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Automatic Screw Detection
and Tool Recommendation
System for Robotic Disassembly

Disassembly is an essential process for the recovery of end-of-life (EOL) electronics in
remanufacturing sites. Nevertheless, the process remains labor-intensive due to EOL elec-
tronics’ high degree of uncertainty and complexity. The robotic technology can assist in
improving disassembly efficiency; however, the characteristics of EOL electronics pose dif-
ficulties for robot operation, such as removing small components. For such tasks, detecting
small objects is critical for robotic disassembly systems. Screws are widely used as fasteners
in ordinary electronic products while having small sizes and varying shapes in a scene. To
enable robotic systems to disassemble screws, the location information and the required
tools need to be predicted. This paper proposes a computer vision framework for detecting
screws and recommending related tools for disassembly. First, a YOLOv4 algorithm is used
to detect screw targets in EOL electronic devices and a screw image extraction mechanism
is executed based on the position coordinates predicted by YOLOV4. Second, after obtaining
the screw images, the EfficientNetv2 algorithm is applied for screw shape classification. In
addition to proposing a framework for automatic small-object detection, we explore how to
modify the object detection algorithm to improve its performance and discuss the sensitivity
of tool recommendations to the detection predictions. A case study of three different types of
screws in EOL electronics is used to evaluate the performance of the proposed framework.
[DOI: 10.1115/1.4056074]
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1 Introduction

The rapid consumption of consumer electronics and the subse-
quent waste generation rate have pushed corporates to consider
remanufacturing as a promising strategy for the efficient recovery
of end-of-life (EOL) products. Despite the importance of remanu-
facturing, the technology development to support product recovery
operations has been very limited [1]. Often consumer electronics
need to be disassembled before harvesting components. However,
disassembly is a labor-intensive task performed by human operators
under risky conditions.

Manual disassembly is widely used due to its high flexibility in
handling traditional disassembly operations [2]. However, manual
operations are costly and negatively impact human health. To
address this issue, human—robot partnership has been investigated
as an alternative. Disassembly automation has already been incor-
porated into waste management [3—5] and topics such as disassem-
bly line balancing and work assignment among humans and robots
to satisfy demand while minimizing cost have been investigated [6].
Besides cost-efficiency, disassembly robots can perform repetitive
tasks to reduce human fatigue [7].

While the disassembly process can benefit from robots, equip-
ping robots with accurate detection capabilities is very challenging,
as robots need to be familiar with the structure of EOL products
before any operation. A computer vision system can support
robots in identifying and locating components before disassembly
actions [8,9]. Nevertheless, current computer vision techniques
are not robust in detecting small objects, especially screws and fas-
teners. Moreover, when recognizing real objects in industrial
environments, lighting conditions or viewpoints are not always
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consistent, and slight changes can alter the detected features [10].
Besides, the contrast ratio between the screw head and other con-
nected components is low, and there is less information about
deeper features. In addition, imperfect manufacturing processes
and daily use under different conditions can easily produce micro
defects on the screw surface, affecting the identification of the
SCrew.

Considering the challenge of detecting screws, the template
matching approach allows detecting matches between the template
database and the input images [11,12]. However, the screw condi-
tions can vary from the original design due to various usage condi-
tions and part deterioration over time. Therefore, a fixed template
cannot detect the dynamic state of the screws [13]. Moreover, the
miniaturized design of electronics and overlapping objects makes
screw detection challenging. With the development of deep learn-
ing, multiple object detection algorithms, such as the faster region-
based convolutional neural networks (R-CNN), are used to detect
screws [14—17]. To achieve automatic disassembly, the detection
process should be efficient, as the speed and accuracy of the detec-
tion directly determine the subsequent disassembly operation.

When it comes to robotic disassembly, it is also necessary to
determine the relevant tools needed in each disassembly step.
Recent studies have highlighted the importance of automatic
screw detection and equipping industrial robots with computer
vision techniques to facilitate nondestructive dismantling [18]. In
this work, we further elaborate on the importance of screw detection
as a step toward developing tool recommendation guidelines. Cor-
responding to the screw detection, unscrewing tools should be sup-
ported in time [19]. With the need for autonomous decision-making
tools, the tool recommendation function allows the robot to perform
disassembly tasks successfully.

To facilitate robotic-assisted disassembly, this paper proposes a
framework for screw detection in EOL electronics using YOLOv4
(You Only Look Once) and disassembly tools classification using
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EfficientNetv2. The paper is organized as follows: Sec. 2 provides
an overview of the proposed automated framework. Section 3 pre-
sents the methodology consisting of deep learning and machine
learning algorithms. The results and analysis are presented in Sec.
4, and Sec. 5 summarizes the conclusion and future work.

2 The Framework Overview

There are several challenges with robotic disassembling screws
in EOL electronics. First, the size of screws is usually smaller
than other components, requiring higher accuracy of position infor-
mation. Second, the screws on EOL products may be deformed or
damaged, making them missing or difficult to identify. Third,
although screw heads look similar, only the specific tools that
match the screws can remove them.

Therefore, we propose an image-based robotic screw disassem-
bly framework as shown in Fig. 1. First, a YOLOvV4 network is
fine-tuned to achieve accurate detection of screws in consumer elec-
tronics. After obtaining the positioning coordinates of the screws,
an image extractor is added to separate the screws from the EOL
electronics to further refine the screw head features. Then, the Effi-
cientNetv2 network was employed for screw classification and rec-
ommendation of disassembly tools. Several optimization strategies
are applied, including modifying the detection algorithm and elim-
inating the sensitivity of the tool recommendation model to the
detection prediction results, which could better inform the robot
and prepare it for disassembly operations.

The proposed framework consists of two main modules. The
target detection and target classification modules should be sepa-
rated. The architecture from target detection should have the
ability to detect small objects and provide accurate target locations.
In addition, the detection architecture should not consider screw
types to avoid the computational load. After the detection
process, the targets can be completely separated from the EOL
products by positioning information. Then, since disassembly
tools depend on the screw head types, it is helpful to classify the
screw heads. The classification module can focus directly on the
features of the screw head and use the classification results to
guide users on the relative screwdrivers.

3 Methodology

3.1 Object Detection Model Based on YOLOv4 Algorithm.
Object detection refers to a series of tasks aimed at locating objects
in images or videos. The purpose of object detection is to identify
what an object is and where it is located by building computational
models. In applying object detection in robotic disassembly, the
first step for robots is to determine targets and their positioning
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information. There are two types of deep learning-based object
detection algorithms: two-stage detectors, such as the R-CNN
series, and one-stage detectors, such as the YOLO series. The two-
stage detectors which are developed earlier first generate bounding
box candidates and then implement object localization and classi-
fication. In subsequent developments, one-stage detectors omit
the step of generating region candidates and are presented as a
single convolutional network that simultaneously predicts bound-
ing box localization and classification. The one-stage detectors
are faster, while the accuracy of two-stage detectors is higher.
However, starting from YOLOv3, YOLO series has achieved a
better tradeoff between localization and recognition accuracy and
speed [20].

In the present paper, we select the YOLOv4 algorithm as an
object detection model to realize the task of detecting screws
from EOL products. Compared with YOLOv3, YOLOV4 uses path
aggregation network (PANet) as a parameter aggregation method
for different detector levels instead of the feature pyramid
network (FPN) used in YOLOv3, so the detection accuracy of
YOLOvV4 is higher than YOLOvV3 in the MS COCO dataset
[21,22]. Although YOLOvVS5 has recently been released, the
YOLOVS benchmark is not standardized yet, and more comparisons
are needed. Furthermore, YOLOv4 is a good choice for adding
more custom configurations than YOLOVS, which facilitates train-
ing and tuning the detection architecture on custom datasets.

YOLOV4 is a one-stage detector composed of CSPDarknet53
network (backbone), spatial pyramid pooling (SPP) layer, PANet,
and three YOLO heads. The structure of YOLOvV4 and its feature
size corresponding to our dataset are shown in Fig. 2. The specific
feature size parameters are useful for understanding how custom
datasets work in the architecture. The detailed workflows of each
module of YOLOv4 mainly include the following. First, CSPDar-
knet53, as the backbone of YOLOVA4, is responsible for extracting
deep features of the input image [12]. This convolution neural
network consists of five residual blocks; each block contains convo-
lution layers with 1 x 1 and 3 x 3 sizes and a Mish activation func-
tion. Second, the SPP layer participates in the convolution of the last
feature layer of CSPdarknet53, followed by a maximum pooling
with three kernel sizes of 5x5, 9x9, and 13 x 13 [14]. The SPP
can increase the perceptual field and enhance feature extraction
by separating the most important features from the backbone.
Third, PANet adopts a bottom-up path, reducing the difficulty of
extracting precise localization information. After shortening the
information path between lower layers and topmost features, it is
easier for the feature pyramid and solid localization features exist-
ing in the lower layer to propagate to the top [23]. Finally, three
YOLO heads with sizes of 10x10, 20x20, and 40x40 are
deployed to complete detection. The input of the heads contains
rich semantic and spatial information from previous modules,
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Fig. 2 Obiject detection model based on YOLOv4 algorithm

which guarantees a better performance for small target detection in
complex backgrounds.

Although YOLOV4 performs satisfactorily in object detection, it
is still not optimized for all scenarios. This affects the detection of
small objects, as the average resolution of screws in the dataset is
below 2 x 2 pixels. To improve the accuracy, we modify the base-
line network with two adjustments. First, the network is optimized
by using the low-level semantic information of the backbone. The
convolutional layers of the backbone are rich in semantic informa-
tion on the low-level feature maps and rich in spatial information on
the high-level feature maps. The low-level layers in the backbone
retain the high semantic values, which is partially beneficial for
extracting the semantic information of small objects. The second
adjustment is to prune the unimportant connections in PANet.
Too frequent convolution reduces the spatial dimension and resolu-
tion, which is detrimental to detecting small objects. Since screws
are the only target in our study, we can reduce the convolution oper-
ations. The difference between the baseline network and the opti-
mized network is shown in Fig. 2. While recent work has already
shown the application of YOLOVSs for screw detection [18], our
focus on the adjustment and detailed optimization of the YOLO
structure facilitates the adaptation of such algorithms to other small-
sized objects not necessarily limited to screws.

3.2 Tools Recommendation Model Based on EfficientNetv2
Algorithm. The next stage in the proposed system is to utilize the
results of the screw detection process and classify the screw types
and further recommend a disassembly tool. It also fine-tunes the
screw detection results by identifying false detections. The tool rec-
ommendation system consists of a screw image extraction mecha-
nism and an image classifier. The two stages of the proposed
framework are shown in Fig. 3.

Screws are inherently small relative to the input images. A single
screw could occupy as low as 0.02% of the image area. To alleviate
this disadvantage, we propose the following screw extractor. Lever-
aging the bounding boxes predicted by the YOLO network, the
screw extractor can extract square regions each containing a
single screw from the input image at full resolution.

Since YOLOv4’s bounding boxes are rectangular, the region is
first modified using a square bounding box with an equivalent
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area and centroid to the original one. Additionally, before extrac-
tion, the bounding box area is increased by a ratio, typically 20%
of the original box area. This tolerance value is recommended as
best practice in most settings. It can approximately accommodate
the maximum off-center shift possible (one-sided shift of ~5%)
for an intersection-over-union (IoU) of 0.9 based on square true
and predicted boxes. This value can be adjusted for any unforeseen
circumstances such as a sudden decrease in performance.

The extracted screw image is directly fed into a pretrained image
classifier based on EfficientNetV2 [24]. EfficientNet is a novel
architecture scaling convolutional neural networks to achieve
decent classification performance and training efficiency. Specifi-
cally, the EfficientNetV2 network is an upgrade to the original Effi-
cientNets [25] through utilizing the Fused-MBConv operator,
applying training-aware neural architecture search toward parame-
ter efficiency, and using a progressive learning strategy to speed
up training. These upgrades focus on training efficiency while

YOLOv4

Screws bounding boxes

Screw detection

— Centroid Area

Screw Extractor

|
Image

¥
EfficientNetV2-S

Tool recommendation

Fig. 3 The proposed framework for screw detection and tool
recommendation
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improving classification accuracy making it more adaptable to real-
time robotic disassembly. As validation, EfficientNetV2 achieved
competitive results on ImageNet [26] and CIFAR datasets while
maintaining a relatively low number of parameters. In this frame-
work, we use the EfficientNetV2-S variant, which has approxi-
mately 22 million parameters making it suitable for real-time
application. The architecture of the EfficientNetV2-S is shown in
Fig. 4.

The building blocks of the EfficientNetV2 network are the
MBConv operator and its modified variant, the Fused-MBConv
operator. MBConv, first introduced in MobileNetV2 [27] follows
the concept of inverted residuals. It starts with narrow layers,
expands them through a regular 1 x 1 convolution, applies a 3x3
depth-wise convolution, performs a squeeze-and-excitation opera-
tion [28], then squeezes the layers back to the original depth
through another 1x1 convolution. The skip connections exist
between the two starting and ending narrow layers, in contrast to
regular residual blocks. The Fused-MBConv replaces the expansion
and depth-wise convolution layers with a single regular 3 x 3 con-
volution as it was found that it boosts the training speed in the
model’s early stages.

Using transfer learning [29], the network is first pretrained with
the ImageNet dataset and then fine-tuned to the screw images
dataset. The benefit of using transfer learning is that they provide
general model parameters which can be used in other deep learning
applications. While ImageNet only contains over a thousand screw
images, it encompasses almost 1.3 million images and 1000 classes,
including various animals, plants, vehicles, and other objects. The
images and classes are generic enough to provide a good start for
the model parameters. In the fine-tuning phase, the network’s
final SoftMax layer is replaced with another corresponding to
the number of screw types available in the fine-tuning dataset.
Thus, the network can be trained by using a limited number of
screw images by improving the network’s parameter initialization
procedure.

Besides classifying the screw types, two main aspects are desired
from the tool recommendation system. First, it should identify false
screw detections to fine-tune the YOLOv4 detection results.
Second, the model classification predictions should be robust to
deviated bounding boxes predicted by YOLOv4. We implement
these aspects by (1) adding a “none” class which allows the
model to flag false positives resulting from the screw detection

4x4x256 | Conv 1x1 [ 1x1280 1x1000
HEAD [ + pooling Class
Probability
8x8x160 MBConv (Repeat x13) MBConv j
STAGE 6 ( 1 E6,k3x3,52 | ° ° * | E6, k3x3, s2
-
8x8x128 MBConv \Bepeat x7) MBConv |
STAGE 5 [ E6, k3x3,s1 | ° * * 7| E6, k3x3, sl
16x16x64 MBConv (Repeak k) MBConv |/
STAGE 4 ( E4,k3x3,52 | ° ° ° | E4,k3x3,s2
STAGE 3 32x32x48 | Fused-MBConv _(pre.at X.z)_ Fused-MBConv J
[ E4, k3x3, s2 E4, k3x3, s2
STAGE 2 64x64x24 | Fused-MBConv 7(pre.at x.2)7 Fused-MBConv J
{ E4, k3x3, s2 E4, k3x3, s2
64x64x24 | Fused-MBConv | | Fused-MBCoan
STAGE 1 ( 1 E1, k3x3, sl E1, k3x3, s1
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LEGEND

k: kernel size « E: expansion ratio

« s: stride « FC: fully-connected

Fig. 4 Tool recommendation model based on EfficientNetV2 algorithm
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(1) Original image

(3) Exposure (5) Mosaic
Fig. 5 Data augmentation methods (hue =0.1, exposure=1.5,
saturation =1.5)

model and (2) implementing data augmentation techniques in
model training that simulate the deviated bounding box predictions.

4 Experiments and Results

4.1 Experimental Environment and Dataset. To start train-
ing the models, we have taken photos of screws in different environ-
ments designed to be similar to a real remanufacturing workstation.
To enhance the accuracy of the experiment and the complexity of
detection, the screw photos should be as close as possible to the
remanufacturing environment. Therefore, we created an experimen-
tal workstation with the EOL electronics, a disassembly toolkit, and
multiple target-independent components to resemble a remanufac-
turing workstation.

The used electronics are supplied by the UF surplus office. The
condition of the screws, such as damaged, tilted, twisted, or bent,
will not be reported in advance. The information about the screws
will be learned entirely by the model such that the trained model
can be practically used in future remanufacturing scenarios
without significant adjustment. A Canon EOS M200 camera

(a) Original image (b)

Feature extraction

equipped with a 15-45 mm lens has been used to take photos
from any angle at 30 cm above the electronics.

The dataset includes three types of screws, Torx security screws
on the desktop hard drive, Phillips screws on the back cover of a
Dell laptop, and Pentalobe screws on the back cover of a Mac
laptop. Three types of screws are available in different sizes, quan-
tities, colors, and textures. A total of 300 images are recorded at a
resolution of 4000 x 6000 pixels and divided into an 80% training
set and a 20% test set. The training dataset is then manually anno-
tated by Labellmg [30], a graphical image annotation tool. The rect-
angular bounding boxes only contain target objects and are labeled
as a single class named “screw,” which are stored as .txt files in
YOLO format. Specifically, the object coordinates are the x—y coor-
dinates of the center of each bounding box relative to the width and
height of each image.

4.2 Object Detection Model Training and Evaluation
Metrics. We have implemented the transfer learning technique to
use the pretrained weights for YOLOv4. Beforehand training,
YOLOV4 network adjusts images to a square format with 320 x
320 pixel resolution, where the cropped images do not maintain
the aspect ratio of the original photos. During training, the
network resizes input and output sizes for every ten iterations.
Although the different images increase the complexity of the
dataset, four data augmentation techniques amended in the
network, including hue, exposure, saturation, and mosaic, are
used to overcome the deficiency of the small dataset. The mosaic
data augmentation is first introduced in YOLOv4. It combines
four images into one single image, which leads to identifying
objects on a smaller scale during the training process. Figure 5
visualizes the effect of employing the four data augmentation tech-
niques on an original image.

A GPU NVIDIA GeForce RTX 3060Ti is used for training. The
training hyperparameters are set as follows. The batch size is 32,
which means 32 images are used in one iteration. The maximum
training batches are initially set to 2000, suggesting the network ter-
minates the training at 2000 batches. The adaptive moment estima-
tion (Adam) optimizer in YOLOvV4 is used for iterative parameter
updates and fast training convergence. The initial learning rate is
0.001 and decays as training proceeds. The momentum is 0.949,
which means the previous update strongly influences the current
network update. The weight decay of 0.0005 is added as a regular-
ization for the decreasing weight values. For anchor boxes, the
number of anchors is determined by the pretrained YOLOv4
weights.

(c) Detection result

Fig. 6 Detection process

Journal of Manufacturing Science and Engineering
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Table 1 Detection results of two models

Precision Recall F, score mAP
Baseline model 0.92 0.92 0.92 0.9132
Optimized model 0.94 0.95 0.94 0.9424

To evaluate the performance of the object detection model, pre-
cision, recall, F| score, and mean Average Precision (mAP) have
been used as the evaluation indicators listed below. The IoU thresh-
old of 0.5 is also set to classify whether the prediction is a true pos-
itive or a false positive.

4.3 Tool Recommendation Model Training and Evaluation
Metrics. The dataset for training the tool recommendation model is
built by extracting images of all screws in the original dataset using
the actual labels and bounding boxes. For each screw, the extracted
image has the same centroid of its corresponding bounding box and
an increased area (e.g., 20%). The screw extractor also resizes the
square images to 128 x 128 resolution. The dataset has three
screw types: Pentalobe, Phillips, and Torx security. The total size
of the result dataset is 1240 screw images which are split into
1,115 images for backpropagation and the remaining 125 for vali-
dation. Additionally, the images reserved for evaluating the screw

... Train on annotated
screw images

M-3c¢ (G): Test on annotated screw images

M-3c¢ (P): Test on YOLO lpredictions

detection model are also used for testing the tool recommendation
system.

The EfficientNetV2-S variant is initially pretrained for the Ima-
geNet dataset for the image classification model. Then, the input
dimensionality was adjusted for images of size 128 and replaced
the network’s fully connected SoftMax layer with three nodes (or
four), each representing a class probability. The model is then fine-
tuned to the screw images using a categorical cross-entropy loss func-
tion with a batch size of five images. This fine-tuning process is opti-
mized using an Adam optimizer [31] with a learning rate of 1E—5 and
the exponential decay rates for the first and second-moment estimates
of 0.9 and 0.999, respectively. In addition, the validation loss is mon-
itored at each epoch through an early stopping criterion.

To evaluate the model performance, we use the F1-score, which
is the harmonic mean of the recall and precision, representing a tra-
deoff between the two metrics.

4.4 Main Results. After training, the YOLOv4 model is used
on the testing dataset. The detection results are shown in Fig. 6. The
illustration of the feature extraction process leads to how YOLOv4
learns target features from big, middle, and small scales. Final
detection results consist of object categories, bounding boxes, and
detection accuracy.

After training the two models separately, the test results are listed
in Table 1. Compared with the baseline model, the optimized model
has better detection results in terms of evaluation metrics.

. possible deviations
" and false detections

Testing

baseline mode

outlines sensitivity of M-3c¢ to YOLO predictions

(@ Model M-3c, baseline model

[
... Additional
training images

Testing

(b) Model M-4c: adds a fourth class to capture false screw detections

Training

’rﬂ‘
\ﬁy Augmenter}—»[EffNetvz
)

... Augmentation methods

to increase robustness to
bounding boxes deviations

YOLOv4

None Testing

(¢) Model M-4c-aug: applies augmentation during training “None

Fig. 7 Overview of tool recommendation models: (a) M-3c, (b) M-4c, and

(c) M-4c-aug
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Table 2 Test results of the tool recommendation models

Class M-3c (G) M-3c (P) M-4c (P) M-4c-aug (P)
Pentalobe 97.44% 96.72% 95.94% 99.17%
Phillips 99.24% 98.50% 99.62% 100.0%
Torx security 98.76% 98.33% 92.17% 99.59%
None — 88.24% 98.36%
Average 98.48% 97.83% 93.99% 99.28%

Note: (G) and (P) indicate the usage of ground-truth and the predicted screw testing datasets, respectively.

Classified as Pentalobe;
Recommend: Pentalobe screwdriver

Classified as Phillips;
Recommend: Phillips screwdriver Recommend: Trox security screwdriver

2 L

Classified as Trox security;

Fig. 8 Screw-type identification and tool recommendation results

Three models have been trained, tested, and compared for the
tool recommendation model. The first model (M-3c) is tasked
only with screw-type classification. The second model (M-4c) has
an additional task of fine-tuning the screw detection results by iden-
tifying false detections. Finally, the third model (M-4c-aug) adds
data augmentation techniques to account for deviations in screw
bounding boxes predictions. A summary of these models is
shown in Fig. 7. For the M-3c model, a single model is trained,
but two tests are made. One is based on ground-truth screw detec-
tion and bounding boxes, and the other is based on detected screws
and their bounding box predictions from the YOLOv4 model. The
M-3c model’s primary goal is to predict the screw type out of the
available three classes and thus has three nodes at its SoftMax
layer. The model is fine-tuned to the 1240 screw image dataset
and converged after 83 epochs with a validation loss value of
2.4E—4. Note that the training dataset for this model is perfectly
centered screw images with no false screws within the dataset as
they purely rely on a manually labeled dataset.

The ground-truth testing dataset contains a total of 311 screw
images, while the screw detection prediction dataset contains 314
screw images. The class F1 scores of M-3c for both datasets are pre-
sented in Table 2.

The average F1-scores for the ground-truth and predicted screws
datasets are 98.48% and 97.83%, respectively. These results show
good performance achieved by the M-3c model for both datasets.

There is a slight drop in all F1 scores in the predicted screw data-
sets due to possible bounding box off-center deviations, which
makes the test set marginally different from what the model was
trained on. The screw detection algorithm successfully avoided
false screw detections in this dataset. However, M-3c will assign
a screw-type to the empty bounding box if it happens during oper-
ation, resulting in an error. This is due to the nature of the three-
class training dataset described earlier and because the model was
built to predict the screw type out of the three given types. We
label the false detections as “None,” meaning that the network
detected the screw, but no screw appeared in the image.

The second model, M-4c, is trained to detect false alarms, thus
addressing one of the issues of M-3c and fine-tuning the screw
detection model. This is done by introducing an additional 240
images to the training and 60 images to the testing dataset represent-
ing the false detections. These images are cropped at random
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locations with a fixed small window from the original components
dataset such that they include no screws. We also replace the three-
node SoftMax layer at the head with a four-node SoftMax layer,
thus introducing a fourth class labeled “none.” The M-4c model
converged after 69 epochs with a validation loss value of 8.47E—4.
While the model successfully identified the false screw detections,
it achieved an average F1-score of 93.99% (Table 2). Nevertheless,
the average F1 score of the M-4c(P) model is lower than that of the
M-3c(P) model. Although the newly introduced images are labeled
as false detections, some slightly deviated bounding boxes are still
mainly of Torx security type, so the limited false detection data
confuse the M-4c model to distinguish class None and class Torx
security.

Finally, M-4c-aug introduces training data augmentation tech-
niques, including random rotation, horizontal shift, vertical
shift, and zoom. The main goal is to imitate possible bounding
box deviations caused by the screw detection model. Thus,
cases that are not present in the training data, such as partially
visible screws and off-center screws, can be learned during the
training process. This, however, made the training process length-
ier, and the model converged after 155 epochs with a validation
loss of 1.5E—4. This model addressed the issues of the other pro-
posed models and achieved an average Fl-score of 99.28% and
improved class Fl-scores, as shown in Table 2. Only two
screws (out of 374) were mislabeled in this model. With the
tool recommendation models, the final screw-type identification
is shown in Fig. 8.

The case study outcomes show the application of object detection
techniques for detecting small objects in consumer electronics recy-
cling. The combination of computer vision algorithms can help
robots recognize tiny objects and identify the tools required for dis-
assembly based on the type of screws and fasteners used in design-
ing electronics.

5 Conclusion and Future Work

This study proposes a framework for detecting small objects and
recommending tools for robotic-assisted disassembly. The pro-
posed framework consists of a YOLOv4-based screw detection
and an EfficientNetv2-based tool recommendation. The modified
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YOLOvV4 algorithm can improve the accuracy of screw detection;
the screw detection coordinates help crop and extract only screw
images; the three models based on EfficientNetv2 can eliminate
the effect of detection errors on screw classification. The application
of the proposed work is demonstrated on a dataset of three different
types of screws commonly used in consumer electronics. The
proposed work opens the opportunity for better design of remanu-
facturing workflows to facilitate robotic disassembly and human—
robot collaboration for waste stream management.

The proposed framework can be extended in several ways. First,
the current complex electronics design and multilayer disassembly
make it challenging to detect screws hidden in deeper spaces or
covered by other components, so more efficient algorithms are
needed to detect overlapping objects. Second, the appropriate disas-
sembly tool should match not only the screw type but also the screw
size. A method for determining screw size from visual data is
needed to ensure the tool meets the screw removal requirements.
Third, to achieve fully automated robot disassembly, the proposed
framework can be integrated with other sensor-based technologies
to collect data in real-time data while feeding it to robot control
and planning algorithms.
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