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ABSTRACT CCS CONCEPTS

An address, a textual description of a physical location, plays an
important role in location-based services such as on-demand deliv-
ery and e-commerce. However, abnormal addresses (i.e., an address
without detailed information representing a spatial location) have
led to significant costs. In real-world settings like e-commerce,
abnormal address detection is not trivial because it needs to be com-
pleted in real-time to support massive online queries. In this study,
we design FastAddr, a fast abnormal address detection framework,
which detects abnormal addresses among millions of addresses
in a short time. By investigating and modeling the hierarchical
structure of address data, we first design a novel contrastive ad-
dress augmentation approach to generate training data via learning
the entity transition probability matrix. We further design a light-
weight multi-head attention model for learning compact address
representation by modeling the address characteristics. We conduct
a comprehensive three-phase evaluation. (i) We evaluate FastAddr
on a real-world dataset and it yields the average F1 of 85.7% in
0.058 milliseconds, which outperforms the state-of-the-art models
by 47.4% with similar detection time. (ii) An offline A/B test shows
that FastAddr outperforms the previous deployed model signifi-
cantly. (iii) We also conduct an online A/B test to compare FastAddr
with the deployed model, which shows an improvement of F1 by
more than 20%. Moreover, a real-world case study demonstrates
both the efficiency and effectiveness of FastAddr.
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1 INTRODUCTION

Location-based services (LBS) provide convenient services such
as on-demand delivery and map navigation for users according to
spatial locations. Generally, users input a textual description of a
location, i.e., address, to obtain the location-based functions. The
service providers use a Geocoding system to convert the input ad-
dress into geographic coordinates for later processes such as range
queries and shortest distance calculations. Returning an accurate
location within a short time is the ultimate goal of the Geocod-
ing system. To achieve this goal, the Geocoding system typically
consists of two steps, as shown in Fig. 1(a). Address Matching: The
service providers usually maintain a large address database, e.g.,
with more than 100 million textual addresses and their correspond-
ing coordinates. The input address will be first matched with the
database to fetch the related information. Address Recommendation:
if the input address is not found in the database, some other meth-
ods, such as approximate matching or similarity searching, will
recommend the possible coordinate for the query. When the user
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selects the correct coordinate based on a visualization platform,
this coordinate and the textual address are stored in the database.
Address recommendation

Address matching Abnormal address detection

Yes Abnormal
address

Address
query No

Address

Yes coordinates coordinates

(a) Geocoding w/o abnormal detection (b) Geocoding with abnormal detection

Figure 1: Geocoding system workflow.

In the real world, especially in fast-developing countries such
as India and China, many low-quality and abnormal addresses [1]
exist mainly due to weak address regulation, complex address struc-
ture [44], and the fraud of click farming [49] (see Sec. 2.1). For
example, the address "Anhui Province, Hefei City, deliver the parcel
by the door" is an abnormal address because no detailed street infor-
mation is provided. These abnormal addresses are not maintained
in the database, so they need to be checked in the recommendation
process, wasting a lot of time to return an unconfident coordinate,
which is not meaningful. To handle millions of address parsing
requests each day and reduce latency, abnormal address detection
should finish in a short time (e.g., less than one millisecond). Most
existing Geocoding systems solve this problem implicitly [2], i.e., re-
turning an error message if the confidence of Geocoding an address
is lower than a threshold. These systems have two major limita-
tions. (i) Efficiency: address recommendation based on machine
learning algorithms is time-consuming to rank and recommend a
possible coordinate from a large address database. (ii) Effectiveness:
these systems emphasize the precision of address queries rather
than the recall of abnormal addresses, making them less effective
when the abnormal and low-quality input addresses are pervasive.
Therefore, to improve the efficiency and effectiveness of the existing
Geocoding systems, we aim to design a framework that automati-
cally detects abnormal addresses before address recommendations,
as shown in Fig. 1(b).

Admittedly, some works have studied problems related to abnor-
mal address detection. Instead of directly addressing the abnormal
address issue, some studies focus on applications related to address
and Point-of-Interest (POI), such as coordinates generating for POIs
and addresses [39, 41], and POI alias discovery [16]. Meanwhile,
there are many anomaly detection works in different modalities, e.g.,
image [15], time series [4, 10], graph data [52], and text data [26, 32],
which have applications such as pickpocket suspects detection [14]
and malicious behavior detection on social media [34, 50]. How-
ever, in the abnormal address domain, existing studies are faced
with three major challenges (see Sec. 2.2.3), including (i) the lack of
large-scale labeled address data for model training, which makes it
challenging to train expressive machine learning models; (ii) the
complex address structure resulted from user habits and weak regu-
lation in developing countries, which is significantly different from
the well-regulated addresses in the U.S ; (iii) the requirement of real-
time detection in real-world location-based services that receive
millions of Geocoding requests every day, which puts a significant
challenge for the detection algorithm to respond in a short time.

Most existing works that can be applied to abnormal address de-
tection are categorized into four categories as in Fig. 2. It is challeng-
ing to have both high precision and short detection time because of
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Figure 2: Design goal illustration.

the trade-off between model capability and model simplicity. How-
ever, we argue that we might achieve both high precision and short
detection time by modeling the hierarchical structure of address
data and focusing on important positions in addresses, which is the
design goal of this study as in Fig. 2.

To address the aforementioned challenges and realize the design
goal, we design FastAddr, a Fast abnormal Address detection frame-
work, which consists of two main modules: (i) a contrastive address
augmentation module that generates large-scale labeled addresses
to solve the data scarcity problem. The augmentation module learns
a spatial entity transition matrix to generate addresses that align
with the real-world address distribution, improving the model’s
generalizability even with unseen addresses. (ii) a lightweight multi-
head attention model that captures the important segments of ad-
dress sentences for abnormal address detection, which is motivated
by the characteristics of addresses. The lightweight model signifi-
cantly reduces the computational cost by squeezing the parameter
space for attention calculation.

In summary, the major contributions are listed as follows:

e To the best of our knowledge, FastAddr is the first attempt to
formulate and explicitly solve the abnormal address detection
problem. We motivate FastAddr based on extensive data-driven
analyses in a real-world e-commerce logistics platform. We show
(i) the significance of the abnormal address problem in the plat-
form and (ii) the challenges of addressing the abnormal address
detection problem due to the lack of labeled data, address format
complexity, and real-time detection requirements.

o We design a lightweight and effective framework FastAddr to
detect abnormal addresses in real time. Based on an in-depth
investigation of address data structure, FastAddr addresses the
challenge of data scarcity by a novel contrastive address augmen-
tation approach, generating labeled data for model training. In
addition, FastAddr learns compact address representation by an
efficient multi-head attention mechanism that captures impor-
tant address segments with significantly fewer parameters than
most state-of-the-art models.

e More importantly, we conduct a three-phase evaluation based
on real-world datasets from an e-commerce logistics platform.
The experimental results show that FastAddr achieves 99.3% of
AUC, 92% of precision, 89.3% of F0.5-score, 85.7% of F1-score, and
0.058 millisecond of the detection time. With similar detection
time, FastAddr outperforms the state-of-the-art models by 47.4%.
Moreover, compared with a state-of-the-practice model deployed
on the platform, FastAddr improves the detection precision by
21.5% and the detection rate by 25%.
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2 BACKGROUND AND MOTIVATION

In this section, we introduce the preliminaries and motivation about
the abnormal address problem, followed by three key challenges.

2.1 Preliminaries

Addresses are widely used in location-based services such as lo-
gistics and ridesharing to describe spatial locations. In this study,
we define the address with low quality as Abnormal Address as in
Def. 1. Abnormal addresses generally miss detailed road or building
information, which is essential to locating the address by either
Geocoding systems or humans, e.g., delivery couriers. Examples of
both normal and abnormal addresses are given in Table 1.

DEFINITION 1. (Abnormal Address) is an address without de-
tailed address information, e.g., road, building, and POI name, and
thus can not be localized by humans (e.g., couriers) for certain purposes
(e.g., delivery).

Table 1: Examples of abnormal and normal addresses.

Index Address Example Reason Analysis

No detailed location information,
e.g., road name, POI name

Abnormal | Anhui Province Hefei
Address City

@ Abnormal | Anhui Province Hefei Oral language, no reachable
Address City deliver by the door | location information, e.g., POI name

Normal Anhui Province Hefei With detailed POI information,
Address | City Shangri-La Hotel | i.e., Shangri-La Hotel

The origin of abnormal addresses. There are two main scenarios
resulting in abnormal addresses. (1) Unintentional abnormal address.
Unlike addresses with clear and consistent structures in developed
countries such as the U.S. and Japan, in developing counties such
as India and China, addresses entered by users are complex and
of diverse qualities. For example, low-quality addresses cannot be
geocoded by commercial Geocoding services, e.g., Google Maps
and Baidu Maps [35, 39, 41, 44]. Moreover, due to rapid develop-
ment, new addresses and spatial entities are emerging every day.
Therefore, it is common for customers to enter addresses with typ-
ing errors or ignored detailed addresses. (2) Intentional abnormal
address. People may intentionally use abnormal addresses to make
extra money or save costs. For example, abnormal addresses are
used for the fraud of click farming [49]. Some people create ab-
normal addresses to place fake orders on e-commerce platforms to
increase sales ranking; some may cheat for compensation because
their packages cannot be delivered in time (to abnormal addresses).

2.2 Data and data-driven investigation

2.2.1 Data description. This study utilizes three datasets.

(i) Address data includes 20 million real-world individual ad-
dresses, business addresses (such as companies), schools, etc., which
are accessed based on our collaboration with a large e-commerce lo-
gistics platform in China. The data is anonymized without personal
identities such as names and phones.

(ii) Spatial entity data includes POI road names, and all adminis-
trative partitions, including provinces, cities, districts, and towns of
China. POI data includes multiple types (e.g., school and restaurant).
Road data includes urban and country road names in different areas
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and scales, e.g., province-level roads, city-level roads, and town-
level roads. In total, spatial entity data consists of more than 30
million POI and road names, 600 cities, and 30 provinces. In general,
an address consists of multiple spatial entities.

(iii) Natural language data includes high-frequency phrases that
describe spatial orientation, parcel-related notes, articles, news, and
novels. It is collected from customers’ reviews on the e-commerce
platform and open-source websites such as Wikipedia. We apply
an Organization and Location Named Entity Recognition (OL-NER)
model [11, 20] to extract and remove all organization names and
location names, which are used to construct abnormal addresses.

2.2.2  Problem significance. We investigate the impact of abnormal
addresses on the real-world platform through an in-depth data-
driven analysis. Based on the data from the e-commerce and credit
card platforms, we identify 1.5% and 3% abnormal addresses among
randomly sampled 100,000 addresses on these two platforms, re-
spectively. These abnormal addresses lead to order delivery failure
for the e-commerce platform and high-risk malicious overdue for
the credit card platform. Given millions of addresses geocoded each
day, there are a significant number of abnormal addresses even
though the ratio of abnormal addresses is low. For example, abnor-
mal addresses cost 3 million U.S. dollars in delivery waste of the
large e-commerce logistics platform in 2021.

2.2.3 Challenges. Three main challenges make large-scale abnor-
mal address detection a non-trivial task.

(1) Lack of large-scale labeled data. Even though we can easily col-
lect normal addresses from real-world location-based services, it is
challenging to collect abnormal addresses due to two main reasons.
Firstly, real-world abnormal addresses can only be identified by de-
livery workers or customer services, who rarely have the incentive
to report or provide feedback. Secondly, we cannot collect all kinds
of abnormal addresses due to the evolving locations in developing
countries, making deep learning models challenging to generalize
to unseen abnormal addresses well.

(2) Complexity of Chinese addresses. In developed countries such as
the U.S., the urban structures are relatively stable, and addresses
have a well-organized format (e.g., road number + road name).
Therefore, abnormal addresses can be detected by straightforward
methods, e.g., applying regular expression with a nationwide ad-
dress table to detect whether an address contains required informa-
tion such as road number and name. However, in some developing
countries such as China and India, many new addresses appear each
year due to economic development [12]. Moreover, these addresses
have diverse formats, ambiguous address content, etc., due to the
lack of a standard address format [39, 44]. Fig. 3(a) illustrates the
ratio of different address component combinations, e.g., rpo repre-
sents "road name + POI + oral language", which demonstrates the
complexity of the address format. The lengths of address sentences
also vary significantly, as shown in Fig. 3(b). Therefore, the Chi-
nese address is usually the partial combination of entities such as
province, city, road, road number, POI name, and natural language
(e.g., “left to the corner”) with diverse orders and lengths, which
makes it nontrivial to detect abnormal addresses.
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Figure 3: Address characteristic analysis.

(3) Strict detection time requirement. The real-world, large-scale ap-
plication requirement poses another challenge, i.e., the detection
time requirement. For example, an e-commerce company with 15
million daily orders requires the abnormal detection model to re-
spond to each request within a strict time window. Therefore, the
strict detection time requirement is another important factor that
we need to consider in the model design.

In summary, based on our data-driven analysis, we found (i) the
abnormal address problem is important and has significant real-
world impact, and (ii) it is nontrivial to design an effective and
efficient model due to the lack of labeled data, address complexity,
and high-speed requirements in real-world applications.

3 ABNORMAL DETECTION FRAMEWORK

In this section, we introduce the detailed design of FastAddras
shown in Fig. 4, which consists of two main components. (i) The
contrastive address augmentation module for address data aug-
mentation and thereby enabling the training of abnormal address
detection model. The spatial entity data (including city, road, POI,
etc.) and natural language data (including novel, news, etc.) are
sampled to construct synthetic addresses by learning the spatial en-
tity transition matrix from the address data. Then, the constructed
normal and abnormal addresses are fed into (ii) the lightweight
multi-head attention model for learning compact address represen-
tations, which is utilized to detect abnormal addresses.

(1) Contrastive Address Augmentation (Sec. 3.1) (2) Lightweight Multi-head Attention (Sec. 3.2)
Spatial entity transition >
0.58\ Normal & N
086 L Abnormal |1 & =
Addresses g = £
Road _ POL N 2 E| |5
1 e = =
N =
T l...,POI + oral T g =i
CRE Entity sampling § =2 g
S E
BiLSTM ) e 5
Sampling Sampling| ddress representation
T il I
1 2 ol novel | Apnormal o
Q. Ncityi \POI 1 news Address a8l = I
e — . AN g = =
N 3 Detection A = 5
Address Spatial entity Natural language Normal address. |2 i
AAbnormal address

Figure 4: Overall framework.

3.1 Contrastive address augmentation

In this subsection, we introduce contrastive address augmentation.
One of the critical challenges in the abnormal address detection task
is the scarcity of large-scale labeled data to train neural network
models. Different from general classification tasks where data in
all categories are easy to obtain and can be labeled manually, few
abnormal addresses are available in abnormal address detection,
which prevents us from training a model with large-scale labeled
data. However, a good opportunity is that we can access large
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amounts of normal addresses. Therefore, a research question is can
we augment existing addresses by designing a novel augmentation
approach? To answer this question, we design a contrastive ad-
dress augmentation approach by learning a spatial entity transition
matrix that augments existing addresses for model training.

3.1.1 Contrastive spatial sample augmentation. Existing data aug-
mentation approaches such as cropping-based augmentation, span
cutoff, and mix up [33, 42, 48], significantly boost the performance
of many tasks such as text classification. However, we argue that
we cannot directly apply these existing approaches to our problem
due to a major challenge, i.e., address data has an apparent hier-
archical structure as shown in Fig. 5(a). For example, an address
might consist of province, city, district, town, road, POI, and POI
number, which exhibits hierarchy in terms of spatial granularity.
Fig. 5(b) illustrates a concrete example of a four-level hierarchy in a
real-world logistics delivery scenario. Therefore, directly applying
existing augmentation approaches cannot retain the hierarchical
address structure and may not result in satisfactory performance.
Motivated by the characteristics of address data and the success of
contrastive learning models [8], we design a novel augmentation
approach. This approach constructs contrastive <normal, abnormal>
address pairs, which enforce the downstream deep learning models
to learn the difference between normal and abnormal addresses.

town town @ POI2 9 POI3

L i

road I road3 road 4 1

; v
! road 2

o i roa road 4iPOI 4
POI 2 POIL 3 m N N S |
courier "M _. > road 1 P J

P
POI number LROI ! oI5 8
address -.-.> trajectory

(a) Spatial entity relationship  (b) Logistics delivery in four-level entities

Figure 5: Illustration of spatial entity hierarchy.

3.1.2  Spatial entity transition matrix. A key challenge in augment-
ing address data is maintaining the hierarchical structure and the
transition patterns among spatial entities within an address. Each
address consists of a sequence of entities (e.g., Peking University
and Yiheyuan Road), which represent the hidden labels (e.g., entity
class POI and road). Moreover, the entity labels within one address
correlate with each other, violating the Markov assumption. There-
fore, we model the address by Conditional Random Field (CRF),
where all spatial entities constitute observation sequences in CRF
and labels for these entities constitute state sequences as shown in
Fig. 6. Each entity might have multiple states.

Beijing Haidian  Yiheyuan Peking Call me Wheni .

o N . o eyuan Road  Peking University
District Road University arriving

(a) Spatial entity transition example (b) State transition example

Figure 6: Entity transition and state transition in addresses.
State transition and entity transition. To learn the transition
patterns of spatial entities, we design and learn the entity transi-
tion matrix of addresses. We design nine entities to represent an
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address, i.e., province, city, district, town, road, POI, road number,
POI number, natural language. For each entity, we have two types
of labels B and I For example, as in Fig. 6(b), the word Yiheyuan
is labeled with B-Road, representing it is the beginning of a Road
entity, while the following word Road is labeled as I-Road to repre-
sent it is not the beginning of a a Road entity (intermediate). Thus,
we have 18 types of labels in total. Intuitively, we can calculate
the state transition matrix by identifying the labels for each word
in addresses, representing the semantic meaning in each entity.
However, we do not need fine-grained state transition probability
to construct addresses because we already have structured spatial
entity data such as road and POIL Moreover, due to labeling errors
or model capacity issues, the error rate of identifying the correct
state sequence is intuitively higher than identifying the correct
spatial entity sequence because the error of entity boundary will
not impact the entity sequence. Therefore, as shown in Fig. 7, we
aim to learn spatial entity transition matrix from real address data.

Road  POI

B-Road [-Road B-POI 1-POI i
i Road 029 0.8

B-Road = 0.17 0.12 023 0.16
POl 086 0.79

I-Road 076 089 008 0.11

' =

' 150}

[ =

e 5

! A Addresses

!(a) BILSTM CRF Model

B-POI 025 054 034 063

iLST

I-POI 002 005 067 0.69

(b) Station transition matrix

Figure 7: State transition and spatial entity transition matrix.

Fig. 7(a) shows the process of calculating the state transition
matrix of a real-world address dataset. Specifically, we implement
a BiLSTM-CRF Model [18, 20] to extract spatial entities (e.g., city,
road, and POI) in the address dataset. The BiLSTM-CRF Model con-
sists of three LSTM layers and a CRF layer, which is trained by a
labeled dataset. Thus, the state transition matrix is calculated based
on extracted spatial entities, as shown in the example of Fig. 7(b).
We then derive the spatial entity transition matrix from the state
transition matrix by adding transition probabilities belonging to
the same entity. As an example in Fig. 7(c), the transition proba-
bility between entity Road to POI equals the sum of the transition
probability between B-Road, I-Road and B-POI, I-POL

3.1.3 Contrastive address sampling. Based on the spatial entity
transition matrix, we then design a sampling algorithm to construct
contrastive address samples, i.e., positive (abnormal) addresses, and
negative (normal) addresses. We start by constructing a label se-
quence for an address via sampling from the spatial entity transition
matrix, e.g., <province, city, district, town, road, POI, natural lan-
guage>. We then construct negative samples following the label
sequence. Note that we still need an augmentation even though
we have enough negative addresses because we aim to introduce
randomness in the negative addresses to increase model robustness
in the normal addresses. Seven entities are sampled, i.e., province,
city, district, town, road, POI, and natural language data. Except for
natural language data, all other entities can be sampled uniformly
from the spatial entity database. For the natural language data, we
sample it from the natural language database as follows. We first
sample the document index uniformly from idx ~ U[1,N], where N
is the total number of documents. We define the length of natural
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language as fnin=1 and £pax=32, the length of natural language
entity (natural) is ,qyral:

[natural ~ {[mins bmin +1,..., [max} (1)

The start position 0$**’* and end position of the natural language

entity are calculated as below:
tart id d tart
O? AL LY~ byarural ) Oien = O}? Tt lharura ()

where L% is the length of the idx-th document. Given the docu-
ment set d, the sampled natural language entity is:
0; = d'x (3)

O?tu”ZOf"d

After we have a negative (normal) address, we construct the con-
trastive positive (abnormal) address by removing the detailed ad-
dress entities, i.e., road and POL In total, we construct 8 million
normal and abnormal addresses for the downstream models.

3.2 Lightweight Multi-head Attention Model

Based on the labeled addresses from the contrastive address aug-
mentation, we train our model to learn effective and efficient ad-
dress representations. In this subsection, we introduce our light-
weight multi-head attention model, as shown in Fig. 8, which is
driven by two main design goals: (i) short detection time for real-
time detection, and (ii) high detection performance.

Intuition. Intuitively, entities in an address are not equally impor-
tant for abnormal address detection. For example, when an address
consists of a POI and a piece of natural language, focusing on the
POI will probably yield better abnormal detection performance
because containing valid POIs represents the address is normal.
Therefore, we design a multi-head attention mechanism to assign
higher importance to important entities of an address.

. 7 Address representation
Atentional . owee |
Ap

Self-Attention Layer
A

Address embeddings V

(a) lustration of single-head attention

(b) Multi-head attention

Figure 8: Lightweight attention model.

Address Representation Module. Even though the main char-
acteristics (i.e., the hierarchical structure) of the address data are
different from the open-domain data, there are still similar patterns,
e.g., there are natural languages in the Chinese textual address data.
Therefore, we train the model based on the pre-trained Chinese
word embedding [40]. The embedding of j-th address is described
in Eqn. (4). . : . )

V= [V, . VLV 4)
where V{ is the embedding for i-th word in an address sentence
and j € [1,k], k is the number of addresses in a batch, n is the
maximum length of all addresses. The address embedding V is a
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three-dimensional matrix, V € RkXnxm

, where m is the embedding
dimension for a word embedding vector VIJ..

The address embeddings are then utilized as input for address
representation learning. Intuitively, due to the spatial entity hierar-
chy of addresses, the importance of different address entities varies
significantly, i.e., only some words play an important role in deter-
mining whether an address is normal or abnormal. For example,
for address “Haitian District, Peking University, better deliver before
11:00 AM”, “Peking University” is an important entity, which implies
this address is a normal address with high confidence.

A straightforward approach is to define an importance vector
and assign this vector to addresses, i.e., components at different
locations have pre-defined fixed importance. However, due to the
address structure and length variance, fixed importance vectors
will not bring a satisfactory performance. Another approach is
to design a self-attention mechanism with Q, K, and V matrices
such as in Transformer [45]. This approach does not fit our design
requirement well due to the high computational cost (see Table 2).

Inspired by the attention mechanism in computer vision commu-
nity [19], which assigns importance to different channels in images,
we view each word in an address as a channel and assign impor-
tance to each word by learning the positional importance among
all entities. Fig. 8(a) describes the process of calculating address
representation based on a single-head attention mechanism.

Specifically, the dimension of each word embedding in V/ is re-
duced from m to 1 by a Global Pooling operation, which compresses
the embedding information and reduces the computation overhead
significantly, i.e., the embedding dimension reduced from k X n x
mtokXnXx 1 -

nx1

= Pooling(Vj ) (5)

nxXm

Then, the compressed embedding T£x1 is followed by a Linear
layer with learnable parameters Wj. The Linear layer encourages
the information flows between different words in an address by
compressing the number of words from n to %, where r is the
compression ratio and we set it as 4. The output of The Linear

)

layer is L%xl'

io—wrd
Loy =WiT),, (6)

After a ReLU activation, the dimension of channels is increased back
to n by another Linear layer with parameters W». The embedding
with dimension n X 1 is transformed to an attention score for the
Jj-th address by a Sigmoid layer.

- A -1
al = (1 + exp(—WzReLU(L]nxl))) @

Multi-head attention. To capture importance at different gran-
ularities, we further extend our model to a multi-head attention
model, as shown in Fig. 8(b), which increases the expressiveness

of learned address representations. We use a{ to represent the at-
tention of the i-th attention head. The multi-head attention A/ is
calculated as follows in Eqn. (8).

Al = [a{,..., a{,..., a;l] (8)
where h is the number of attention head in the model, and Al €
thn_

After the multi-head attention matrix Al has been calculated for
all addresses through the forward process, we derive the weighted

Zhiging Hong, et al.

address embedding H through multiplication and concatenation as
in Eqn. (9).

-

W = Feqr (A, V) = [a] x V||, .. [la] x V] ©)

where X is the multiplication between vectors and matrices, || repre-
sents the vector concatenation operation. The obtained weighted ad-
dress embedding has a larger embedding space, i.e., H € RkKXnxmxh

Detection Module. The address representation from the multi-
head attention module is fed into a MLP to calculate an anomaly
score, representing the abnormal probability of an address. Specif-
ically, the address representation is first fed into a Linear layer
(with parameters W3) to map the representation to a scalar value,
which is then passed to a Sof'tmax layer to calculate the probability
of being an abnormal address, i.e., anomaly score A in Eqn. (10).

AN = c(W3HY) (10)
where A/ is the anomaly score for the j-th address in a batch, o is the
Sof'tmax layer. H is the feature vector obtained from the attention
module. By setting up a threshold « (0.5 < « < 1), the address with
anomaly score A greater than « is detected as an abnormal address
as shown in Eqn. (11).

N normal,
Y = .
abnormal, A > a.

A <a,

(11)

Ideally, the model will detect all abnormal addresses (true positive)
and will not detect any normal address as abnormal addresses (false
positive). However, noises and diversities of real-world data make
the design of such a perfect model challenging. Thus, we need to
balance between true positive and false positive. In the real world,
false positive will significantly damage user experience and the com-
pany’s reputation because it prevents a user from placing orders
for possible services on the company’s platform (e.g., shopping on
an e-commerce platform). It leads to a more severe impact than
ignoring an abnormal address. Therefore, we aim to punish more
when the model classifies a normal address as an abnormal one
during the training process. Most of the training samples are rela-
tively easier to be classified. We want the model to focus more on
the challenging task, i.e., samples easier to be classified as wrong
labels. Therefore, We adapt Focalloss [28] as the loss function as
shown in Eqn. (12).

Loss(p) = (1 - p)log(p) (12)

where p represents the probability of an address being abnormal,
and 1 — p is the probability of an address being a normal address.
A is the focusing parameter, which decreases the importance of
samples that are easier to classify. Therefore, the model can focus
on the hard and important samples to improve performance.

4 EVALUATION

In this section, we first introduce the evaluation settings such as
datasets and metrics. Then, we conduct three-phase evaluations
to verify the effectiveness of FastAddr comprehensively. Phase-
1: Offline comparison with state-of-the-art baselines, which is
to demonstrate the effectiveness of FastAddr and analyze how
each component in FastAddr impacts the performance. Phase-2:
Offline A/B test compares FastAddr with a deployed abnormal
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address detection model in the industry. Phase-3: Online A/B test
evaluates FastAddr in a real-world online environment.

4.1 Evaluation Setting

Datasets. (i) Training and validation datasets: We have two training
configurations, i.e., training with real data and contrastive address
augmentation, and training with real data only. The real dataset
consists of 45,000 normal addresses and 5,000 abnormal addresses.
(ii) Phase-1 evaluation dataset: We utilize a real-world dataset from
an e-commerce logistics platform to evaluate model performance.
In total, this dataset contains 98,600 normal addresses and 1,400
abnormal addresses. (iii) Phase-2 evaluation: We compare FastAddr
with the platform’s abnormal address detection model using 300,000
addresses, consisting of normal and abnormal addresses. (iv) Phase-
3 evaluation: We compare FastAddr with the platform’s abnormal
address detection model based on two-week streaming addresses.

Ground truth. All labeled addresses in real data are collected by
the e-commerce logistics platform from accumulated low-frequency
reporting data. The ground truth addresses in phase-2 and phase-3
are sampled and manually labeled.

Metrics. The goal is to detect abnormal addresses from massive
streaming addresses, which have strict requirements for effective-
ness and efficiency. Thus, we utilize five metrics for evaluation.

(i) Area Under the ROC Curve (AUC). As a commonly used
metric for abnormal detection, a high AUC indicates a good model
in general.

(ii) Precision. Precision is the fraction of true anomalies out of de-

tected anomalies. Let a be the threshold of anomaly score, Precision(a) =

% X 100%, A is the set of detected anomalies, and A is the ground
truth set of anomalies.

_ Precision(a)xRecall(a) _
(iii) F1. F1(a) = 2 X Precision(a)+Recall(a) ’ where Recall(a) =
[ANA|

ar X 100%. F1(a) is an important metric we focus on because

F1(«) is a balance between Precision(«) and Recall(«) [3] and it
can better measure the quality of abnormal address detection [43].
(iv) FO.5. F0.5() = 1.25 X Og’srl‘jf;’gﬁf:();)ﬁf:c’i LS. FO.5(a) is a

popular metric where the importance of precision is higher than
recall, which satisfies our problem setting.

(v) Detection time. Detection time is the time cost of a model to
output a detection result, which measures the model’s capability of
handling a massive number of address queries.

Baselines. We compare FastAddr with 8 baseline models, i.e., Ad-
drLens (based on length of address sentences), AddrSimi (mea-
sures address similarities based on pretrained model MiniLM) [46],
TextCNN [23] (consists of three Convolution layers, a Pooling layer,
and a Linear layer), FastText [5], EntityDet (based on named entity
recognition of spatial entities such as roads and POIs) [20], Trans-
former [45] (consists of two encoders and each encoder has five
attention heads), TextRNN [31] (consists of a bi-directional LSTM
layer and a Linear layer), TextRNN_Att (TextRNN with attention
mechanism) [53].

Configurations. We train all deep learning models on NVIDIA RTX
A4000. We evaluate the model inference speed on Intel(R) Xeon(R)
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Table 2: Comparison with the state-of-the-art models

Model AUC  Precision F1 F0.5  detection time
AddrLens - 6.3 8.2 9.2 0.003
AddrSimi - 8.2 3.2 5.1 34.2
TextCNN 96.5 11 19.7 13.3 0.12
FastText 98.1 24.2 383 284 0.058
EntityDet - 7.59 6.7 9.2 5.87
Transformer 98.4 48.7 62.7 535 0.229
TextRNN 99 72.3 754 735 3.44
TextRNN_Att  99.1  80.3 772 719 3.48
FastAddr 99.3 92 85.7 89.3 0.058

" The unit for AUC, Precision, F1, and F0.5 is %; for detection time is ms.

CPU E5-2650 v4 @ 2.20GHz, 12 cores. We set the dimension of
word embedding as 100, batch size as 20, and training epoch as 15.
The learning rate Ir is 0.0001, decay step of Ir Ir_decay_rate is 0.95,
and Ir_dacay_steps is 1,000,000.

4.2 Phase-1 evaluation: Offline Experiments

4.2.1  Overall Performance. To measure the model’s effectiveness,
we compare FastAddr with the recent state-of-the-art models in
five dimensions. The result is described in Table 2. Even though
FastAddr has the highest AUC, we argue that AUC alone is not
enough to select the best model. As in Table 2, most models have
similar high AUC values but different precision, F0.5, and F1. Since
precision and recall are both important metrics, we consider F1
(the balance between precision and recall) as the indicator of model
effectiveness and speed as the indicator of model efficiency. We con-
clude several important results: (i) FastAddr and FastText have the
shortest detection time because of the model’s simplicity. However,
FastAddr outperforms FastText by 47.4% of F1 due to its better
address representation capability. (ii) Transformer is a representa-
tive attention-based large language model. Even with good AUC
and F1, the detection time prevents it from being deployed to a
CPU environment to support hundreds of millions of daily requests.
Moreover, the short length of addresses also limits the advantage
of Transformer.

210 pommTm T T m T B Precision BN FO.5 3 Fl
N : 100
2 g
70571 . )
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= 1 .=+ ROC (area=0.993) ]
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=1 1 . = 1:1line E
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False Positive Rate # of Attention Head

(a) ROC curve of FastAddr. (b) Impact of attention head.

Figure 9: ROC (a) and ablation study on attention (b).

4.2.2  Ablation Study. We conduct extensive ablation studies to
evaluate the contribution of each module in FastAddr.

Impact of attention. We investigate how the attention module
impacts the abnormal address detection performance. For the AUC
value, the model with no attention head achieves 97.3% while all
other models have an AUC value of 99.3%, which is not reported
in Fig. 9(b) due to space limitations. Fig. 9(b) illustrates the per-
formance in three metrics of models with a different number of
attention heads. For all three metrics, the performance improves
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with the increase of attention heads when the number of attention
heads is less than 4. However, increasing the number of attention
heads from 3 to 4 does not bring a significant improvement. The
possible reason is that 3 attention heads are good enough to model
the important segments in an address sentence, and more atten-
tion heads will not boost the performance significantly. Therefore,
we adapt 4 attention heads to balance the model complexity and
performance. Compared with no attention head, the model with
4 attention heads witnesses an improvement of more than 17% in
F1. It demonstrates the effectiveness of the lightweight multi-head
attention mechanism in our model.

Impact of contrastive address augmentation. We use a manu-
ally labeled dataset w/o augmentation that consists of 45,000 normal
addresses and 5,000 abnormal addresses to train FastAddr, and
compare it with FastAddr trained with contrastive address aug-
mentation (with augmentation). The result is shown in Fig. 10(a).
The model trained with augmentation significantly outperforms
the model trained without augmentation. We also evaluate base-
line models that are trained without our augmentation approach
as shown in Fig. 10(b). The AUC of all models is significantly de-
creased except TextCNN, which performs the worst when trained
with augmentation. The reason might be that TextCNN has limited
representation capability and thus cannot utilize the benefit of aug-
mentation, which leads to a similar performance with or without
augmentation. These results demonstrate the effectiveness of our
contrastive address augmentation approach.
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(a) Impact on FastAddr. (b) Impact on baselines.

Figure 10: Impact of contrastive address augmentation.

Impact of pre-trained word embedding. In FastAddr, we initial-
ize the model with pre-trained word embedding from Tencent [40].
To verify the effectiveness of pre-trained word embedding, we
initialize FastAddr randomly. Intuitively, utilizing pre-trained em-
bedding would boost the model’s performance. In Fig. 11(a), we
observe that the model has lower precision, F0.5, and F1, and the
same AUC without pre-trained embedding. One possible reason
is that there are natural languages in addresses, which benefit the
model by using embedding trained on the open-domain corpus.
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(a) Impact of pre-training. (b) Impact of Focalloss.

Figure 11: Ablation study on pre-training and Focalloss.
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Table 3: Offline A/B test result.

Model True False Accuracy
Previous Deployed Model 72 528 12%
Our FastAddr 522 78 87%

Impact of Focalloss. We conduct an ablation study to evaluate the
impact of Focalloss. Fig. 11(b) compares the model using Focalloss
with the model using Cross-Entropy loss. With similar AUC and
precision, the model without Focalloss has lower F0.5 and F1, which
demonstrates the importance of Focalloss in FastAddr.

4.3 Phase-2 evaluation: Offline A/B Test

To further evaluate the model performance, we conduct the phase-2
evaluation to compare FastAddr with the online deployed model
of the platform. We aim to compare the model performance on the
same set of addresses. We randomly sample 300,000 streaming ad-
dresses from the online environment and feed them into FastAddr
to get abnormal address detection results. Among 300,000 addresses,
two models have different detection results over 1,750 addresses.
We then randomly sample 600 of those addresses and evaluate them
manually. The result is shown in Table 3 where True represents
the model that makes the proper judgment, and False represents
the model that makes the wrong judgment. FastAddr (87%) outper-
forms the deployed model (12%) by 75% in detection accuracy.

4.4 Phase-3 evaluation: Online A/B Test

After offline A/B test evaluation, we compare FastAddr with the
deployed model in an online environment by designing a large-
scale A/B test. We evaluate the precision, the number of detected
abnormal addresses, and detection time over two weeks. We define
ADyqte to measure the ratio of detected abnormal addresses because
Recall cannot be calculated in the real-world environment due to
the unknown number of abnormal addresses.

1A|

———— x 100% (13)
|Al +IN|

ADrate =
where |A| is the number of detected abnormal addresses, |N| is the
number of normal addresses judged by the model. Thus, AD,4te
represents the percentage of abnormal addresses (detected by the
model) in the whole dataset.

Table 4: Online A/B test result.

Model Precision ADygte TP99
Ours  21.5% T 25% T 4ms (same)

We report the average result in Table 4. We also evaluate the
inference speed of FastAddr in the real-world environment. The
speed is quantified by a standard speed metric, 99% Top Percentile
(TP99) [30]. TP99 consists of model inference time, network delay
time, etc. The model is called thousands of times in a time window,
and 99% of model inference time is less or equal to TP99. Therefore,
a low TP99 value can ensure a fast inference speed in a real-world
environment with 99% of confidence.

4.5 Case study

Credit Card Fraud Detection. Nowadays, credit card companies
accept online applications from applicants with information such
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as an address, to represent work or home location. An essential
feature for determining the reviewing decision is the quality of
user-entered addresses because abnormal agents are utilizing ab-
normal addresses for malicious credit card overdue. Therefore, we
can apply FastAddr to detect these abnormal addresses to reduce
the potential fraud risk. We evaluate FastAddr on a dataset from
an online credit card platform and results show that FastAddr de-
tected 1,208 abnormal addresses among 120,000 addresses, i.e., 1%
detection rate ADy 4, with a precision of 99%, which demonstrates
the real-world impact of FastAddr.

5 DISCUSSIONS
5.1 Lessons learned

(i) Data-driven findings. We have two important findings from
the in-depth investigation of real-world datasets. (i) The abnormal
address problem has caused significant losses for location-based
services (Sec. 2.2.2), which is rarely investigated by existing address
and POI studies. (ii) The abnormal address problem is challenging
due to data scarcity, the detection speed requirement, and address
data complexity in developing countries (Fig. 3), which is signifi-
cantly different from addresses in developed countries.

(iii) Generalization of FastAddr. Even though FastAddr is de-
signed for location-based services, we believe it has the potential
to be generalized to other applications. Our contrastive address
augmentation approach can benefit data augmentation in various
domains such as medical data. Our lightweight abnormal detection
model can be utilized for real-time user query analysis in recom-
mender systems, which can suggest a possible query for users in
real-time if it detects an abnormal user query.

5.2 Limitations and future work

Currently, FastAddr detects abnormal addresses without detailed
location information successfully. However, FastAddr cannot ver-
ify the physical existence of an address, i.e., whether an address
truly represents a spatial location in the real world. For example,
Princeton University, Boston City is not a valid address because
there is no Princeton University in Boston. This is mainly because
FastAddr focuses on semantic information of addresses, which
does not identify untruthful POI-city mappings. In the future, we
plan to detect these addresses by combining spatial knowledge with
semantic knowledge in a spatial entity knowledge graph.

6 RELATED WORK

We organize related works into two categories.

Text data Anomaly Detection. Anomaly detection has been a
widely studied research topic for years [6, 13, 29]. Even though
the research on anomaly detection dates from decades ago and has
evolved from machine learning models to [37, 38] deep learning
models [7], the study of anomaly detection on text data has not
received enough attention. Motivated by the growing importance of
text data, a few studies have started working on anomaly detection
for text data, which were partially inspired by anomaly detection in
the computer vision community [15, 17]. Kannan et al. [22] designed
anon-negative matrix factorization method to detect text anomalies.
Ruff et al. [36] utilized a pre-trained language model and a vector
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representation of words to detect text anomalies. Such a one-class
anomaly detection model utilized a self-attention mechanism to
capture multiple modes in data to detect anomalies. Manolache et
al. proposed DATE [32], a Transformer-based model with Replaced
Mask Detection to detect anomalies in text. Meanwhile, text anom-
aly detection can also be transformed into a classification task and
solved by classification models [5, 11, 21, 23-25, 45]. These models
detected abnormal text data by outputting an anomaly score, which
represents the possibility for a sample to be abnormal.

Address and Point-of-Interest (POI). As important components
in spatio-temporal data, addresses and POIs have received lots of
research interests [9, 16, 35, 39, 41, 44, 51]. One of the most popular
research areas is next POI recommendation [9, 51]. Zhao et al. [51]
designed a Spatial-temporal Gated Network to capture the spatio-
temporal relationship between consecutive check-ins and make
the next POI recommendation. Chen et al. [9] proposed a novel
transfer model to recommend the next POI in a new city by solving
the cold-start problem. Another research direction in this area is
address and POI information inference. Ruan et al. [35] proposed
a novel method to infer delivery time in logistics. He et al. [16]
designed a location-based method to discover POI alias. To obtain
structured elements in addresses, some studies focus on the address
segmentation problem [27, 47]. Li et al. [27] studied the Chinese
address segmentation task and proposed a neural network-based
model to identify different address components.

Summary. Our work differs from previous studies in three di-
mensions. (i) We study the abnormal aspect of addresses, whereas
most existing address-related studies assume the addresses are nor-
mal. (ii) We focus on abnormal addresses and spatial-related text,
whereas most studies detect text anomalies in open domains. (iii)
We have designed an efficient and effective abnormal detection
framework for detecting abnormal addresses with constrained re-
sources and strict time requirements while most existing studies
do not consider resource limitations.

7 CONCLUSIONS

In this paper, we formulate and investigate the abnormal address
detection problem based on real-world data. We design FastAddr,
which consists of (i) a contrastive address augmentation module
to construct large-scale training data by modeling the hierarchical
structure of addresses, and (ii) a Lightweight Multi-head Attention
Model to learn both effective and efficient address representations.
Results show that FastAddr has good performance in offline exper-
iments, online comparison, and a real-world case study.
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