitly characterize the worst-case label and
anomaly trajectory for Tjg«. To show the asymptotically optimal
performance of Tg+, instead of finding the worst-case label and
anomaly trajectory, we apply the symmetric property of T
and Lemma 1 to show that the WADD and WARL of Tjg« are
bounded under all possible labels and trajectories.

We then establish the first-order asymptotic optimality of T}«
in the following theorem.

Theorem 6. Tpg-is first-order asymptotically optimal for prob-
lem (4).

Proof: Combining Theorems 4 and 5, we establish the first-
order asymptotic optimality of Tj3-. |

The asymptotic optimality of Tj3- can be derived similarly
under the Pollak’s criterion [42]. We omit the details here.

If we apply Tz« (designed for the dynamic setting) to the
static setting, the WADD of Tjg- can also be upper bounded
by 1‘1’%(1 + o(1)). However, Tg- may not be asymptotically
optimal. On the other hand, in the dynamic setting, the sensor
affected by the anomaly changes with time, and thus the MLE
may not work well. Therefore, the optimal weighted mixture
CuSum algorithm works better than the GM-CuSum.

V. COMPUTATIONAL COMPLEXITY AND EFFICIENT
APPROXIMATION

In the previous sections, we proved that the GM-CuSum
algorithm and the optimal weighted mixture CuSum algorithm
are asymptotically optimal. However, the test statistic involves
computing the mixture likelihood over all possible o} [t], which
is expensive when n is large.

Ateach time t, we have (n,...,n,)"1,...,nx,1) possible af[t] ’s.
Consider the case with large n, and assume that lim,, % =
ag, which is a constant. Let o = [ay, ..., ax]T. Consider
discrete distributions,? and denote by X the support set of the
samples. From the exponential bound on the size of the type

3Samples in sensor networks are usually quantized before transmitting to
fusion center to reduce the power consumption.
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class [43], we have that

where H denotes the Shannon entropy. We then have that

=1 1
hmH({”lW"KD — H(a).
n

n—00 n n n

Therefore, the computational complexity of the GM-CuSum and
the optimal weighted mixture CuSum increase exponentially
with n, which is expensive for large n.

In this following, we discuss two computationally efficient
methods to approximate the test statistics of the GM-CuSum
and the optimal weighted mixture CuSum when n is large, and
then evaluate their performance in Section VI-D.

The first method is based on the method of types [43]. Let
ITx~ denote the empirical distribution of X™ and let 7 (IIx»)
denote the type class of Il x». For any k, we have that [4]

Pk(X™
log =—— ( =log = a7

Po(X™) P
From the generalized Sanov’s theorem [4], [17], the probability
of types log P¥(T (Il x~)) can further be approximated by the
following optimization problem

— inf
U:[U1 ..... UK+1] E ’P/\
dTU=TIxn

+ (nx — 1) D(Uk||po,k) + D(Uk +1||p1,%),

K
K1 Z n; D(Uj]lpo,;)
j=1,j#k

(18)

where ¢ = yoeoy o =" and Py denotes the
probability simplex on X'. Problem (18) is a convex optimization
problem whose computational complexity is independent of n.
Therefore, the computation of test statistics of the GM-CuSum
algorithm and the optimal weighted mixture CuSum algorithm
can be converted to solving convex optimization problems and
the overall complexity at each time step is only linear in the
number of sensors.

The second method is to estimate the unknown labels using
the MLE and to use the generalized likelihood ratio test (GLRT)
to approximate the mixture likelihood ratio [6]. Computing the
GLRT is a special case of the assignment problem and efficient
algorithms have been developed. In [6], two efficient greedy
algorithms were proposed to solve the assignment problem
approximately with complexity O(n?). Therefore, at each time
t, the test statistics of the GM-CuSum and the optimal weighted
mixture CuSum algorithm can be approximated with computa-
tional complexity O(Kn?).

[ 7.“7nk71 N I]T
n

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

16 { --a- Optimal Weighted Mixture CuSum A
—e— Uniformly Weighted Mixture CuSum i
141 -+ GM-CuSum ;
Lower Bound o

WADD

10* 10? 10° 10*

WARL

Fig. 1. Static setting: n = 4, K = 4.

VI. NUMERICAL RESULTS
A. Static Anomaly Detection

We first consider the static setting, and compare our GM-
CuSum with a uniformly weighted mixture CuSum

B S PH(X (i)
Bo(X7i])

and the optimal weighted mixture CuSum. We plot the WADD
as a function of the WARL under the worst-case static trajectory.
We also plot the asymptotic lower bound logw.

We first compare the three algorithms under the Gaussian
distributions. There are four types of sensors and each type con-
tains one sensor. For the type I sensor, the pre- and post-change
distributions are A'(—1,1) and N(2, 1), for the type II sensor,
the pre- and post-change distributions are A'(1,1) and (3, 1),
for the type III sensor, the pre- and post-change distributions
are N'(—1,1) and NV (3, 1), for the type IV sensor, the pre- and
post-change distributions are N'(1,1) and N (—1,1) respec-
tively. The optimal weight for our weighted mixture CuSum
algorithm is solved by Monte-Carlo. It can be seen from Fig. 1
that with the same false alarm rate, our GM-CuSum has the
lowest WADD, which implies that it detects the anomaly with the
smallest detection delay. Moreover, the slope of the GM-CuSum
matches the lower bound, which validates that the GM-CuSum is
asymptotically optimal. The optimal weighted mixture CuSum
algorithm also has a good performance in the static setting.

We then compare the three algorithms under the binomial
distributions. We consider two cases with different K. For the
case where there are two types of sensors, for type I sensors, the
pre- and post-change distributions are B(10, 0.2) and (10, 0.5),
for type II sensors, the pre- and post-change distributions are
B(10,0.8) and B(10,0.6), respectively. Here 3 denotes bino-
mial distribution, the first parameter denotes the number of trials
and the second parameter denotes the success probability of each
trial. We plot the results for the case where each type has four
sensors in Fig. 2. For the case where there are four types of
sensors, for type I sensors, the pre- and post-change distributions
are 3(10,0.2) and B(10,0.8), for type II sensors, the pre- and
post-change distributions are B(10, 0.3) and (10, 0.6), for type
III sensors, the pre- and post-change distributions are 5(10,0.5)
and (10, 0.9), for type IV sensors, the pre- and post-change

>b

Tp=inf( t: maxz og
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40 4 Optimal Weighted Mixture CuSum
—e— Uniformly Weighted Mixture CuSum
351 -+ GM-CuSum
Lower Bound

10! 10? 10° 104

WARL

Fig. 2.  Static setting: n = 8, K = 2.

30

-4~ Optimal Weighted Mixture CuSum
—e— Uniformly Weighted Mixture CuSum
257 =4 GM-CuSum

Lower Bound

10! 10? 10°
WARL
Fig. 3.  Static setting: n = 8, K = 4.

distributions are (10, 0.4) and (10, 0.7) respectively. We plot
the results for the case where each type has two sensors in Fig. 3.
We use Monte-Carlo to obtain the optimal weight for our optimal
weighted mixture CuSum algorithm. It can be seen from Figs. 2
and 3 that with the same false alarm rate, our GM-CuSum has the
lowest WADD, which implies that it detects the anomaly with
the smallest detection delay. Moreover, the relationship between
the WADD and log of the WARL is linear, and the slope of the
GM-CuSum matches with the one of the lower bound, validating
its asymptotic optimality.

B. Dynamic Anomaly Detection

For detecting the dynamic anomaly, we use the same param-
eters of distributions as in the static setting.

We compare our optimal weighted mixture CuSum algorithm
with a uniformly weighted mixture CuSum, i.e., replace 3* in
(15) with 3 = (i, i, i, %) and the GM-CuSum under the Gaus-
sian distribution. We plot the average detection delay (ADD)
and the average run length (ARL) for some randomly generated
trajectories since the worst-case trajectory is difficult to simulate.
It can be seen from Fig. 4 that the weighted mixture CuSum
algorithm outperforms the uniformly weighted mixture CuSum
algorithm and the GM-CuSum. Therefore, in the dynamic set-
ting, the optimal weighted mixture CuSum algorithm detects
the presence of the anomaly with the lowest detection delay.
Moreover, the slope of our optimal weighted mixture CuSum
algorithm matches with the one of the lower bound, which
validates its asymptotic optimality.

-4 Optimal Weighted Mixture CuSum 4

/

351 —e— Uniformly Weighted Mixture CuSum //

=+ GM-CuSum
Lower Bound

25

20

ADD

15

10

10! 10? 10° 10

ARL

Fig. 4. Dynamic setting: n = 4, K = 4.

- Optimal Weighted Mixture CuSum Vd
—e— Uniformly Weighted Mixture CuSum /l
/

27 e GM-Cusum /

Lower Bound Y

20

ADD

10! 10? 10° 104

ARL

Fig. 5. Dynamic setting: n = 8, K = 2.

14
--a-  Optimal Weighted Mixture CuSum
—e— Uniformly Weighted Mixture CuSum
=4+ GM-CuSum

Lower Bound

12

10

ADD

10! 10? 10°

ARL

Fig. 6. Dynamic setting: n = 8, K = 4.

We then compare the three algorithms using the binomial
distributions as in the static setting. It can be seen from Figs. 5
and 6 that our optimal weighted mixture CuSum algorithm
outperforms the uniformly weighted mixture CuSum algorithm
and the GM-CuSum since with the same false alarm rate, the
optimal weighted mixture CuSum algorithm has the smallest
detection delay. The relationship between the ADD and log of
the ARL is linear. Moreover, the slope of our optimal weighted
mixture CuSum algorithm matches the theoretical lower bound,
which demonstrates its asymptotic optimality. It can also be
observed that the GM-CuSum algorithm does not perform well
under the dynamic setting.

C. Moving Target Detection With Unlabeled Samples

In this section, we consider a practical application of target
detection [7], [44]. For simplicity, consider a 3 x 3 grid. One
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35 —® Uniformly Weighted Mixture CuSum e

-+ GM-CuSum Pl

3.04

2.0

10! 102

ARL

Fig. 7. Moving target detection.

sensor is deployed at the center of each cell. The fusion center
can only collect unlabeled data. Before the target presents, at
each time, sensors will send exponentially distributed samples
with mean 1 to the fusion center. When the target appears,
the distribution of each sample changes to another exponential
distribution with an elevated mean, depending on the distance
between the cell and the target. The target moves across differ-
ent cells at different time. In this case, the mixture likelihood
P*(X™) can be computed when the target lies in a specific cell
and the GM-CuSum algorithm and the optimal weighted mixture
CuSum algorithm can further be designed. We compare the
GM-CuSum algorithm, the uniformly weighted mixture CuSum
algorithm and the optimal weighted mixture CuSum algorithm.
From Fig. 7, with the same false alarm rate, our optimal weighted
mixture CuSum has the smallest detection delay which implies
that it detects the presence of the target quickly, e.g., with an
ARL of 103, it only takes about 3.5 samples to detect the target.

D. Computationally Efficient Approximation

In this section, we implement the computationally efficient
approximation in Section V by replacing the test statistics in
uniformly weighted mixture CuSum algorithm, GM-CuSum
algorithm and optimal weighted mixture CuSum with the value
of the optimization problem in (18) and demonstrate their per-
formance when n is large.

Let n=60,K =3 and n; = ny = ng = 20. After the
anomaly emerges, the distribution of all the sensors of an un-
known type changes. Our GM-CuSum algorithm and optimal
weighted mixture CuSum algorithm can be designed with a
slight modification of the mixture likelihood P*(X™). For type
I sensors, the pre- and post-change distributions are 5(10, 0.45)
and B(10,0.6), for type II sensors, the pre- and post-change
distributions are 53(10,0.4) and 5(10,0.6), and for type III
sensors, the pre- and post-change distributions are 3(10,0.7)
and (10, 0.55) respectively. The optimal weight for our optimal
weighted mixture CuSum algorithm is obtained by Monte-Carlo.
We consider the static setting, and plot the WADD as a function
of the WARL. It can be seen from Fig. 8 that the GM-CuSum has
the smallest WADD given the same WARL. Also the WADD is
small (it only takes around 1.6 samples to detect the target for
a given a WARL at 4 x 102). Moreover, our GM-CuSum has
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Fig. 8.  Static setting: n = 60, K = 3.
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Fig. 9. Dynamic setting: n = 60, K = 3.

the best performance for detecting the static anomaly when n is
large.

We then consider the dynamic setting, we plot the ADD as
a function of ARL for some random trajectories. It can be seen
from Fig. 9 that with the same ARL, our optimal weighted
mixture CuSum algorithm has the smallest detection delay and
thus has the best performance for detecting the dynamic anomaly
when n is large.

VII. CONCLUSION

In this paper, we studied the problem of quickest detection
of an anomaly in networks with unlabeled samples. We first
investigated the case with a static anomaly. A GM-CuSum
algorithm was proposed and shown to be second-order asymp-
totically optimal. We then extended our study to the case with
a dynamic anomaly, that is, the affected sensor changes with
time. We proposed an optimal weighted mixture CuSum algo-
rithm, and proved that it is first-order asymptotically optimal.
Our approaches provide useful insights for general (sequential)
statistical inference problems with unlabeled samples.

APPENDIX A

Before the anomaly emerges, i.e., t < v, there are nj sen-
sors in group k, V1 <k < K, and O sensors in group k,
VK < k < 2K.Then, there are in total (,,,,.”" ) possible af[t]:
{1,....n} = {1,..., K} satisfying |{i : 071" (i) = k}| = ns.
for any k= 1,..., K. We denote the collection of all such
labels by S, 0. After the anomaly emerges, i.e., ¢ > v, one
sensor of type s[t] # 0 is affected by anomaly. Therefore, the
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number of sensors in group s[t] and s[t] 4+ K are ng) — 1and 1

respectively. Then, there are (n,,...,n.1,...,nx,1) possible o} st

{1,...,n} = {1,..., K,s[t] + K} satisfying
i, if 1<k<Kand k # s[t],
st g —1, ifk=st],
{Z'”t (Z)*k}’* 1, if k= s[t] + K,
0, otherwise.

We then denote the collection of all such labels by S,, ;-
Before the anomaly emerges, i.e., t < v, the samples X" t]
follows the distribution

Po,p0 (X"[t]) = [ [ po.oc (Xilt (19)

for some unknown o € S, o. Attime ¢t > v, X"[t] follows the
distribution

st n A
e CUIEII|

i af[t](i)gK

< I

i:o’f[t](i)>K

poﬂf[t] (1) (XZ [t} )

Xi[t]), (20)

Py g5t (i)—K(

for some unknown 0 6 Sn s[t
APPENDIX B
PROOF OF THEOREM 1

Consider a simple QCD problem with a pre-change distri-
bution Py and a post-change distribution P*, respectively. Let

mG(T) = sup esssupE*” [(T — )X, v —1]],

v>1

ARL(r) = E®[r], @21

where E* denotes the expectation when the change is at v, the
pre- and post-change distributions are Py and P*, and X"[ t] for
1<t<v-—1areiid. from ]P’O, E> denotes the expectation
when samples are generated according to Py.

For any 1 < k < K, consider another QCD problem with
a pre-change distribution P ;0 and a post-change distribution
]P’kk , respectively. For this pair of pre- and post-change distribu-
t10ns define
WADDy (1) = sup sup esssupE

v>1 Qk

= 1ngQ [7].

[(7’ —)TX"[1,v — 1]] ,

WARL(T) (22)

For any 1 < k < K and any 7 satisfying WARL(7) > ~, it
can be shown that

WADD(7) = sup WADDy,(7)

> supsupesssupE(;” [(r — v)F X [1,v — 1]]

v>1 Qp

> sup esssupE*” [(7’ — )X 1,y — 1]}

v>1

— WADDy (7). (23)

The second inequality is due to the fact that for any 7,
WADDy () > WADD (7) [17, eq. (18)]. Similarly, we have
that for any 7, WARL(7) < ARL(7) [17, eq. (18)]. It then
follows that for any k € IC,

inf  WADD(7) > _inf WADD4(r)

T:WARL(7)>7 T:m(T)Z'y
log v

+0O(1), as vy — oc.
I,

(24)

The last inequality is due to the universal lower bound on WADD
for a simple QCD problem [37]. We then have that

log ¥

inf  WADD(r) > (25)

0 — 00.
T:WARL(7)>~ +O(1), asy — o0

APPENDIX C
PROOF OF THEOREM 2

For any m > 0, let 7o = 0 and define the stopping time

" -
Pk(XP

Tmy1 = inf {t > 7y, SUP Z log M < 0} . (26)
i=rm 41 0 in)

Xﬂ'(n))a

For any 7, let

For any permutation 7(X") =

PE(x™) _ = log P*(r(X"))
Po(X™) Po(m (X))
o 7, where “o” denotes the composition of two func-

tions. Then Eq 5o [log M} Eo.500r []0g 4(X")} —
Py P,
Pk(x™)

(m(X™)) (xXm)
Eg 50 {bg Folx )} For any 6° € S, 0, a m can always be
found so that o

( w(1) 7r(2)a---7

we have that log =

AO_O.O

0 ~0

om =Y. Thus, for any 0%, ¢ Sn.0s

Pk(X™) (x™)
Ep, 50 [log Box )} Ep 0 [log 5 (Xn)} .
We then have that for any 0 € S,, o,

PF(X™ 1 PF(X™
oo | LX) S Ego |
Po(Xn) | Sn 0 | TSm0 P()(Xn)
k(. .n -
:/Ii (") Po(zM)dz" =1.  (27)
]Po(l'n)
Therefore, for any €2 and ¢ > r,,,
t+1 >k n
P (X!
JE??{ [[ =92 ;)ft]
=7y, +1 PO(Xi )
’ ~
PE(XT Pk(X™
“es| [T B[] g, B
i=r,+1 Po i PO(Xt+1)
_ H PEXT) g O{P’%xmq
i=rm,+1 PO(XZH) 7 ]PO(ngl)
‘ -
Pk(Xn
= J] = (X2), (28)
1=rm+1 PO(XZH)
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Ht ]P’l‘(
i=7m+1 ]1> (X”

Therefore, .7-}, t>nr, } is amartingale un-

der P&’ for any 2 with mean 1.
We then have that for any €2,

: Pk(X?
IP’&C{ sup Z log 5 ((X"))

> b for some t > rm‘]:r }
i=rm+1 0

F

Tm }

> ¢ for some ¢ > Tm

k=1 i=r;,+1 7
k n
EO,UU []]; ((j((:b +1)):|
O\ +1 —b
<K . = Ke®, (29)
e

where the last inequality is due to Doob’s submartingale inequal-
ity [41] and the optional sampling theorem [41].

k n
P

Let M =inf{m>0:r,, <oo, bupkz 1g~( 52

1=Tm+1

b for some ¢t > rm}. We have that for any (2,

P (M >m+ 1|F,,)

m

{sup Z log ~(

X < bforall ¢t > ’I“m’]: }
i=rm+1 )

>1—Ke™®. (30)
We then have that for any (2,
P (M > m) =Eg [P (M >m+ 1|F,,) - Linrzmy]

> (1 - Ke ")Py(M >m—1)

> (1-Ke ™)™ 31
It then follows that
WARL(Tg) = ingg[TG} > igf]Eg[M}
o0 (o) b
> inf 30 By >3 (- ket =2
_1gf7;)PQ (M>m)_7;)(1 Ke™®) = 32

Let b = log K, we have that WARL(T¢) > ~. Let T}, be the
mixture CuSum algorithm for problem in (22):

b}. (33)

It then follows that forany 1 < k < K,

WADDy, (T¢;) = sup sup esssup]EQ (Tg — v)T|X"[1,v —1]]

IJ>1 Qk

< supsup esssup]EQ (T —v)T|X"[1,v —1]]

=1 Q
log b
=7
where the last equality is because of the exact optimality of the
mixture CuSum algorithm (see Theorem 1 in [17]).

+0(1), (34)
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To satisfy the WARL constraint, set b = log Ky, we have
WADD(TG) = Sup \NADD]€ (Tg) < sup WADDk (Tk)
kek kek
log K~

logy
= su + O(1
keg Iy, ()= I*

+O(1), asy — oc0. (35)

APPENDIX D
PROOF OF THEOREM 4

For any trajectory s and stopping time 7, define the WADD
and WARL

WADD, (7) = sup sup esssupE
v>1 Qg

= infE%o[T].

Y =) TIX Ly = 1],

ARL(7) (36)
C0n51der QCD problem with a pre-change distribution Py =
Sl Sn 0| > s0es, o Po,00 and a post-change distribution Poltl =

s[t]
] Loelies, iy Do

post-change distributions and any trajectory s, define

respectively. For this pair of pre- and

WADD, (1) = sup esssupE*"” [(T -

v>1

vy X"y - 1]

ARL(r) = E®[r]. (37)

where E®¥ denotes the expectation when change point is v,
before the change point, the data follows distribution Py and
after the change point, at time ¢, the data follows the distribution
P*[), and X"[1,v — 1] are i.i.d. from Py; and E* denote the
expectation when the data follows distribution @0

Consider another QCD problem with pre-change distribution
IP’O and post-change distribution PA". Under this pair of pre- and
post-change distributions, define

—~

WADDg-(7) = sup esssupEP™" | (7 — ) T|X"[1, v — 1]} ,
v>1
ARL(7) = E®[r]. (38)

In QCD problems, ARL only depends on the pre-change distri-
bution. Therefore, for any stopping time 7, problems in (2) and
(36) have the same ARL, problems in (37) and (38) have the
same ARL. Let C, denotes the collection of all stopping times

7 that satisfy ARL(7) > v and CNﬂ, denotes the collection of all

stopping times 7 that satisfy m(ﬂ > . Our goal is to prove
that

) L~ log v
inf WADD(7) > inf WADDg«(7) ~ ——(1 + o(1)).
TEC, TeC, I,@*

(39)

-~ o]
Construct a new sequence of random variables {X " [t]} .
t=1

Before the change point, X [t] arei.i.d. according to the mixture

distribution Py = |$710| > Py, »0. After the change point,

' slt]
€

ie., t > v, X"[t] follows the distribution IP’S£t[]t] for some o,
It

O'OESV,L,O

Sy, 5[]+ Specifically,
2 P, ift < v,
~ s(t
PUL[]t] )

ift > v. (40)
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For any stopping time 7 and any s, let

WADD, (1) = sup

sup esssup

vzl ool s

™s,v I

B [0 IX Ly = 1], @D
[ A oo

where ES’”

.....

dlstrlbuted accordlng to (40)

Let WADD( ) = sup, WADD (7). To prove (39), we first
show that for any s, WADDg(7) = wﬁs(f), and then show
that WmS(T) > WZBI/)S (7). We complete our proof by
showing that for any 7 and 3, V\/ZA\]—)T)(T) > \N/A\ﬁ)g(r).

Step 1: Denote by M the collection of all {o?9,...,09_;},
and p is an element in M. When the trajectory is s, denote by
N the collection of all {af;["]7 . o3l }, and w is an element

in NVy. Then, the WADD, can be written as

WADD; (1) = sup sup esssupEg;"” (7 — v) 7 [X"[1,v — 1]]

v>1 Qg

denotes the expectation when the data is

s[x

= sup sup sup esssupE>"[(7 —v) T |X"[1,v — 1]],

v>1 weNg peM
where EZ” denotes the expectation when change point is v,

the trajectory is s, and after the change point, the data follows
distribution [];2, Piﬂ]. We note that X" [t] and X™[t], for

t > v, have the same distribution ]Ps[f[l]. Therefore, the dif-
It

ference between WADD, and Wﬁs lies in that they take
esssup with respect to different distributions, i.e., the distri-
butions of X"[1,v — 1] and X"[1,v — 1] are different. Let
fo(X™[1,v —1]) denote E3¥[(T —v)*|X"[1,v — 1]]. Then,
WADD; and Wﬁs can be written as

WADDg;(7) = sup sup sup esssupf,, (
v>1 weNs peM

X"[1,v—1]),

Wﬁs( ) = sup sup esssupf,, ( "y — 1]) (42)

v>1 weNs

It then suffices to show that for any w € N,

sup esssup f,, (X"[1,v — 1]) = esssup fo, ( "l,v— 1})

HeM
For any w € Ny and p € M, let
by, = esssupf, (X"[1,v —1])
—inf{b: P, (L (X [Ly—1]) >b) =0}, (43)

where PP, denotes the probability measure when the data is
generated from Py o0,..., [Py ;o before change point v.

Let b}, = esssupf,, ( "l — 1]) It can be shown that

b, = inf{b 2/ L gy en [Lv—11)>0)
x™[1,v—1]

inf ¢ b: / L fo en [10-10) >0
x"[1,v—1]

xd—ZP

,ue/\/l

L,v—1])=0

= inf{b: > Py (fo (XMLy—1]) >b) =0
[M] M | 5
It then follows that for any pue€ M, and we N,

P,(fo(X"[1,v —1]) > b%,) = 0. Therefore, for any p € M,
we have that b, ,, < b,. Then

sup by, < b,. (44)
pnemM
Conversely, for any p € M, we have that P, (f,,(X"[1,v —
1) > supyep bu,u) = 0. Then, i 3, P (fuo (XML —
1]) > sup,ep bu,,) = 0. This further implies that
b;, < sup by, 45)

pneM
Combining (44) and (45), we have that sup,cp by, =
b:,, and thus Sup e v esssup fi, (X" [1,v — 1]) =
esssup f.,(X"[1, v — 1]). This implies that for any 7,

WADD, (1) = WADD, (). (46)

Step 2: The next step is to show ms(ﬂ > \ms(ﬂ.
We first show that sup,cy, esssupf., (X”[l, v— 1]) >

esssup supe ., fu (A”[l v— 1]) Denote by P the proba-

bility measure when the change is at v, the pre- and post-change
distributions are Py and Pl at time ¢, respectively. Let b=

SUP, e, €sssup fi, (X”[ v— 1}) For any w € Ny, we have
that P¥ (fw ( ",y — 1]) >b

and a countable union of sets of measure zero has measure zero,
we then have that

P <5§/\% fo ()A("[l,l/ - 1]> > i))

) = 0. Since Ny is countable,

< P¥ (UweNE {fw (f(”[l, v— 1]) > b}) —0. @47
Therefore,
b > esssup sup f., ( "l,v— 1]) (48)
weN;

Before the change point v, X"[t] and X"[¢] follow the same
distribution. For any 7' > v + 1, we have that

,,,,,
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d 1
> (t—v)
t:;»l | ‘Sn s | | 'Sn,s[T |
x 3 P (=X Ly - 1))
(ool oslTh T
ESn 5[] X5+ s XSn s [T
T ~ ~
= 3 (t-v)Pe (T = X"[1,v 1)), (49)
t=v+1
where P* G[V] e17) denotes the probability measure when
I

change pomt is v, the trajectory is s, the observations from time
v to time 7' are generated according to P £ vl ey ]P’ [ ] . As

[v]»

T — oo, we have that
f. (X”[l, v 1]) > Esv [(r XL,y — 1]} . (50)
From (48) and (50), we have that

Wﬁs(ﬂ > esssupE®” [(T X1, — 1]}

— WADD,(7). (51)
Combining (46) and (51), it follows that
WADD, (7) = WADD,(7) > WADD,(7).  (52)
This holds for any trajectory s. It then follows that
WADD(7) > sti%) sup esssuplE > [(T — )X 1, v —1]
= WADD(7). (53)

Step 3: The last it step is to show that for any 7 and any (3,
WADD( ) > WADDB( ). Firstly, we will show that

sup esssupE > [(T — )X 1,y — 1]}
S

> esssup sup E” [(7’ — )X, v — 1]} . (54

Let ¢ = sup, esssupE®”[(7 — v)T|X"[1,v — 1]]. Denote by
A the collection of all trajectory s. For any s, we have that

P (ES’V [(T — )X L,y — 1]} > c) =0. (55

Since A4 is countable, it then follows that
P <supﬁs’” |:(T — ) X1, v — 1]} > c)
S

< B (Upen, {2 [(r

Therefore,

) XML,y — 1]} >

c}) =0

¢ = sup esssupE " [(T — )X 1,y — 1]}
S

> esssup sup E*” {(7‘ )X, — 1]} . (56)
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For any T' > v + 1, we have that

T
sup Z (t— V)ﬁs["]""’sm (7’ = t|)~("[1, v— 1])

s

t=v+1
T
> Z (til/) Z Bs[u]x"'xﬂs[T]
e (5[], s[T} AT 7Y
x PoldslTl (7 — X1, 0 - 1))
T ~ ~
= > - )PP (r=tX Ly - 1]) 57)
t=v+1
where PsV5[T] denotes the probability measure when the

trajectory is s, the observations from time v to time 7' are
generated according to IP’S[”] IP’S[T] As T — oo, we have

stslpﬁs’” {(7‘ — )X 1,y — 1]}

> A [(T b 1}} . (58)
From (56) and (58), we have that
\m(ﬂ > esssupEP [(7’ — )X 1,y — 1]}
= WADDg(T). (59)
Combining (53) and (59), we have that for any 7 and 3
WADD(7) > WADD(r) > WADD(7). (60)

For any T' > 1, we have that

inf Z tIP"’C,__qG% (r=1t)

{‘7?7 O'T}ESn 0
a 1
SZ:t|5 B Z Pﬁ? U%(T:t)
t=1 n,0 {9,..., UOT}ESTL‘ODT

(61)

T
E (t =1t).
As T — oo, we have that ARL(7) < X\Rf(ﬂ
Therefore, for any stopping time 7 satisfying ARL(7) > ~, it
will also satisfy ARL(7) > . We then have that C,, C C,.

Since (60) holds for any (3, it holds for 3*. Problem (38) is a
classical QCD problem. We have that for large ~ [37],

inf WADD(7) > inf mﬁ* () ~

TECy

lo
87 (1 + o(1)).
rec, Ig

APPENDIX E
PROOF OF LEMMA 1

The minimization of I3 is to solve the following problem:

inf I
3 B
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K
st. =B, <0, forke[1,K], > Bp—1=0.
k=1

(62)

This is a convex optimization problem with linear constraints.
Define the Lagrange function L(3,7, w):

K K
L(B,n,p) = I +1 (Z Br — 1) =D B (63)
k=1 k=1

The minimizer 3* satisfies the Karush-Kuhn-Tucker(KKT)
conditions: yu, 85 >0, pkfB; =0, Zszl B —1=0and

_ BB (xn
a—L g = E* log L: (X™)
Py (

+1+n—p =0, (64

efer Xn)

where EF denotes the expectation under the distribution P*.
When §; > 0, we have u, = 0. Therefore, for any k, k&' € K
with 35, B > 0, we have

PA(x™|
log ?O(X”) 1 =—(1+n).

The set K can be divided into two disjoint parts Ky and KCo:
By > 0if k € Ky and B, = 0if £ € Ko. We have that

]P PR (X™)
kg;;l g PO(Xn)
S
=E* ll gw , forall k € K;. (65)
Po(X™)

For all k € Ko, 8 = 0. By the KKT conditions, we have that
1 > 0. Therefore, forany k € Kg,ﬁk[log m] +1+n=

Po(X™)
1 > 0. We then have that for any k € Ko,

(66)

APPENDIX F
PROOF OF THEOREM 5

Due to the fact that maxi<p<; 1 3o, £g-(X[) has initial
value 0 and remains non-negative, the delay is the largest when
the change happens at v = 0. Therefore, for any s, we have

WADD, (Tj-) = sup E&°[Tj3+]. (67)
Qs °

For any T' > v + 1, we have that

s,0
§ tP= s[l el
N

t=1

T) (Tﬁ* = t)
US[T]}
T

Xyeey XSn, s[T]

=1 ‘ Sn,s[l] | XKoeee X | Sms[T] |
8,0 _
X E P= s[T] (Tﬁ* =1)
ooy
{Uf”huwaﬂTu
ESn, s[1] %50y XSn s [T)

T

Z Tg =t). (68)
As T — oo, we have that supg_ ]E;’S[Tg*] = E*0[T5] =
WXBI/DS(T[;*). For any s, we have WADD,(1g) =
WADDg(T3-). Therefore, WADD(Tg-) = WADD(1-) by

taking sup over s on both sides. It then follows that

WADD(Tj) = WADD(Tj) = sup E*°[T}5:].  (69)

Let0 < e < Ig~andny = Iﬂf_ﬁ
sum-integral inequality, we have that

Es ,0 |:T,3*:| — /OO @S,O (Tb*
ny 0 ny

. For any trajectory s, from the

<N PU(Tp > tmy) + 1. (70)
t=1
For any s, we have that
™s,0 . _ ws,0 .
PO > tm) =P | o, JE%Z%
_ mng
s,0 n
< P20 max Z lg(XT) < b,Ym € [t]
_ mng
< ps° > (X)) <bVm e[t
j:(mfl)nb—&-l
_ Ppso - Zl 155*(X}‘)
i=tmDnpt < Ig-—¢€,Ym € t]
Ny

t mny
Bs, S (X))
= JJ p*° ( = Ty T Iy ) LD

ny
It then follows that

o0
ap 3BT > )

S =1

I

mn b

( 1) +1éﬁ*(XJn)
= 2 < Ig* — €

np

Then we will bound P*:0 ( X 1)"::1 for (X7 <lIg —e¢ )
Let Is, = Es0 [ 2= ey 1 b (X5 } From (65) and
np

(66),

mnyg

Ismznib Z

J=(m-1)np+1

Esl] [Zﬁ*(X}L)] > Ig-. (72)

It then follows that for any s and m

mny,
~ L0 (XT)
P870 j= WL—X:TL s J
i=( )ny+1 < Iﬁ* — ¢

ny
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mmny,

< ﬁs,o ) > L« (XT)
= j=(m-1)ny+1 <1 .
e sm — €
’V?‘L’nb
N T e (X])
S ]PS’O j=(m-1)ny+1 s 7 I (73)
" — s, | > €

Assume  that maxge(1 k) Ek[ﬂﬁ*(X”)z] <oo. Let o%=
maxye(1, k] Varg, (£g+(X"™)) where Varg, denotes the variance
under the distribution P*. By Chebychev’s inequality,

T tgex)
PS’O j=(m-1)ny+1 ° I
- —1Is, | > €
mn 1
> L (XT)
< Varﬁ,s J=(mTyny+1 ’ 2

ny
mng

1
- €2n? Z

j=(m-1)ny+1

Varg. ;) (£p (X))

mnyg

0'2 9
j=(m—-1)np+1 o
= . 74
nie? npe? (74)
Letd = "22 . From (70) and (74), we have that
nye

<1+ sup Z ﬁ&O(Tg* > tny)
S t=1

~ T *
sup E*° [ﬁ}
E] np

00 0_2 t 00 1
<1 = b= _— .
< +Z<nb62> 1+ 46 — (79
t=1 t=1
Therefore, we have
supEs’0 [T < # (76)
s (g —€)(1—0)
(76) holds for all e. It then follows that as b — oo,
~ b
WADD(Tp+) = sup E* [T] < 7 (1+0o(1). (77
s B*

For the ARL lower bound, for any 7" > 1, we have that

inf
{U?)~-7U’(1)"}€Sn,0

—1 |Sn,0 I (

T
o tha?,...,gg (Tp =1)
t=1

>

0 0 T
075,00 }ESn 0

P°s 0 (Tg* = t)

Ol

P> (T = 1).

[M]=

(78)

&~
Il
-

AsT —+ 00, we have that WARL (T3 ) = ARL(T3. ). T- is the
CuSum algorithm for a simple QCD problem with pre-change
distribution Py and post-change distribution P#". From the
optimal property of CuSum algorithm in [39] and [45], we have
that when b = log v, WARL(T}g.) = ARL(T}s.) > 7.
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