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ABSTRACT

Geocoding, associating textual addresses with corresponding GPS
coordinates, is vital for many location-based services (e.g., logistics,
ridesharing, and social networks). One of the most common Geocod-
ing solutions is using commercial map services (e.g., Google Maps)
by uploading textual addresses to obtain corresponding coordinates.
However, this is typically not practical for some location-based
service providers due to real-world challenges like commercial
competition and high costs (recurring fees). In this paper, we de-
sign a new cost-effective Geocoding framework to automatically
infer the geographic coordinates from textual addresses for service
providers. To achieve this, we take the E-Commerce logistics ser-
vice as a concrete scenario and design CoMiner, an unsupervised
coordinate inference framework based on textual address data, de-
livery event data, and courier trajectory data. There are three main
components in CoMiner. (1) A POI-level clustering model by model-
ing customers’ shopping patterns at different spatial granularities;
(2) A Delivery Mobility Graph (DMG) by modeling couriers’ de-
livery events and geographic coordinates; (3) A behavior-driven
address ranking model by mining couriers’ uncertain reporting
behaviors to further infer coordinates on DMG. We extensively
verify the performance of CoMiner with a three-phase evaluation
from data-driven experiments to real-world deployment. (i) We
conduct extensive experiments on three large-scale datasets where
CoMiner achieves an average accuracy of 95.1%, which outperforms
the state-of-the-art methods by 20.3%. (ii) We deploy CoMiner in
JD Logistics, inferring coordinates for over 30 million addresses
with an average accuracy of 93.3%. (iii) We utilize CoMiner for two
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Geocoding-based applications, i.e., parcel re-routing optimization
and abnormal delivery event detection.
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1 INTRODUCTION

In recent years, location-based services have received growing
interests from both industry and academia, e.g., logistics [1, 3], E-
Commerce (e.g., Amazon, JD.COM), and on-demand services (e.g.,
UberEats and Meituan [32]). Unlike online services such as item
recommendation, location-based services consider location as an
essential factor in service designs, e.g., user-entered addresses are
needed for E-commerce parcel delivery. Therefore, Geocoding, i.e.,
accurately matching users’ textual addresses with the correspond-
ing geographic coordinates or inferring geographic coordinates
(coordinates thereafter) of textual addresses, is essential. Taking
E-commerce logistics as a concrete example, users place an order
on an E-Commerce platform, and the order parcel will be delivered
to the user-entered address within a given time. In this delivery
process, inferring accurate coordinates for users’ addresses is very
important, directly determining the delivery service’s efficiency. In-
accurate coordinates will result in dispatching a parcel to the wrong
delivery station (a city is partitioned into many delivery stations
for parcel delivery), which results in an additional parcel transfer
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from the wrong station to the right station and then delivering it
to users. This additional transfer process is called re-routing, which
causes significant environmental and economic waste.

In industry, a common method to infer coordinates is utilizing
commercial maps’ Geocoding (GC) services, e.g., Google Maps and
Baidu Maps. Even with their convenience, commercial GC services
pose two challenges for logistics companies. (i) Low Accuracy. In
E-Commerce logistics, text addresses entered by users have some
irregular and complex formats, due to reasons such as weak reg-
ulation on address formats and urban development. Especially in
developing countries such as China and India, it is normal to have
unstructured, partially missing or ambiguous addresses [33, 35],
which greatly decreases the accuracy of commercial GC services.
Moreover, commercial GC services are further challenged in ru-
ral areas because of the address data collection hardness and data
sparsity. We further systematically evaluate the GC performance
of Gaode, Baidu, and Tencent Maps services, and the average 300-
meter GC accuracy is 80.9% nationwide, including rural areas, which
is similar to some published GC accuracy results in [34, 35]. (ii)
Considerable Cost. Although a map app user can use commercial
GC services for free, an E-Commerce platform needs to pay by
GC service request frequency. It is a considerable cost for these
platforms with millions of orders to be Geocoded. Another indus-
trial approach is building <address, coordinates> dictionary and
growing this dictionary by couriers’ reporting coordinates for new
addresses. However, the main limitation is that couriers’ reporting
coordinates have significant uncertainty, i.e., the reporting coordi-
nates are sometimes inaccurate (see Sec. 2.3).

In academia, the drawbacks of commercial GC motivate research
communities to explore other solutions, e.g., crowdsourcing [18,
26] and utilizing open-source datasets [29, 39]. In some research
works, logistics data is used for for GC-related applications [31,
33]. However, these studies either assume the delivery data is of
good quality (e.g., a high sampling rate of trajectory data) [31] or
reporting behaviors are stable [33]. These assumptions are hard
to hold in practice in a real-world scenario with large-scale low-
quality data and unreliable reporting behaviors, which may lead to
unsatisfactory performance (see Sec. 4.2).

Recently, the ubiquitous usage of GPS-enabled devices in E-
Commerce logistics has brought a great opportunity for solving the
coordinate inference problem. The delivery couriers are familiar
with a specific spatial area based on experiences, which ensures the
success of parcel delivery. Most of the time, they directly navigate
to the input textual addresses according to their experiences. More-
over, due to the commercial insurance requirement and the quality
of satisfaction improvement, couriers’ GPS trajectories are recorded
and uploaded in real time. They also need to report delivery events
(by confirming on their Personal Digital Assistant (PDA)) when
finishing delivery at users’ locations. These couriers’ behaviors pro-
vide a great opportunity for us to infer GPS coordinates. However,
inferring the coordinates for addresses from delivery trajectories is
nontrivial due to couriers’ delivery behavior variance. For example,
delivery events may be reported before the actual delivery time due
to delivery deadlines or heavy delivery tasks. (see Sec. 2.3)

To tackle the challenges mentioned above, we design CoMiner,
an unsupervised spatial coordinate mining framework, to infer the
GPS coordinates for given text addresses with low costs and high
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accuracy. After an in-depth data-driven investigation of address
and POI data, CoMiner first infers coordinates for some addresses
by a POI-level clustering model. Then, to infer coordinates that
cannot be inferred by the clustering model, we design a Mobility
Graph Construction module that formulates all addresses with both
known and unknown coordinates on a graph. Based on this graph,
we design a behavior-driven ranking module to infer coordinates
for unknown addresses (coordinates are unknown) by modeling
couriers’ reporting behavior and designing a stay-point ranking
algorithm. In summary, this paper makes four contributions:

e To the best of our knowledge, CoMiner is the first nationwide,
behavior-driven coordinate inference framework for textual ad-
dresses. Specifically, we implement CoMiner based on E-commerce
logistics delivery data, i.e., delivery trajectories, delivery events,
and waybills. The design insight of CoMiner is based on large-
scale datasets with more than 120,000 professional couriers in
over 600 cities from an E-Commerce logistics platform in China.

o To address the challenge of couriers’ reporting behavior uncer-
tainty, we design an unsupervised coordinate mining model. In-
stead of clustering coordinates of addresses, we cluster at the
POI level by mining POI entities with named entity recognition
techniques. Further, to improve the inference recall, we construct
a Delivery Mobility Graph and spatial ranking model driven by
couriers’ reporting behaviors.

e Based on the evaluation over three large-scale real-world datasets,
CoMiner achieves an average accuracy of 95.1% and outperforms
state-of-the-art methods by 20.3%. Moreover, CoMiner has been
deployed at JD Logistics for six months and has inferred coor-
dinates for over 30 million addresses with an accuracy of 93.3%,
i.e., within 300m of the ground truth coordinates [33].

e We have deployed CoMiner to reduce the number of parcel re-
routings by an average of 910 every day, which saved more than
one million RMB (~145,600 US $) for the company in one year.
Further, we design, develop, and deploy an Abnormal Delivery
Detection System in the Chinese City Hefei, which improves the
detection of abnormal delivery events by 11.6%. The detected
abnormal delivery events have been utilized for decision-making
to improve user experience on the platform.

2 BACKGROUND AND MOTIVATION

In this section, We first introduce the preliminaries and motivations
of the coordinate inference problem in the E-commerce logistics
setting. Then, we conduct data-driven investigations on real-world
datasets to show the problem’s importance and challenges.

2.1 Preliminaries and Problem Formulation
We first define address, POI, and waybill, which will be used to

describe the parcel delivery process in E-commerce logistics.

DEFINITION 1. (Address) (Addr) is created by users to describe a
physical location in a text format.

DEFINITION 2. (Point-of-Interest) (POI) A POI represents a spa-
tial entity that interacts with citizens by providing a specific urban
function. A POI normally contains multiple Addr.

DEFINITION 3. (Waybill) is the description of an order delivery
task that created by the E-Commerce platform, which is denoted as
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DOrder = (Addr,courierID,orderID,status), where status is an order
status (e.g., in delivery), courierID and orderID are the unique ID
for a courier and an user placed order, respectively.

.7 Room 101
Room 202

S
,rﬂPlat[orm AN

1,7 ’ 43 N .2 -

- ' NS ..l
8‘/ ; :r - “ Apartment ~J Room 601
Customer Courier  Delivery Station POI Detailed Addresses

(a) Order Delivery Process. (b) POI and Address Relationship.

Figure 1: Delivery Process (a) and POI-Address Example (b).

A Common Parcel Delivery Process. In Fig. 1(a), we illustrate the
E-Commerce parcel delivery process, which integrates three main
stakeholders, i.e., users, couriers, and the E-Commerce platform.
The parcel delivery process consists of five steps. (1) The user places
an online order with an address on the platform, and the platform
creates a waybill (see Def. 3, containing text address, order ID,
etc.). (2) The platform infers the order destination coordinates by
Geocoding the textual address and transmits the order parcel to the
corresponding delivery station. (3) The platform assigns the waybill
to a courier. (4) The courier picks the parcel up at the delivery station
with a mobile device, i.e., PDA. (5) The courier locates the POI (see
Def. 2) and then drops the parcel off at the user’s address (see Def. 1).
The courier will carry the PDA during the delivery process and the
PDA will generate delivery trajectories (see Def. 4). The courier
will then manually report a delivery event (see Def. 5) when he/she
successfully drops the parcel off at the user’s address.

DEFINITION 4. (Delivery Trajectory) (Traj;q) is a sequence of
spatial temporal points generated by a GPS-enabled device carried by
the courier while delivering parcels, denoted as Traj;q = <p1, P2, .- Pis
.., pn>, where p; = (lat;,Ing; t;), representing the latitude, longitude,
timestamp, and id is the ID of a courier.

DEFINITION 5. (Delivery Event) (Deli) is an action performed
by the courier when a parcel is delivered to user’s address, denoted
as Deli = (lat,Ing, t,orderID), representing the parcel orderID is
delivered at timestamp t at location (lat, Ing).

In the parcel delivery process mentioned above, a courier deliv-
ers parcels by first locating the POI of the corresponding parcel
address. A POI can represent multiple addresses spatially close to
each other inside the POL, i.e., share similar geographic coordinates.
For example, in Fig. 1(b), an apartment is a POI, and each room in
the apartment is an address of this POIL Knowing the geographic
coordinates of the POI can satisfy the delivery task because ad-
dresses can be located by couriers with instructions and local maps
at the POL Therefore, we focus on inferring the coordinates of POIs
to represent the coordinates of addresses, which have practical
significance in logistics delivery.

2.2 Data-driven Investigation

We first introduce the dataset used for data-driven investigations.
The multi-modal dataset is collected by JD Logistics during couriers’
parcel delivery. The data is entered by users or uploaded by couri-
ers’ PDA, which consists of three parts, i.e., delivery trajectory data,
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waybill data, and delivery event data. The delivery trajectory in-
cludes key features such as latitude and longitude at corresponding
timestamps; Waybill data includes the textual address, parcel sta-
tus, and other order information; Delivery event data includes the
coordinates and timestamp when a courier reports parcel delivery.
We show an example in Table 1.

Table 1: An Example of the Multi-modal Dataset.

Delivery lat Ing time hours courierID
Trajectory  37.50 121.39 11-12 08:00:30 8 210043
. status  station address time orderID
Waybill — -
Yantai City, Lai  11-12 110156
150 4203

Shan, Nan Park  09:30:30 320198

Delivery lat Ing deliveryNote time orderID

Event 1-12 110156

1
3750 12139 09:30:30 320198

Parcel delivery

Based on the dataset, we conduct data-driven investigations
to show the importance of coordinate inference. Inaccurate coor-
dinates of the E-commerce logistics platform will lead to parcel
re-routing because of dispatching parcels to the wrong delivery sta-
tions. Such re-routing will increase couriers’ delivery distance (i.e.,
couriers need extra effort to deliver a re-routing parcel) and the plat-
form’s cost. For example, in Fig. 2(a), the number of daily re-routing
is more than 27,323 in 80% days, which costs the E-Commerce
logistics platform 4.6 million US dollars each year ($0.45/parcel
re-routing). In addition, in Fig. 2(b), we find that re-routing exists
in many cities across the country, especially in large cities (31%
of parcel re-routing is in Tier 1 cities of China, e.g., Beijing and
Shanghai), which indicates the significance of accurate coordinate
inference to reduce the economic and environmental costs.
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(a) Daily Number of Re-routing. (b) Re-routing in Different Cities.

Figure 2: Parcel Re-routing Frequencies (a) and Fraction of
Re-routing among Different Tiers of Chinese Cities (b).

2.3 Challenges

However, it is not trivial to infer coordinates for addresses based
on the data in Table 1 due to the following two challenges:

(i) Data sparsity in delivery. Due to users’ shopping pattern vari-
ance (i.e., frequency), different addresses have a different number
of physical visits by couriers and thereby have a different number
of delivery-related data. Fig. 3 illustrates the number of orders for
each address in a delivery region from Jan. 2020 to Jan. 2021, where
71% of addresses have only 1 or 2 orders in one year, which leads
to a data sparsity issue to infer the coordinates of these addresses.
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(ii) Uncertain reporting behavior. Due to the reporting behav-
ior variance of couriers, some couriers report delivery events at
the wrong places or wrong timestamps. The main reasons for the
existence of uncertain reporting behavior are two folds. Firstly,
the courier forgets to report delivery when he/she delivered the
parcel because of the heavy delivery load during peak hours. Sec-
ondly, the courier intentionally reports delivery before they deliver
the parcel for orders with strict time deadlines. This challenge is
non-trivial because we cannot correct couriers’ reporting behavior
even with the real-time uploaded trajectories and derived stay time
for reported locations, i.e., we do not know whether the reported
location is the actual location of the corresponding address. Fig.
4 shows the CDF of deviation between delivery coordinates and
the true coordinates from a delivery region. Only 50.3% of delivery
coordinates deviate from the ground truth by less than 300 meters.
Therefore, taking the GPS coordinates of delivery events as the
addresses’ true coordinates will bring a large deviation error.

In summary, motivated by the importance and challenges of the
coordinate inference problem, we aim to design a framework that
can automatically infer coordinates for large-scale textual addresses
considering both data sparsity and uncertainty.

3 COMINER DESIGN

Fig. 5 describes the coordinate inference process based on three
key components, i.e., (i) A POI-Level Clustering module (Sec. 3.1)
takes couriers’ reported coordinates with corresponding addresses
as input, and infers addresses’ true coordinates based on coordinate
clustering. This clustering model can only infer coordinates for
partial addresses due to the data sparsity issue. Thus, we then
design a (ii) Mobility Graph Construction module (Sec. 3.2) that
uses addresses as nodes and couriers’ address visiting as edges to
organize both known addresses (coordinates have been inferred)
and unknown addresses (coordinates to be inferred) in the same
graph. Based on the constructed graph, we design a (iii) Behavior-
Driven Address Ranking module (Sec. 3.3) to infer coordinates for
unknown addresses considering couriers’ reporting behaviors.

3.1 POI-Level Clustering Model

In this subsection, we introduce the POI-level clustering model.
Specifically, we compare address-level clustering with POI-level
clustering and design a density-based clustering model based on
POIs identified from textual addresses.

Address-Level Clustering. Intuitively, each address has multiple
delivery coordinates Coorpey;, , ..., Coorp,;, generated by couriers
after delivering parcels at the address. A straightforward method is
to cluster these delivery coordinates and the center of the cluster
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Figure 5: Framework of CoMiner.

is the inferred coordinate for an address. However, as in Fig. 3,
most addresses have a limited number of delivery coordinates. This
data sparsity challenge will decrease the performance of coordinate
inference, i.e., the clustering-based model will not generate a cluster
representing the address coordinates with high confidence.

POI-Level Clustering. Com-

1.0
pared with the address, a POI (80%, 17)
has more orders and visits % 0 (80%, 4)
because each POI has multi- Sha
K === Addr-level
ple associated addresses (see POLlevel
0.0
Sec. 2.1). We further compare 0 = 50 20

users’ shopping pattern of
POI level with address level
and have an important find-
ing as in Fig. 6: 80% of POIs have more than three times of orders
than addresses, i.e., more delivery visits by couriers. Therefore, the
POI-level clustering model will bring better performance and solve
the data sparsity challenge. Based on this data-driven finding, we
design a POI-level clustering method for coordinate inference and
the inferred coordinates will be assigned to addresses in the POI.
However, it is not feasible to extract POIs from addresses using
rule-based models due to the complexity of the Chinese addresses.

To solve this problem, we formulate POI identification as a se-
quence labeling task, and design POI-NER, a Named Entity Recog-
nition (NER) model to tag POIs in addresses. The POI-NER model
consists of three LSTM layers and a Conditional Random Field
(CRF) layer based on a popular model [17, 19]. Even though there
are lots of public NER datasets and models, we cannot directly apply
them to our problem because the component of textual address is
significantly different from general text data such as Wikipedia.
Thus, we investigate the components of addresses and design six
types of labels, i.e., PROVINCE, CITY, DISTRICT, ROAD, POI, O (oral
language). The POI-NER model is trained by maximizing the condi-
tional log-likelihood as in Eqn. (1).

# of Orders (visits)

Figure 6: Number of Orders.

N
0, = arg max Z(y,-|w,~, 0p) (1)
0, =1
where 91’, represents all trainable parameters in POI-NER, N is the
number of training addresses, w; is a sequence of words in the i,
address, y; is the corresponding label sequence for w;. Given a new
address, the POI-NER labels and extracts POIs based on Eqn. (2),
where ¢ is the predicted label sequence for w. For example, §j = ["B-
PROVINCE", "I-PROVINCE', "B-CITY", ..., "B-POI", "I-POI", ...], where
B-POI represents the word is the beginning of a POI entity", I-POI
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represents the word is inside a POI entity.

g = arg max p(y|w, 6p) @
Y

After the POIs are identified by the POI-NER model, we construct
a POI-coordinate dictionary for POI-level clustering. The key is
POI and the value is the set of delivery coordinates generated by
couriers when dropping parcels off at the POL Intuitively, couriers
normally deliver parcels at a fixed location of each POI, and the
location with dense delivery coordinates has a higher probability
to be the true location of a POI Thus, we apply the density-based
model DBSCAN [11] to cluster the coordinates. DBSCAN generates
multiple clusters for each POI by clustering its delivery coordinates.
The average coordinates of all points in the densest cluster (i.e.,
with the maximum number of points) are assigned as the POI's
coordinate, and assigned as the coordinate for all addresses inside
of the POL The DBSCAN distance threshold € is 0.0003 degrees and
the minimum number of points in a cluster is 5.

3.2 Mobility Graph Construction

Even though the POI-level clustering model can infer coordinates
for POIs and addresses with high precision, it will fail for two
scenarios: (i) Only a few orders are delivered at a POI in a period
of time because reasons such as the user uses aliases (different
names) of POI or the POl is of small scale, e.g., a convenience store;
(if) Many orders are delivered at a POI but most of the delivery
coordinates significantly deviate from each other and thereby a
dense cluster cannot be generated by the clustering model, i.e.,
coordinates cannot be inferred. Thus, we need another module
to infer coordinates for addresses that cannot be inferred by the
POI-clustering model (remaining coordinates).

Intuition for Remaining Coordinate Inference. To fill this gap,
as in Fig. 7, we consider a delivery sequence <Deliyg, Delip, Delic>
at addresses <A, B, C> with increasing delivery time. We categorize
the pattern of delivery sequences into three classes. (1) Delig, Delic
are normal delivery events. (2) Only one of Deliy and Delic is a
normal delivery event. (3) Both Deliy and Delic are abnormal
delivery events. The abnormal and normal delivery events are de-
fined in Def. 6. Intuitively, the courier delivers parcels one by one
and reports delivery events following the parcel delivery sequence.
Therefore, we can infer the coordinates of B if the delivery events
at A and C are normal (class (1)) because B lies on the delivery
trajectory between A and C. As a result, by utilizing this certain
pattern of couriers’ delivery behavior, we can infer the coordinate
for B, which cannot be inferred by the POI-level clustering model.
Note that, even though the delivery events at A and C might not be
normal delivery events (class (2) or (3)), we can still identify a class
(1) delivery sequence on other days because address B normally
has a few orders in a year.

DEFINITION 6. (Abnormal/Normal delivery event) A delivery
event is abnormal if dist(Coorpeji, Cooraqqy) > Ad, i.e., the distance
between the reported delivery coordinates Coorpe; and the true co-
ordinates Coor g 44, (groundtruth) is greater than a threshold Ad. A
delivery event is normal if dist(Coorpe;i, Cooragqy) < Ad.

Based on the above intuition, we design a delivery mobility
graph. The courier visits a group of addresses for parcel delivery
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Figure 7: Delivery Sequence Illustration.

each day starting from the delivery station. The visiting addresses
and the visiting sequences among addresses vary on different days.
Therefore, the courier’s mobility trace between addresses can be
considered as a time-varying graph (TVG) [8], which is defined as
Delivery Mobility Graph.

DEFINITION 7. (Delivery Mobility Graph (DMG)) A DMG is
represented by DMG = (V,E), whereV is a set of nodes v1, v2, ..., Up,
each node represents an address with corresponding delivery time,
and E = {(0,0")|(v,0") € V X V} is a set of directed edges from v to
v’, each edge represents a courier’s move from node v to node v’.

We describe the DMG construction process in detail. Based on
the POI-level clustering model, some addresses’ coordinates have
been inferred (known addresses). Thus, for each node in DMG, we
have three features, i.e., a flag representing an address is known or
unknown, true coordinates, and reported coordinates by couriers.
Given delivery events, trajectories, addresses, and time interval
threshold AT, we add the edge from the delivery station to the
first visited node V[1]. Then, we iterate through all visited nodes
and add an edge if the duration between two visits is less than AT.
Nodes with a duration longer than AT will terminate the graph
construction process because nodes are visited by couriers in two
delivery trips (delivery trip is the courier’s delivery process without
returning back to the delivery station), e.g., in the morning and
afternoon, respectively. We construct DMG for each delivery trip.
Note that, the DMG is a linked list if all addresses in a delivery trip
are only visited once, which is a special case of the graph.

Now we have both known addresses (with true coordinates) and
unknown addresses (with couriers’ reporting coordinates), the de-
livery trajectories connecting known and unknown addresses, the
true coordinates of unknown addresses is on the trajectories. In
the next step, we design a ranking model to infer coordinates of
remaining unknown addresses based on the constructed Delivery
Mobility Graph (DMG) and couriers’ reporting behavior.

3.3 Behavior-Driven Ranking Model

As in Fig. 8, our ranking model has four steps: (i) candidate stay
point generation, (ii) semantic representation of stay points, (iii)
stay point ranking, and (iv) address coordinates generation.

Address Target address:  lat = 34.256,
Database B Ing = 108.934

1 A

i E @ coordinate

Deliy,, Delig, Delic, (2)| Score, =092
@ Score; =0.83
(3)| Score; =076
(iv)

I Y
/'1 3

-

W N =

[O)

Figure 8: Behavior-Driven Ranking Model.

Intuition. Even though couriers’ reporting behavior is uncertain,
we identify a regular pattern under the uncertain behaviors. A
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courier reports delivery events according to the consecutive de-
livery sequences, i.e., the order of reporting is consistent with the
order of actual delivery. Therefore, we can probably address the re-
porting uncertainty challenge by utilizing the coordinates of known
addresses and delivery sequences on the Delivery Mobility Graph.
Candidate Stay Point Generation. The step (i) in Fig. 8 illustrates
the process of candidate delivery sequence generation from the
DMG, and the candidate stay points (D@ @) in Fig. 8) generation
process based on delivery sequences. On the DMG, we represent all
nodes with unknown coordinates as B and nodes with known coor-
dinates as A (if A; < By) or C (if B; < C;). The objective is to infer
the coordinates of B (Bcoor) by utilizing A and C. For each unknown
node B, we first perform a graph search to obtain candidate de-
livery sequences (Deliseq) {, < Delig,, Delip, Delic, >, } under
the time interval constraint At, i.e., the duration of <Deliy,,Selig>
and <Delig,Selic,> is less than At.

We then detect candidate stay points (i.e., a group of consecutive
points in a trajectory that generated during a stay of a moving object at
a location) on the delivery sequences between A; and C; as shown in
step (i) of Fig. 8. Intuitively, the courier will stay for some time when
he/she visits an address for parcel delivery, which will potentially
generate stay points. The coordinates of textual addresses have a
high probability to be close to one of these stay points. Thus, we can
detect couriers’ stay points from trajectories and infer addresses’
coordinates by selecting the best stay point, which is more efficient
and effective than selecting the best GPS point in trajectories.

Fig. 9 introduces the candidate stay point generation process on
delivery sequences. Specifically, stay points between A; and C; of
all sequences in Deliseq are detected by applying the stay point
detection algorithm [22], such as SP; and SP; in Fig. 9(a). Then,
Fig. 9(b) illustrates the candidate stay points generation process by
calculating the spatially shared stay points Spoints for all <A;, B, Ci>
sequences, i.e., B appears in many delivery sequences on the DMG
and thereby the shared stay points have higher probabilities to
contain address B. For example, SP; and SP; are detected as candi-
date stay points for address B because they are both in <Aj, B, C1>
and <Ay, B, Co>. All stay points will be candidates if no shared stay
points in <A;, B, C;>. Note that not all candidate stay points are
caused by the delivery and can represent addresses’ coordinates
because couriers’ other activities such as waiting for traffic lights or
jams also generate stay points. Thus, the problem is re-formulated
as how to design a model F to select the best stay point Sy,
among Spoints to represent the B’s coordinates Beoor:

Beoor = F ([ SPi|SP; € Spoints]) (3)
sp, . Address: B ]
SP, shared stay points for B
g P—
I ---------- \ PS/S S
Az
Nl B T e
' H 2
Address: 4; Address: C; —Al/‘:.lilf___: 5\’

(a) Stay point detection in trajectories (b) Candidate stay point generation

Figure 9: Illustration of Candidate Stay Point Generation.

Stay Point Ranking. We aim to represent the coordinates of ad-
dress B by the stay point that contains B through a ranking model.

Zhiging Hong, et al.

Table 2: Address Similarity Example.

B Xi’an City, Yanta District, Jinshui Tower Health Club
B’ in SPy. | Xi’an City, Yanta District, Jinshui Building

However, there is no information to measure the similarity be-
tween stay points and unknown addresses, which makes the rank-
ing model not trivial. The POI-level clustering model has inferred
coordinates for some addresses and constructed the <address, coor-
dinates> database, which can potentially provide similarity infor-
mation for stay points. Thus, as the step (ii) in Fig. 8, we query the
database with center coordinates of stay points and get addresses
near stay points to get S;7 oints> Which contains nearby textual ad-
dress information and can be used to calculate similarities. For
example, Table 2 introduces an unknown address B (a club) and a
similar address B’ (a building containing the club) in a candidate
stay point SP,.. We aim to rank SPy. as the top one stay point and
assign SP;’s coordinates to B.

To rank all stay points in S[’Joints
design a ranking model based on the longest common subsequence
detection. As shown in the step (iii) of Fig. 8, we compute the
longest contiguous subsequence between target address B with
each address in all stay points to represent the similarity, i.e., a
longer subsequence means a higher similarity score between B and
the corresponding stay point. Then, the stay points in S ;) oints AT€
ranked according to their similarity scores, and the coordinates of
the stay point with the highest similarity score will be assigned to
B as shown in step (iv) of Fig. 8.

with low computational cost, we

4 EVALUATION

In this section, we introduce the evaluation setup followed by an
extensive evaluation of CoMiner compared with baseline models.
We also introduce real-world deployment and two applications.

4.1 Evaluation Setup

Evaluation Dataset. To evaluate CoMiner, we utilize three real-
world delivery datasets from JD Logistics, which cover three deliv-
ery regions in Hefei, Beijing, and Anqing city, respectively. These
datasets have 313,026 addresses with labeled coordinates, one-year
delivery events, trajectories, and waybills of 88 couriers from Jan.
2020 to Jan. 2021. The delivery-related data is collected when the
courier is delivering parcels. The ground truth coordinates are
labeled by domain experts utilizing multi-source data, e.g., POI
boundary data, map data, and platform transaction data.

Evaluation Baselines.

e DeliEvent assigns the delivery coordinate to the address by as-
suming the delivery event is accurate.

e TextMatch [25] calculates the similarity between a given address
with all addresses in the same region. The coordinate of the
candidate with the highest similarity score is assigned as the
coordinate for the given address.

e GeoCloud [33] utilizes delivery data to infer coordinates for cus-
tomers’ addresses. A cluster-based method is proposed for coor-
dinate inference.
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Table 3: Baseline Comparison for Accuracy and Recall.

Model Hefei Beijing Anging
Acc(%) | R(%) | Ace(%) | R(%) | Acc(%) | R(%)
DeliEvent 65.7 100 58.3 100 70.8 100
TextMatch[25] | 62.5 88.2 | 759 82.7 | 71.3 78.8
GeoCloud[33] 92.2 39.0 | 96.8 69.4 | 92.6 45.4
DTInf[31] 77.0 100 74.0 100 | 733 100
CoMinerAVG 57.7 98.4 | 74.0 958 | 653 97.1
CoMiner- 90.1 100 | 96.6 100 | 91.9 100
CoMiner 93.1 859 | 97.3 91.4 | 95.0 84.5

" Acc refers to 300m Accuracy, R refers to Recall.

e DTInf [31] is originally designed for delivery time inference from
the delivery trajectory in logistics. It is also able to infer the GPS
coordinates for addresses based on delivery trajectories.

e CoMinerAVG calculates the average coordinate of A and C in the
delivery sequence < A, B, C > and assigns it to B.

e CoMiner- is a variant of CoMiner (i.e., CoMiner-), where all co-
ordinates can be inferred. For the coordinates that cannot be
inferred by CoMiner, we apply address matching via computing
textual similarity with already inferred addresses.

Evaluation Metrics. We evaluate all models by accuracy (Acc) and
recall (Recall). Acc of i-meter is the fraction of inferred coordinates
with a deviation error less than i-meter to the true coordinate.
Recall = ﬁ, where n is the number of addresses with coordinates
inferred successfully, and N is the number of total addresses. There
is a trade-off between Acc and Recall for similarity or cluster-based
models, e.g., the improvement of Acc by increasing the similarity
threshold would decrease the Recall.

Evaluation Granularity. We investigate the Acc and Recall on five
granularities, i.e., 100m (100-meter), 200m, 300m, 500m, and 1000m.
We mainly focus on 300m to compare different models following
the common industrial standard [33]. The experimental result is
for 300m by default if there is no specific description.

4.2 Data-driven Offline Evaluation

In this subsection, we describe the offline evaluation results and
investigate the impact of multiple factors on the model performance.

Overall Performance. From the evaluation results in Table 3,
we conclude several important findings: (i) CoMiner achieves the
highest Acc and competitive Recall over all cities. Even though
GeoCloud [33] achieves a similar high Acc, it has a low Recall
of 47.3% compared with our result (84.5%). The main reason is
that some coordinates cannot be inferred because of the uncertain
number of visits, i.e., some addresses’ have few orders and thus
the coordinates cannot be clustered and inferred. (ii) CoMiner’s
variance CoMiner- achieves 100% of Recall and high Acc. CoMiner-
has significantly higher Acc than the other two models DeliEvent
and DTInf, which also have 100% of Recall. In detail, it is not
surprising that DeliEvent has low Acc due to couriers’ uncertain
reporting behavior. The main reason for the low Acc of TextMatch is
the complex characteristics of Chinese addresses, i.e., two addresses
have high textual similarity but are geographically far from each
other. DTInf first infers coordinates based on delivery caused stay
points and then applies a hierarchical cluster model to refine the
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inferred coordinates. The loss of Acc is mainly caused by the highly
uncertain characteristics of delivery data, e.g., couriers only have a
short stay time at some addresses.

There are two main reasons for the loss of Recall of CoMiner, i.e.,
some addresses’ coordinates are not successfully inferred (14.1% in
Hefei, 8.6% in Beijing, and 15.5% in Anqing City, respectively.) (i)
Delivery trajectories collected from the real world are not consis-
tently of high quality. As a result, the stay point cannot be detected
in sparse trajectory segments. (ii) The inference will also fail when
there is no consecutive delivery sequence <A, B, C> extracted from
Delivery Mobility Graph given the time interval At. For example,
when B is the first or last delivery location in the delivery process.
However, we can easily extend CoMiner to CoMiner- for scenarios
where Recall is the priority.

Performance of POI-Level Clustering Model. Fig. 10(a) and
10(b) show the Acc and Recall of POI-level and Address-level clus-
tering models, respectively. With the increase of distance granu-
larity, the POI-level model slightly outperforms the address-level
model even though both of them achieve high Acc. The reason is
that at the POI level, more delivery coordinates are considered in
the clustering process, which leads to higher Acc. Fig. 10(b) shows
that the Recall of the POI-level cluster model is significantly higher
than the Address-level model (26.3%~52.8%), which is because we
can identify more addresses at the POI level due to more delivery
visits to a POI than to an address in the POL

Impact of City on Ranking Model. Fig. 10(c) illustrates the model
robustness by comparing the results in three cities. CoMiner shows
similar performance even though the areas and geographic char-
acteristics of the three cities significantly differ from each other
(e.g., different traffic conditions). The 300m Acc across three cities
ranges from 90.8% to 97%. The Recall varies from 67.7% to 79.7%.
Hefei has the highest Recall, which is consistent with Fig. 11(d). The
main reason might be that Hefei city has a higher ratio of accurate
delivery events, which increases the number of delivery sequences
and brings higher recall. We can also observe that even though
there are potentially more GPS drifts causing GPS inaccuracy in big
cities such as Beijing, CoMiner still has consistent performance over
three cities, which demonstrates the robustness of our clustering
and behavior-driven ranking algorithm.

Impact of Distance Granularity on Ranking Model. Even
though 300m Acc is the most important metric, we are also in-
terested in how CoMiner performs with different distance granu-
larities, i.e., 100m~1000m. As shown in Fig. 10(d), the Acc increases
with the distance granularity. CoMiner yields a 300m Acc higher
than 90.8% on all stations. 100m Acc ranges from 45.2% to 49.7%
(not plotted in Fig. 11 due to space constraint). The main reason for
the low 100m Acc lies in two folds: (i) A POI (e.g., school) can cover
a large area and the distance between the POI center to its bound-
ary is more than 100-meter, which would significantly decrease the
average 100m Acc. (ii) GPS coordinates could shift away from the
true locations in areas with tall buildings.

Impact of Time Interval on Ranking Model. We investigate how
time interval At, a hyper-parameter to extract delivery sequences,
impacts Acc and Recall. Intuitively, a smaller At brings fewer co-
ordinate candidates and thereby leading to higher Acc and lower
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Figure 10: (a) (b) POI-Address Level Comparison. (c) (d) Performance of CoMiner on 3 Stations.

Recall. We present the impact of At to Acc in Figs. 11(a), 11(b), 11(c),
and to Recall in Fig. 11(d). We note that with the increase of At,
200m Acc drops significantly while 300m, 500m, and 1000m Acc are
relatively stable. The main reason is that the inferred coordinates
already have high Acc at 300m, 500m, and 1000m, and thereby will
not have a significant increase with At. In Fig. 11(d), Recall of all
datasets increases with At, which is because larger At leads to more
inferred coordinates, i.e., higher Recall.

4.3 Online Deployment and Applications

In this subsection, we introduce the online deployment and two
downstream applications of CoMiner. One technical metric and
two business metrics are designed to measure the framework per-
formance. Since geographic coordinates are one of the key data
elements in location-based services, the company we work with has
a strong incentive to infer accurate coordinates for addresses and
POIs to enable various downstream applications, e.g., re-routing
reduction, and abnormal delivery event detection.

Deployment Setup. We adapt a two-phase deployment mecha-
nism, i.e., first, deploy CoMiner at Beijing City, and then deploy
CoMiner to the whole nation if the online Acc satisfies the threshold
(>90%). To enable streaming coordinate inference, we decompose
our framework into two modules: (i) the data preprocessing module,
which is responsible for data acquisition from the company’s big
data platform and data preprocessing; (ii) the coordinate inference
module, which is for coordinate inference and saving the mined
results into the cloud database. These two modules are deployed in
the company’s cloud server to work simultaneously in a streaming
manner. The server is equipped with Intel(R) Xeon(R) CPU E5-2640
v4 @ 2.40GHz, 8 cores, 80GB RAM with Python 3.6.

Evaluation 1 (technical metric): Deployed Model Accuracy. To
evaluate the online performance of our model, we randomly sample
addresses with inferred coordinates from the database to manually
evaluate the 300m Acc in two deployment phases. In phase 1, we
randomly sample and evaluate 1000 addresses after one week’s
deployment and achieve 94.5% of Acc. In phase 2, we randomly
sample and evaluate 1000 addresses twice and achieve Acc of 92.3%
and 93.1%, respectively.

Evaluation 2 (business metric): Re-Routing Reduction. The
number of abnormal parcel re-routing is an important business
metric to evaluate the company’s order dispatching system because
re-routing has caused great loss to the company (money cost), couri-
ers (extra delivery distance), and users (extra parcel waiting time).

Based on CoMiner, we update the company’s order dispatching sys-
tem with addresses and inferred coordinates. We conduct an online
A/B test to evaluate the performance of the new order dispatching
system in terms of the daily re-routing number. As the result in Fig.
12(a), we witness an average of 910 re-routing reductions every day
(i.e., 3.3% of all the parcel re-routings) from August 1st to 31st, 2021,
which will lead to an annual loss reduction of about one million
RMB (i.e., 2.9 RMB per re-routing on average).

Evaluation 3 (business metric): Abnormal Delivery Event
Detection. The abnormal delivery event in last-mile delivery hurts
the user experience because the user would feel cheated when
he/she receives a notification "Your parcel is delivered” while waiting
for the parcel. Therefore, another important business metric is the
detection rate of abnormal delivery events. We develop and deploy
a CoMiner-based abnormal delivery detection system in a Chinese
city, Hefei, with 12 delivery regions and more than 200 couriers. For
privacy protection, our system is designed to evaluate the abnormal
delivery rate at the aggregate level (i.e., delivery region) rather than
at the courier level. Fig. 12(b) illustrates the detection result from
July 19th, 2021 to July 25th, 2021 with an average detection rate
of 11.6%. Our system can detect 60,500 and 22 million abnormal
delivery events in one day and one year in Hefei city, respectively.
The detection result has been utilized for the company’s decision-
making to improve user experience, e.g., giving extra bonuses for
delivery regions with lower abnormal delivery rates.

5 DISCUSSION

5.1 Lessons Learned

e Data-Driven Findings. We have two new findings based on
the study of delivery data. (i) The commonly used commercial
maps do not perform well for complex and large-scale Chinese
shipping addresses. (ii) Some couriers tend to report delivery
earlier than real delivery while some tend to report later, even
though they are supposed to report delivery accurately in the
design of the delivery system (Fig. 4).

e Impact of Human Behavior to Online-to-Offline (020) Sys-
tem Design. In the real world, due to uncertain physical elements
such as weather and delivery task workload, human behavior
might differ from the system designer’s expectation. Considering
such human behavior in system design will benefit the system’s
performance. By modeling couriers’ uncertain reporting behavior,
the coordinate inference performance is significantly improved
compared with baseline models (Table 3).
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Figure 12: Re-Routing Reduction (a) and Abnormal Delivery
Event Detection (b).

5.2 Privacy Protection

We take four concrete steps to protect user privacy in the data
used in this study. (i) The data is collected only during work hours
under the consent of couriers for purposes of parcel insurance
and academic research, etc. (ii) The couriers can turn off the GPS
module at any time to stop uploading trajectory data. (iii) All user
identifiers are removed or replaced with a random number. (iv) The
data is only accessed by the core team members who have signed
non-disclosure agreements of the data.

6 RELATED WORK

Our study focuses on automatically inferring GPS coordinates for
given addresses. We categorize the related work into two categories,
i.e., Geocoding (GC) and trajectory data mining.

Geocoding (GC). Geocoding, which associates texts with geo-
graphic coordinates, has been widely studied in recent years. One
group of GC work requires no extra effort but cannot update new
information timely [6, 20, 28, 29, 37, 39]. These studies utilize open-
source datasets and machine learning models to build local GC
services or to improve GC algorithms. Even with the advantage of
economic and low privacy concerns, they suffer from low recall
and not being able to update POI or address information. Kulkarni
et al. [20] propose a multi-level geocoding model(MLG) to map
text into geographic coordinates on three public English datasets.
Chatterjee et al. [9] utilize map data as the reference data source
for GC. One kind of GC service that can timely update new address
data is the commercial GC service such as Baidu Map [2]. These
services require extensive extra labor and devices (e.g., street view
cars) for collecting and updating new POIs and addresses. There
are also open-source GC systems [4, 5] that are free to use, but with
the limitation of being inaccurate [43].

Thus, the ideal GC service is economic, accurate, and fast. Sri-
vastava et al. [33] utilize E-Commerce delivery data in India to

good quality, which is different from the logistics scenario. Ruan et
al. [31] propose DTInf to infer delivery time and can be applied to
infer delivery coordinates automatically from delivery trajectories.
Even with a high recall, DTInf suffers from low accuracy when the
trajectory is of low quality or when couriers’ reporting behavior is
highly uncertain. These studies do not consider human behavior
uncertainty in data collection and algorithm design, thereby can
hardly achieve ideal performance at scale.

Trajectory Data Mining. Trajectory data mining focuses on pre-
processing, managing, mining valuable knowledge, and design
novel applications from trajectory data [7, 12-16, 24, 38, 40, 41,
44, 45]. Trajectory data preprocessing and managing have received
much research interest in recent years. Tong et al. [36] propose
a model to reconstruct vehicle trajectory based on mobility cor-
relation and vision analysis. Ruan et al. [30] propose DeppMG to
generate urban maps based on large-scale noisy trajectories. Li et
al. [23] design a holistic distributed NoSQL trajectory data manage-
ment framework to handle spatio-temporal data. Trajectory data
benefits many applications. Nair et al. [27] categorize cycling trip
GPS trajectories to understand urban cyclist behaviors. Based on
vehicle trajectories, Li et al. [21] propose a deep learning model to
predict urban traffic flow. Trajectory also has important applica-
tions in business. Zhang et al. [42] study the problem of billboard
placement based on trajectory analysis. Unlike outdoor trajecto-
ries, Das et al. [10] collect indoor occupant moving trajectories
to predict future trajectory in a room. Unlike existing trajectory
mining studies, our work investigates uncertain human behavior
in E-commerce parcel delivery and combines natural language pro-
cessing with trajectory mining to design a coordinate inference
model for large industrial applications.

7 CONCLUSION

In this work, we focus on the problem of automatically inferring
GPS coordinates for textual addresses. Motivated by users’ shop-
ping patterns and couriers’ reporting behaviors, we design CoMiner,
a cost-efficient behavior-driven unsupervised coordinate mining
framework. We implement CoMiner on a large-scale dataset from
three Chinese cities, and the results show that CoMiner achieves
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95.1% of inference accuracy. We then deploy CoMiner in JD Lo-
gistics, and it has inferred coordinates for more than 30 million
addresses in six months. Further, CoMiner benefits two business
applications, i.e., parcel re-routing reduction and abnormal delivery
event detection.
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