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Abstract—A rapid rise in the recycling and remanufacturing of
end-of-use electronic waste (e-waste) has been observed due to
multiple factors including our increased dependence on electronic
products and the lack of resources to meet the demand. E-waste
disassembly, which is the operation of extracting valuable
components for recycling purposes, has received ever increasing
attention as it can serve both the economy and the environment.
Traditionally, e-waste disassembly is labor intensive with
significant occupational hazards. To reduce labor costs and
enhance working efficiency, collaborative robots (cobots) might be
a viable option and the feasibility of deploying cobots in high-risk
or low value-added e-waste disassembly operations is of
tremendous significance to be investigated. Therefore, the major
objective of this study was to evaluate the effects of working with
a cobot during e-waste disassembly processes on human workload
and ergonomics through a human subject experiment. Statistical
results revealed that using a cobot to assist participants with the
desktop disassembly task reduced the sum of the NASA-TLX
scores significantly compared to disassembling by themselves (p =
0.001). With regard to ergonomics, a significant reduction was
observed in participants’ mean L5/S1 flexion angle as well as mean
shoulder flexion angle on both sides when working with the cobot
(p <0.001). However, participants took a significantly longer time
to accomplish the disassembly task when working with the cobot
(p <0.001), indicating a trade-off of deploying cobot in the e-waste
disassembly process. Results from this study could advance the
knowledge of how human workers would behave and react during
human-robot collaborative e-waste disassembly tasks and shed
light on the design of better HRC for this specific context.
waste
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disassembly, human workload and ergonomics

I. INTRODUCTION

Electronic gadgets are now a part of every aspect of our lives
because of technological advancement. Although the intention
of these technologies is to improve and simplify our lives, as our
reliance on electronic products grows, the amount of electronic
waste (e-waste) being produced each year when we discard or
replace these devices has been rising. According to the Global
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E-waste Monitor 2020 [1], global e-waste production reached a
record 53.6 million tonnes in 2019, increasing 21% in just five
years. At the same time, there has been an increased interest in
end-of-use product recovery and e-waste management [2]—[4].
To promote greener and more resource friendly productions, e-
waste disassembly is a necessary step to extract valuable
materials and components from end-of-use electronics.

While e-waste disassembly could increase the number of
materials and components available for recovery and reuse, the
process is one of the most expensive steps in e-waste
management and may introduce various safety risks [5]. Given
that most e-wastes are currently manually dismantled, the labor-
intensive nature and high exposure to hazardous substances pose
serious occupational hazards to human workers [6], [7]. To
reduce labor costs and enhance efficiency, a new robot
architecture: the collaborative robot, or cobot, has been
developed. In contrast to traditional autonomous industrial
robots which must be isolated from people for safety reasons,
cobots are intended for direct physical interaction with human
workers in close proximity [8], [9]. In compliance with the
upcoming Industry 5.0 paradigm, leveraging the strength and
intelligence of cobots to promote more efficient and sustainable
productions is receiving growing attention [10].

A large body of literature put focuses on human-robot
collaboration (HRC) during the disassembly process. For
example, Axenopoulos et al. [11] have discussed a novel
framework for e-waste recycling. A hybrid HRC approach was
proposed for device classification, disassembly, and component
sorting. Gerbers et al. (2018) researched and implemented 3D
safety sensors based intuitive programming environment for
HRC in the disassembly of Lithium-Ion Batteries [12].
However, enabling safe and seamless collaboration between
human workers and robot assistants in a shared workspace is a
non-trivial problem that calls for not only recent advances in
robotics, such as human-aware obstacle avoidance [13], [14] and
real-time object detection [15], [16], but also a thorough
understanding of how humans will physically and
psychologically respond to this new working mode [17], [18].
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As far as the authors are aware, earlier research efforts that took
into account human workload and ergonomics during human-
robot collaborative e-waste disassembly were mostly from the
viewpoints of workplace design [19], [20] and task planning
[21], [22]. Therefore, the major objective of this study was to
quantitatively evaluate the effects of working with a cobot
during the e-waste disassembly process on human workload and
ergonomics through a high fidelity human-in-the-loop
experiment. Based on the results from our pilot tests, we
hypothesized that: compared to the working alone condition,
working with a robot assistant 1) reduces the overall human
workload; and 2) lessens the physical stress that the task puts on
the human workers.

II. METHODS

A. Participants

Ten male participants were recruited from the university
student population to participate in this study. Their mean (SD)
age, height, and body weight were 24.5 (2.5) years, 178.6 (8.7)
cm, and 74.0 (24.9) kg. All participants reported themselves to
be in good health, able to stand for periods of at least 5 minutes,
have a negative COVID-19 test result with the official report
within 2 weeks, and free from any musculoskeletal injuries that
required medical treatment in the past 6 months. Nine out of 10
participants claimed to be right-handed, with the remaining one
claiming to be ambidextrous. Before any data collection,
participants completed informed consent and the experiment
protocol was approved by the University of Florida Institutional
Review Board (IRB202200211).

B. Instrumentation

For data collection, an inertial measurement unit (IMU)
based motion capture system (MVN Awinda, Xsens
Technologies BV, Enschede, The Netherlands) consisting of 17
inertial sensors attached to different parts of the participant’s
body according to manufacturer's instructions (Fig. 1). Each
sensor contained 3D gyroscopes, 3D accelerometers, and 3D
magnetometers [23], [24]. The sampling frequency of the
system was set at 60 Hz throughout the study. The data was
wirelessly transmitted via Bluetooth to a computer running the
MVN Analyze software which allows the motion data to be
observed, recorded, and analyzed.

Front Back
Fig. 1. Pictures showing the motion capture sensors setup.

The robot assistant used in the study was the UR5 robot
manipulator (Universal Robots, Odense, Denmark). The robot is
18.4 kg in weight and it has 6-degree-of-freedom on articulated
joints. It is designed to automate tasks with a weight of up to 5
kg with a working radius of 850 mm. A Robotiq 2-finger
adaptive gripper 85 (Robotiq, Levis, Canada) was mounted and
integrated with the robot manipulator (Fig. 2), serving as the end
effector to enable grasping. The robot was programmed using
the software provided by The Universal Robots Company that
allows intuitive programming with 3D visualization.

Fig. 2. The robot assistant and its end effector used in the study.

To simulate the e-waste disassembly process, a Dell
Optiplex 9020 desktop computer (Dell Inc., Round Rock, USA)
was randomly selected. As shown in Fig. 3, five components
were targeted to be taken apart in a pre-defined fixed sequence,
i.e., 1 - an optical disc drive, 2 - a hard drive, 3 - a fan shroud, 4
- a heat sink, and 5 - a RAM. The disassembly sequence was
determined mainly due to the physical constraint. For example,
the heat sink can only be removed after the fan shroud to gain
access.

Fig. 3. The desktop computer used in the study and components selected for
disassembly.

C. Experimental Design

A one-way, repeated measure experiment was adopted to
evaluate the effects of working with a cobot during the e-waste
disassembly process on human workload and ergonomics. Two
working modes were tested in the experiment: 1) performing the
disassembly task alone (no robot) and 2) performing the
disassembly task with the cobot's assistance (with robot). Each
participant completed 2 repetitions of each working mode. Table
I shows the required tasks and sequence in order to accomplish
one simulated disassembly trial. In “no robot” mode,
participants were asked to perform all the tasks by themselves.
The cobot, on the other hand, assisted the participant with some
of the activities based on the robot's capabilities in “with robot”
mode (Fig. 4 & Fig. 5). The order of experimental trials was
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counterbalanced. NASA-TLX and joint angles (mean L5/S1
flexion angle as well as mean shoulder flexion angle on both
sides) were the main dependent variables. Additionally,
participant’s task completion time for each trial was recorded.

TABLE I. REQUIRED DISASSEMBLY TASKS AND SEQUENCE.

Task No. | Task Description Tool Required
Task 1 Move the desktop computer from | None

the cart to the disassembly

station.
Task 2 Disconnect the data cable from None

the optical drive.

Task 3 Disconnect the power cable from | None
the optical drive.

Task 4 Lift the tab and slide the optical | None
drive out.

Task 5 Move the optical drive to the None

desired bin.

Fig. 4. A photograph of the participant performing the disassembly task with the

Task 6 Disconnect the data cable from None cobot's assistance.
the h ive.
.e ard drive D. Procedures
Task 7 Disconnect the power cable from None Upon arrival, participants were first asked to read and sign
the hard drive. . .. L. .
the informed consent form. Demographic information including
Task 8 Slide the blue drive-cage handle | None age, gender, weight, and height was then collected. Next, the
toward unlock position. researcher demonstrated to participants how to complete the
Task 9 Lift the hard drive and move it | None required disassembly tasks and the fixed disassembly sequence.
to the desired bin. At least two practice trials of each mode were given to

participants until they felt comfortable with the process.

Task 10 Using both hands, push away the | None
two release handles while lifting
the fan shroud upward and off
the computer

Following that, the motion capture sensors were attached and the
system was then calibrated according to manufacturer's
instructions. Subsequently, participants completed the simulated

disassembly trials. There were 2 repetitions for each working
mode and the test order was counterbalanced. After each trial, a
sheet of NASA-TLX was collected followed by a minimum 2-

Task 11 Move the fan shroud to the None
desired bin.

Task 12 Disconnect the fan cable (with None minute rest period.

clip) from the system board.
E. Statistical Analysis

Task 13 Loosen the captive screws (x4). Screwdriver x 1
To test our hypotheses, one-way repeated measures analyses

of variance (ANOVA) were performed on dependent variables.

Task 14 Lift the heat sink assembly and None

move it to the desired bin. The assumptions of normality and homogeneity of the ANOVA

model residuals were verified using the Shapiro-Wilk test and

Task 15 Press down on the memory None Levene’s test. Each repetition was treated as a single observation
retaining tabs on each side of the with ‘participant’ being the blocking variable. All analyses were
memory module. conducted using R studio version 4.2.1, with statistical

Task 16 Lift the memory module out of | None significance achieved when p < 0.05. Partial Eta squared #,> was
the connectors and move it to the used to determine the effect size.
desired bin.

Task 17 Move the desktop to the None III. RESULTS

disassembly station. A total of 40 trials (10 participants x 2 working modes X 2

repetitions) were collected in this study. NASA-TLX scores

Task 10 Task 12,13 Task 15

Robot
assistant

Task 11 Task 14 Task 16, 17

Fig. 5. Task allocation when the participant performed the disassembly process with the robot assistant.

Y
w
Human
worker
(§
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were manually organized and entered into an Excel worksheet
by two researchers independently. Joint angles, including L5/S1
flexion angle, left shoulder flexion angle, and right shoulder
flexion angle, were calculated and exported using MVN
Analyze software. Task completion time of each trial was
determined by the duration of the trial recorded by MVN
Analyze software as well. Table II summarizes the statistical
analysis results including sum of NASA-TLX scores, joint
angles, and task completion time.

A. NASA-TLX

NASA-TLX was analyzed to assess participants’ perceived
workload. The sum of scores reveals that participant’s overall
workload was significantly affected by the working mode (¥
(1,29)=15.31, p=0.001, 5,2 = 0.35). More specifically, the sum
of NASA-TLX scores is 96.75 (52.70) for “with robot” working
mode, which is significantly lower than 165.60 (106.52) for “no
robot” mode.

B. Joint Angle

As shown in Table II and Fig. 6, the working mode had a
significant influence on participant's L5/S1 flexion angle and
shoulder flexion angle on both sides. Compared to the baseline
“no robot” working mode, participant’s mean L5/S1 flexion
angle decreased significantly from 12.55° (2.94°) to 8.87°
(3.94°) in the “with robot” mode (F (1,29) = 83.26, p < 0.001,
7> = 0.74). A similar impact was observed in mean shoulder
flexion angle. Compared to “no robot” working mode, working
with the cobot significantly reduced participant’s mean shoulder
flexion angle on both the right side (from 61.85° (12.96°) to
41.52°(8.13°), F (1,29) = 149.95, p < 0.001, ,> = 0.84) and the
left side (from 56.10° (13.19°) to 40.09° (7.10°), F (1,29) =
69.47, p <0.001, ,2=0.71).

L5/S1 H Left Shoulder || Right Shoulder
80 <0001 p<0.001
Q( 0 T I
J
kS T
)
S 40
~—
k= p<0.001
= 20
0o With No With No With
Robot Robot Robot Robot Robot Robot
Working Mode

Fig. 6. Participants’ mean joint angles in two working modes. The error bars
represent the 95% confidence intervals.

C. Task Completion Time

In addition to NASA-TLX and joint angles, task completion
time was shown to be significantly impacted by the working
mode (F (1,29) = 105.35, p = 0.001, 5,> = 0.83). While
participants spent an average of 105.35 (18.38) seconds to
complete the disassembly process in “no robot” working mode,
they took significantly longer time, i.e., an average of 159.05
(22.68) seconds, with cobot’s assistance.

IV. DISCUSSION

The major objective of this study is to quantitatively evaluate
the effects of working with a cobot during the e-waste
disassembly process on human workload and ergonomics. To
this end, NASA-TLX, a commonly used subjective workload
measurement during HRC [18], [25], was adopted to assess
participants’ perceived workload during the experiment. Motion
data, including L5/S1 flexion angle, left shoulder flexion angle,
and right shoulder flexion angle, were selected to assess
ergonomics due to the prevalence of low back pain and shoulder
disorders among manufacturing workers [26]-[28]. In addition,
task completion time was recorded and compared across
working modes to evaluate the efficiency of the HRC design.

TABLE II. REQUIRED DISASSEMBLY TASKS AND SEQUENCE
Mean (SD)
Dependent Variable F-value p-value Effect Size 11,2,
No Robot With Robot
NASA-TLX 165.60 (106.52) 96.75 (52.70) 15.31 0.001 0.35
(sum of scores)

Mean L5/S1 flexion (°) 12.55(2.94) 8.87 (3.94) 83.26 <0.001 0.74

Mean shoulder flexion — right side (°) 61.85 (12.96) 41.52 (8.13) 149.95 <0.001 0.84
Mean shoulder flexion — left side (°) 56.10 (13.19) 40.09 (7.10) 69.47 <0.001 0.71
Task completion time (s) 105.35 (18.38) 159.05 (22.68) 144.54 <0.001 0.83
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A. NASA-TLX

NASA-TLX is made up of six subscales: mental demand,
physical demand, temporal demand, frustration, effort, and
performance. It is assumed that the combination of these factors
will likely represent the workload experienced by most people
performing most tasks [29]. In this study, the ratings were
simply added to get an estimate of the overall workload [30].
Statistical analysis revealed that working mode had a significant
effect on the sum of scores (p = 0.001), indicating a significant
reduction in workload when working with a cobot to complete
the disassembly process. Despite being encouraging, the finding
contradicts our earlier research [18], [31], which revealed that
sharing the workspace with an autonomous mobile robot
increased human workload. We argue that the conflicting results
were mostly caused by inherent job characteristics. In [18], [31],
participants were asked to conduct order picking and assembly
tasks while a mobile robot mimicked pallet moving tasks in the
same shared workplace. Since no direct collaboration was
intended, the introduction of the robot agent did not reduce the
amount of effort required of participants. Furthermore,
participants had to allocate extra mental resources to situation
awareness in order to ensure their safety when interacting with
the robot in close proximity. This may explain the negative
impact of working alongside the robot on participants’ perceived
workload. However, in this study the cobot took over nearly half
of the required tasks from participants, including tasks 1 and 17,
which required the most force exertion to complete. Moreover,
the motion of the cobot was programmed to be secure and
consistent throughout the trials, making it simple for participants
to become accustomed to the robot's movements after adequate
practice. Therefore, a significant reduction in perceived
workload was observed when performing the disassembly task
with the cobot's assistance.

B. Joint Angle

Low back pain is the most common musculoskeletal
problem globally [32]. According to previous research [33],
performing certain bending exercises can contribute toward low
back pain. In this study, participants’ mean L5/S1 flexion angle
significantly decreased when working with the cobot compared
to working alone (p < 0.001). The less the flexion angle, the less
compression and shear force on the low back, indicating
improved ergonomics introduced by the “with robot” working
mode. Similarly, significant reductions in shoulder flexion angle
on both sides (p < 0.001) revealed a lower risk of shoulder
disorders when working with the cobot. Literature has revealed
that shoulder disorders are associated with severe shoulder
flexion [28]. The reductions in joint angles are attributed to
fewer reaching activities being required in “with robot” working
mode. As seen in Fig. 5, the cobot complements human workers
on the majority of bending and reaching duties, e.g., moving the
dismantled component to the desired bin that was far from the
participant's location, so that participants could focus on the
tasks that are more precision and flexibility demanding but didn't
need making too many ergonomic compromises. Given the
promising results, it is fair to assume that the ergonomics of
human workers, particularly the risk of low back pain and
shoulder disorders, might be improved by integrating the cobot
assistant into the disassembly process.

C. Task Completion Time

While the results supported all of our original hypotheses,
the negative impact of introducing the cobot system shouldn't be
overlooked. Results showed that the working mode had a
significant effect on task completion time (p < 0.001), which
was unexpected yet found to be true. More specifically, the
disassembly process was completed far more slowly by the
human worker and cobot team than it was by the human worker
alone. In line with previous research [34], the finding
demonstrated a trade-off between job efficiency loss and gains
in human workload and ergonomics. However, the current issue
can be largely solved with an improved scheduling or HRC
optimization process. During the experiment, there was a
substantial amount of idle time on both the cobot and human
worker sides. This resulted from the pairing of one human
worker with one cobot on a single disassembly operation. An
optimization problem might be hence generated by considering
multiple human workers, multiple cobots, multiple ongoing
tasks, or a mix of them.

D. Limitations and Future Work

The study was limited by the small sample size (n = 10), and
only male participants were recruited. In order to investigate
more detailed responses (i.c., sub-scales of the NASA-TLX), a
larger sample size would be necessary. Objective workload
measurement, such as surface electromyography and eye
tracking, would be beneficial to complement subjective
workload assessment using NASA-TLX. As for ergonomics, in
addition to mean L5/S1 and shoulder flexion angles, a
comprehensive full body kinematics analysis will be carried out
to better understand human physical responses to the cobot.

V. CONCLUSIONS

In conclusion, results from the study supported the original
hypotheses, i.e., compared to the working alone condition,
working with the cobot reduced the overall human workload and
the physical stress that the disassembly task placed on
participants. This study confirmed that integrating HRC into e-
waste disassembly processes could decrease human workload
and improve ergonomics compared to traditional manual only
disassembly. However, the task completion time was found to
be negatively impacted when working with the cobot, indicating
a trade-off between job efficiency loss and gains in human
workload and ergonomics.
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