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ABSTRACT

Geocoding, associating textual addresses with corresponding GPS

coordinates, is vital for many location-based services (e.g., logistics,

ridesharing, and social networks). One of themost commonGeocod-

ing solutions is using commercial map services (e.g., Google Maps)

by uploading textual addresses to obtain corresponding coordinates.

However, this is typically not practical for some location-based

service providers due to real-world challenges like commercial

competition and high costs (recurring fees). In this paper, we de-

sign a new cost-effective Geocoding framework to automatically

infer the geographic coordinates from textual addresses for service

providers. To achieve this, we take the E-Commerce logistics ser-

vice as a concrete scenario and design CoMiner, an unsupervised

coordinate inference framework based on textual address data, de-

livery event data, and courier trajectory data. There are three main

components in CoMiner. (1) A POI-level clustering model by model-

ing customers’ shopping patterns at different spatial granularities;

(2) A Delivery Mobility Graph (DMG) by modeling couriers’ de-

livery events and geographic coordinates; (3) A behavior-driven

address ranking model by mining couriers’ uncertain reporting

behaviors to further infer coordinates on DMG. We extensively

verify the performance of CoMiner with a three-phase evaluation

from data-driven experiments to real-world deployment. (i) We

conduct extensive experiments on three large-scale datasets where

CoMiner achieves an average accuracy of 95.1%, which outperforms

the state-of-the-art methods by 20.3%. (ii) We deploy CoMiner in
JD Logistics, inferring coordinates for over 30 million addresses

with an average accuracy of 93.3%. (iii) We utilize CoMiner for two
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Geocoding-based applications, i.e., parcel re-routing optimization

and abnormal delivery event detection.
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1 INTRODUCTION

In recent years, location-based services have received growing

interests from both industry and academia, e.g., logistics [1, 3], E-

Commerce (e.g., Amazon, JD.COM), and on-demand services (e.g.,

UberEats and Meituan [32]). Unlike online services such as item

recommendation, location-based services consider location as an

essential factor in service designs, e.g., user-entered addresses are

needed for E-commerce parcel delivery. Therefore, Geocoding, i.e.,

accurately matching users’ textual addresses with the correspond-

ing geographic coordinates or inferring geographic coordinates

(coordinates thereafter) of textual addresses, is essential. Taking

E-commerce logistics as a concrete example, users place an order

on an E-Commerce platform, and the order parcel will be delivered

to the user-entered address within a given time. In this delivery

process, inferring accurate coordinates for users’ addresses is very

important, directly determining the delivery service’s efficiency. In-

accurate coordinates will result in dispatching a parcel to the wrong

delivery station (a city is partitioned into many delivery stations

for parcel delivery), which results in an additional parcel transfer

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3557915.3560944&domain=pdf&date_stamp=2022-11-22
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from the wrong station to the right station and then delivering it

to users. This additional transfer process is called re-routing, which

causes significant environmental and economic waste.

In industry, a common method to infer coordinates is utilizing

commercial maps’ Geocoding (GC) services, e.g., Google Maps and

Baidu Maps. Even with their convenience, commercial GC services

pose two challenges for logistics companies. (i) Low Accuracy. In

E-Commerce logistics, text addresses entered by users have some

irregular and complex formats, due to reasons such as weak reg-

ulation on address formats and urban development. Especially in

developing countries such as China and India, it is normal to have

unstructured, partially missing or ambiguous addresses [33, 35],

which greatly decreases the accuracy of commercial GC services.

Moreover, commercial GC services are further challenged in ru-

ral areas because of the address data collection hardness and data

sparsity. We further systematically evaluate the GC performance

of Gaode, Baidu, and Tencent Maps services, and the average 300-

meter GC accuracy is 80.9% nationwide, including rural areas, which

is similar to some published GC accuracy results in [34, 35]. (ii)

Considerable Cost. Although a map app user can use commercial

GC services for free, an E-Commerce platform needs to pay by

GC service request frequency. It is a considerable cost for these

platforms with millions of orders to be Geocoded. Another indus-

trial approach is building <address, coordinates> dictionary and

growing this dictionary by couriers’ reporting coordinates for new

addresses. However, the main limitation is that couriers’ reporting

coordinates have significant uncertainty, i.e., the reporting coordi-

nates are sometimes inaccurate (see Sec. 2.3).

In academia, the drawbacks of commercial GC motivate research

communities to explore other solutions, e.g., crowdsourcing [18,

26] and utilizing open-source datasets [29, 39]. In some research

works, logistics data is used for for GC-related applications [31,

33]. However, these studies either assume the delivery data is of

good quality (e.g., a high sampling rate of trajectory data) [31] or

reporting behaviors are stable [33]. These assumptions are hard

to hold in practice in a real-world scenario with large-scale low-

quality data and unreliable reporting behaviors, which may lead to

unsatisfactory performance (see Sec. 4.2).

Recently, the ubiquitous usage of GPS-enabled devices in E-

Commerce logistics has brought a great opportunity for solving the

coordinate inference problem. The delivery couriers are familiar

with a specific spatial area based on experiences, which ensures the

success of parcel delivery. Most of the time, they directly navigate

to the input textual addresses according to their experiences. More-

over, due to the commercial insurance requirement and the quality

of satisfaction improvement, couriers’ GPS trajectories are recorded

and uploaded in real time. They also need to report delivery events

(by confirming on their Personal Digital Assistant (PDA)) when

finishing delivery at users’ locations. These couriers’ behaviors pro-

vide a great opportunity for us to infer GPS coordinates. However,

inferring the coordinates for addresses from delivery trajectories is

nontrivial due to couriers’ delivery behavior variance. For example,

delivery events may be reported before the actual delivery time due

to delivery deadlines or heavy delivery tasks. (see Sec. 2.3)

To tackle the challenges mentioned above, we design CoMiner,
an unsupervised spatial coordinate mining framework, to infer the

GPS coordinates for given text addresses with low costs and high

accuracy. After an in-depth data-driven investigation of address

and POI data, CoMiner first infers coordinates for some addresses

by a POI-level clustering model. Then, to infer coordinates that

cannot be inferred by the clustering model, we design a Mobility

Graph Construction module that formulates all addresses with both

known and unknown coordinates on a graph. Based on this graph,

we design a behavior-driven ranking module to infer coordinates

for unknown addresses (coordinates are unknown) by modeling

couriers’ reporting behavior and designing a stay-point ranking

algorithm. In summary, this paper makes four contributions:

• To the best of our knowledge, CoMiner is the first nationwide,

behavior-driven coordinate inference framework for textual ad-

dresses. Specifically, we implement CoMiner based on E-commerce

logistics delivery data, i.e., delivery trajectories, delivery events,

and waybills. The design insight of CoMiner is based on large-

scale datasets with more than 120,000 professional couriers in

over 600 cities from an E-Commerce logistics platform in China.

• To address the challenge of couriers’ reporting behavior uncer-

tainty, we design an unsupervised coordinate mining model. In-

stead of clustering coordinates of addresses, we cluster at the

POI level by mining POI entities with named entity recognition

techniques. Further, to improve the inference recall, we construct

a Delivery Mobility Graph and spatial ranking model driven by

couriers’ reporting behaviors.

• Based on the evaluation over three large-scale real-world datasets,

CoMiner achieves an average accuracy of 95.1% and outperforms

state-of-the-art methods by 20.3%. Moreover, CoMiner has been

deployed at JD Logistics for six months and has inferred coor-

dinates for over 30 million addresses with an accuracy of 93.3%,
i.e., within 300m of the ground truth coordinates [33].

• We have deployed CoMiner to reduce the number of parcel re-

routings by an average of 910 every day, which saved more than

one million RMB (∼145,600 US $) for the company in one year.

Further, we design, develop, and deploy an Abnormal Delivery

Detection System in the Chinese City Hefei, which improves the

detection of abnormal delivery events by 11.6%. The detected
abnormal delivery events have been utilized for decision-making

to improve user experience on the platform.

2 BACKGROUND AND MOTIVATION

In this section, We first introduce the preliminaries and motivations

of the coordinate inference problem in the E-commerce logistics

setting. Then, we conduct data-driven investigations on real-world

datasets to show the problem’s importance and challenges.

2.1 Preliminaries and Problem Formulation

We first define address, POI, and waybill, which will be used to

describe the parcel delivery process in E-commerce logistics.

Definition 1. (Address) (𝐴𝑑𝑑𝑟 ) is created by users to describe a

physical location in a text format.

Definition 2. (Point-of-Interest) (POI) A POI represents a spa-

tial entity that interacts with citizens by providing a specific urban

function. A POI normally contains multiple 𝐴𝑑𝑑𝑟 .

Definition 3. (Waybill) is the description of an order delivery

task that created by the E-Commerce platform, which is denoted as
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DOrder = (Addr,courierID,orderID,status), where 𝑠𝑡𝑎𝑡𝑢𝑠 is an order

status (e.g., in delivery), 𝑐𝑜𝑢𝑟𝑖𝑒𝑟𝐼𝐷 and 𝑜𝑟𝑑𝑒𝑟𝐼𝐷 are the unique ID

for a courier and an user placed order, respectively.

Platform

Customer Delivery Station

2

CourierC

1 3

5 4

(a) Order Delivery Process.

Apartment

Room 101

Room 202

Room 601

POI Detailed Addresses

(b) POI and Address Relationship.

Figure 1: Delivery Process (a) and POI-Address Example (b).

A Common Parcel Delivery Process. In Fig. 1(a), we illustrate the

E-Commerce parcel delivery process, which integrates three main

stakeholders, i.e., users, couriers, and the E-Commerce platform.

The parcel delivery process consists of five steps. (1) The user places

an online order with an address on the platform, and the platform

creates a waybill (see Def. 3, containing text address, order ID,

etc.). (2) The platform infers the order destination coordinates by

Geocoding the textual address and transmits the order parcel to the

corresponding delivery station. (3) The platform assigns the waybill

to a courier. (4) The courier picks the parcel up at the delivery station

with a mobile device, i.e., PDA. (5) The courier locates the POI (see

Def. 2) and then drops the parcel off at the user’s address (see Def. 1).

The courier will carry the PDA during the delivery process and the

PDA will generate delivery trajectories (see Def. 4). The courier

will then manually report a delivery event (see Def. 5) when he/she

successfully drops the parcel off at the user’s address.

Definition 4. (Delivery Trajectory) (𝑇𝑟𝑎 𝑗𝑖𝑑 ) is a sequence of
spatial temporal points generated by a GPS-enabled device carried by

the courier while delivering parcels, denoted as𝑇𝑟𝑎 𝑗𝑖𝑑 = <𝑝1, 𝑝2, ..., 𝑝𝑖 ,
... , 𝑝𝑛>, where 𝑝𝑖 = (𝑙𝑎𝑡𝑖 ,𝑙𝑛𝑔𝑖 ,𝑡𝑖 ), representing the latitude, longitude,
timestamp, and 𝑖𝑑 is the ID of a courier.

Definition 5. (Delivery Event) (𝐷𝑒𝑙𝑖) is an action performed

by the courier when a parcel is delivered to user’s address, denoted

as 𝐷𝑒𝑙𝑖 = (𝑙𝑎𝑡, 𝑙𝑛𝑔, 𝑡, 𝑜𝑟𝑑𝑒𝑟𝐼𝐷), representing the parcel 𝑜𝑟𝑑𝑒𝑟𝐼𝐷 is

delivered at timestamp 𝑡 at location (𝑙𝑎𝑡, 𝑙𝑛𝑔).

In the parcel delivery process mentioned above, a courier deliv-

ers parcels by first locating the POI of the corresponding parcel

address. A POI can represent multiple addresses spatially close to

each other inside the POI, i.e., share similar geographic coordinates.

For example, in Fig. 1(b), an apartment is a POI, and each room in

the apartment is an address of this POI. Knowing the geographic

coordinates of the POI can satisfy the delivery task because ad-

dresses can be located by couriers with instructions and local maps

at the POI. Therefore, we focus on inferring the coordinates of POIs

to represent the coordinates of addresses, which have practical

significance in logistics delivery.

2.2 Data-driven Investigation

We first introduce the dataset used for data-driven investigations.

The multi-modal dataset is collected by JD Logistics during couriers’

parcel delivery. The data is entered by users or uploaded by couri-

ers’ PDA, which consists of three parts, i.e., delivery trajectory data,

waybill data, and delivery event data. The delivery trajectory in-

cludes key features such as latitude and longitude at corresponding

timestamps; Waybill data includes the textual address, parcel sta-

tus, and other order information; Delivery event data includes the

coordinates and timestamp when a courier reports parcel delivery.

We show an example in Table 1.

Table 1: An Example of the Multi-modal Dataset.

Delivery

Trajectory

lat lng time hours courierID

37.50 121.39 11-12 08:00:30 8 210043

Waybill
status station address time orderID

150 4203
Yantai City, Lai

Shan, Nan Park

11-12

09:30:30

110156

320198

Delivery

Event

lat lng deliveryNote time orderID

37.50 121.39 Parcel delivery
11-12

09:30:30

110156

320198

Based on the dataset, we conduct data-driven investigations

to show the importance of coordinate inference. Inaccurate coor-

dinates of the E-commerce logistics platform will lead to parcel

re-routing because of dispatching parcels to the wrong delivery sta-

tions. Such re-routing will increase couriers’ delivery distance (i.e.,

couriers need extra effort to deliver a re-routing parcel) and the plat-

form’s cost. For example, in Fig. 2(a), the number of daily re-routing

is more than 27,323 in 80% days, which costs the E-Commerce

logistics platform 4.6 million US dollars each year ($0.45/parcel
re-routing). In addition, in Fig. 2(b), we find that re-routing exists

in many cities across the country, especially in large cities (31%

of parcel re-routing is in Tier 1 cities of China, e.g., Beijing and

Shanghai), which indicates the significance of accurate coordinate

inference to reduce the economic and environmental costs.

(a) Daily Number of Re-routing. (b) Re-routing in Different Cities.

Figure 2: Parcel Re-routing Frequencies (a) and Fraction of

Re-routing among Different Tiers of Chinese Cities (b).

2.3 Challenges

However, it is not trivial to infer coordinates for addresses based

on the data in Table 1 due to the following two challenges:

(i) Data sparsity in delivery. Due to users’ shopping pattern vari-

ance (i.e., frequency), different addresses have a different number

of physical visits by couriers and thereby have a different number

of delivery-related data. Fig. 3 illustrates the number of orders for

each address in a delivery region from Jan. 2020 to Jan. 2021, where

71% of addresses have only 1 or 2 orders in one year, which leads

to a data sparsity issue to infer the coordinates of these addresses.
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Figure 3: Number of Orders

per Address in one Year.

Figure 4: Deviation between

𝐶𝑜𝑜𝑟𝐷𝑒𝑙𝑖 and true 𝐶𝑜𝑜𝑟𝑎𝑑𝑑𝑟 .

(ii) Uncertain reporting behavior. Due to the reporting behav-

ior variance of couriers, some couriers report delivery events at

the wrong places or wrong timestamps. The main reasons for the

existence of uncertain reporting behavior are two folds. Firstly,

the courier forgets to report delivery when he/she delivered the

parcel because of the heavy delivery load during peak hours. Sec-

ondly, the courier intentionally reports delivery before they deliver

the parcel for orders with strict time deadlines. This challenge is

non-trivial because we cannot correct couriers’ reporting behavior

even with the real-time uploaded trajectories and derived stay time

for reported locations, i.e., we do not know whether the reported

location is the actual location of the corresponding address. Fig.

4 shows the CDF of deviation between delivery coordinates and

the true coordinates from a delivery region. Only 50.3% of delivery

coordinates deviate from the ground truth by less than 300 meters.

Therefore, taking the GPS coordinates of delivery events as the

addresses’ true coordinates will bring a large deviation error.

In summary, motivated by the importance and challenges of the

coordinate inference problem, we aim to design a framework that

can automatically infer coordinates for large-scale textual addresses

considering both data sparsity and uncertainty.

3 COMINER DESIGN

Fig. 5 describes the coordinate inference process based on three

key components, i.e., (i) A POI-Level Clustering module (Sec. 3.1)

takes couriers’ reported coordinates with corresponding addresses

as input, and infers addresses’ true coordinates based on coordinate

clustering. This clustering model can only infer coordinates for

partial addresses due to the data sparsity issue. Thus, we then

design a (ii) Mobility Graph Construction module (Sec. 3.2) that

uses addresses as nodes and couriers’ address visiting as edges to

organize both known addresses (coordinates have been inferred)

and unknown addresses (coordinates to be inferred) in the same

graph. Based on the constructed graph, we design a (iii) Behavior-

Driven Address Ranking module (Sec. 3.3) to infer coordinates for

unknown addresses considering couriers’ reporting behaviors.

3.1 POI-Level Clustering Model

In this subsection, we introduce the POI-level clustering model.

Specifically, we compare address-level clustering with POI-level

clustering and design a density-based clustering model based on

POIs identified from textual addresses.

Address-Level Clustering. Intuitively, each address has multiple

delivery coordinates 𝐶𝑜𝑜𝑟𝐷𝑒𝑙𝑖1 , ...,𝐶𝑜𝑜𝑟𝐷𝑒𝑙𝑖𝑛 generated by couriers

after delivering parcels at the address. A straightforward method is

to cluster these delivery coordinates and the center of the cluster

Figure 5: Framework of CoMiner.

is the inferred coordinate for an address. However, as in Fig. 3,

most addresses have a limited number of delivery coordinates. This

data sparsity challenge will decrease the performance of coordinate

inference, i.e., the clustering-based model will not generate a cluster

representing the address coordinates with high confidence.

Figure 6: Number of Orders.

POI-Level Clustering. Com-

pared with the address, a POI

has more orders and visits

because each POI has multi-

ple associated addresses (see

Sec. 2.1). We further compare

users’ shopping pattern of

POI level with address level

and have an important find-

ing as in Fig. 6: 80% of POIs have more than three times of orders

than addresses, i.e., more delivery visits by couriers. Therefore, the

POI-level clustering model will bring better performance and solve

the data sparsity challenge. Based on this data-driven finding, we

design a POI-level clustering method for coordinate inference and

the inferred coordinates will be assigned to addresses in the POI.

However, it is not feasible to extract POIs from addresses using

rule-based models due to the complexity of the Chinese addresses.

To solve this problem, we formulate POI identification as a se-

quence labeling task, and design POI-NER, a Named Entity Recog-

nition (NER) model to tag POIs in addresses. The POI-NER model

consists of three LSTM layers and a Conditional Random Field

(CRF) layer based on a popular model [17, 19]. Even though there

are lots of public NER datasets and models, we cannot directly apply

them to our problem because the component of textual address is

significantly different from general text data such as Wikipedia.

Thus, we investigate the components of addresses and design six

types of labels, i.e., PROVINCE, CITY, DISTRICT, ROAD, POI, O (oral

language). The POI-NER model is trained by maximizing the condi-

tional log-likelihood as in Eqn. (1).

𝜃𝑝 = argmax
𝜃 ′
𝑝

𝑁∑

𝑖=1

(𝑦𝑖 |𝑤𝑖 , 𝜃
′
𝑝 ) (1)

where 𝜃 ′𝑝 represents all trainable parameters in POI-NER, 𝑁 is the

number of training addresses,𝑤𝑖 is a sequence of words in the 𝑖𝑡ℎ
address, 𝑦𝑖 is the corresponding label sequence for𝑤𝑖 . Given a new

address, the POI-NER labels and extracts POIs based on Eqn. (2),

where 𝑦 is the predicted label sequence for𝑤 . For example, 𝑦 = ["B-

PROVINCE", "I-PROVINCE", "B-CITY", ..., "B-POI", "I-POI", ...], where

B-POI represents the word is the beginning of a POI entity", I-POI
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represents the word is inside a POI entity.

𝑦 = argmax
𝑦

𝑝 (𝑦 |𝑤, 𝜃𝑝 ) (2)

After the POIs are identified by the POI-NERmodel, we construct

a POI-coordinate dictionary for POI-level clustering. The key is

POI and the value is the set of delivery coordinates generated by

couriers when dropping parcels off at the POI. Intuitively, couriers

normally deliver parcels at a fixed location of each POI, and the

location with dense delivery coordinates has a higher probability

to be the true location of a POI. Thus, we apply the density-based

model DBSCAN [11] to cluster the coordinates. DBSCAN generates

multiple clusters for each POI by clustering its delivery coordinates.

The average coordinates of all points in the densest cluster (i.e.,

with the maximum number of points) are assigned as the POI’s

coordinate, and assigned as the coordinate for all addresses inside

of the POI. The DBSCAN distance threshold 𝜖 is 0.0003 degrees and

the minimum number of points in a cluster is 5.

3.2 Mobility Graph Construction

Even though the POI-level clustering model can infer coordinates

for POIs and addresses with high precision, it will fail for two

scenarios: (i) Only a few orders are delivered at a POI in a period

of time because reasons such as the user uses aliases (different

names) of POI or the POI is of small scale, e.g., a convenience store;

(ii) Many orders are delivered at a POI but most of the delivery

coordinates significantly deviate from each other and thereby a

dense cluster cannot be generated by the clustering model, i.e.,

coordinates cannot be inferred. Thus, we need another module

to infer coordinates for addresses that cannot be inferred by the

POI-clustering model (remaining coordinates).

Intuition for Remaining Coordinate Inference. To fill this gap,

as in Fig. 7, we consider a delivery sequence <𝐷𝑒𝑙𝑖𝐴, 𝐷𝑒𝑙𝑖𝐵, 𝐷𝑒𝑙𝑖𝐶>
at addresses <𝐴, 𝐵,𝐶> with increasing delivery time. We categorize

the pattern of delivery sequences into three classes. (1)𝐷𝑒𝑙𝑖𝐴, 𝐷𝑒𝑙𝑖𝐶
are normal delivery events. (2) Only one of 𝐷𝑒𝑙𝑖𝐴 and 𝐷𝑒𝑙𝑖𝐶 is a

normal delivery event. (3) Both 𝐷𝑒𝑙𝑖𝐴 and 𝐷𝑒𝑙𝑖𝐶 are abnormal

delivery events. The abnormal and normal delivery events are de-

fined in Def. 6. Intuitively, the courier delivers parcels one by one

and reports delivery events following the parcel delivery sequence.

Therefore, we can infer the coordinates of 𝐵 if the delivery events

at 𝐴 and 𝐶 are normal (class (1)) because 𝐵 lies on the delivery

trajectory between 𝐴 and 𝐶 . As a result, by utilizing this certain

pattern of couriers’ delivery behavior, we can infer the coordinate

for 𝐵, which cannot be inferred by the POI-level clustering model.

Note that, even though the delivery events at 𝐴 and𝐶 might not be

normal delivery events (class (2) or (3)), we can still identify a class

(1) delivery sequence on other days because address 𝐵 normally

has a few orders in a year.

Definition 6. (Abnormal/Normal delivery event) A delivery

event is abnormal if dist(𝐶𝑜𝑜𝑟𝐷𝑒𝑙𝑖 ,𝐶𝑜𝑜𝑟𝐴𝑑𝑑𝑟 ) > Δ𝑑 , i.e., the distance
between the reported delivery coordinates 𝐶𝑜𝑜𝑟𝐷𝑒𝑙𝑖 and the true co-

ordinates 𝐶𝑜𝑜𝑟𝐴𝑑𝑑𝑟 (groundtruth) is greater than a threshold Δ𝑑 . A
delivery event is normal if dist(𝐶𝑜𝑜𝑟𝐷𝑒𝑙𝑖 ,𝐶𝑜𝑜𝑟𝐴𝑑𝑑𝑟 ) < Δ𝑑 .

Based on the above intuition, we design a delivery mobility

graph. The courier visits a group of addresses for parcel delivery

A C

B
Unknown address (w/o coordinate)

known address (with coordinate)

Figure 7: Delivery Sequence Illustration.

each day starting from the delivery station. The visiting addresses

and the visiting sequences among addresses vary on different days.

Therefore, the courier’s mobility trace between addresses can be

considered as a time-varying graph (TVG) [8], which is defined as

Delivery Mobility Graph.

Definition 7. (Delivery Mobility Graph (DMG)) A 𝐷𝑀𝐺 is

represented by 𝐷𝑀𝐺 = (𝑉 , 𝐸), where 𝑉 is a set of nodes 𝑣1, 𝑣2, ..., 𝑣𝑛 ,
each node represents an address with corresponding delivery time,

and E = {(𝑣, 𝑣 ′) | (𝑣, 𝑣 ′) ∈ 𝑉 ×𝑉 } is a set of directed edges from 𝑣 to
𝑣 ′, each edge represents a courier’s move from node 𝑣 to node 𝑣 ′.

We describe the 𝐷𝑀𝐺 construction process in detail. Based on

the POI-level clustering model, some addresses’ coordinates have

been inferred (known addresses). Thus, for each node in 𝐷𝑀𝐺 , we

have three features, i.e., a flag representing an address is known or

unknown, true coordinates, and reported coordinates by couriers.

Given delivery events, trajectories, addresses, and time interval

threshold Δ𝑇 , we add the edge from the delivery station to the

first visited node 𝑉 [1]. Then, we iterate through all visited nodes

and add an edge if the duration between two visits is less than Δ𝑇 .
Nodes with a duration longer than Δ𝑇 will terminate the graph

construction process because nodes are visited by couriers in two

delivery trips (delivery trip is the courier’s delivery process without

returning back to the delivery station), e.g., in the morning and

afternoon, respectively. We construct 𝐷𝑀𝐺 for each delivery trip.

Note that, the 𝐷𝑀𝐺 is a linked list if all addresses in a delivery trip

are only visited once, which is a special case of the graph.

Now we have both known addresses (with true coordinates) and

unknown addresses (with couriers’ reporting coordinates), the de-

livery trajectories connecting known and unknown addresses, the

true coordinates of unknown addresses is on the trajectories. In

the next step, we design a ranking model to infer coordinates of

remaining unknown addresses based on the constructed Delivery

Mobility Graph (𝐷𝑀𝐺) and couriers’ reporting behavior.

3.3 Behavior-Driven Ranking Model

As in Fig. 8, our ranking model has four steps: (i) candidate stay

point generation, (ii) semantic representation of stay points, (iii)

stay point ranking, and (iv) address coordinates generation.

Address 
Database

= 0.92

= 0.83

= 0.76

Target address:
B

(i) (iii)(ii) (iv)

coordinate

1

2

3

2

1

3

2

1

2

3

1 32

Figure 8: Behavior-Driven Ranking Model.

Intuition. Even though couriers’ reporting behavior is uncertain,

we identify a regular pattern under the uncertain behaviors. A
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courier reports delivery events according to the consecutive de-

livery sequences, i.e., the order of reporting is consistent with the

order of actual delivery. Therefore, we can probably address the re-

porting uncertainty challenge by utilizing the coordinates of known

addresses and delivery sequences on the Delivery Mobility Graph.

Candidate Stay Point Generation. The step (i) in Fig. 8 illustrates

the process of candidate delivery sequence generation from the

𝐷𝑀𝐺 , and the candidate stay points ( 1© 2© 3© in Fig. 8) generation

process based on delivery sequences. On the 𝐷𝑀𝐺 , we represent all

nodes with unknown coordinates as 𝐵 and nodes with known coor-

dinates as 𝐴 (if 𝐴𝑡 < 𝐵𝑡 ) or 𝐶 (if 𝐵𝑡 < 𝐶𝑡 ). The objective is to infer

the coordinates of 𝐵 (𝐵𝑐𝑜𝑜𝑟 ) by utilizing𝐴 and𝐶 . For each unknown
node 𝐵, we first perform a graph search to obtain candidate de-

livery sequences (𝐷𝑒𝑙𝑖𝑠𝑒𝑞 )
{
..., < 𝐷𝑒𝑙𝑖𝐴𝑖 , 𝐷𝑒𝑙𝑖𝐵, 𝐷𝑒𝑙𝑖𝐶𝑖 >, ...

}
under

the time interval constraint Δ𝑡 , i.e., the duration of <𝐷𝑒𝑙𝑖𝐴𝑖 ,𝑆𝑒𝑙𝑖𝐵>
and <𝐷𝑒𝑙𝑖𝐵 ,𝑆𝑒𝑙𝑖𝐶𝑖> is less than Δ𝑡 .

We then detect candidate stay points (i.e., a group of consecutive

points in a trajectory that generated during a stay of amoving object at

a location) on the delivery sequences between𝐴𝑖 and𝐶𝑖 as shown in

step (i) of Fig. 8. Intuitively, the courier will stay for some time when

he/she visits an address for parcel delivery, which will potentially

generate stay points. The coordinates of textual addresses have a

high probability to be close to one of these stay points. Thus, we can

detect couriers’ stay points from trajectories and infer addresses’

coordinates by selecting the best stay point, which is more efficient

and effective than selecting the best GPS point in trajectories.

Fig. 9 introduces the candidate stay point generation process on

delivery sequences. Specifically, stay points between 𝐴𝑖 and 𝐶𝑖 of

all sequences in 𝐷𝑒𝑙𝑖𝑠𝑒𝑞 are detected by applying the stay point

detection algorithm [22], such as 𝑆𝑃1 and 𝑆𝑃2 in Fig. 9(a). Then,

Fig. 9(b) illustrates the candidate stay points generation process by

calculating the spatially shared stay points 𝑆𝑝𝑜𝑖𝑛𝑡𝑠 for all <𝐴𝑖 , 𝐵,𝐶𝑖>

sequences, i.e., 𝐵 appears in many delivery sequences on the 𝐷𝑀𝐺
and thereby the shared stay points have higher probabilities to

contain address 𝐵. For example, 𝑆𝑃1 and 𝑆𝑃2 are detected as candi-

date stay points for address 𝐵 because they are both in <𝐴1, 𝐵,𝐶1>

and <𝐴2, 𝐵,𝐶2>. All stay points will be candidates if no shared stay

points in <𝐴𝑖 , 𝐵,𝐶𝑖>. Note that not all candidate stay points are

caused by the delivery and can represent addresses’ coordinates

because couriers’ other activities such as waiting for traffic lights or

jams also generate stay points. Thus, the problem is re-formulated

as how to design a model F to select the best stay point 𝑆𝑏𝑒𝑠𝑡
among 𝑆𝑝𝑜𝑖𝑛𝑡𝑠 to represent the 𝐵’s coordinates 𝐵𝑐𝑜𝑜𝑟 :

𝐵𝑐𝑜𝑜𝑟 = F ([ 𝑆𝑃𝑖 |𝑆𝑃𝑖 ∈ 𝑆𝑝𝑜𝑖𝑛𝑡𝑠 ]) (3)

Address: A Address: 

Address: 

(a) Stay point detection in trajectories (b) Candidate stay point generation

shared stay points for 

Figure 9: Illustration of Candidate Stay Point Generation.

Stay Point Ranking.We aim to represent the coordinates of ad-

dress 𝐵 by the stay point that contains 𝐵 through a ranking model.

Table 2: Address Similarity Example.

𝐵 Xi’an City, Yanta District, Jinshui Tower Health Club

𝐵′ in 𝑆𝑃𝑘 Xi’an City, Yanta District, Jinshui Building

However, there is no information to measure the similarity be-

tween stay points and unknown addresses, which makes the rank-

ing model not trivial. The POI-level clustering model has inferred

coordinates for some addresses and constructed the <address, coor-

dinates> database, which can potentially provide similarity infor-

mation for stay points. Thus, as the step (ii) in Fig. 8, we query the

database with center coordinates of stay points and get addresses

near stay points to get 𝑆 ′𝑝𝑜𝑖𝑛𝑡𝑠 , which contains nearby textual ad-

dress information and can be used to calculate similarities. For

example, Table 2 introduces an unknown address 𝐵 (a club) and a

similar address 𝐵′ (a building containing the club) in a candidate

stay point 𝑆𝑃𝑘 . We aim to rank 𝑆𝑃𝑘 as the top one stay point and

assign 𝑆𝑃𝑘 ’s coordinates to 𝐵.
To rank all stay points in 𝑆 ′𝑝𝑜𝑖𝑛𝑡𝑠 with low computational cost, we

design a ranking model based on the longest common subsequence

detection. As shown in the step (iii) of Fig. 8, we compute the

longest contiguous subsequence between target address 𝐵 with

each address in all stay points to represent the similarity, i.e., a

longer subsequence means a higher similarity score between 𝐵 and

the corresponding stay point. Then, the stay points in 𝑆 ′𝑝𝑜𝑖𝑛𝑡𝑠 are

ranked according to their similarity scores, and the coordinates of

the stay point with the highest similarity score will be assigned to

𝐵 as shown in step (iv) of Fig. 8.

4 EVALUATION

In this section, we introduce the evaluation setup followed by an

extensive evaluation of CoMiner compared with baseline models.

We also introduce real-world deployment and two applications.

4.1 Evaluation Setup

Evaluation Dataset. To evaluate CoMiner, we utilize three real-
world delivery datasets from JD Logistics, which cover three deliv-

ery regions in Hefei, Beijing, and Anqing city, respectively. These

datasets have 313,026 addresses with labeled coordinates, one-year

delivery events, trajectories, and waybills of 88 couriers from Jan.

2020 to Jan. 2021. The delivery-related data is collected when the

courier is delivering parcels. The ground truth coordinates are

labeled by domain experts utilizing multi-source data, e.g., POI

boundary data, map data, and platform transaction data.

Evaluation Baselines.

• DeliEvent assigns the delivery coordinate to the address by as-

suming the delivery event is accurate.

• TextMatch [25] calculates the similarity between a given address

with all addresses in the same region. The coordinate of the

candidate with the highest similarity score is assigned as the

coordinate for the given address.

• GeoCloud [33] utilizes delivery data to infer coordinates for cus-

tomers’ addresses. A cluster-based method is proposed for coor-

dinate inference.
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Table 3: Baseline Comparison for Accuracy and Recall.

Model
Hefei Beijing Anqing

Acc(%) R(%) Acc(%) R(%) Acc(%) R(%)

DeliEvent 65.7 100 58.3 100 70.8 100

TextMatch[25] 62.5 88.2 75.9 82.7 71.3 78.8

GeoCloud[33] 92.2 39.0 96.8 69.4 92.6 45.4

DTInf[31] 77.0 100 74.0 100 73.3 100

CoMinerAVG 57.7 98.4 74.0 95.8 65.3 97.1

CoMiner- 90.1 100 96.6 100 91.9 100

CoMiner 93.1 85.9 97.3 91.4 95.0 84.5
* Acc refers to 300m Accuracy, R refers to Recall.

• DTInf [31] is originally designed for delivery time inference from

the delivery trajectory in logistics. It is also able to infer the GPS

coordinates for addresses based on delivery trajectories.

• CoMinerAVG calculates the average coordinate of 𝐴 and𝐶 in the

delivery sequence < 𝐴, 𝐵,𝐶 > and assigns it to 𝐵.
• CoMiner- is a variant of CoMiner (i.e., CoMiner-), where all co-
ordinates can be inferred. For the coordinates that cannot be

inferred by CoMiner, we apply address matching via computing

textual similarity with already inferred addresses.

Evaluation Metrics.We evaluate all models by accuracy (𝐴𝑐𝑐) and
recall (𝑅𝑒𝑐𝑎𝑙𝑙 ). 𝐴𝑐𝑐 of 𝑖-meter is the fraction of inferred coordinates

with a deviation error less than 𝑖-meter to the true coordinate.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑛
𝑁 , where 𝑛 is the number of addresses with coordinates

inferred successfully, and 𝑁 is the number of total addresses. There

is a trade-off between𝐴𝑐𝑐 and 𝑅𝑒𝑐𝑎𝑙𝑙 for similarity or cluster-based

models, e.g., the improvement of 𝐴𝑐𝑐 by increasing the similarity

threshold would decrease the 𝑅𝑒𝑐𝑎𝑙𝑙 .

EvaluationGranularity.We investigate the𝐴𝑐𝑐 and𝑅𝑒𝑐𝑎𝑙𝑙 on five
granularities, i.e., 100m (100-meter), 200m, 300m, 500m, and 1000m.

We mainly focus on 300m to compare different models following

the common industrial standard [33]. The experimental result is

for 300m by default if there is no specific description.

4.2 Data-driven Offline Evaluation

In this subsection, we describe the offline evaluation results and

investigate the impact of multiple factors on the model performance.

Overall Performance. From the evaluation results in Table 3,

we conclude several important findings: (i) CoMiner achieves the
highest 𝐴𝑐𝑐 and competitive 𝑅𝑒𝑐𝑎𝑙𝑙 over all cities. Even though

𝐺𝑒𝑜𝐶𝑙𝑜𝑢𝑑 [33] achieves a similar high 𝐴𝑐𝑐 , it has a low 𝑅𝑒𝑐𝑎𝑙𝑙
of 47.3% compared with our result (84.5%). The main reason is

that some coordinates cannot be inferred because of the uncertain

number of visits, i.e., some addresses’ have few orders and thus

the coordinates cannot be clustered and inferred. (ii) CoMiner’s
variance CoMiner- achieves 100% of 𝑅𝑒𝑐𝑎𝑙𝑙 and high 𝐴𝑐𝑐 . CoMiner-
has significantly higher 𝐴𝑐𝑐 than the other two models 𝐷𝑒𝑙𝑖𝐸𝑣𝑒𝑛𝑡
and 𝐷𝑇𝐼𝑛𝑓 , which also have 100% of 𝑅𝑒𝑐𝑎𝑙𝑙 . In detail, it is not

surprising that 𝐷𝑒𝑙𝑖𝐸𝑣𝑒𝑛𝑡 has low 𝐴𝑐𝑐 due to couriers’ uncertain

reporting behavior. The main reason for the low𝐴𝑐𝑐 of TextMatch is

the complex characteristics of Chinese addresses, i.e., two addresses

have high textual similarity but are geographically far from each

other. 𝐷𝑇𝐼𝑛𝑓 first infers coordinates based on delivery caused stay

points and then applies a hierarchical cluster model to refine the

inferred coordinates. The loss of𝐴𝑐𝑐 is mainly caused by the highly

uncertain characteristics of delivery data, e.g., couriers only have a

short stay time at some addresses.

There are two main reasons for the loss of 𝑅𝑒𝑐𝑎𝑙𝑙 of CoMiner, i.e.,
some addresses’ coordinates are not successfully inferred (14.1% in

Hefei, 8.6% in Beijing, and 15.5% in Anqing City, respectively.) (i)

Delivery trajectories collected from the real world are not consis-

tently of high quality. As a result, the stay point cannot be detected

in sparse trajectory segments. (ii) The inference will also fail when

there is no consecutive delivery sequence <𝐴, 𝐵,𝐶> extracted from

Delivery Mobility Graph given the time interval Δ𝑡 . For example,

when 𝐵 is the first or last delivery location in the delivery process.

However, we can easily extend CoMiner to CoMiner- for scenarios
where 𝑅𝑒𝑐𝑎𝑙𝑙 is the priority.

Performance of POI-Level Clustering Model. Fig. 10(a) and

10(b) show the 𝐴𝑐𝑐 and 𝑅𝑒𝑐𝑎𝑙𝑙 of POI-level and Address-level clus-

tering models, respectively. With the increase of distance granu-

larity, the POI-level model slightly outperforms the address-level

model even though both of them achieve high 𝐴𝑐𝑐 . The reason is

that at the POI level, more delivery coordinates are considered in

the clustering process, which leads to higher 𝐴𝑐𝑐 . Fig. 10(b) shows
that the 𝑅𝑒𝑐𝑎𝑙𝑙 of the POI-level cluster model is significantly higher

than the Address-level model (26.3%∼52.8%), which is because we

can identify more addresses at the POI level due to more delivery

visits to a POI than to an address in the POI.

Impact of City onRankingModel. Fig. 10(c) illustrates the model

robustness by comparing the results in three cities. CoMiner shows
similar performance even though the areas and geographic char-

acteristics of the three cities significantly differ from each other

(e.g., different traffic conditions). The 300m 𝐴𝑐𝑐 across three cities
ranges from 90.8% to 97%. The 𝑅𝑒𝑐𝑎𝑙𝑙 varies from 67.7% to 79.7%.
Hefei has the highest 𝑅𝑒𝑐𝑎𝑙𝑙 , which is consistent with Fig. 11(d). The
main reason might be that Hefei city has a higher ratio of accurate

delivery events, which increases the number of delivery sequences

and brings higher 𝑟𝑒𝑐𝑎𝑙𝑙 . We can also observe that even though

there are potentially more GPS drifts causing GPS inaccuracy in big

cities such as Beijing, CoMiner still has consistent performance over

three cities, which demonstrates the robustness of our clustering

and behavior-driven ranking algorithm.

Impact of Distance Granularity on Ranking Model. Even

though 300m 𝐴𝑐𝑐 is the most important metric, we are also in-

terested in how CoMiner performs with different distance granu-

larities, i.e., 100m∼1000m. As shown in Fig. 10(d), the 𝐴𝑐𝑐 increases
with the distance granularity. CoMiner yields a 300m 𝐴𝑐𝑐 higher

than 90.8% on all stations. 100m 𝐴𝑐𝑐 ranges from 45.2% to 49.7%
(not plotted in Fig. 11 due to space constraint). The main reason for

the low 100m 𝐴𝑐𝑐 lies in two folds: (i) A POI (e.g., school) can cover

a large area and the distance between the POI center to its bound-

ary is more than 100-meter, which would significantly decrease the

average 100m 𝐴𝑐𝑐 . (ii) GPS coordinates could shift away from the

true locations in areas with tall buildings.

Impact of Time Interval onRankingModel.We investigate how

time interval Δ𝑡 , a hyper-parameter to extract delivery sequences,

impacts 𝐴𝑐𝑐 and 𝑅𝑒𝑐𝑎𝑙𝑙 . Intuitively, a smaller Δ𝑡 brings fewer co-
ordinate candidates and thereby leading to higher 𝐴𝑐𝑐 and lower
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(a) POI-Address Level Accuracy. (b) POI-Address Level Recall. (c) Accuracy and Recall. (d) Different Distances.

Figure 10: (a) (b) POI-Address Level Comparison. (c) (d) Performance of CoMiner on 3 Stations.

𝑅𝑒𝑐𝑎𝑙𝑙 . We present the impact of Δ𝑡 to𝐴𝑐𝑐 in Figs. 11(a), 11(b), 11(c),

and to 𝑅𝑒𝑐𝑎𝑙𝑙 in Fig. 11(d). We note that with the increase of Δ𝑡 ,
200m𝐴𝑐𝑐 drops significantly while 300m, 500m, and 1000m𝐴𝑐𝑐 are
relatively stable. The main reason is that the inferred coordinates

already have high 𝐴𝑐𝑐 at 300m, 500m, and 1000m, and thereby will

not have a significant increase with Δ𝑡 . In Fig. 11(d), 𝑅𝑒𝑐𝑎𝑙𝑙 of all
datasets increases with Δ𝑡 , which is because larger Δ𝑡 leads to more

inferred coordinates, i.e., higher 𝑅𝑒𝑐𝑎𝑙𝑙 .

4.3 Online Deployment and Applications

In this subsection, we introduce the online deployment and two

downstream applications of CoMiner. One technical metric and

two business metrics are designed to measure the framework per-

formance. Since geographic coordinates are one of the key data

elements in location-based services, the company we work with has

a strong incentive to infer accurate coordinates for addresses and

POIs to enable various downstream applications, e.g., re-routing

reduction, and abnormal delivery event detection.

Deployment Setup. We adapt a two-phase deployment mecha-

nism, i.e., first, deploy CoMiner at Beijing City, and then deploy

CoMiner to the whole nation if the online𝐴𝑐𝑐 satisfies the threshold
(>90%). To enable streaming coordinate inference, we decompose

our framework into two modules: (i) the data preprocessing module,

which is responsible for data acquisition from the company’s big

data platform and data preprocessing; (ii) the coordinate inference

module, which is for coordinate inference and saving the mined

results into the cloud database. These two modules are deployed in

the company’s cloud server to work simultaneously in a streaming

manner. The server is equipped with Intel(R) Xeon(R) CPU E5-2640

v4 @ 2.40GHz, 8 cores, 80GB RAM with Python 3.6.

Evaluation 1 (technical metric): DeployedModel Accuracy. To

evaluate the online performance of our model, we randomly sample

addresses with inferred coordinates from the database to manually

evaluate the 300m 𝐴𝑐𝑐 in two deployment phases. In phase 1, we

randomly sample and evaluate 1000 addresses after one week’s

deployment and achieve 94.5% of 𝐴𝑐𝑐 . In phase 2, we randomly

sample and evaluate 1000 addresses twice and achieve 𝐴𝑐𝑐 of 92.3%
and 93.1%, respectively.

Evaluation 2 (business metric): Re-Routing Reduction. The

number of abnormal parcel re-routing is an important business

metric to evaluate the company’s order dispatching system because

re-routing has caused great loss to the company (money cost), couri-

ers (extra delivery distance), and users (extra parcel waiting time).

Based on CoMiner, we update the company’s order dispatching sys-

tem with addresses and inferred coordinates. We conduct an online

A/B test to evaluate the performance of the new order dispatching

system in terms of the daily re-routing number. As the result in Fig.

12(a), we witness an average of 910 re-routing reductions every day

(i.e., 3.3% of all the parcel re-routings) from August 1st to 31st, 2021,

which will lead to an annual loss reduction of about one million

RMB (i.e., 2.9 RMB per re-routing on average).

Evaluation 3 (business metric): Abnormal Delivery Event

Detection. The abnormal delivery event in last-mile delivery hurts

the user experience because the user would feel cheated when

he/she receives a notification "Your parcel is delivered" while waiting

for the parcel. Therefore, another important business metric is the

detection rate of abnormal delivery events. We develop and deploy

a CoMiner-based abnormal delivery detection system in a Chinese

city, Hefei, with 12 delivery regions and more than 200 couriers. For

privacy protection, our system is designed to evaluate the abnormal

delivery rate at the aggregate level (i.e., delivery region) rather than

at the courier level. Fig. 12(b) illustrates the detection result from

July 19th, 2021 to July 25th, 2021 with an average detection rate

of 11.6%. Our system can detect 60,500 and 22 million abnormal

delivery events in one day and one year in Hefei city, respectively.

The detection result has been utilized for the company’s decision-

making to improve user experience, e.g., giving extra bonuses for

delivery regions with lower abnormal delivery rates.

5 DISCUSSION

5.1 Lessons Learned

• Data-Driven Findings. We have two new findings based on

the study of delivery data. (i) The commonly used commercial

maps do not perform well for complex and large-scale Chinese

shipping addresses. (ii) Some couriers tend to report delivery

earlier than real delivery while some tend to report later, even

though they are supposed to report delivery accurately in the

design of the delivery system (Fig. 4).

• Impact of Human Behavior to Online-to-Offline (O2O) Sys-

temDesign. In the real world, due to uncertain physical elements

such as weather and delivery task workload, human behavior

might differ from the system designer’s expectation. Considering

such human behavior in system design will benefit the system’s

performance. Bymodeling couriers’ uncertain reporting behavior,

the coordinate inference performance is significantly improved

compared with baseline models (Table 3).
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(a) Accuracy of the Hefei City. (b) Accuracy of the Beijing City. (c) Accuracy of the Anqing City. (d) Recall of the three Cities.

Figure 11: Impact of Time Interval on Accuracy and Recall of the Ranking Model.

(a) Reduction of Re-Routing. (b) Detection Rate.

Figure 12: Re-Routing Reduction (a) and Abnormal Delivery

Event Detection (b).

5.2 Privacy Protection

We take four concrete steps to protect user privacy in the data

used in this study. (i) The data is collected only during work hours

under the consent of couriers for purposes of parcel insurance

and academic research, etc. (ii) The couriers can turn off the GPS

module at any time to stop uploading trajectory data. (iii) All user

identifiers are removed or replaced with a random number. (iv) The

data is only accessed by the core team members who have signed

non-disclosure agreements of the data.

6 RELATED WORK

Our study focuses on automatically inferring GPS coordinates for

given addresses. We categorize the related work into two categories,

i.e., Geocoding (GC) and trajectory data mining.

Geocoding (GC). Geocoding, which associates texts with geo-

graphic coordinates, has been widely studied in recent years. One

group of GC work requires no extra effort but cannot update new

information timely [6, 20, 28, 29, 37, 39]. These studies utilize open-

source datasets and machine learning models to build local GC

services or to improve GC algorithms. Even with the advantage of

economic and low privacy concerns, they suffer from low recall

and not being able to update POI or address information. Kulkarni

et al. [20] propose a multi-level geocoding model(MLG) to map

text into geographic coordinates on three public English datasets.

Chatterjee et al. [9] utilize map data as the reference data source

for GC. One kind of GC service that can timely update new address

data is the commercial GC service such as Baidu Map [2]. These

services require extensive extra labor and devices (e.g., street view

cars) for collecting and updating new POIs and addresses. There

are also open-source GC systems [4, 5] that are free to use, but with

the limitation of being inaccurate [43].

Thus, the ideal GC service is economic, accurate, and fast. Sri-

vastava et al. [33] utilize E-Commerce delivery data in India to

build a GC service. This paper assumes lots of delivery events for

each location and applies DBSCAN [11] to obtain GPS coordinates.

However, their method is not suitable for our scenario since some

addresses have very few delivery events. In on-demand delivery,

Song et al. [32] propose an image-based method for POI location

correction where the data is collected fromworkers’ phones and has

good quality, which is different from the logistics scenario. Ruan et

al. [31] propose DTInf to infer delivery time and can be applied to

infer delivery coordinates automatically from delivery trajectories.

Even with a high recall, DTInf suffers from low accuracy when the

trajectory is of low quality or when couriers’ reporting behavior is

highly uncertain. These studies do not consider human behavior

uncertainty in data collection and algorithm design, thereby can

hardly achieve ideal performance at scale.

Trajectory Data Mining. Trajectory data mining focuses on pre-

processing, managing, mining valuable knowledge, and design

novel applications from trajectory data [7, 12–16, 24, 38, 40, 41,

44, 45]. Trajectory data preprocessing and managing have received

much research interest in recent years. Tong et al. [36] propose

a model to reconstruct vehicle trajectory based on mobility cor-

relation and vision analysis. Ruan et al. [30] propose DeppMG to

generate urban maps based on large-scale noisy trajectories. Li et

al. [23] design a holistic distributed NoSQL trajectory data manage-

ment framework to handle spatio-temporal data. Trajectory data

benefits many applications. Nair et al. [27] categorize cycling trip

GPS trajectories to understand urban cyclist behaviors. Based on

vehicle trajectories, Li et al. [21] propose a deep learning model to

predict urban traffic flow. Trajectory also has important applica-

tions in business. Zhang et al. [42] study the problem of billboard

placement based on trajectory analysis. Unlike outdoor trajecto-

ries, Das et al. [10] collect indoor occupant moving trajectories

to predict future trajectory in a room. Unlike existing trajectory

mining studies, our work investigates uncertain human behavior

in E-commerce parcel delivery and combines natural language pro-

cessing with trajectory mining to design a coordinate inference

model for large industrial applications.

7 CONCLUSION

In this work, we focus on the problem of automatically inferring

GPS coordinates for textual addresses. Motivated by users’ shop-

ping patterns and couriers’ reporting behaviors, we design CoMiner,
a cost-efficient behavior-driven unsupervised coordinate mining

framework. We implement CoMiner on a large-scale dataset from

three Chinese cities, and the results show that CoMiner achieves
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95.1% of inference accuracy. We then deploy CoMiner in JD Lo-

gistics, and it has inferred coordinates for more than 30 million

addresses in six months. Further, CoMiner benefits two business

applications, i.e., parcel re-routing reduction and abnormal delivery

event detection.
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