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Optimization-Based Disassembly
Sequence Planning Under
Uncertainty for Human–Robot
Collaboration
Disassembly is an essential step for remanufacturing end-of-life (EOL) products. Optimiza-
tion of disassembly sequences and the utilization of robotic technology could alleviate the
labor-intensive nature of dismantling operations. This study proposes an optimization
framework for disassembly sequence planning under uncertainty considering human–
robot collaboration. The proposed framework combines three attributes: disassembly
cost, safety, and complexity of disassembly, namely disassembleability, to identify the
optimal disassembly path and allocate operations between human and robot. A multi-
attribute utility function is used to address uncertainty and make a tradeoff among multiple
attributes. The disassembly time reflects the cost of disassembly which is assumed to be an
uncertain parameter with a Beta distribution; the disassembleability evaluates the feasibil-
ity of conducting operations by robot; finally, the safety index ensures the protection of
human workers in the work environment. An example of dismantling a desktop computer
is used to show the application. The model identifies the optimal disassembly sequence
with less disassembly cost, high disassembleability, and increased safety index while allo-
cating disassembly operations among human and robot. A sensitivity analysis is conducted
to show the model’s performance when changing the disassembly cost for the robot.
[DOI: 10.1115/1.4055901]
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1 Introduction
Proper recovery of electronic waste (e-waste) has considerable

environmental and economic advantages [1]. A recommended prac-
tice for e-waste reduction is to extend the product life cycle through
reuse, remanufacture, or recovery of components [2]. Disassembly
is an inevitable step for the proper recovery of components from
end-of-life (EOL) devices. One question often facing remanufactur-
ers is to identify the best sequence to dismantle a device. Determin-
ing the optimal disassembly sequence plan is a challenging decision
due to the complexity of product design [3], the need for consider-
ing multiple objectives [4], and aligning disassembly objectives
with other production planning strategies [5].
A considerable number of studies have been focused on optimiz-

ing disassembly sequences to lower the remanufacturing cost [6–8].
Different normative techniques have been developed to find the
optimal disassembly sequence. To name a few studies, Tseng
et al. [9] developed a flatworm algorithm to lower disassembly
times by reducing disassembly direction and required tools. Fu
et al. [10] proposed a stochastic bi-objective disassembly planning
to maximize profit while minimizing energy consumption. Xia et al.
[11] developed a 3D-based multi-objective collaborative disassem-
bly sequence planning method by prioritizing disassembly levels
for parts. Lee et al. [12] applied a fuzzy scoring procedure to
measure disassembly factors before using a genetic algorithm to
select the best sequence. Behdad and Thurston [6] used multi-
attribute utility theory to determine the optimal disassembly

sequence considering multiple attributes of cost and probability of
components damage during disassembly and reassembly. Tao
et al. [5] used the disassembly precedence matrix and a Tabu
search algorithm to compare different disassembly strategies con-
sidering disassembly time, energy consumption, and cost. Ilgin
and Tas oğlu [4] combined simulation modeling and genetic algo-
rithm to simultaneously decide the best disassembly sequence and
the optimal number of EOL products to recover. Mircheski et al.
[13] developed a 3D CAD-integrated software tool to analyze
design alternatives in terms of design for disassembly. While the
previous studies have investigated disassembly sequence planning,
the number of studies considering robotic-assisted disassembly and
human–robot collaboration is limited.
Human–robot collaboration in disassembly is becoming a

popular topic in recent years. The labor-intensive and repetitive
nature of disassembly tasks may lead to human musculoskeletal dis-
orders [14]. Robots can handle monotonous repetitive or hazardous
tasks more efficiently than humans [14,15]. Although robots
provide higher efficiency, human workers are still needed in disas-
sembly operations for handling tasks that are difficult and inflexible
for robots [16].
Previous studies have considered human–robot collaboration

when deciding on disassembly sequence planning. For example,
Lee et al. [17] considered disassembly rules, disassembly cost,
and the position between human worker and robot and used a reced-
ing horizon control technique for real-time disassembly planning.
Xu et al. [16] applied a discrete bees algorithm to determine disas-
sembly sequence planning by considering time, cost, and difficulty
of disassembly. Parsa and Saadat [18] used a genetic algorithm to
optimize sequence planning, considering cleanability, repairability,
and economy. Xu et al. [19] adopted a multi-objective artificial bee
colony algorithm and AND/OR graph to find the optimal disassem-
bly sequence considering disassembly failure risks, disassembly
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priority, cycle time, and cost. Li et al. [14] considered human
fatigue to evaluate disassembly efficiency and used the bees algo-
rithm to arrange tasks among humans and robots. Xu et al. [20] con-
sidered the safety strategy and disassembly time and used the
improved discrete bees algorithm to allocate disassembly tasks.
Their safety strategy is to consider the location between human
workers and robots. As a human worker approaches the robot, the
operation speed of the robot will slow down to avoid robot
accidents.
Although previous studies have considered different factors when

allocating tasks in human–robot collaboration, no study has consid-
ered disassembly cost, disassembleability, and safety to the best of
our knowledge. Combining additional attributes and considering
the uncertainty are the primary contributions of this study. We
propose an optimization-based disassembly sequence planning by
considering three attributes, including cost, disassembleability, and
safety. The study uses a multi-attribute utility function to combine
these attributes. We consider the disassembly time as an uncertain
variable with a Beta probability distribution [21]. Besides disassem-
bly cost (time), we also consider disassembleability, which defines
the robotic capability on disassembly [18,22], and operator safety,
which is modeled by using the strain index (SI) [23]. Table 1 com-
pares this study with previous studies.
The objective of the study is to find the optimal disassembly

sequence and allocate disassembly tasks between humans and
robots.
The feasible disassembly sequences for a given product can be

presented in the form of a graph, as shown in Fig. 1, for a simple
product with three components. Each path has different costs,
safety, and difficulty.

2 Methodology
This section describes the three attributes incorporated in the

objective function and the proposed optimization model based on
the concept of a multi-attribute utility function.

2.1 Utility Function. The three attributes include disassembly
cost, disassembleability, and safety. The individual utility functions
of these three attributes have been integrated to form the overall
utility function as shown in Eqs. (1)–(3). Ua,j shows the utility func-
tion of attribute a for disassembly task j, and ka is the scaling constant
for attribute a. The scaling constant K is determined using Eq. (2).
The implementation details can be found in Refs. [24–26]

Uj =
∑
j∈J

1
K

∏
a∈A

[KkaUa,j + 1] −1

{ }
(1)

1 + K =
∏
a∈A

[Kka + 1] (2)

Ua,j = E[U(y)] =
∫
U(y)f (y)dy (3)

The scaling constant K is found in Eq. (2). Since some attributes
such as disassembly time are uncertain, instead of utility function
U(y) the expected utility is used as shown in Eq. (3). For details,
see Refs. [24–26].
Each attribute is normalized to unify the unit and range. Also,

each attribute is utility independent of other attributes. According
to Clemen and Reilly [27], an attribute is a utility independent of
another attribute, if preferences for uncertain choices possessing
different attribute levels are independent of the values of another
attribute. For example, disassembly cost and disassembleability
are preferentially independent and utility independent since, regard-
less of the value of disassembly cost, the user always prefers lower
complexity (higher disassembleability) over higher complexity.
Even in the case of uncertain choices involving different values

of disassembleability, the user’s preference among the uncertain
cases is independent of disassembly cost. We should note that the
concept of preferential independence and utility independence is
separate from how attributes are calculated.

2.2 Disassembly Cost. The disassembly cost depends on the
disassembly time which is modeled as an uncertain variable.
Fischer et al. [21] showed that the disassembly time could be well
described as a Beta distribution

f (t) =
Γ( p + q)
rΓ(p)Γ(q)

t − tL
r

( ) p−1 tU − t

r

( )q−1
if tL ≤ t ≤ tU

=0 Otherwise

⎧⎨
⎩ (4)

where r = tU − tL (5)

The tU and tL are the range of disassembly time, p, q are shape
parameters, and Γ is the gamma function.
We assume exponential functions for cost and time as shown in

Eq. (6) since higher time results in more human fatigue, lower per-
formance, and higher opportunity cost. Glock et al. [28] used the
exponential function to describe human fatigue, and Potkonjak
et al. [29] introduced robot fatigue and used the exponential func-
tion for fatigue quantification

Cj(t) = dect (6)

where Cj(t) is the disassembly cost of task j with time t; d and c are
the constant parameters. The utility function for disassembly cost is
as follows:

U(Cj) =
Cj(t) − Cmin

Cmax − Cmin
(7)

where Cmax = dectmax and Cmin = dectmin (8)

The utility function of cost is normalized between 0 and 1 using
Cmax and Cmin as maximum and minimum disassembly costs. Given
the uncertainty of disassembly time, the expected cost is described
as

E[U(Cj)] =
∫tU
tL

Cj(t) − Cmin

Cmax − Cmin

( )
f (t)dt

= g

∫tU
tL

Cj(t) − Cmin

Cmax − Cmin

( )
t − tL
r

( ) p−1 tU − t

r

( )q−1
dt

(9)

where g =
Γ( p + q)
rΓ(p)(q)

(10)

2.3 Operator Safety. Besides disassembly cost, operator
safety is another important attribute. The SI, proposed by Moore
and Garg [23], is a well-known tool to evaluate the risk of develop-
ing musculoskeletal disorders in distal upper extremities, including
the hand, wrist, forearm, and elbow. Given that the e-waste disas-
sembly task requires a lot of upper limb movements, such as discon-
necting cables and loosening screws, the SI score is a suitable
method to quantify human physical stress in our study. The disas-
sembly tasks are assigned to human and robot based on SI scores
to release human physical stress.
The SI score is determined based on the subjective ratings of six

task variables, including (1) intensity of exertion (IE), (2) duration
of exertion (DE), (3) efforts per minute (EM), (4) hand/wrist posture
(HWP), (5) speed of work (SW), and (6) duration per day (DD). A
multiplier is then assigned to each task variable based on the ratings.
Based on Moore and Garg [23], the rating criteria of the six task
variables and their corresponding multipliers are summarized in
Tables 2 and 3, respectively. Finally, the SI score is computed by
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taking the product of the six multipliers

SI = IE′ × DE′ × EM′ × HWP′ × SW ′ × DD′ (11)

2.4 Disassembleability. Disassembleability describes the
level of complexity of each task. Tasks with high complexity are
not feasible to be performed by a robot. The parameters describing
disassembleability are introduced in Refs. [18,22] which include:
(1) component size (CS), (2) component weight (CW), (3) require-
ment of tools (T), (4) accessibility (AC), (5) component shape
(CSH), (6) operation complexity (OC), (7) positioning (P), and
(8) operation force (OF). The scores of each parameter are described
in Table 4.

The disassembleability score (DS) is computed by adding up the
eight parameters

DS = CS + CW + T + AC + CSH + OC + P + OF (12)

If DS is higher than 14.2 or the robot’s capability, the tasks are
assigned to the human worker since they exceed the robot’s
capability [18,22]. The threshold 14.2 is calculated by dividing
the summation of the maximum disassembleability of each param-
eter by 2 e.g., (4+ 2.4+ 3+ 2+ 1.4+ 6.5+ 5+ 4)/2. The threshold
14.2 is calculated based on the equations provided in Refs.
[18,22] and disassembleability parameters are listed in Table 4 for
HRC. It should be noted that besides the DS value, other feasibility
considerations should be taken into account. For example, if the
object is too small or heavy even though the DS is lower than
14.2, the robot still cannot hold and locate the position, therefore
the tasks should be assigned to human workers.

2.5 The Proposed Disassembly Sequence Optimization
Framework. The multi-attribute utility function Uj shows the
overall utility of disassembly operation j, which incorporates the
three individual utility functions of cost, disassembleability, and
safety. Uj will be used to formulate the objective function of the
optimization model. The objective is to maximize the overall
utility of the whole sequence. A binary decision variable xj is
defined to determine whether disassembly operation j should be

Table 1 Comparison of existing literature and the current study

Reference Disassembly cost/time Safety Disassembleability Human–robot collaboration Multi-attribute utility function

[6] ✓ ✓
[10] ✓
[13] ✓
[16] ✓ ✓ ✓
[17] ✓ ✓ ✓
[18] ✓ ✓ ✓
[19] ✓ ✓
[20] ✓ ✓ ✓
This study ✓ ✓ ✓ ✓ ✓

Fig. 1 (a) A simple product with three components and
(b) feasible disassembly sequences

Table 2 The rating criterion of the six SI task variables [23]

Rating IE DE EM HWP SW DD

1 Light <10 <4 Very good Very slow ≤1
2 Somewhat hard 10–29 4–8 Good Slow 1–2
3 Hard 30–49 9–14 Fair Fair 2–4
4 Very hard 50–79 15–19 Bad Fast 4–8
5 Near maximal ≥80 ≥20 Very bad Very fast >8

Table 3 The multipliers of the six SI task variables [23]

Rating IE′ DE′ EM′ HWP′ SW′ DD′

1 1 0.5 0.5 1.0 1.0 0.25
2 3 1.0 1.0 1.0 1.0 0.50
3 6 1.5 1.5 1.5 1.0 0.75
4 9 2.0 2.0 2.0 1.5 1.00
5 13 3.0 3.0 3.0 2.0 1.50

Table 4 The eight disassembleability parameters [18,22]

CS Easily grasped 2
Moderately difficult to grasp 3.5
Difficult to grasp 4

CW Light 2
Moderately heavy 2.2
Very heavy 2.4

T No tools required 1
Common tools required 2
Specialized tools required 3

AC Shallow and broad fastener recesses 1
Deep and narrow fastener recesses 1.6
Very deep and very narrow fastener recesses 2

CSH Symmetric 0.8
Semi-symmetric 1.2
Asymmetric 1.4

OC Low 1
Moderate 4.5
High 6.5

P No accuracy required 1.2
Some accuracy required 2
High accuracy required 5

OF Low 1
Moderate 2
High 4
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conducted or not. The safety SI scores are used to assign each task
to the human worker or robot. Due to the high complexity and
uncertainty, tasks with high DS values are given to the human
worker. The index set, decision variable, and model parameters
are expressed as follows:

Index set
j Feasible disassembly transition j (task)
J The set of all feasible disassembly transitions
a Attribute a
S The set of all attributes
Mn The set of all disassembly transitions going to node n
On The set of all disassembly transitions outgoing from

node n
Decision Variables
xj Binary variable {0, 1}= {not performed, performed}

whether disassembly transition j is performed
αj Binary variable {0, 1}= {performed by robot,

performed by human} whether disassembly transition
j is performed by robot or human

Parameters
Ua,j The single utility function of attribute a for

transition j
E[U(CR,j)] The expected disassembly cost of robot
E[U(CH,j)] The expected disassembly cost of human worker
ka The scaling constant (a value between 0 and 1)
K The overall scaling constant (between 0 and 1)
ST, DT The threshold of SI scores and DS
M A large enough number. Ex. 1010

yj Binary variable {0, 1}

The proposed optimization model for disassembly sequence
planning is expressed as

Max
∑
j∈J

1
K

∏
a∈S

[KkaUa,j + 1] − 1

{ }
xj (13)

Subject to:

U1,j = (1 − αj)E[U(CR,j) + αjE
] [

U(CH,j)] (14)

U2,j =
SImax − SIj
SImax − SImin

(15)

U3,j =
DSmax − DSj
DSmax − DSmin

(16)

(1 − αj) · (DT − DSj) ≥ 0 (17)

M(1 − yj) ≥ (DT − DSj) (18)

αj(ST − SIj) +M · yj ≥ 0 (19)

∑
j∈I

xj = 1 (initial node) (20)

∑
j∈Mn

xj =
∑
j∈On

xj (transit nodes) (21)

∑
j∈F

xj = 1 (target node) (22)

Ua,j ∈ {U1,j, U2,j, U3,j} (23)

0 ≤ Ua,j ≤ 1 ∀a, ∀j (24)

Equation (14) shows the expected disassembly cost based on
Eq. (9). Equations (15) and (16) reflect the normalization of
SI and DS scores for each task between 0 and 1. Equations
(17)–(19) are a set of inequalities that represent an if–then statement
when solving the task assignment between human and robot. When
the task has high safety and disassembleability, it can be assigned to
either robot or human; if the expected disassembly cost of the robot
is less than the cost of human worker, αjwill be 0. In addition, the SI
scores and DS determine αj based on safety and disassembleability.

3 Case Study: Desktop Disassembly
The data collected from the disassembly of a Dell desktop com-

puter are used as a case study.
Three main components are targeted for disassembly (2a), i.e.,

component A—heatsink assembly, component B—optical disc
drive & hard drive assembly, and component C—memory
module. The heatsink assembly, as illustrated in Fig. 2(b), is
made up of a fan shroud (A1) and a heat sink (A2), whereas com-
ponent B consists of an optical disc drive (B1) and a hard drive
(B2).
The number of possible disassembly sequences of the three com-

ponents is six as a permutation problem.

Fig. 2 The desktop components targeted for disassembly
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All six sequences are tested to be feasible in our pilot studies.
However, the removal of subassemblies had to be in a specific
order due to physical constraints. Specifically, to remove the heat-
sink assembly (A) from the computer, the fan shroud (A1) had to
be removed before the heat sink (A2) so that cable A2 could be dis-
connected from the system board. Similarly, to remove component
B from the computer, one had to remove the optical disc drive (B1)
first to get access to the hard drive (B2). Figure 3 shows the possible
disassembly sequences.
To evaluate the SI and DS scores, a participant was tasked with

removing the heatsink assembly, the optical disc drive, the hard
drive, and the memory module from the desktop computer. Ade-
quate training was given to the participant before the formal data
collection. The manufacturer’s service manual guided the disassem-
bly procedure. The participant was videotaped during the data col-
lection, performing the disassembly task. After the task was
accomplished, the participant was interviewed about their subjec-
tive rating of force-related variables, i.e., IE of SI and OF of DS,
for every work element. The disassembly of each component is
composed of different tasks as shown in Table 5.
Two researchers independently analyzed the video taken during

the data collection to obtain the remaining variables. Instead of
computing the SI score for the entire job, SI scores for every
work task were calculated in the study to validate our optimization
model. Furthermore, a default rating value of 4 was assigned to DD,
representing a worker performing a given task for 4–8 h [30].
Table 6 shows the disassembly time for human and robot. In this

example, the lower bound of disassembly time, tL for human is
determined from experiments. The upper bound of disassembly
time for human, tU, and disassembly times of robot are assumed.
The disassembly time by the robot is assumed to be greater than

human due to the current software and hardware limitations in han-
dling disassembly tasks. The robotic technology for disassembly

tasks is not well developed, and most disassembly operations are
still conducted manually, so we assume a higher operation time
for robots to handle tasks. This may change in the future with
more advancements in robotics.
Table 7 summarizes the SI and DS scores for each task. While SI

and DS are the same for components A and B removal, the disas-
sembly of component C was highly dependent on the disassembly
order of components A and B removal.
As shown in Fig. 2(a), if component C is removed before B and

A, the limited space could negatively impact variables such as HWP
of SI scores and AC and P of DS. Moreover, poor hand/wrist
posture and accessibility made the force exertion difficult, increas-
ing the subjective ratings of IE of SI and DS. Consequently, the SI
scores and DS are higher when component C was removed before A
and B, performing tasks J16 and J17, and they dropped if A or B
was removed before C, performing tasks J12 and J13.
The input parameter d in disassembly cost is assumed to be 5 and

2 for human and robot, respectively, and parameter c is 0.01 in
Eq. (6). Due to the limited scope of this study, each disassembly
operation is run only once; however, one experiment is not adequate
to obtain the exact shape of the distribution function. In practice,
comprehensive data collection is needed to empirically gather dis-
assembly time, fit the proper distribution, and estimate the parame-
ters of distribution functions. The relation between disassembly cost
and time is plotted in Fig. 4.
The robot costs less than human due to its capability in handling

long-term monotonous, repetitive tasks [14,15]. The scaling con-
stants K, k1, k2, and k3 are considered as 1.68, 0.17, 0.3, 0.23.
The tasks with SI scores higher than 18 are assigned to the robot
to reduce musculoskeletal disorders damage to the human worker
(Table 7). In this study, normalization is used since each attribute
has different ranges and units. Note that ki are constants in the
range of (0, 1). The scaling constants are of the nature of utility

Fig. 3 The three possible disassemble sequences for components A (heatsink assembly), B (optical disc drive and hard drive
assembly), and C (memory module)
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where ki refers to the utility (preference) of an alternative in which
the ith attribute is at its best level and the rest of the attributes are at
their worst levels. For example, 0.3 shows the utility of a disassem-
bly sequence alternative for the decision maker in which the safety
is the highest but the cost and disassembly are at their worst levels
(highest cost and highest complexity).

4 Results and Discussions
This section shows the optimal sequence and work assignment

results. Also, several sensitivity analyses on parameters of the
cost function (d and c) have been conducted.

4.1 The Optimal Disassembly Sequence for the Desktop
Components. The utility of each attribute and the task assignment
among human and robot is shown in Table 8. Some utilities are 0
due to normalization. These tasks reflect either a high SI or high

Table 5 The description of disassembly tasks and the
corresponding components

Component Task Action

Remove Heatsink Assembly (A)
(for paths 1–6)

J1 Push away the two release
handles while lifting the fan
shroud upward and off the
computer

J2 Disconnect the fan cable (with
clip) from the system board

J3 Loosen the captive screws (x4)
J4 Lift the heat sink assembly and

remove it from the computer

Remove Optical Disc Drive &
Hard Drive Assembly (B) (for
paths 1–6)

J5 Disconnect the data cable from
the back of the optical drive

J6 Disconnect the power cable from
the back of the optical drive

J7 Lift the tab and slide the optical
drive out

J8 Disconnect the data cable from
the back of the optical drive

J9 Disconnect the power cable from
the back of the optical drive

J10 Slide the blue drive cage handle
toward the unlocking position

J11 Lift the hard drive cage from the
computer

Remove RAM (C) (For paths
1 & 2, Remove C after removing
A and B)

J12 Press down on the memory
retaining tabs on each side of the
memory module

J13 Lift the memory module out of
the connectors on the system
board

Remove RAM (C) (For paths
3 & 4, Remove C between A
and B)

J14 Press down on the memory
retaining tabs on each side of the
memory module

J15 Lift the memory module out of
the connectors on the system
board

Remove RAM (C) (For paths
5 & 6, Remove C before
removing A and B)

J16 Press down on the memory
retaining tabs on each side of the
memory module

J17 Lift the memory module out of
the connectors on the system
board

Note: The description of disassembly tasks are based on Dell OptiPlex XE2
Small Form Factor Owner’s Manual.

Table 6 The upper and lower bounds of disassembly time for
human and robot

Task

Human worker Robot

TL TU TL TU

J1 3 8 4 9
J2 3 8 11 16
J3 53 58 87 92
J4 2 7 3 8
J5 3 8 11 16
J6 3 8 11 16
J7 3 8 4 9
J8 3 8 15 20
J9 3 8 15 20
J10 2 7 3 8
J11 4 9 5 10
J12 3 8 8 13
J13 2 7 3 8
J14 3 8 9 14
J15 2 7 3 8
J16 4 9 16 21
J17 2 7 6 11

Table 7 The results of SI scores and DS for each task

Task SI scores DS Task SI scores DS

J1 9 11.2 J10 9 12
J2 18 16.3 J11 18 12
J3 13.5 19.8 J12 9 15.3
J4 9 10 J13 9 10.8
J5 40.5 16.3 J14 13.5 15.9
J6 40.5 16.3 J15 13.5 11.4
J7 9 10.8 J16 54 17.3
J8 54 17.3 J17 18 14.8
J9 54 17.3

Fig. 4 The disassembly cost of human and robot

Table 8 The results of multi-attribute utilities and overall utility
for each task (R: robot; H: human worker)

Task U1,j U2,j U3,j Overall utilityUj Work assign

J1 0.98 1.00 0.88 0.94 R
J2 0.97 0.80 0.36 0.62 H
J3 0.08 0.90 0.00 0.29 H
J4 0.99 1.00 1.00 1.00 R
J5 0.97 0.30 0.36 0.40 H
J6 0.97 0.30 0.36 0.40 H
J7 0.98 1.00 0.92 0.96 R
J8 0.97 0.00 0.26 0.24 H
J9 0.97 0.00 0.26 0.24 H
J10 0.99 1.00 0.80 0.90 R
J11 0.97 0.80 0.80 0.80 R
J12 0.97 1.00 0.46 0.75 H
J13 0.99 1.00 0.92 0.96 R
J14 0.97 0.90 0.40 0.68 H
J15 0.99 0.90 0.86 0.88 R
J16 0.95 0.00 0.26 0.24 H
J17 0.98 0.80 0.51 0.68 H
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DS score. For example, U3,j of task J3 equals 0, meaning this task
has high values of DS that the robot cannot implement.
J3 is focused on loosening the captive four screws. This task

needs high positioning with the small object screws with high com-
plexity and uncertainty. Thus, the task is assigned to the human
worker. Some tasks are decided by expected cost when the tasks
have low SI scores and high disassembleability. For example, J4
is to lift the heat sink assembly and remove it from the computer
with low SI scores and low DS. The task is assigned to robot due
to cost-efficiency. Although the robot’s disassembly time is
higher than that of human worker, the expected disassembly cost
of robot is less than the expected cost of human, as discussed in
Fig. 4. However, tasks with high SI and DS scores, for example,
J9, are assigned to human. Although J9 has a safety issue, it is
still assigned to human due to the high operational complexity
and infeasibility.
The optimal sequence is shown in Fig. 5. Paths 1–2–8–14 and

1–3–9–14 have the same overall utilities, 8.49, so either path is
optimum. Path 1–2–8–14 removes component A before B, and
Path 1–3–9–14 removes B before A. Paths 1–4–10–14 and 1–5–
11–14 have the same utility, 8.34. Both paths remove component
C after A or B. Paths 1–6–12–14 and 1–7–13–14 have the lowest
utility of 7.70 since component C is removed first in both paths
with limited space.

4.2 Cost Function Sensitivity Analysis. This section
describes a sensitivity analysis of the cost function parameters for
the robot. Three different combinations of parameters d and c for

different conditions are considered. The human cost function is
the same as in the previous section, with parameters d= 5 and c=
0.01. Figures 6–8 show the three different conditions for the
robot cost function.
In the first condition, the cost of the robot is either higher or lower

than human; in the second condition, the robot’s cost is lower at the
beginning but will be higher than human as the disassembly time
increases. The third condition is the opposite of the second
condition.
Table 9 summarizes the results of these three conditions for the

work assignments between human and robot. In condition 1,
when the parameters change slightly and the robot cost function
is close to the human, the results are the same as in the previous
section. However, the work assignments will change when the
cost function deviates from humans. In condition 2, the work
assignments are changed from the human worker to the robot as
parameter c increases. In condition 3, the work assignments are
switched from robot to human as parameter c decreases.
In practice, the cost function may vary depending on the type of

products, robots, and factory configurations. When estimating the
cost of operating a robot, various factors such as procurement
cost, utilization rate, the efficiency of scheduling, tooling, and
setup time should be considered.

4.3 Limitations and Assumptions. The proposed optimiza-
tion model and the demonstrating case study have several limita-
tions. The operator safety is calculated based on the Strain Index
which is focused on the upper extremities. However, disassembly
could involve lifting heavy objects which would have an impact
on the lower body. Future work should be focused on a diverse
set of disassembly tasks that require human movement and lifting
of a wide range of objects. More complex case studies on
washing machines, printers, and home appliances would enhance
the proposed work. Also, another assumption was that a robot can
repeatably perform disassembly tasks, however, various factors
ranging from environmental conditions to robot degradation and
product-to-product variability influence the robot’s performance.
Future work is needed to incorporate the impact of variable condi-
tions on robot and human performance.

Fig. 5 The summary of feasible and optimal disassembly paths

Fig. 7 Condition 2: The robot cost function is lower than the
human worker at the beginning and higher at the end

Fig. 6 Condition 1: The robot cost function is either higher or
lower than that of the human worker

Fig. 8 Condition 3: The robot cost function is greater than
human at the beginning and is lower at the end
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5 Conclusion
The study proposes an optimization-based disassembly sequence

planning framework for human–robot collaboration. It uses the
multi-attribute theory to combine three attributes of cost, the com-
plexity of disassembly, and safety to determine the optimal
sequence. The disassembly cost is modeled as an uncertain variable
with a beta distribution. The safety and disassembleability are
modeled using SI and DS scores. The model determines the task
assignments among human and robot and determines the optimal
disassembly sequence. An example of a desktop computer is used
to show the application of the proposed model. In addition, a sensi-
tivity analysis of the robot cost function is discussed.
This study can be extended in several ways. First, the SI scores

and DS are currently decided subjectively using standard metrics
and conducting lab experiments. However, computer vision tech-
niques can be utilized to quantify the SI scores and DS by observing
human and robot disassembly operations. Second, the model can be
extended to a real-time sequence planner. Third, other attributes
such as the distance between the removal component and the
robotic arm position can be further considered in the real-time
sequence planner. Fourth, experimental studies can be conducted
to provide real disassembly time by robot and the feasibility analy-
sis of each disassembly task.

Acknowledgment
This material is based upon work supported by the National

Science Foundation–USA under Grant No #2026276. Any opin-
ions, findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The datasets generated and supporting the findings of this article

are obtainable from the corresponding author upon reasonable
request.

Nomenclature
t = disassembly time

tU, tL = upper and lower bounds of disassembly time
Cmax = maximum disassembly cost
Cmin = minimum disassembly cost
Uj = the overall utility of task j

d, c = constant parameters in the disassembly cost function
p, q = shape parameters of the beta distribution
DS = disassembleability scores
SI = strain index scores

SImax = maximum strain index
SImin = minimum strain index

DSmax = maximum disassembleability score
DSmin = minimum disassembleability score
f (y) = the probability density function of attribute y
U(y) = the utility function of attribute y
Cj(t) = disassembly cost of task j

Γ = Gamma function
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