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Abstract—A rapid rise in the recycling and remanufacturing of 

end-of-use electronic waste (e-waste) has been observed due to 

multiple factors including our increased dependence on electronic 

products and the lack of resources to meet the demand. E-waste 

disassembly, which is the operation of extracting valuable 

components for recycling purposes, has received ever increasing 

attention as it can serve both the economy and the environment. 

Traditionally, e-waste disassembly is labor intensive with 

significant occupational hazards. To reduce labor costs and 

enhance working efficiency, collaborative robots (cobots) might be 

a viable option and the feasibility of deploying cobots in high-risk 

or low value-added e-waste disassembly operations is of 

tremendous significance to be investigated. Therefore, the major 

objective of this study was to evaluate the effects of working with 

a cobot during e-waste disassembly processes on human workload 

and ergonomics through a human subject experiment. Statistical 

results revealed that using a cobot to assist participants with the 

desktop disassembly task reduced the sum of the NASA-TLX 

scores significantly compared to disassembling by themselves (p = 

0.001). With regard to ergonomics, a significant reduction was 

observed in participants’ mean L5/S1 flexion angle as well as mean 

shoulder flexion angle on both sides when working with the cobot 

(p < 0.001). However, participants took a significantly longer time 

to accomplish the disassembly task when working with the cobot 

(p < 0.001), indicating a trade-off of deploying cobot in the e-waste 

disassembly process. Results from this study could advance the 

knowledge of how human workers would behave and react during 

human-robot collaborative e-waste disassembly tasks and shed 

light on the design of better HRC for this specific context. 

Keywords—human-robot collaboration, electronic waste 

disassembly, human workload and ergonomics 

I. INTRODUCTION  

Electronic gadgets are now a part of every aspect of our lives 
because of technological advancement. Although the intention 
of these technologies is to improve and simplify our lives, as our 
reliance on electronic products grows, the amount of electronic 
waste (e-waste) being produced each year when we discard or 
replace these devices has been rising. According to the Global 

E-waste Monitor 2020 [1], global e-waste production reached a 
record 53.6 million tonnes in 2019, increasing 21% in just five 
years. At the same time, there has been an increased interest in 
end-of-use product recovery and e-waste management [2]–[4]. 
To promote greener and more resource friendly productions, e-
waste disassembly is a necessary step to extract valuable 
materials and components from end-of-use electronics. 

While e-waste disassembly could increase the number of 
materials and components available for recovery and reuse, the 
process is one of the most expensive steps in e-waste 
management and may introduce various safety risks [5]. Given 
that most e-wastes are currently manually dismantled, the labor-
intensive nature and high exposure to hazardous substances pose 
serious occupational hazards to human workers [6], [7]. To 
reduce labor costs and enhance efficiency, a new robot 
architecture: the collaborative robot, or cobot, has been 
developed. In contrast to traditional autonomous industrial 
robots which must be isolated from people for safety reasons, 
cobots are intended for direct physical interaction with human 
workers in close proximity [8], [9]. In compliance with the 
upcoming Industry 5.0 paradigm, leveraging the strength and 
intelligence of cobots to promote more efficient and sustainable 
productions is receiving growing attention [10].  

A large body of literature put focuses on human-robot 
collaboration (HRC) during the disassembly process. For 
example, Axenopοulos et al. [11] have discussed a novel 
framework for e-waste recycling. A hybrid HRC approach was 
proposed for device classification, disassembly, and component 
sorting. Gerbers et al. (2018) researched and implemented 3D 
safety sensors based intuitive programming environment for 
HRC in the disassembly of Lithium-Ion Batteries [12]. 
However, enabling safe and seamless collaboration between 
human workers and robot assistants in a shared workspace is a 
non-trivial problem that calls for not only recent advances in 
robotics, such as human-aware obstacle avoidance [13], [14] and 
real-time object detection [15], [16], but also a thorough 
understanding of how humans will physically and 
psychologically respond to this new working mode [17], [18].  
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As far as the authors are aware, earlier research efforts that took 
into account human workload and ergonomics during human-
robot collaborative e-waste disassembly were mostly from the 
viewpoints of workplace design [19], [20] and task planning 
[21], [22]. Therefore, the major objective of this study was to 
quantitatively evaluate the effects of working with a cobot 
during the e-waste disassembly process on human workload and 
ergonomics through a high fidelity human-in-the-loop 
experiment. Based on the results from our pilot tests, we 
hypothesized that: compared to the working alone condition, 
working with a robot assistant 1) reduces the overall human 
workload; and 2) lessens the physical stress that the task puts on 
the human workers. 

II. METHODS 

A. Participants 

Ten male participants were recruited from the university 
student population to participate in this study. Their mean (SD) 
age, height, and body weight were 24.5 (2.5) years, 178.6 (8.7) 
cm, and 74.0 (24.9) kg. All participants reported themselves to 
be in good health, able to stand for periods of at least 5 minutes, 
have a negative COVID-19 test result with the official report 
within 2 weeks, and free from any musculoskeletal injuries that 
required medical treatment in the past 6 months. Nine out of 10 
participants claimed to be right-handed, with the remaining one 
claiming to be ambidextrous. Before any data collection, 
participants completed informed consent and the experiment 
protocol was approved by the University of Florida Institutional 
Review Board (IRB202200211). 

B. Instrumentation 

For data collection, an inertial measurement unit (IMU) 
based motion capture system (MVN Awinda, Xsens 
Technologies BV, Enschede, The Netherlands) consisting of 17 
inertial sensors attached to different parts of the participant’s 
body according to manufacturer's instructions (Fig. 1). Each 
sensor contained 3D gyroscopes, 3D accelerometers, and 3D 
magnetometers [23], [24]. The sampling frequency of the 
system was set at 60 Hz throughout the study. The data was 
wirelessly transmitted via Bluetooth to a computer running the 
MVN Analyze software which allows the motion data to be 
observed, recorded, and analyzed.  

 
Fig. 1. Pictures showing the motion capture sensors setup.  

The robot assistant used in the study was the UR5 robot 
manipulator (Universal Robots, Odense, Denmark). The robot is 
18.4 kg in weight and it has 6-degree-of-freedom on articulated 
joints. It is designed to automate tasks with a weight of up to 5 
kg with a working radius of 850 mm. A Robotiq 2-finger 
adaptive gripper 85 (Robotiq, Levis, Canada) was mounted and 
integrated with the robot manipulator (Fig. 2), serving as the end 
effector to enable grasping. The robot was programmed using 
the software provided by The Universal Robots Company that 
allows intuitive programming with 3D visualization.  

 

Fig. 2. The robot assistant and its end effector used in the study.  

To simulate the e-waste disassembly process, a Dell 
Optiplex 9020 desktop computer (Dell Inc., Round Rock, USA) 
was randomly selected. As shown in Fig. 3, five components 
were targeted to be taken apart in a pre-defined fixed sequence, 
i.e., 1 - an optical disc drive, 2 - a hard drive, 3 - a fan shroud, 4 
- a heat sink, and 5 - a RAM. The disassembly sequence was 
determined mainly due to the physical constraint. For example, 
the heat sink can only be removed after the fan shroud to gain 
access. 

 
Fig. 3. The desktop computer used in the study and components selected for 
disassembly.  

C. Experimental Design 

A one-way, repeated measure experiment was adopted to 
evaluate the effects of working with a cobot during the e-waste 
disassembly process on human workload and ergonomics. Two 
working modes were tested in the experiment: 1) performing the 
disassembly task alone (no robot) and 2) performing the 
disassembly task with the cobot's assistance (with robot). Each 
participant completed 2 repetitions of each working mode. Table 
I shows the required tasks and sequence in order to accomplish 
one simulated disassembly trial. In “no robot” mode, 
participants were asked to perform all the tasks by themselves. 
The cobot, on the other hand, assisted the participant with some 
of the activities based on the robot's capabilities in “with robot” 
mode (Fig. 4 & Fig. 5). The order of experimental trials was 
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counterbalanced. NASA-TLX and joint angles (mean L5/S1 
flexion angle as well as mean shoulder flexion angle on both 
sides) were the main dependent variables. Additionally, 
participant’s task completion time for each trial was recorded.  

TABLE I.  REQUIRED DISASSEMBLY TASKS AND SEQUENCE. 

Task No. Task Description Tool Required 
Task 1 Move the desktop computer from 

the cart to the disassembly 
station. 

None 

Task 2 Disconnect the data cable from 
the optical drive. 

None 

Task 3 Disconnect the power cable from 
the optical drive. 

None 

Task 4 Lift the tab and slide the optical 
drive out. 

None 

Task 5 Move the optical drive to the 
desired bin. 

None 

Task 6 Disconnect the data cable from 
the hard drive. 

None 

Task 7 Disconnect the power cable from 
the hard drive. 

None 

Task 8 Slide the blue drive-cage handle 
toward unlock position. 

None 

Task 9 Lift the hard drive and move it 
to the desired bin.  

None 

Task 10 Using both hands, push away the 
two release handles while lifting 
the fan shroud upward and off 
the computer 

None 

Task 11 Move the fan shroud to the 
desired bin. 

None 

Task 12 Disconnect the fan cable (with 
clip) from the system board.  

None 

Task 13 Loosen the captive screws (x4). Screwdriver × 1 

Task 14 Lift the heat sink assembly and 
move it to the desired bin. 

None 

Task 15 Press down on the memory 
retaining tabs on each side of the 
memory module. 

None 

Task 16 Lift the memory module out of 
the connectors and move it to the 
desired bin. 

None 

Task 17 Move the desktop to the 
disassembly station. 

None 

 

 

Fig. 4. A photograph of the participant performing the disassembly task with the 
cobot's assistance.  

D. Procedures 

Upon arrival, participants were first asked to read and sign 
the informed consent form. Demographic information including 
age, gender, weight, and height was then collected. Next, the 
researcher demonstrated to participants how to complete the 
required disassembly tasks and the fixed disassembly sequence. 
At least two practice trials of each mode were given to 
participants until they felt comfortable with the process. 
Following that, the motion capture sensors were attached and the 
system was then calibrated according to manufacturer's 
instructions. Subsequently, participants completed the simulated 
disassembly trials. There were 2 repetitions for each working 
mode and the test order was counterbalanced. After each trial, a 
sheet of NASA-TLX was collected followed by a minimum 2-
minute rest period.  

E. Statistical Analysis 

To test our hypotheses, one-way repeated measures analyses 
of variance (ANOVA) were performed on dependent variables. 
The assumptions of normality and homogeneity of the ANOVA 
model residuals were verified using the Shapiro-Wilk test and 
Levene’s test. Each repetition was treated as a single observation 
with ‘participant’ being the blocking variable. All analyses were 
conducted using R studio version 4.2.1, with statistical 
significance achieved when p < 0.05. Partial Eta squared ηp

2 was 
used to determine the effect size. 

III. RESULTS 

A total of 40 trials (10 participants × 2 working modes × 2 
repetitions) were collected in this study. NASA-TLX scores 

 
Fig. 5. Task allocation when the participant performed the disassembly process with the robot assistant.  
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were manually organized and entered into an Excel worksheet 
by two researchers independently. Joint angles, including L5/S1 
flexion angle, left shoulder flexion angle, and right shoulder 
flexion angle, were calculated and exported using MVN 
Analyze software. Task completion time of each trial was 
determined by the duration of the trial recorded by MVN 
Analyze software as well. Table II summarizes the statistical 
analysis results including sum of NASA-TLX scores, joint 
angles, and task completion time.  

A. NASA-TLX 

NASA-TLX was analyzed to assess participants’ perceived 
workload. The sum of scores reveals that participant’s overall 
workload was significantly affected by the working mode (F 
(1,29) = 15.31, p = 0.001, ηp

2 = 0.35). More specifically, the sum 
of NASA-TLX scores is 96.75 (52.70) for “with robot” working 
mode, which is significantly lower than 165.60 (106.52) for “no 
robot” mode.  

B. Joint Angle 

As shown in Table II and Fig. 6, the working mode had a 
significant influence on participant's L5/S1 flexion angle and 
shoulder flexion angle on both sides. Compared to the baseline 
“no robot” working mode, participant’s mean L5/S1 flexion 
angle decreased significantly from 12.55 °  (2.94 ° ) to 8.87 ° 
(3.94°) in the “with robot” mode (F (1,29) = 83.26, p < 0.001, 
ηp

2 = 0.74). A similar impact was observed in mean shoulder 
flexion angle. Compared to “no robot” working mode, working 
with the cobot significantly reduced participant’s mean shoulder 
flexion angle on both the right side (from 61.85° (12.96°) to 
41.52° (8.13°), F (1,29) = 149.95, p < 0.001, ηp

2 = 0.84) and the 
left side (from 56.10° (13.19°) to 40.09° (7.10°), F (1,29) = 
69.47, p < 0.001, ηp

2 = 0.71).  

 

Fig. 6. Participants’ mean joint angles in two working modes. The error bars 
represent the 95% confidence intervals. 

C. Task Completion Time 

In addition to NASA-TLX and joint angles, task completion 
time was shown to be significantly impacted by the working 
mode (F (1,29) = 105.35, p = 0.001, ηp

2 = 0.83). While 
participants spent an average of 105.35 (18.38) seconds to 
complete the disassembly process in “no robot” working mode, 
they took significantly longer time, i.e., an average of 159.05 
(22.68) seconds, with cobot’s assistance. 

IV. DISCUSSION 

The major objective of this study is to quantitatively evaluate 
the effects of working with a cobot during the e-waste 
disassembly process on human workload and ergonomics. To 
this end, NASA-TLX, a commonly used subjective workload 
measurement during HRC [18], [25], was adopted to assess 
participants’ perceived workload during the experiment. Motion 
data, including L5/S1 flexion angle, left shoulder flexion angle, 
and right shoulder flexion angle, were selected to assess 
ergonomics due to the prevalence of low back pain and shoulder 
disorders among manufacturing workers [26]–[28]. In addition, 
task completion time was recorded and compared across 
working modes to evaluate the efficiency of the HRC design.   

TABLE II.  REQUIRED DISASSEMBLY TASKS AND SEQUENCE 

Dependent Variable 
Mean (SD) 

F-value p-value Effect Size 
 

No Robot With Robot 

NASA-TLX 
(sum of scores) 

165.60 (106.52) 96.75 (52.70) 15.31 0.001 0.35 

Mean L5/S1 flexion (°) 12.55 (2.94) 8.87 (3.94) 83.26 < 0.001 0.74 

Mean shoulder flexion – right side (°) 61.85 (12.96) 41.52 (8.13) 149.95 < 0.001 0.84 

Mean shoulder flexion – left side (°) 56.10 (13.19) 40.09 (7.10) 69.47 < 0.001 0.71 

Task completion time (s) 105.35 (18.38) 159.05 (22.68) 144.54 < 0.001 0.83 
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A. NASA-TLX 

NASA-TLX is made up of six subscales: mental demand, 
physical demand, temporal demand, frustration, effort, and 
performance. It is assumed that the combination of these factors 
will likely represent the workload experienced by most people 
performing most tasks [29]. In this study, the ratings were 
simply added to get an estimate of the overall workload [30]. 
Statistical analysis revealed that working mode had a significant 
effect on the sum of scores (p = 0.001), indicating a significant 
reduction in workload when working with a cobot to complete 
the disassembly process. Despite being encouraging, the finding 
contradicts our earlier research [18], [31], which revealed that 
sharing the workspace with an autonomous mobile robot 
increased human workload. We argue that the conflicting results 
were mostly caused by inherent job characteristics. In [18], [31], 
participants were asked to conduct order picking and assembly 
tasks while a mobile robot mimicked pallet moving tasks in the 
same shared workplace. Since no direct collaboration was 
intended, the introduction of the robot agent did not reduce the 
amount of effort required of participants. Furthermore, 
participants had to allocate extra mental resources to situation 
awareness in order to ensure their safety when interacting with 
the robot in close proximity. This may explain the negative 
impact of working alongside the robot on participants’ perceived 
workload. However, in this study the cobot took over nearly half 
of the required tasks from participants, including tasks 1 and 17, 
which required the most force exertion to complete. Moreover, 
the motion of the cobot was programmed to be secure and 
consistent throughout the trials, making it simple for participants 
to become accustomed to the robot's movements after adequate 
practice. Therefore, a significant reduction in perceived 
workload was observed when performing the disassembly task 
with the cobot's assistance. 

B. Joint Angle 

Low back pain is the most common musculoskeletal 
problem globally [32]. According to previous research [33], 
performing certain bending exercises can contribute toward low 
back pain. In this study, participants’ mean L5/S1 flexion angle 
significantly decreased when working with the cobot compared 
to working alone (p < 0.001). The less the flexion angle, the less 
compression and shear force on the low back, indicating 
improved ergonomics introduced by the “with robot” working 
mode. Similarly, significant reductions in shoulder flexion angle 
on both sides (p < 0.001) revealed a lower risk of shoulder 
disorders when working with the cobot. Literature has revealed 
that shoulder disorders are associated with severe shoulder 
flexion [28]. The reductions in joint angles are attributed to 
fewer reaching activities being required in “with robot” working 
mode. As seen in Fig. 5, the cobot complements human workers 
on the majority of bending and reaching duties, e.g., moving the 
dismantled component to the desired bin that was far from the 
participant's location, so that participants could focus on the 
tasks that are more precision and flexibility demanding but didn't 
need making too many ergonomic compromises. Given the 
promising results, it is fair to assume that the ergonomics of 
human workers, particularly the risk of low back pain and 
shoulder disorders, might be improved by integrating the cobot 
assistant into the disassembly process. 

C. Task Completion Time 

While the results supported all of our original hypotheses, 
the negative impact of introducing the cobot system shouldn't be 
overlooked. Results showed that the working mode had a 
significant effect on task completion time (p < 0.001), which 
was unexpected yet found to be true. More specifically, the 
disassembly process was completed far more slowly by the 
human worker and cobot team than it was by the human worker 
alone. In line with previous research [34], the finding 
demonstrated a trade-off between job efficiency loss and gains 
in human workload and ergonomics. However, the current issue 
can be largely solved with an improved scheduling or HRC 
optimization process. During the experiment, there was a 
substantial amount of idle time on both the cobot and human 
worker sides. This resulted from the pairing of one human 
worker with one cobot on a single disassembly operation. An 
optimization problem might be hence generated by considering 
multiple human workers, multiple cobots, multiple ongoing 
tasks, or a mix of them.  

D. Limitations and Future Work 

The study was limited by the small sample size (n = 10), and 
only male participants were recruited. In order to investigate 
more detailed responses (i.e., sub-scales of the NASA-TLX), a 
larger sample size would be necessary. Objective workload 
measurement, such as surface electromyography and eye 
tracking, would be beneficial to complement subjective 
workload assessment using NASA-TLX. As for ergonomics, in 
addition to mean L5/S1 and shoulder flexion angles, a 
comprehensive full body kinematics analysis will be carried out 
to better understand human physical responses to the cobot.  

V. CONCLUSIONS  

In conclusion, results from the study supported the original 
hypotheses, i.e., compared to the working alone condition, 
working with the cobot reduced the overall human workload and 
the physical stress that the disassembly task placed on 
participants. This study confirmed that integrating HRC into e-
waste disassembly processes could decrease human workload 
and improve ergonomics compared to traditional manual only 
disassembly. However, the task completion time was found to 
be negatively impacted when working with the cobot, indicating 
a trade-off between job efficiency loss and gains in human 
workload and ergonomics. 
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