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A B S T R A C T

Integrating solar energy with existing grid systems is difficult due to its variability, which is impacted by factors
such as the predicted horizon, meteorological conditions, and geographic position. Accurate global horizontal
irradiance (GHI) estimates can help to address this issue and allow for early and effective participation in
the energy planning and management market. The existing models either use time series data or sky images
in various network topologies to perform solar radiance forecasts. This study compares three categories of
solar irradiance forecasting models such as time series-based, image-based and hybrid models. Here several
state-of-the-art methods are compared against the proposed models, namely Convolutional Long Short-Term
Memory Fusion Network (CNN-L) and Multiple Image Convolutional Long Short-Term Memory Fusion Network
(MICNN-L). Both models use both infrared sky images as well as past values of GHI for prediction. These
methods extract spatial features using convolutional neural networks and temporal features using long short-
term memory networks. The extracted features are finally concatenated and passed through a fully connected
layer to obtain a prediction. Further analysis also included using a feature extraction method such as optical
flow (OF) on the image data before passing it to the hybrid model MICNN-L (OF). The results observed in
this comparative analysis denote that MICNN-L improves the efficacy of the forecasts in cloudy conditions
compared to the rest of the state-of-the-art approaches.
1. Introduction

Global energy demand has increased tremendously in recent years
due to the depletion of non-renewable energy sources such as fossil
fuels and nuclear power. Consequently, various alternative sources got
integrated into power grids for large-scale energy production. Amongst
the available sources, the most reliable one is solar energy since it is
one of the inexhaustible renewable energy sources [1]. However, the
feasibility of these systems depends highly on climatic conditions such
as the cloudiness of the sky, humidity, and temperature, which change
rapidly over a short duration. Hence, due to the intermittent nature
of solar power, precise solar radiation prediction is required for the
systematic functioning of the power grids.

Solar irradiance data is typically predicted for varying forecasting
horizons depending on the specific application in question. Very short-
term solar irradiance forecasting involves predicting irradiance values
over a short duration, typically ranging from a few seconds to a few
minutes ahead. This helps manage the fluctuations in energy supply
due to the rapidly changing weather conditions and supports real-time
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decision-making. Additionally, accurate and timely solar irradiance
predictions on a very short-term basis can help solar energy systems
adjust their operations to maintain a stable energy output, ensuring a
consistent grid supply to the grid [2]. The methods that are effective
for very short-term solar irradiance forecasting may not necessarily be
as effective for long-term forecasting [3]. This is because the factors
that affect solar irradiance vary over different time scales. Very short-
term solar irradiance forecasting is influenced by rapidly changing
atmospheric conditions whereas long-term forecasting may require con-
sideration of more slow-changing factors, such as seasonal variations,
climate patterns, and long-term trends [4]. The present study endeavors
to establish a comprehensive taxonomy of the methods employed for
very short-term forecasting of solar irradiance.

A range of forecasting methods, including persistence model [5],
physical models, satellite models, statistical models, and machine
learning-based models, can be utilized for solar irradiance prediction.
The physical models [6] include the numerical weather prediction
(NWP) methods, mainly used for predicting longer time horizons such
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Abbreviations

Adam Adaptive Moment Optimization
CNN Convolutional Neural Networks
CNN-L Convolutional Long Short Term Memory

Fusion Network
DNI Direct Normal Irradiance
ESN Echo State Network
FS Forecasting Skill
GBC Ground-Based Cloud Images
GHI Global Horizontal Irradiance
GP Gaussian Processes
LSTM Long Short-Term Memory
MAPE Mean Absolute Percentage Error
MICNN-L Multiple Image Convolutional Long Short

Term Memory Fusion Network
MICNN-L(OF) Multiple Image Convolutional Long Short

Term Memory Fusion Network Optical Flow
MLP Multilayer Perceptron
nMAE Normalized Mean Absolute Error
nMBE Normalized Mean Bias Error
NREL National Renewable Energy Laboratory
nRMSE Normalized Root Mean Square Error
r Correlation Coefficient
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SCNN-LSTM Siamese Convolutional Neural Network-

Long Short-Term Memory
SGD Stochastic Gradient Descent
SRRL Solar Radiation Research Laboratory
SVM Support Vector Machines
TSI Total Sky Images

Nomenclature

𝛼∗𝑛 Lagrange multiplier used for constraints
defined in negative errors

𝛼𝑛 Lagrange multiplier used for constraints
defined in positive errors

𝐛 Vector of biases used in an estimator
𝐜𝑘 Vector of functions used as inner state gate

in step 𝑘 of an LSTM or GRU network
𝐤 Vector of functions used as a forget gate in

step 𝑘 of an LSTM or GRU network
𝐢𝑘 Vector of functions used as input gate in

step 𝑘 of an LSTM or GRU network
𝐊 Kernel matrix which contain dot products

between vectors
𝐤(⋅) Vector of kernel dot products used in

kernel-based methods
𝐨𝑘 Vector of functions used as output in step 𝑘

of a RNN, LSTM or GRU network
𝐰 Column vector containing the parameters of

a linear estimator
𝐱𝑘 Column vector consisting of a sequence of

samples 𝑥𝑘
𝐳 Column vectors of estimated outputs
 Reproducing kernel Hilbert space function
𝜎(⋅) Activation function in a neural network
𝜎2𝑛 Variance of the Gaussian model
𝐜̃𝑘 Vector of functions used as output state gate

in step 𝑘 of an LSTM network
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𝜑(⋅) Nonlinear mapping function that maps data
into a Hilbert space

𝐶 Trade-off parameter used to balance the
structural and the empirical risks in an SVM

𝑒𝑘 Error estimate at time instant 𝑘
𝑓 (⋅) An estimation function used to approximate

a system
𝑘 Number of samples
𝑘(⋅, ⋅) Mercer’s kernel that measures the similarity

between 2 inputs
𝐿 Number of nodes
𝑇 Duration of the time series
𝑥𝑡 A time series sample

as day-ahead forecasting. Satellite-based models utilize weather satel-
lite data at 10 to 15-min intervals to forecast solar irradiance over time
scales ranging from 1 to 6 h, covering large geographic areas. [7].
These models may not be well-suited for very short-term forecasting
of solar irradiance because of their limited temporal resolution. In
contrast, persistence models [8] assume that solar irradiance will re-
main constant over a short period of time. Due to its assumption of
unchanging atmospheric conditions, this model may not perform effec-
tively in the presence of unprecedented or rapidly changing weather
conditions. Therefore, to improve the accuracy of solar irradiance
predictions, various statistical models such as autoregressive moving
integrated average (ARIMA) [9], exponential smoothing and regression
models were used to create a predictive model from the available
historical data. Traditional statistical methods have been challenged by
the nonlinearity and non-stationarity of solar radiation, leading to the
growing dominance of machine learning-based approaches [10]. Such
methods have been found to be more efficient in predicting the dynamic
relationships between solar radiation and its related factors. Hence,
the shift towards machine learning algorithms represents a promising
approach to modeling and predicting solar radiation in a more accurate
and comprehensive manner.

This research study presents a comprehensive and comparative
evaluation of various methodologies for predicting solar irradiance
based on input. The input can take the form of single or multidimen-
sional arrays, including time series, images, or a combination of both.
The time series methods employed in this study are developed using
linear models, kernel learning, feed-forward networks, and recurrent
networks. Conversely, models that use only images are analyzed using
single or multidimensional convolutional neural networks. The hybrid
models were also developed and analyzed by combining the methods
used in time series and image-only models. Therefore, the purpose of
this comparative study is to systematically address several research
gaps in the field of very short-term solar irradiance forecasting by
incorporating all significant methods for this problem. This aims to
provide valuable insights into the strengths and weaknesses of each
method, as well as their suitability for different types of input data,
ultimately contributing to the advancement of solar energy forecasting
and utilization. The main contributions of this paper are as follows:

• As far as our knowledge extends, no literature has comprehen-
sively studied the use of infrared-based hybrid models for very
short-term solar irradiance forecasting. In comparison to ground-
based cloud images (GBC) and total sky images (TSI), infrared
images [11] have the advantage of being able to detect temper-
ature differences. This helps to provide additional information
about cloud formation and movement. This information can be
particularly useful in predicting changes in solar irradiance due to
cloud cover [12]. Additionally, infrared images can provide more
reliable data in situations where visible light may be obstructed,

such as during nighttime or under heavy cloud cover.



Renewable and Sustainable Energy Reviews 182 (2023) 113362M. Ajith and M. Martínez-Ramón

T

• Two models namely Convolutional Long Short-Term Memory Fu-
sion Network (CNN-L) and Multiple Image Convolutional Long
Short-Term Memory Fusion Network (MICNN-L), were developed
previously by the authors for solar irradiance forecasting for a
few seconds ahead [13]. This work extended the work for 10
min ahead of prediction and introduced a new variation namely
MICNN-L(OF). This model uses optical flow-based feature extrac-
tion on the consecutive infra-red images before passing it into
the MICNN-L model to further aid the prediction process. The
MICNN-L models show better performance compared to the rest
of the models.

• A comparative analysis that highlights the advantages and short-
comings of very short-term solar irradiance forecasting models.
The study focuses on the trade-off between model complexity
and performance. Hybrid models, while more accurate, have a
greater number of trainable parameters and higher complexity.
In contrast, time series models use fewer parameters and are less
accurate. Based on the specific requirements of the problem at
hand, an appropriate model can be selected.

he rest of the paper is organized as follows. Section 2 presents related
works that include the different types of machine-learning models
used for very short-term solar irradiance forecasting. The materials
and methods employed for the comparative study are described in
Section 3. Section 4 provides a detailed analysis of the experimental
design and training criteria of all the methods. Section 5 demonstrates
a discussion highlighting the complexity and performance of the dif-
ferent models mentioned in the study. Finally, Section 6 provides the
conclusion and prospects of the present study.

2. Related works

The machine learning methods used for solar irradiance forecasting
can be broadly categorized into three groups based on the input data
used by the models: time series, image-based, and hybrid models. For
time series models, support vector machines (SVMs) [14], artificial
neural networks (ANNs) [15], and Gaussian processes (GPs) [16] have
demonstrated superior performance compared to linear regression. To
evaluate the efficacy of these supervised approaches, a clearness index
was computed based on the correlation between weather conditions
and incident solar radiation [17]. However, these models were insuf-
ficient in resolving the challenge of power fluctuations experienced
during days with cloudy weather. As a result, recurrent neural networks
(RNNs) [18] and echo state networks (ESN) [19] were utilized for
time series forecasting of solar irradiance. However, during the training
process of an RNN, a challenge known as exploding gradients [20–22]
emerged, whereby the norm of gradients increases and impedes con-
vergence during training. Hence this network can be difficult to train
and require more time steps from the past to yield accurate results for
prediction. On the other hand, ESNs cannot capture complex temporal
dependencies due to their fixed and random internal reservoir weights.
In contrast, LSTM networks have introduced gating mechanisms that
facilitate a more efficient flow of information within the network [23].
This has enabled them to efficiently model long-range dependencies
for better prediction [24]. A study showed that LSTMs achieved an
18.34% increase in accuracy compared to ANNs for very short-term
forecasting [25]. After LSTMs, Gated Recurrent Units (GRUs) were
introduced as a computationally efficient variant of RNNs. Although
both models demonstrate comparable performance, GRUs have fewer
parameters, resulting in faster training time. In research comparing
the forecasting performance of LSTM and GRU for very short-term
predictions, LSTMs showed a slightly lower prediction error for a 10-
min ahead forecast [26]. However, for longer time horizons of 15 and
20 min, GRU outperformed LSTM.

Image-based models for solar irradiance forecasting usually include
convolutional neural networks (CNNs) [27]. The 1D-CNN models are
3

also used as time series prediction models as they can train the net-
work much faster than recurrent networks that process data sequen-
tially [28]. With the advent of various technologies related to digital
image processing [29] in recent years, different instruments for cloud-
measuring, such as the total sky imager, have been developed suc-
cessfully. They can monitor and gather cloud images simultaneously
from photovoltaic power stations [30], allowing the researchers to
correlate these images with solar irradiance. Thus, the CNNs were
used along with sky images as input for predicting the PV output.
Later, the SolarNet model was developed to automatically extract the
characteristics from the total sky image [31]. However, this network
solely relied on a single total sky image and thus failed to account for
cloud motion information, which significantly impacted the accuracy
of the forecasts.

In recent years, hybrid models have become the most popular and
widely developed models for solar irradiance forecasting. In one study,
a hybrid model for solar irradiance forecasting utilized a 3D-CNN
architecture that integrated both images and historical values [32]. The
fused features generated from this model were then fed into a multi-
layer perceptron (MLP) to produce the final predictions. However, since
the MLP cannot capture the long-term dependencies between the input
features, it results in poor performance during the forecast. Considering
the limitations of the 3D-CNN model, a new hybrid approach, namely
the Siamese Convolutional Neural Network-Long Short-Term Memory
(SCNN-LSTM) network, was developed for solar irradiance forecast-
ing [33]. A Siamese CNN was able to extract both spatial and temporal
information from consecutive total sky images. They were concatenated
with meteorological information to fuse image characteristics and the
resulting features were fed into an LSTM model to estimate solar
irradiance. The total sky images could capture the full sky dome and
the distribution of clouds in all directions, including cloud height and
thickness. However, this equipment was expensive, and the cloud map-
ping process requires significant computational resources. Recently,
another approach for solar irradiance forecasting was proposed based
on ensemble learning [34]. This method considers both GBC images and
meteorological variables as fused inputs to the model. The multimodal
ensemble model had poorer performance compared to the 3D-CNN due
to its increased complexity and lack of generalization.

3. Materials and methods

The focus of this study was to compare and evaluate the effective-
ness of different machine learning models for very short-term solar
irradiance forecasting. This section includes a comprehensive summary
of the dataset used by each model, the preprocessing techniques applied
to the data, and the basic structure and theoretical background of
each method. The machine learning and deep learning methods used
in this analysis are represented in Fig. 1. The models used in this
study consist of SVM, GP, MLP, LSTM, RNN, GRU, and 1D-CNN, all
of which were trained exclusively on past solar irradiance data. On the
other hand, the 2D-CNN and SolarNet models were trained using image
data, setting them apart from the other models in terms of data type.
Additionally, the study explored the performance of several hybrid
models, namely 3D-CNN, SCNN-LSTM, CNN-L, MICNN-L, and MICNN-
L(OF), to evaluate their capability of combining time series and image
data for forecasting. Table 1 shows a detailed description of the type
of input data and preprocessing steps used by each of the methods.

3.1. Area of study and data collection

This study includes various methods that use past values of solar
irradiance, GBC images, TSIs, and IR images as their input. The past
values of solar irradiance and IR images were gathered by employing
a data acquisition system (DAQ) consisting of a camera and a pyra-
nometer. This model is positioned on the roofing of the building in
the Mechanical Engineering department. It is further located at the
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Fig. 1. Different categories of models for solar irradiance forecasting.
p

niversity of New Mexico, situated in the middle of Albuquerque, New
exico, USA. This city experiences a mild semi-arid climate with chilly
inters, hot summers, and occasional showers that are more likely to
all during the summer. The city is situated on a plateau around 35
egrees north latitude. The eastern districts, which are at the foot of
he Sandia Mountains, rise to 1900 m, while the center is at 1500/1600
(4900/5200 ft) (6200 ft). The sky is either clear or slightly overcast
ver 80 percent during mid-May and mid-June. On average, 170 days a
ear are bright with fewer than 30% of clouds present, and 110 days are
lightly sunny with 40%–80% of clouds. The temperature ranges from
low of −4 ◦C in the winter to a high of roughly 33 ◦C in summer.
dditionally, about 11 inches of rain and snow accumulate annually.
The infrared images and time-series information for solar irradiance

orecasting are obtained simultaneously when one of the systems col-
ects the circumsolar IR images. On the other hand, the pyranometer
s utilized to estimate the GHI values. Additionally, the DAQ contains
solar tracker that continuously pans and tilts, maintaining the sun’s
enter line throughout the day. A FLIR Lepton® radiometric camera
ith an 8–14 mm wavelength serves as the IR sensor that results in
constant thermal image [35]. A frame’s pixels are measurements of
mission temperature in centi-kelvin, denoted as temperature. A set
f 10 consecutive images is captured every 15 s, averaged to lessen
oise, and saved in the png configuration. An analog antialiasing filter
ith a sampling frequency of 4–6 samples/s handles the pyranometer
utput. Hence, before training, the data undergoes noise removal and
ntialiasing filtering. Finally, the final data format is a single sample
very 15 s. This data is used as input in SVM, GP, MLP, RNN, GRU,
STM, CNN, CNN-L, MICNN-L, and MICNN-L (OF).
Models like SolarNet, 3D-CNN, and SCNN-LSTM that utilize TSIs

nd GBC images as input relies on the NREL solar radiation research
aboratory (SRRL) dataset [36] as their source of data. Since 1981,
he SRRL has been continuously collecting solar measurements at the
outh Table Mountain Campus of NREL in Golden, Colorado. The SRRL
tation is situated at an elevation of 1828.2 m, at latitude 39.74◦N and
ongitude 105.18◦W. This location is renowned for its abundant solar
esources. The SRRL measures various meteorological variables, such
s GHI, direct normal irradiance, direct horizontal irradiance, temper-
ture, relative humidity, wind speed, and atmospheric pressure, with a
-min sampling frequency. Additionally, the SRRL dataset includes two
ets of total TSIs, captured at a 10-min interval, using a Yankee Total
ky Imager (TSI-800) and an EKO All Sky Imager, respectively.
4

3.2. Time series models

The time-series data defined as 𝑥𝑡 consists of 𝑘 samples and the
redictions are made for the time horizon 𝑇 . The correlation between
the past and future sample 𝑥𝑘+𝑇 can be used to define a parametric
function as follows:

𝑥𝑘+𝑇 = 𝑓 (𝐱𝑘) + 𝑒𝑘 (1)

where 𝐱𝑘 is a column vector consisting of a frame of 𝐿 previous values
of given time-series and 𝑒𝑘 is the error during prediction. Here the time
series data refers to the GHI data recorded from the pyranometer. The
linear and non-linear time series models use only this information to
predict the values at the future time horizon. The most commonly used
time series models for solar irradiance forecasting are discussed below:

3.2.1. Support Vector Machines (SVM)
The SVM approach [40–44] is a learning machine optimized by

the so-called maximum margin criterion [45] that is expressed in a
kernel reproducing Hilbert space [46] thus having nonlinear properties.
Namely, such a machine can be formulated as

𝑓 (𝐱) = 𝐰⊤𝜑(𝐱) + 𝑏 (2)

where function 𝜑(⋅) transforms the input data 𝐱 into a Hilbert space 
provided with a dot product that can be represented as a function of
the input patterns as ⟨𝐱, 𝐱′⟩ = 𝑘(𝐱, 𝐱′), 𝐰 ∈  is a vector of parameters
to be optimized and 𝑏 is a bias term. For such a function, usually called
a Mercer’s kernel, to be a dot product, it only needs to be a positive
definite function, according to Mercer’s theorem [47]. Given a set of 𝑁
training samples 𝐱1,… , 𝐱𝑁 and by virtue of the Generalized Representer
Theorem [48], these machines can be expressed, under nonrestrictive
conditions, as 𝑓 (𝐱) =

∑𝑁
𝑖=1 𝛼𝑖𝑘(𝐱𝑖, 𝐱) + 𝑏, where 𝐰 is substituted by its

dual equivalent 𝐰 =
∑𝑁

𝑖=1 𝛼𝑖𝜑(𝐱𝑖)
The particular algorithm of SVM for regression was introduced

in [49]. In these machines, a cost function is established that weights to
zero these estimation errors whose absolute value is less than a given
quantity 𝜀, and assigns a cost equal to 𝐶(‖𝑒‖−𝜀) if ‖𝑒‖ ≥ 𝜀. The resulting
machine is formulated as

𝑓 (𝐱) =
𝑁
∑

𝑖=1
(𝛼𝑖 − 𝛼∗𝑖 )𝑘(𝐱𝑖, 𝐱) + 𝑏 (3)

A constrained optimization gives the solution for the coefficients 𝛼𝑖−𝛼∗𝑖 ,
which is the derivative of the cost function with respect to the error.
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Table 1
Detailed analysis of the input data and preprocessing of all the discussed methods.
Input data modality Input data Data preprocessing Method

Time series Past values of pyranometric
values of solar irradiance

Antialiasing filtering
and subsampling

SVM (Linear/Nonlinear) [14]
GP (Linear/Nonlinear) [16]
MLP [15,37]
GRU [26]
RNN [18]
LSTM [23–25,37,38]
1D-CNN [28]

Image
Single infrared image Image averaging and normalization 2D-CNN [28]

Single total sky image Image averaging, normalization and binary
masking

SolarNet [31]

Image, time series

A sequence of ground-based images and
past values of solar irradiance

Time series: None
Image: Binary masking

3D-CNN [39]

A sequence of total sky images, past values
of solar irradiance and meteorological
observations

Time series: Converting to clear sky index
Image: Subsampling and binary masking

SCNN-LSTM [33]

Single infra-red image and past values of
solar irradiance

Time series: Antialiasing filtering
and subsampling

Image: Averaging and
normalization

CNN-L [37]

A sequence of infra-red images and past
values of solar irradiance

MICNN-L [13]

A sequence of infra-red images that
underwent optical flow and past values of
solar irradiance

MICNN-L (OF) [13]
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This is, they are zero for those samples that produce an estimation error
less than 𝜀. If the error is positive and higher than 𝜀, then 𝛼𝑖 = 𝐶 and
∗
𝑖 = 0. In case of negative errors, 𝛼𝑖 = 0, and 𝛼∗𝑖 = 𝐶. This machine
s then sparse and its result is, when free parameters 𝐶 and 𝜀 are
dequate, robust against outliers. The drawback of this methodology is
hat it requires the cross-validation of these parametric values, usually
ith a validation data set that must be set aside for this purpose. The
hosen Mercer’s kernel function is also parametric and its parameters
eed also to be validated. This approach is particularly well suited
hen the number of training samples is limited, due to the strong
egularization mechanism of the SVM. On the other side, this machine
ay pose computational difficulties when the number of samples is
igh since the computational burden of the optimization algorithm
s (𝑁3). Multitask SVM approaches [50] exist that can be used in
ulti-horizon solar forecast [51].

.2.2. Gaussian Processes (GP)
The GP approach, as the SVM, can be classified among the Kernel
ethods, this is, the structure of the estimation function is formally the
ame, but the optimization criterion is based on maximum likelihood.
he GP model [52] can be represented as an estimator using the below
orm.

= 𝐰⊤𝜑(𝐱) + 𝑒 (4)

here 𝑦 is the regressor to be predicted and 𝑒 is the prediction er-
or, which is modeled as a sequence of independent and identically
istributed zero-mean Gaussian with variance 𝜎2𝑛 . In this equation, the
ias 𝑏 is included inside the set of parameters 𝐰 for convenience. The
aussian model for the noise leads, together with the independence
ssumption, to a straightforward Gaussian model for the likelihood of
he sequence of training regressors 𝑦𝑖 as a function of the parameters
nd the training observations 𝐱𝑖. Then, a prior distribution 𝑝(𝐰) for
he primal parameters 𝐰 is stated as a multivariate Standard. This,
ombined with the likelihood 𝑝(𝐲|𝐗,𝐰) (where 𝐲 and 𝐗 are the column
vector and matrix of training regressors and inputs respectively) and
by utilizing the Bayes rule, a posterior distribution is formulated from
the primal parameters, which is also a Gaussian distribution. With this
result, a Gaussian posterior distribution is found for a test sample 𝐱∗,
ith mean and variance
̄(𝐱∗) = 𝐲⊤

(

𝐊 + 𝜎2𝑛𝐈
)−1 𝐤(𝐱∗)

2 ∗ ∗ ⊤ ∗ ( 2 )−1 ∗
(5)
5

𝜎∗ = 𝑘(𝐱 , 𝐱 ) − 𝐤 (𝐱 ) 𝐊 + 𝜎𝑛𝐈 𝐤(𝐱 )
here 𝐊 denotes the kernel matrix containing the dot products between
raining predictors 𝑘(𝐱𝑖𝐱𝑗 ). The column vector 𝐤(𝐱∗) contains the dot
roducts 𝐾(𝐱∗, 𝐱𝑗 ) between the training and the test sample, and the
dentity matrix is represented as 𝐈.
The advantage of this approach over the SVM is that here the

ptimization of all the parameters is done by maximizing the marginal
og-likelihood of the regressors during training. This is commonly done
uring gradient descent, therefore avoiding the necessity of cross-
alidating them with a separate validation data set. The use of a
ayesian approach provides the method with automatic regularization
apabilities, and therefore this method is robust in problems cases
here the number of data is limited. The fact that the GP models the
rediction with a posterior probability adds the possibility of comput-
ng the estimated interval of confidence of the prediction, which allows
he user to estimate the validity or the quality of the prediction. As
n the SVM, the method may pose computational problems due to the
act that the computation of the solution has a computational burden
f (𝑁3). The main trade-off of this methodology is that a probabilistic
odel is needed for the noise and the result may be far away from being
ptimal if this model is not accurate. Particularly interesting in the solar
orecast are the multitask Gaussian Process approaches [53–56], that
an be used in multi-horizon forecast applications.

.2.3. Multi layer perceptron
In a multilayer perceptron, the structure consists of several layers

f nodes interconnected through weights. The first layer is the input
attern 𝐱 ∈, which is first linearly mapped into a vector 𝐳 through
he affine transformation 𝐳 = 𝐖(1)𝐱 + 𝐛(1), where 𝐖 ∈ 𝐿(0)×𝐿(1) is
he corresponding transformation matrix, 𝐿(1) is the number of nodes
of the first layer and 𝐛 is a vector of biases. After this process, each
element of vector 𝐳(1) is transformed through a nonlinear, usually mono-
tonically increasing function 𝜎(⋅) called activation, which is typically
a rectified linear function 𝜎(𝑧) = max(0, 𝑧). The process is repeated
everal times. The last layer has a dimension and activation that de-
end on the corresponding estimation task. By modeling the posterior
robability distribution of the output as a function of the corresponding
ctivation. the weights 𝐖(𝑙),𝐛(𝑙𝑘) are usually trained to maximize the
training output likelihood through the well-known backpropagation

algorithm [57].
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Fig. 2. RNN cell [58].

3.2.4. Recurrent neural networks
RNNs were created to handle sequential data and they are predom-

inantly used for time series prediction, natural language processing,
and speech processing [58]. They are neural networks that operate
on the principle that each layer’s output is saved and fed back into
the network’s input to forecast that layer’s output. The traditional
feed-forward neural network was unable to memorize the previous
inputs since it allows information to flow only in the forward direction
whereas an RNN contains loops, allowing information to be stored
within the network. The RNN mainly consists of an input hidden layer
and an output layer as demonstrated in Fig. 2. The recurrence equations
of the RNN are as follows:

𝐡𝑘 = 𝝈
(

𝐖𝑥𝐱𝑘 +𝐖ℎ𝐡𝑘−1 + 𝐛
)

(6)

𝐨𝑘 = softmax
(

𝐖𝑜𝐡𝑘 + 𝐛𝑜
)

(7)

where 𝐡𝑘 and 𝐨𝑘 represent the vector that stores the hidden values
and the output of the network at time instant 𝑘 respectively. 𝐖𝑥,
𝐖ℎ, and 𝐖𝑜 gives the weights associated with the input, hidden, and
output layer. Additionally, the biases of the recurrent and feed-forward
layer are given by 𝐛𝑟 and 𝐛𝑜. The two main disadvantages of RNN are
gradient vanishing and exploding problems. When the gradient shrinks
too much, the parameter changes become irrelevant, and training an
RNN becomes very difficult as it does not learn the long data sequence.
In the case of exploding gradients, the slope does not decay; on the
contrary, it tends to grow exponentially. Large error gradients that
build up during training lead to very large modifications to the weights
of the neural network, which further results in longer training time and
poor performance.

3.2.5. Long Short Term Memory networks
LSTM is a category of neural networks which can learn the long-

term and short-term dependencies present in a sequence of data. They
were developed by Hochreiter & Schmidhuber (1997) to alleviate the
memory issue present in the older networks [59] due to the vanishing
and exploding gradients. The LSTMs have a chain-like structure consist-
ing of repeating units defined as cells. The LSTM has three gates namely
forget gate, input gate, and output gate which facilitate the removal or
addition of information to the cell state 𝑐𝑘 as shown in Fig. 3. As the
primary step the forget gate uses the output of the past hidden layer
ℎ𝑘−1 and current input 𝑥𝑘 and generates a number between 0 and 1.
This gate uses a sigmoid function to decide the quantity of information
that requires to be stored in the cell state. Consequently, in the next
step, the input gate performs two functions. First, it uses a tanh function
on ℎ , and 𝑥 gives importance to the information that is passed
6

𝑘−1 𝑘 𝐱
Fig. 3. LSTM cell [59].

through depending on the output values ranging between 1 and −1.
Secondly, a sigmoid function is used to decide upon the values that
need to be updated. By combining the output of these steps the input
gate decides whether to update the cell state 𝑐𝑘 or not. The cell state
does not suffer from the vanishing gradient phenomenon because it is
passed through time without being processed by any weight matrix.
The output gate on the other hand is finally used to decide which
information needs to be passed forward to the next hidden state. This
gate also uses a sigmoid and tanh function to determine the output. The
mathematical formulation of the LSTM is given as follows:

𝐟𝑘 = 𝝈(𝐖𝑓ℎ𝐡𝑘−1 +𝐖𝑓𝑥𝐱𝑘 + 𝐛𝑓 ) (8)

𝐢𝑘 = 𝝈(𝐖𝑖ℎ𝐡𝑘−1 +𝐖𝑖𝑥𝐱𝑘 + 𝐛𝑖) (9)

̃𝑘 = tanh(𝐖𝑐ℎ𝐡𝑘−1 +𝐖𝑐𝑥𝐱𝑘 + 𝐛𝑐 ) (10)

𝑘 = 𝐜𝑘−1 ⊗ 𝐟𝑘 + 𝐢𝑘 ⊗ 𝐜̃𝑘 (11)

𝑘 = 𝝈(𝐖𝑜ℎ𝐡𝑘−1 +𝐖𝑜𝑥𝐱𝑘 + 𝐛𝑜) (12)

𝑘 = 𝐨𝑘 ⊗ tanh(𝐜𝑘) (13)

ere 𝐟𝑘, 𝐢𝑘, 𝐨𝑘 indicates the forget gate, input gate, and output gate.
he weights of the various gates are given by 𝐖𝑓ℎ, 𝐖𝑓𝑥, 𝐖𝑖ℎ, 𝐖𝑖𝑥,
𝑐ℎ, 𝐖𝑐𝑥, 𝐖𝑜ℎ, 𝐖𝑜𝑥 whereas 𝐛𝑓 , 𝐛𝑖, 𝐛𝑐 and 𝐛𝑜 denote the biases.

.2.6. Gated Recurrent Units
GRUs were introduced in 2014 to solve the problem of vanishing

radients that affects regular recurrent neural networks [60] but with
complexity that is lower than the one of the LSTM. The update gate
nd reset gate are two gates that GRUs utilize to address this issue.
n general, these two vectors determine what data should be sent to
he output. Information flow into memory is governed by the update
ate 𝐢𝑛. At first, the input vector 𝐱𝑘 is multiplied by the parameter
eight matrices. The 𝑘 − 1 in 𝐡𝑘−1 denotes that it is multiplied by its
eight and contains the information from the preceding unit. Then,
fter adding them, the results from these parameters are sent to the
igmoid activation function which outputs values between 0 and 1. If
he gate vector’s value is 1, the corresponding data is significant and
ill be used.

𝑘 = 𝝈(𝐖𝑖ℎ𝐡𝑘−1 +𝐖𝑖𝑥𝐱𝑘 + 𝐛𝑖) (14)

he reset gate 𝐟𝑘, on the other hand, aids in combining the current input

𝑘 with the prior memory. After the previous hidden state has been
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Fig. 4. GRU cell [60].

ultiplied by a trainable weight, the reset vector is multiplied element-
ise with it. During this process, it will be decided which information
rom earlier time steps should be retained with the new inputs. Simul-
aneously, the current input will be multiplied by a trainable weight
efore being added with the product of the reset vector and the prior
idden state. To achieve the vector 𝐜̃𝑘, the resultant vector will be
assed through a non-linear activation tanh function.

𝑘 = 𝝈(𝐖𝑓ℎ𝐡𝑘−1 +𝐖𝑓𝑥𝐱𝑘 + 𝐛𝑓 ) (15)

̃𝑘 = tanh(𝐖𝑐𝑥𝐱𝑘 +𝐖𝑐ℎ(𝐟𝑘 ⊙ 𝐡𝑘−1) + 𝐛𝑐) (16)

𝑘 = (1 − 𝐢𝑘)⊙ 𝐡𝑘−1 + 𝐢𝑘 ⊙ 𝐜̃𝑘 (17)

s a result, both of these gates are used to calculate 𝐡𝑘, to retain
nformation from the past without having it fade away over time, or to
iscard information that is irrelevant to the forecast. The block diagram
f a GRU is depicted in Fig. 4.

.2.7. Convolutional neural networks for time series
CNNs, which were originally designed to model two-dimensional

mage data, may now be used to handle time series forecasting prob-
ems. A CNN can be used for prediction by applying 1D convolution to
he time series that further learns the patterns from the sequence. The
NN model will train a function that maps an input consisting of a set
f previous observations to an output observation. A 1D CNN model
onsists of a convolutional layer that works on the time series data. In
ertain instances, such as with very long input sequences, this is fol-
owed by a second convolutional layer. Additionally, a pooling layer is
sed, whose purpose is to reduce the output of the convolutional layer
o the most significant feature maps. Later, following the convolutional
nd pooling layers is a fully connected layer that evaluates the features
btained by the model’s convolutional layers.

.3. Image based models

The image data, represented as 𝑓 (𝑥, 𝑦), is constructed with one
ast value as the input sample, and the predictions are made for the
uture time horizon 𝑇 . The image data in this case refers to the IR
mages obtained from the FLIR camera and the TSIs collected from
he SRRL dataset. The CNN and SolarNet models exclusively use this
nformation to predict future values. CNNs are powerful neural network
rchitectures that are particularly effective for image-based tasks due
7

o their ability to extract hierarchical features from images. SolarNet is
CNN-based model that takes sky images as input and is specifically
esigned for very short-term solar irradiance forecasting. More details
elated to these image-based models are discussed below:

.3.1. Convolutional neural networks for images
CNNs have been widely employed in various computer vision tasks

61] and in contrast to the MLP, they can extract spatial features
ike edges, texture, shape, and color patterns from the input image.
hese attributes are further trained and tuned to produce exceptional
esults in various image-processing tasks. The primary aspects that
ake this network robust to image translation variations are its feature
earning capabilities, weight sharing, and receptive fields of the kernels.
onvolutional layers are the fundamental foundation blocks of the CNN
tructure. These layers analyze the given image and generate the fea-
ure maps by convolving with the filters. The results from this operation
re given as input to the pooling layers which aids in reducing the
imensionality of these feature maps. In general, the average or max
ooling operations are used for downsampling the feature maps. All
he pixels contained in the feature map are averaged during average
ooling, but in max-pooling, the maximum value is calculated using
he pixels in that region. Following this, the fully connected layers
ollect the feature maps taken from the preceding convolutional and
ooling layers and make the final prediction. Further, the flattened
eature maps are passed through this layer and it generates the final
redicted output.

.3.2. SolarNet
SolarNet model represented in Fig. 5 is a deep learning-based net-

ork that was developed in 2019 for very short-term solar forecast-
ng [31]. Ground numerical measurements, satellite-based data, and
ky image characteristics are the most commonly used inputs for this
roblem. This network used TSIs which contain images of the sky and
louds from the SRRL dataset. The TSI-800 images were chosen over
ther TSIs since they span a wider horizon. The original TSIs contain
52 × 288 pixels, but only specific regions of interest were selected to
xclude areas with cloudy skies and obstacles. A 256 × 256 binary mask
as used to crop the TSIs in a circular manner, centered at their center
ixels. The TSIs were then normalized by their maximum values before
eing inputted into the model. The model was trained to learn latent
ky image properties and estimate solar radiation automatically. In this
ase, only one image was utilized as input, with no endogenous param-
ters, to test the efficiency of automatic feature learning. The SolarNet
odel has 20 layers that consist of 13 layers for convolution, 5 layers
hat perform max-pooling layers, and 2 dense layers. The SolarNet ar-
hitecture is based on the widely known extremely deep convolutional
etwork VGG16 [62]. Here the VGG16 model is utilized as the sky
mage feature extractor since it is less complex than other popular
etworks and the performance of the SolarNet model is higher in real-
ime testing. The network is made up of five feature learning blocks
FLBs) and each block has either two or three convolutional layers and
single max-pooling layer. The network employs smaller kernels of
ize 3 × 3 for incorporating smaller receptive fields which give more
recision. In the SolarNet-based model, the final three fully connected
ayers of the VGG16 were substituted with two fully connected layers
nd the linear activation for obtaining the predictions.

.4. Hybrid models

Hybrid models for solar irradiance forecasting are models that
ombine multiple data sources and modeling techniques to improve
he accuracy of predictions. These models are powerful and capitalize
n the strengths of different sources of information to produce more
ccurate results. These models can combine past values of solar irra-
iance, meteorological variables, IR images, GBC images, or TSIs in
arious ways. Machine learning or deep learning models can also be
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Fig. 5. SolarNet architecture [31].
combined either sequentially or in parallel to create hybrid models. By
doing so, hybrid models can leverage the strengths of each individual
model while minimizing their weaknesses, resulting in more accurate
and reliable solar irradiance forecasts for a variety of applications. For
example, the CNN-L model combines CNN and LSTM models in parallel
to input past values of solar irradiance and IR images. In contrast,
the SCNN-LSTM model uses Siamese CNN and LSTM models to input
a sequence of TSIs and meteorological variables into the model. The
upcoming sections will cover several hybrid models that have gained
popularity in the literature, as well as additional models developed by
authors for very short-term solar irradiance forecasting.

3.4.1. 3D-CNN
The 3D-CNN was developed as a method for automatically extract-

ing features from GBC images for predicting solar irradiance. Since
cloud motion is a major impact element in this prediction, numerous
successive GBC images are used for obtaining the forecasts. It has been
shown in the literature that the CNN framework with a 3D kernel
(3D-CNN) can extract information from both spatial and temporal
dimensions [32]. This study utilized data exclusively from the SRRL
database, where the GBC images were captured by a TSI-880, and the
solar irradiance values were recorded using a pyrheliometer on a Sci-
Tec Tracer. The GBC images had a resolution of 352 × 288 pixels,
nd a shadow band was used to protect the CCD sensor from direct
un exposure. In case of shadow band malfunction, the pointer would
ecome inaccurate and the area surrounding the sun becomes over-
xposed. Image processing techniques were employed to identify and
xtract the regions of interest in the GBC images, thereby eliminating
he shadow band. To accomplish this, binary masks were generated
ith elements corresponding to the pixel locations in the image, with
lement values representing true or false. Only the regions identified as
rue, representing the region of interest were included in the input data
or the 3D-CNN model. The binary masks were constructed by using a
ircle with a radius of 125 pixels and centering it on the image’s center
ixel while excluding the shadow band from the region of interest.
ollowing the extraction of the region of interest, the image size was
educed to 251 × 251 pixels from the original pixel size.
After preprocessing, a 3D-CNN [39] was used for automated feature

extraction of multiple sequential GBC images (Fig. 6). Here the category
for classification is found by dividing the attenuation rate of direct
normal irradiance (DNI) into different classes to make the automatically
8

derived features relevant for DNI prediction. Hence this method differs
from the conventional cloud shape classification procedures [63]. The
3D-CNN model’s classification criterion is based on the clear-sky index
which is partitioned into 5 levels. Class 1–5 denotes cloudy, high
attenuation, moderate attenuation, mild attenuation, and clear condi-
tions, respectively [64]. During training, there was a lesser amount
of GBC image samples in Classes 2 to 4. Image augmentation was
implemented to address this sample imbalance. Specifically, contrast
transformation was utilized as a means of augmenting the training
dataset by enhancing the contrast of the newly generated images. The
images of clouds at intervals 𝑡 − 2, 𝑡 − 1, and 𝑡 were utilized as inputs,
and the classification result was the class of the clear sky index at 𝑡+ 𝑖.
For the prediction, the hybrid forecasting network used the features
from the fully connected layers along with the DNI values. The linear
autoregressive (AR) model and the nonlinear MLP model were used as
forecasting models. The parameters of the AR model were calculated
using the least squares approach. The MLP used in this network consists
of two hidden layers of size 30.

3.4.2. SCNN-LSTM
The SCNN-LSTM network was designed to give a 10-min ahead solar

irradiance forecast [33] (Fig. 7). A Siamese CNN can extract spatial
dimension characteristics from several consecutive images of the sky
while retaining temporal dimension data. Then, using a concatenate
layer, historical meteorological characteristics, and image features are
fused after normalization. Later these combined features are sent to the
LSTM network for forecasting the 10 min ahead solar irradiance. In
general, a Siamese network [65] is a type of neural network composed
of multiple similar subnetworks that share the same network architec-
ture and setup, including shared weights and network parameters. The
changes in the parameters are duplicated over various subnetworks
throughout the training phase. The suggested Siamese convolution
neural network combined the benefits of CNN and the Siamese network
to select discriminative features with various levels of abstraction from
sky images at various periods. The most significant distinction between
this work and a standard Siamese network is that the SCNN-LSTM
model does not compare the similarity of these images, hence it was
not necessary to calculate the Euclidean distance between sample pairs.
To train the SCNN-LSTM parameters, the prediction error (PE) was
employed to assess the difference between the forecasted and actual
values. This work used the DNI [66] to assess the performance of the
suggested model. The data from the previous two years were collected

from the NREL [67], and many tests were conducted to validate the
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Fig. 6. 3D-CNN architecture [39].
efficacy of the approach. In the SRRL database, the meteorological
variables were measured at a 1-min frequency. On the other hand, the
TSI-880 captured TSIs every 10 min with a resolution of 352 × 288
pixels. Hence, this study utilized 10-min averages of the meteorological
data as samples to maintain consistency. A fundamental clear sky model
was utilized to transform DNI into a DNI clear sky index that took
into consideration the effects of atmospheric, seasonal, and geographic
characteristics to remove the forecast inaccuracy due to variations in
the solar position [68]. The primary objective of sky image processing
was to extract the region of interest from the image and remove
unnecessary pixels. A binary masking technique like the one employed
in 3D-CNN was used for this purpose. Additionally, a minor gradient
algorithm [69] was utilized to rectify shadow-band pixels. The final
input to the SCNN-LSTM consists of the region of interest of size
256 × 256 pixels.

3.4.3. Convolutional Long Short Term Memory Fusion Network
The proposed CNN-L model for solar radiation forecasting is a

multimodal approach that integrates the spatial information from CNN,
and temporal data from LSTM using deep learning [13]. The model
is depicted in Fig. 8. Multimodal learning combines information from
multiple sources to build an effective solution. In this approach, a
parallel configuration is created to collect image features with CNN
while the LSTM network extracts solar irradiance data over the period.
The generated attributes are then integrated to form a generalized
prediction model. The general architecture of this model is made up
of three modules: (i) feature extraction block for images, (ii) feature
extraction block for time-series, and (iii) multimodal feature fusion and
prediction block, as shown in Fig. 8. This fusion network uses a 16-
layered model that takes a single image as input and combines the 2-D
image data and temporal data to estimate the predicted solar radiation.
The feature extraction block for the images consists of a standard CNN
with four convolutional layers, four max-pooling layers, one dropout
layer, and two dense layers. The input consists of 60 × 80 infrared
images of the cloud. The primary convolutional layer is composed of
16 3 × 3 filters that are succeeded by the exponential linear unit
(ELU) activation function. This initial convolutional layer has a low
abstraction level of features, but as it progresses through the layers,
the network acquires finer details or has higher levels of abstraction.
Hence, we double the number of filters compared to the previous
layers; thus, the convolutional layers have 32, 64, and 128 filters.
Further, we use a max-pooling layer to downsample and summarize
the features in an area in the image. However, this allows the network
to reduce the computational complexity and the number of parameters.
9

The following convolutional layers have a kernel size of 3 × 3, whereas
the pooling layers employ a kernel size of 2 × 2. Since the smaller
kernels have fewer weights, they are more computationally efficient.
The output from the final pooling layer is converted to a single long
continuous vector and passed to a layer with a dropout probability of
0.2 to avoid overfitting. Additionally, the obtained features are given to
the fully connected/dense layers. The model has one dense layer with
64 nodes and another with 16. They were used to generate the final
feature vector containing the highly discriminative features from the
infrared image. The temporal block for the feature is made up of LSTM
with just one layer that is given three previous time sequences of the
solar irradiance data. The results of the two feature extraction modules
are then linked to integrate the perceptual and temporal attributes. The
feature concatenation layer combines features from several columns
into a single column, and the resultant is given to two dense layers
with 64 and 1 node to obtain the final prediction.

3.4.4. Multiple image convolutional long short term memory fusion network
The MICNN-L model is an extension of the CNN-L with few sig-

nificant modifications, as illustrated in Fig. 9. This network takes a
series of images contrary to the CNN-L model, which uses one image.
Here the feature extraction module using the image has been improved
to handle images that are distributed in time. The network employs
similar parallel sub-networks to extract the time characteristics. Here
we have a collection of images taken every 10 min, and the movement
of clouds with time aids in determining whether or not they obstruct
the sun. Hence the multiple frames help the prediction analysis by
providing information about cloud movement and direction. Similar to
the single image-based CNN-L, this model processes every image using
four layers with convolutions. Later, instead of the flattened layer, the
global average pooling layer is used to compute the average of each
feature map from the preceding layer and to minimize dimensions. To
retain the time correlations in the series of images, the feature maps
from the global average pooling layer are transferred into the LSTM
layers at the end. However, the temporal feature-based block remains
unchanged and is equivalent to the one shown in Fig. 8. Subsequently,
the output from both modules is integrated and forwarded through the
dense layers. The MICNN-L structure was evaluated with a maximum
of 5 image sequences. Finally, it was observed that the model that
uses various consecutive images outperforms the network with a single
image input.

On the other hand, MICNN-L (OF) is a replica of MICNN-L, except
it uses the optical flow features as input instead of the raw images.
We extract the velocity field from a sequence of consecutive images
and assign a velocity to each pixel. This algorithm estimates the speed

of particles in the image. It also helps to determine the direction of
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otion of clouds to the sun. The motion vectors are calculated using
he Horn-Schunck Optical Flow method [70]. This approach employs
he motion vectors of areas changing across time to identify moving
reas in an image. The calculated motion vector is a 2-dimensional
ector representing the velocities and orientations of the same pixel in
wo successive frames. The two approximations of the algorithm are as
ollows: It preserves the intensity of a moving pixel across two frames,
nd all pixels in the current frame will be present in the succeeding
rame. The MICNN-L network uses the extracted motion features for
erforming the predictions. This network analyzes the difference in
erformance while using a feature extraction in front of deep learning
rchitecture. Though MICNN-L (OF) performs better than the rest of the
pproaches, it cannot outperform MICNN-L.

. Experimental design

The proposed networks were trained and tested on cloudy days
o forecast solar radiation. Previous pyranometer data is insufficient
o reliably estimate solar radiation during unexpected cloud coverage
r on fully overcast days. In such situations, visual information from
10

he clouds, combined with pyranometer measurements, can be used t
o reduce the forecast error. This work implemented 14 models that
se different data, including time series only, image only, and a com-
ination of both image and time series, to analyze their efficiency.
urthermore, these models were also compared with existing networks
iscussed in the literature, such as Solarnet, SCNN-LSTM, and 3D-CNN.
The time series models used for forecasting include SVM (Linear),

VM (Non-linear), GP (Linear), GP (Non-linear), MLP, RNN, GRU,
STM, and CNN (R). The dataset for this experiment comprises GHI
easurements obtained from the pyranometer. Forecasts were gener-
ted using the previous three readings of solar radiation. The principal
reprocessing used here is data normalization, which causes the dis-
ribution to be centered around 0 and the degree of deviation from
he mean as 1. The linear and non-linear SVM uses a regularization
arameter C that is set to 1 along with a linear and radial basis function
RBF) kernel to produce a better fit for the data. In the case of GP,
he linear model uses a linear kernel, whereas the GP (Non-linear) uses
kernel that includes the union of the linear kernel and Matérn 5/2
ernel. On the other hand, MLP, RNN, GRU, LSTM, and CNN (R) use
ean square error minimization criterion along with adaptive moment
ptimization (Adam) [71] for training.
Next, the image-based models include the Solarnet model from

he literature that used the TSI and CNN (I) model which used the
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nfrared images. The mini-batch stochastic gradient descent (SGD) was
sed to train the SolarNet model, with 14,846,273 parameters divided
cross 21 layers. The parameters of the model were initialized using
he pre-trained weights of ImageNet. The SGD was used to minimize
he objective function and update the parameters during training. The
RRL dataset, which contains both TSIs and numerical measurements,
as used for case studies in this work. Ten years of numerical and
mage data were downloaded and processed from 2008 to 2017. The
reprocessed TSI images had a resolution of 256 × 256 pixels. The
irst five years of data were used for training, the next three years for
alidation, and the last two years of data for testing. The entire dataset
as trained for 60 epochs with a batch size of 64. The learning rate
as initialized to 0.001 and was reduced by 50% when the accuracy
etrics did not change more than 10 epochs. On the other hand, the
11

c

NN (I) model used a single infrared image of the clouds for making
redictions. The image was passed through a basic CNN architecture
onsisting of 3 layers for convolution, 3 max-pooling layers, and 2
ense layers. The convolutional layers and one of the fully connected
ayers used the rectified linear unit (ReLU) activation function. The
tructure used infra-red image data collected for 3 years (2017, 2018,
nd 2019) from the FLIR Lepton® radiometric camera. The input data
ad a size of 60 × 80 pixels and training used the minimization of the
ean square error criterion.
Finally, the hybrid models were trained on both image data as well

s solar radiation data. The 3D-CNN and SCNN-LSTM were models
ublished in the literature whereas the proposed hybrid models in-
luded the CNN-L, MICNN-L, and MICNN-L (OF). For DNI prediction,
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Table 2
Analysis of different models using various evaluation metrics.
Models No. of parameters nRMSE (%) nMAE (%) nMBE (%) FS (%) r MAPE

Persistence – 52.94 34.71 0.01 0 0.69 46.53
SVM (Linear) (𝑁) 43.12 26.84 5.31 18.53 0.78 40.17
SVM (Non-Linear) (𝑁) 43.87 26.33 3.80 17.11 0.77 39.22
GP (Linear) (𝑁) 43.41 29.74 10.73 18.00 0.78 54.51
GP (Non-Linear) (𝑁) 43.02 29.01 8.62 18.73 0.78 51.45
MLP 301 42.05 29.14 0.08 20.56 0.78 46.38
RNN 131 42.23 29.64 3.50 20.23 0.78 44.79
GRU 401 42.08 29.75 3.07 20.50 0.79 44.46
LSTM 491 42.06 29.89 2.62 20.54 0.79 44.78
CNN (R) 8K 42.02 28.80 0.84 20.62 0.78 44.55
CNN (I) 68K 51.88 39.86 17.79 2.00 0.72 78.01
SolarNet 15M 42.28 30.66 −4.79 17.66 0.92 –
3D-CNN 100K 38.59 25.44 3.78 24.85 0.93 –
SCNN-LSTM 5M 41.05 27.09 4.65 20.07 0.92 –
CNN-L 123K 41.70 28.58 2.32 21.23 0.79 40.92
MICNN-L (OF) 119K 37.59 26.26 7.25 28.99 0.85 35.41
MICNN-L 119K 30.12 22.85 2.47 43.10 0.94 29.20
F

the 3D-CNN model used features from several consecutive GBC im-
ages. The clear-sky index to be forecast is used as the label for the
3D-CNN classification model. The final forecasting model uses the fully-
connected features and DNI data for DNI prediction and the model
is trained throughout 32 epochs. The NREL database used in this
work consists of GBC images and DNI values. The image resolution is
352 × 288 pixels, and the experiment uses GBC images and DNI data
from January 1, 2013, to December 31, 2014. The experiments used
the data from 2013 for training, 10% of data from 2014 for validation,
and the rest for testing. The SCNN-LSTM also used the SRRL database
with meteorological variables such as DNI, solar zenith angle, relative
humidity, and air mass. The TSIs used were RGB images of resolution
352 × 288 pixels. The work utilized a basic clear sky model to transform
the DNI into the clear sky index to reduce the forecast error resulting
due to the differences in solar position. Additionally, they used image
preprocessing to select the area of interest from the RGB image, and
the final resolution used as the model’s input was 256 × 256 pixels.
Similarly for 3D-CNN, the source data for the experiment were gathered
from 1 January 2013 to 31 December 2014. The validation set included
data from January and July of 2013, whereas the testing set included
data from the entire year of 2014.

The new multimodal fusion network computes the forecasts from
data consisting of infrared cloud images and the pyranometric mea-
surements from three years. The clouds moving towards the sun are
highly likely to occlude the sun, making it necessary to develop a
classifier based on transfer learning to distinguish between completely
sunny and cloudy days. During training, the base model was created
from the pre-trained MobilenetV2, initialized with the input image
size of 60 × 80. By applying this approach, only the last layers were
retrained, leading to a faster training process. The model was sub-
sequently trained on a small dataset by utilizing the same weights
as ImageNet. Compared to other deep learning approaches, transfer
learning required less training data, thereby reducing the computa-
tional burden. Various experiments were conducted to evaluate the
performance of various transfer learning methods for the classifier.
The models evaluated included MobilenetV2 [72], VGG16 [62], Incep-
tionV3 [73], and ResNet50 [74]. Among these, MobileNetV2 was used
to classify the fully cloudy days, and this data was fed into the proposed
network as input. The developed hybrid model used the entire data
from 2017 for training, 20% of data from 2018 for validation, and the
rest for testing. The training was performed for 200 iterations using
mini-batches of 50. The tests were divided into different sections and
carried out using a laptop equipped with an NVIDIA GeForce GTX 1060
GDDR5 6.0 GB GPU, as well as high-performance computing from the
University of New Mexico’s Center for Advanced Research Computing.
12
4.1. Evaluation metrics for forecasts

In the literature, a variety of measures have been used to assess
the efficacy of solar irradiance predictions. When it comes to solar
irradiance forecasting, the performance is measured by evaluating the
actual and forecasted solar irradiance. The following are the statistical
measures that are used to evaluate the models’ performance:

Normalized Root Mean Square Error (nRMSE):

𝑛𝑅𝑀𝑆𝐸 =

√

1
𝑁

∑𝑁
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑦̄
× 100% (18)

Normalized Mean Absolute Error (nMAE):

nMAE =
1
𝑁

∑𝑁
𝑖=1

|

|

𝑦𝑖 − 𝑦𝑖||
𝑦̄

× 100% (19)

Normalized Mean Bias Error (nMBE):

nMBE =
1
𝑁

∑𝑁
𝑖=1 𝑦𝑖 − 𝑦𝑖
𝑦̄

× 100% (20)

Mean Absolute Percentage Error (MAPE):

MAPE = 100%
𝑁

𝑁
∑

𝑖=1

|

|

|

|

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

|

|

|

|

(21)

Correlation Coefficient (𝑟):

𝑟 =
∑𝑁

𝑖=1 (𝑦𝑖 − 𝑦̄)(𝑦𝑖 − ̄̂𝑦)
√

∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦̄)2

∑𝑁
𝑖=1(𝑦𝑖 − ̄̂𝑦)2

(22)

Forecasting Skill (FS):

S = (1 −
nRMSE𝑓
nRMSE𝑝

) × 100 (23)

Here 𝑦𝑖, ̄̂𝑦, 𝑦𝑖, 𝑦̄, 𝑁 , nRMSE𝑓 and nRMSE𝑝 represent the network result,
an average of network result, actual result, an average of the actual
result, number of samples, nRMSE of the forecast model and nRMSE of
persistence model respectively.

5. Results and discussion

We first analyze the results and choice of the methodology used to
discriminate cloudy from sunny days. In this application, MobileNetV2
shows the best performance of all alternative transfer learning models
such as VGG16, InceptionV3, and ResNet50. This model was able
to categorize the cloudy images with an accuracy of 99.23% after
being trained on a limited dataset employing similar weights from the
ImageNet database. Later, the developed hybrid model was trained and
tested on overcast days. The training objective involved decreasing the
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mean square error by utilizing the Adam optimizer. This optimizer
achieved the best results compared to several different optimizers, in-
cluding SGD, RMSprop [75], and AdaDelta [76]. It adapts the learning
rate for each weight of the network by estimating the first and second
moments of the gradient. Consequently, Adam uses the principles of
SGD and RMSprop and outperforms other optimizers.

Table 2 illustrates the 10-min ahead forecasting results of the dif-
ferent networks using various evaluation measures. Here six distinct
statistical metrics often employed in the literature were discussed to
analyze the different networks’ effectiveness. We calculate the MAPE,
r, nRMSE, nMAE, nMAE, nMBE, and FS for the proposed and other
existing models during overcast days. Here the persistence model is
a simple prediction model frequently used to assess the performance
of various prediction models. This study assumes that the predicted
value in the future time is the same as the current value. Forecasting
skill is a metric that compares a chosen model to a reference model,
i.e., the persistence model. The table shows that the presented MICNN-
L and MICNN-L (OF) structures surpass all the compared models with
the highest FS of 43.10 and 28.99. The section containing time series
models MLP, RNN, GRU, LSTM, and CNN (R) obtained similar FS
ranging from 20.23 to 20.62. The image-based approaches, such as CNN
(I) and SolarNet, showed one of the lowest FS values. This denotes
that robust solar radiation predictions can only be made with one
RGB or infrared image. The hybrid models like SolarNet, 3D-CNN,
and SCNN-LSTM had an FS that was slightly higher than the time
series models, and amongst them, 3D-CNN achieved the highest FS
of 24.85. Hence the use of multimodal systems for forecasting gives
a better performance than unimodal networks. Further, in terms of
nRMSE values, most models show an error between 41.05 and 52.94.
The MICNN-L, MICNN-L (OF), and 3D-CNN models achieved the least
nRMSE values, 30.12, 37.59, and 38.59, respectively. It shows that
visual information from consecutive images helps minimize the forecast
error.

The presented table facilitates an assessment of the computational
complexity and capacity of the distinct models by representing the
number of trainable parameters attributed to each method. Models with
a larger number of trainable parameters generally have a greater ca-
pacity to learn complex patterns in data, leading to improved accuracy
and performance. Furthermore, such models can better adapt to diverse
and nuanced representations of input data. However, they may be more
prone to overfitting, and their training and evaluation require more
computational resources. The added complexity in training also makes
it more challenging to identify the optimal set of parameter values
that can accurately capture the underlying patterns in the data. The
number of trainable parameters in SVMs and GPs varies depending on
the implementation and kernel function utilized. Specifically, in SVMs,
the number of trainable parameters is dependent on both the number of
features in the input data and the chosen kernel function. Meanwhile,
in GPs, the number of trainable parameters relies on the selection of
kernel function as well as the number of hyperparameters used to de-
fine the kernel. In this study, both SVMs and GPs exhibit computational
complexity of order (𝑁), where N represents the number of samples.
MLPs and RNNS, which possess only a few trainable parameters, are
generally less complex than advanced recurrent and convolutional
networks. Conversely, LSTMs, with 491 trainable parameters, are more
complex due to their intricate gating mechanisms and were designed to
process sequential data over extended periods of time. Finally, GRUs,
which possess 401 trainable parameters, are like LSTMs but feature
fewer parameters and can prove effective for tasks requiring sequential
processing and short-term memory.

The number of trainable parameters in a CNN depends on factors
such as the number and size of the convolutional and fully connected
layers used. For instance, the 1D-CNN that processes time series data
has approximately eight times fewer parameters than a 2D-CNN that
processes infrared images. However, models with a higher number of
13

parameters, such as the SolarNet model that solely uses images and a
possesses 15 million parameters, are likely to suffer from overfitting
and exhibit degraded performance. In contrast, hybrid models like 3D-
CNN, MICNN-L (OF), and MICNN-L require only 100-119K parameters,
enabling them to learn and generalize complex data patterns without
sacrificing performance. Therefore, achieving a balance between the
number of parameters and considering the trade-offs between model
complexity, performance, and computational efficiency is essential.

Fig. 10 presents a scatter plot of the predicted and measured solar
rradiance values for the different models. The correlation coefficient
for the 14 developed and tested models ranged from 0.6952 to
.9416. The highest value corresponded to the proposed MICNN-L with
= 0.9416. Moreover, the scatterplot also shows that the degree of
ispersion of MICNN-L is lesser than in other models. For comparison,
he authors of the SolarNet, 3D-CNN, and SCNN-LSTM reported values
f 0.9226, 0.9356, and 0.9274 in their respective papers.
Since the data used in all the experiments consists only of cloudy

ays, the measured performances show a very high uncertainty. Indeed,
he nMAE among all models ranges between 22% and 40%, and the
RMSE is between 53% and 30%. This is consistent with the previous
iterature on solar forecasts. It is remarkable that if only deep learning
echniques are used, the maximum drops to 40% and the maximum
AE drops to 42% if we exclude the CNN (I), which did not show good
esults. The MAPE among deep learning methods falls between 30 and
6%. Thus, this paper shows that the use of images and deep learning
educes forecast uncertainty.
The uncertainty increases with the time horizon. For example, in

revious experiments [13] we show that this uncertainty, when using
usion methods, ranges from 5% to 8%, and between 5% and 13%
hen the DL methods use images only. Thus, in order to reduce the
mpact of the forecast uncertainty it is advisable to use a multi-horizon
etup, in order to correct imbalances between power demand and
eneration as often as possible. There are several ways to measure
he impact of forecast uncertainty in renewable energy management.
mpact measurement and assessment are fundamental for grid opera-
ors to properly and safely balance power, for unbalances may result
n a significant economic loss (if a significant quantity of regulation
eserves are needed to reduce the unbalance to zero) and even major
rid failures (if an imbalance event occurs). This assessment is beyond
he scope of this paper and our technical capabilities. Nevertheless,
here are several works that measure the limitations derived from these
ncertainties. For example, in [77], this analysis is done in detail (see
lso [78]), plus the authors introduce mitigation strategies. Violations
f the control performance standard (CPS) established by the North
merican Electric Reliability Corporation (NERC) are used as impact
etrics. In particular, the CPS2 is violated when the area control error
s over a certain threshold. The study shows that, for a study in the
rizona Public Service System, an imperfect forecasting structure with
n average MAE of 2% can save up to $3M per year, where short-term
orecast uncertainty has little impact on operation costs. A more recent
ork [79] assesses directly the economic impact of the uncertainty in
he short-term forecast in terms of economic savings with respect to
he perfect forecast with certain particular deep learning structures.
hile a perfect forecast can produce a saving of about 15%, the use
f an LSTM or a simple MLP can save about 12%. These studies show
hat data-based forecast improves the efficiency of renewable energies
ver the persistence-based method and, therefore, the research and
pplication of machine learning in the solar forecast is justified and
ill produce significant improvements in the future.

. Conclusion

This work presents a comprehensive analysis of short-term solar ir-
adiance forecasting models based on the input data type. Here the fore-
asting methods are classified as time series-based models, image-based
odels, and hybrid models. A detailed description, implementation,

nd performance analysis of several state-of-the-art models, including
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Fig. 10. Scatter plot of the measured and predicted solar irradiance using different approaches.
SVM, GP, MLP, GRU, RNN, LSTM, and CNN, are provided in this
study. Moreover, three hybrid models, CNN-L, MICNN-L, and MICNN-
L (OF), are also proposed and evaluated against existing approaches.
Further comparisons are made against many deep learning models
in the literature, such as SolarNet, 3D-CNN, and SCNN-LSTM. The
deep architecture of these models makes it easier to extract high-level,
non-linear information from the solar data.

The time series-based models discussed in this paper are SVM, GP,
MLP, RNN, LSTM, GRU, and CNN. Here SVM and GP show similar
performance, and their non-linear version shows slight improvement
compared to the linear version. This indicates the non-linear nature of
the data and the requirement of non-linear kernels to map the data into
a high dimensional space for better prediction. The recurrent models,
such as the LSTMs, can handle long-term dependencies in the time
series data. The GRUs, on the other hand, is computationally more effi-
cient since it uses less memory and is much faster. Both were designed
to address the vanishing gradient problem present in the RNN. In terms
14
of solar irradiance data used in this study, RNN, GRU, and LSTM give a
comparable performance when assessing their nRMSE, nMAE, FS, and
MAPE. The deep networks such as MLP and CNN (R) that use solar
radiation time series do not show further improvement. Hence, this
shows that time series information is insufficient in predicting solar
irradiance accurately. Next, in the case of image-based models, 2D-CNN
works more efficiently since its design exploits the spatial relationships
in data, and here it works well on the TSI images (SolarNet) compared
to the IR images (CNN (I)).

Finally, all the hybrid methods can extract spatial and temporal data
and use a series, parallel or cascaded structure per their design. They
are computationally more expensive than the other methods but have
high efficiency. The 3D-CNN model uses a cascaded structure in which
the visual information is extracted from a sequence of GBC images
using the 3D-CNN. It was further combined with the measured DNI and
theoretical clear sky DNI and passed into the MLP model for making
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the predictions. The main disadvantage of this model is that it fails to
capture the temporal relationship between the sequence of images.

SCNN-LSTM also uses a cascaded model that extracts the visual
information using the 2D-CNN-based siamese networks. It helps to
find the similarity between the sequence of images by comparing their
feature vectors. The output of this network is combined with the mete-
orological variables and passed through an LSTM for forecasting. Here,
the meteorological variables do not undergo any feature extraction
before concatenating with the visual features. Thus the temporal infor-
mation present in these variables is not extracted adequately, which
results in a decrease in performance compared to the other hybrid
models.

Further, three hybrid models such as CNN-L, MICNN-L, and MICNN-
L (OF), are also proposed in this study. The CNN-L models utilize a
parallel structure and combine the information from a single infra-red
image and past solar irradiance values to make the predictions. It gives
competitive performance compared to the other models present in the
literature. The main disadvantage of this model is that it uses only a
single infra-red image for visual information extraction. The network
has competitive nRMSE, nMAE, and nMBE values compared to other
hybrid models, but it has a low 𝑟 value since it cannot capture the
information related to the motion of the clouds. The best-performing
models were MICNN-L and MICNN-L (OF), which had a forecasting
skill of 43.10 and 28.99, respectively. Both models used a sequence
of infra-red images and past values of solar irradiance. The MICNN-
L(OF) used the optical flow-based feature extraction before passing the
image data into the deep learning model. Nevertheless, compared to
the MICNN-L model, it did not show any improvement; on the contrary,
MICNN-L (OF) showed a significant decrease in performance compared
to MICNN-L. The external feature extraction decreased the performance
of the hybrid model. Hence this concludes that no external feature
extraction is required for the deep learning hybrid model for efficient
solar irradiance forecasting.

Additionally, a forecasting model’s efficacy fluctuates with the
weather. The proposed models have been tested in cloudy conditions
and show better performance than the other approaches. Conclusively,
deep learning techniques have great potential in solving complex
time-series forecasting problems, and deep hybrid models enhance
performance compared to unimodal approaches.
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