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KITTI [18] ADVIO [14] OxIOD [10] HoloSet (this paper)

Year 2012 2018 2018 2022

Carrier Car Hand-held Hand-held, bag, pocket, trolley Head-mounted device

Environment Indoors/Outdoors Indoors/Outdoors Indoors Indoors/Outdoors

Movement type Macro Macro Macro Macro/Micro

User actions Drive walk Halt, walk, jog, run Walk, jog + play games that exercise
fine motor skills and hand-eye coordination

Scene setup City-scale Multiple buildings Office buildings Multiple levels in 4 buildings + city
+ outdoor scenes center, urban scenes, and hiking trails +

micro movements inside a room

Hardware setup Custom [18] Smartphones Smartphones Microsoft Hololens 2

Data types Camera images, laser scans, Camera images, IMU data, IMU data RGB, depth, and gray-scale (4×) camera
point cloud, IMU and GPS data barometer data images, IMU data

Total distance ∼24 miles ∼2.8 miles 26+ miles 4miles

Ground truth GPS/IMU IMU + position fixes Vicon Hololens pose

Table 1: An overview of – and comparison with – the related datasets.

Figure 1: Cameras and IMU sensor position on the HoloLens

2 headset (figure source [24]).

Second contribution. To the best of our knowledge, we provide

the first dataset that captures micro-movements. We provide more

than 12,000 samples of data where a user plays Jenga and Operation

games that exercise fine motor skills.

Third contributionWe provide a post-processing script that lever-

ages data conditioning techniques, i.e., synchronizing raw sensor

data across sensing modalities, to the raw data and provides clean

synchronized version of the data.

Fourth contribution. We outline a comprehensive list of future

applications where HoloSet can enable extended reality (and other

mobile and wearable device-based) applications.

2 RELATEDWORK

There are several datasets that provide visual and inertial data to

assist research in XR, mobile devices, and other wearable devices.

Some dastasets are used to develop visual-inertial odometry (VIO)

and SLAM algorithms such as KITTI [18], ADVIO [14], OxIOD [10],

YTU [20], and TUM VI [41], Oxford RobotCar [32], EuRoCMAV [6],

UMA-VI [54], PALVIO [51], ICL-NUIM [21], and Málaga [4]. Other

include datasets that focus on human gait (MAREA [27], OU-ISIR [?

]), occupancy (LARA [38]), and activity recognition (USC-HAD [52],

CMU-MMAC [15], Opportunity [8]).

However, in this section, we only discuss three closely related

VIO datasets (KITTI [18], ADVIO [14], OxIOD [10]). We briefly

summarize and compare these datasets to HoloSet (our dataset) in

Table 1. KITTI is a state-of-the-art benchmark dataset with data

collected in both indoor and outdoor environments. However, its

sensors are rigidly fixed to the chassis, that makes it suitable for

studying vehicle movements, but not directly applicable to studying

human movements (like ours). ADVIO and OxIOD datasets are

collected using the handheld devices that make them suitable for

human movement research. However, ADVIO data only provides

pseudo ground truth generated by their state estimation algorihtm

that only used inertial odometry. OxIOD provides highly accurate

ground truth generated using Vicon [34], but it only has inertial data.

In addition, OxIOD and ADVIO provide highly processed handheld

smartphone data that may hide actual nuances in readings. More

importantly, they are not collected using a head-mounted display.

In HoloSet, we collect data using a head-mounted device

(Hololens 2) that offers raw sensor data from 6 cameras (cover-

ing multiple views), an IMU, and highly accurate ground truth

(2-4 cm error [22, 43]). HoloSet also has diverse macro movements

(walk normally, slowly or jog, as well as halting) and wide range

of scenario covering various indoor and outdoor environments.

HoloSet also includes micro movement data that have articulated

hand movement with depth cameras. It also offers a large number of

samples, 80,000+, making it suitable for deep learning approaches,

which require large amounts of data and high-accuracy labels. In

summary, HoloSet better represents human motion in everyday

situations and provides a large number of samples to enable a wide

range of applications that may use simple to complex models.

3 HOLOSET DATA COLLECTION SETUP

In this section, we provide the data collection setup and detail the

data conditioning details for the HoloSet.

3.1 Data collection setup

We collect data from HoloLens 2 headset in research mode mounted

on the head of a user. Figure 1 shows the position of the various cam-

eras and sensors on the headset. We next describe the types of data

that we collect from headset and the software setup used to collect

the data across different settings, user actions, and environments.

3.1.1 Visual. Our visual data comes from two types of cameras.

First, we collect data from four visible light-tracking cameras (VLC)

that produce grayscale images at 30 frames per second. The second

source of visual data is HoloLens’s Photo-to-Video (PV) RGB stream

which is generated using an 8Mpix RGB camera. We capture the

images from the stream at 30-45 frames per second.

3.1.2 Inertial. The inertial data is collected from the HoloLens’s

Inertial Measurement Unit (IMU), which reports data from ac-

celerometer, gyroscope, and magnetometer.
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In summary Holoset can provide benefit in advancing overall

research and development for real-world tools that may or not be-

long to XR. Various such field of interest are stereo visual odometry

based on motion [12], deep learning based visual odometry [29],

feature-based visual odometry [9], visual SLAM for monocular,

stereo, and RGB cameras [46], and sensor fusion [13]. All of these

technique require diverse and large amount of data to be trained to

sufficient accuracy, that HoloSet fills that gap. Furthermore, com-

plex deep learning model can benefit from the multiple views of

the camera images that HoloSet provides.

6 CONCLUSION

In this paper, we presented HoloSet, a large dataset captured at

a high frame rate using an IMU sensor, one RGB camera, four

grayscale cameras, and a depth camera. To the best of our knowl-

edge, this is the first dataset collected using a head mounted device.

An additional novelty of the dataset also lies in capturing micro-

movements while a user plays Jenga and Operation games that

exercise fine motor skills. To facilitate the use of data, we provide a

post-processing script that leverages data conditioning techniques,

i.e., synchronizing raw sensor data across sensing modalities, to

the raw data and provides clean synchronized version of the data.

We inspire future research in this domain, we outline a comprehen-

sive list of future applications where HoloSet can enable extended

reality (and other mobile and wearable device-based) applications.

We currently release the raw data and conditioning code, which

is available at Zenodo under the DOI 10.5281/zenodo.7200131. We

will plan to provide an active support to HoloSet users and add

more scenarios to the existing dataset.
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