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Abstract— Large volumes of used electronics are often
collected in remanufacturing plants, which requires disas-
sembly before harvesting parts for reuse. Disassembly is
mainly conducted manually with low productivity. Recently,
human-robot collaboration is considered as a solution. For
robots to assist effectively, they should observe work en-
vironments and recognize human actions accurately. Rich
activity video recording and supervised learning can be
used to extract insights; however, supervised learning does
not allow robots to self-accomplish the learning process.
This study proposes an unsupervised learning framework
for achieving video-based human activity recognition. The
framework consists of two main elements: a variational
autoencoder-based architecture for unlabeled data repre-
sentation learning, and a hidden Markov model for activity
state division. The complete explicit activity classification
is validated against ground truth labels; here, we use a case
study of disassembling a hard disk drive. The framework
shows an average recognition accuracy of 91.52%, higher
than competing methods.

Index Terms— Human activity recognition (HAR), unsu-
pervised learning, disassembly tasks, variational autoen-
coder (VAE), hidden Markov model (HMM).

[. INTRODUCTION

Robots are becoming an inevitable element of the intelligent
manufacturing industry, where they team up with humans
to implement various tasks. In order to achieve a safe and
efficient collaborative environment, human activity recognition
(HAR) has gradually gained a lot of attention. The recognition
of human activity is intended to allow robots to proactively
provide assistance. To accomplish this, robots need to un-
derstand human behaviors and states based on the observed
information during operational processes.
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A. Research Motfivation

To enhance environment observation, the use of sensors or
vision systems has become popular for data acquisition while
humans are engaged in a task. However, wearable sensors pose
several concerns, such as the need for continuous intrusive
monitoring [1]. Smartphone sensors have proved to serve
as flexible candidates for data acquisition, but the recorded
data typically contains noise and requires more discriminatory
representation [2], [3]. Due to their non-intrusive and accessi-
ble nature, vision-based systems have been widely developed
for HAR. A robot manipulator is typically equipped with a
camera to collect human motion data and further learn tracking
tasks [4]. Videos from manufacturing settings contain spatio-
temporal information about human motion, which can help
identify human actions [5]. Consequently, a video recording
synchronized with human operation can capture rich informa-
tion about the surrounding environment, including the behavior
of humans interacting with products or tools.

Although video data contains a wealth of information,
extracting human behaviors in an actionable way remains
challenging. Allowing robots to understand human behaviors
requires obtaining features from video data [6]. The solutions
are mainly focused on the application of neural networks.
For example, by adjusting the weights of the neural network,
a growing self-organizing map was achieved to represent
human activities. [7]. Similarly, convolutional neural networks
(CNN) were applied to learn discriminative features in daily
activities [8]. Accurate feature extraction from video data is
a prerequisite for representing human activities. Since people
behave very differently in work environments as compared
to their ordinary daily activities, this poses difficulties for
human activity learning in manufacturing scenarios. In the dis-
assembly workspace, human workers’ actions are related to the
active workflow. Therefore, it is impractical to identify only
independent action data without considering the correlation be-
tween actions. Although supervised-learning based recognition
works well in some environments, it cannot properly deal with
action uncertainties in settings such as remanufacturing plants
where they receive products with different conditions, models,
and quality. Due to the high degree of variability in used
products and in activity performance by different subjects,
disassembly operations can hardly be defined as fixed patterns.

Given the large volume of used consumer electronics ready
for recycling and reuse, efficient disassembly has become
a necessity. In order to achieve an efficient robotic-assisted
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TABLE I: Comparison of Different HAR Approaches for Video Data

Mechanism Model Method Task
Ref Supervised Unsupervised | With explicit ~ Without ex- | CNN RNN HMM Assembly Disassembly
learning  learning feature plicit feature
extraction extraction

[9], [10], [11] X X X X
[12], [13] X X X X
[14] X X X X

[15] X X X X

Our framework X X X X X X

disassembly for end-of-use electronics, two aspects are investi-
gated in this study. First, unsupervised learning of human tasks
for robots to be familiar with the disassembly process. Second,
addressing the impact of the unknown state of electronics on
the disassembly process.

B. Main Contributions

To address the difficulty of recognizing human activity in
the remanufacturing domain, this paper proposes a framework
for unsupervised learning of action features directly from
videos for action recognition. Notably, we introduce a novel
model for unsupervised feature extraction from videos that
combines the ability of CNNs to parse spatial image data
and RNNs to handle temporal data, here termed a sequential
variational autoencoder (Seq-VAE).

The research contributions are reflected in the following.

1) The study proposes a novel unsupervised learning frame-
work for vision-based end-to-end human activity recognition.
In contrast to supervised HAR approaches, the proposed
framework significantly reduces the manual annotation effort
as well as importantly shifts vision-based HAR from manual-
intensive to model-automated. Moreover, identifying discrete
disassembly activities is not sufficient, so we use video stream-
ing to explore the sequential relationships between disassem-
bly activities. Also, since the products to be disassembled have
been in use for a long time, we also discuss the impact of the
uncertainty of the state of the disassembled products on the
disassembly process.

2) In the proposed deep framework, we design state-of-
the-art algorithms integrating a VAE-based feature extraction
model, a hidden Markov model (HMM) for continuous action
division, and a nonlinear support vector machine (SVM) kernel
for recognition validation. The complete workflow achieves
a balance between requiring fewer resources and effective
activity recognition learning.

3) To approximate uncertainties of end-of-use electronics
received at remanufacturing sites, we collect data sets by
designing multiple disassembly tasks. The experimental results
demonstrate the performance of the entire framework by eval-
uating it on real datasets. Moreover, we individually evaluate

TABLE II: Comparison of Supervised and Unsupervised

the modules for visual feature representation and continuous
activity segmentation.

The rest of the paper is structured as follows. Section II
compares our work to related HAR-themed research, from top-
level learning mechanisms to bottom-level implementation ap-
proaches. Section III describes the latent feature representation
learning architecture, followed by human activity recognition
learning. Section IV introduces the data set designed for
the experiments and describes the experimental results. This
section also discusses the stage results after each module
and the comparison with other unsupervised HAR methods.
Section V concludes the paper and extends to potential future
work.

[I. RELATED WORK

Table I compares different HAR approaches that have
been used for processing video data dedicated to assembly
and disassembly tasks. The criteria chosen are based on the
learning mechanisms at the top level, the model categories
at the middle level, and the implementation methods at the
bottom level.

As summarized in Table I, previous studies have used
different state-of-the-art supervised methods for processing the
video data, including CNN, recurrent neural network (RNN)
and HMM. Several studies have applied CNN streams for ex-
tracting spatial features from human motions [9]-[13]. Besides
CNN, aiming to capture action-based temporal information,
previous researchers used RNN sequence model to predict
incomplete movements [15], [16]. Furthermore, the modeling
of hierarchical relationships between classification results was
discussed in [14]. In terms of the learning mechanism, most of
the earlier studies have selected supervised learning [17], [18].
Although supervised learning has been successful at handling
tasks in which the labels can conveniently be designated by
humans, such as static classification, the models’ performance
may degrade while encountering recognition of time series
data. Moreover in robotic applications, it is difficult for robots
to self-supervise complex tasks [19]. To address this challenge,
learning video demonstrations in an unsupervised manner
directly from observations can be a solution. Unsupervised

TABLE Ill: Comparison of Multiple Architectures

Learning
CNN RNN HMM
Supervised learning Unsupervised learning Use-case Spatial- Temporal- | Segmented
Use-case Static classification, | Dynamic  recognition, based based sequential
More human interference | Less human interference activities activities activities
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Fig. 1: Workflow of the proposed unsupervised HAR framework.

learning is more accessible and scalable for robot learning
and dynamic recognition. Furthermore, unsupervised learning
provides a label- free learning pathway compared to computa-
tionally expensive supervised learning models, as summarized
in Table II.

HAR models can be separated into two types: with explicit
feature extraction [20] and without explicit feature extraction
[21]. A HAR model works on the principle of starting with
feature extraction and ending with action recognition. The
result of feature selection determines the performance of the
final action recognition. Features obtained from video images
encode spatio-temporal information about human activities or
trajectories. Explicit feature extraction modules reveal hidden
or less obvious features that are used to distinguish actions in
the original videos.

As highlighted in Table I, the HAR state of the art in-
cludes different implementation models ranging from deep
learning to Markov models. Unlike the conventional machine
learning methods that extract shallow features, deep learning-
based HAR models are robust to image variations. A popular
architecture in deep learning, CNNs have been shown to have
the capability to classify features related to subjects’ actions
[5], [22], [23]. In particular, human actions unfold sequen-
tially, with people completing assignments in manufacturing
scenarios based on a time-series workflow. At this point, the
superiority of RNN, which is more suitable for analyzing time
series data, is clearly demonstrated. RNN-based models can
extract temporal features more efficiently than CNN [20]. As
the manufacturing activities are connected, we need models
such as RNNs that can process sequence dependencies over a
long-range. In addition to deep learning-based feature learning
methods, an HMM has been applied to perform action recog-
nition. HMMs is a successful model for segmentation of video
data encapsulating behavior [23]. The HMM model has been
evaluated for its ability to divide continuous human behaviors
[24]. Table III lists the comparison for different architectures.

Note that recognizing human activity when performing a
disassembly task is a dynamic process, which cannot be esti-
mated in advance as in supervised learning. As an alternative,
unsupervised learning with explicit feature representation can
learn features automatically and also allows the robot to easily
observe human actions. We take advantage of different archi-
tectures - CNN for spatial feature learning, RNN for sequential
feature learning, and HMM for active state segmentation -
by integrating all of them into a single unsupervised learning
framework.

[1l. METHODOLOGY

In this section, we first provide an overview of the proposed
framework structure. Then, we describe the Seq-VAE model
built to extract features from unlabeled video data, and the
HMM model used to distinguish actions from the motifs.

A. Framework Structure

The detailed framework is illustrated in Fig. 1. The un-
supervised HAR workflow consists of three main modules.
First, after receiving unlabeled videos of consecutive actions
taken by operators while completing a specific task, the Seq-
VAE architecture extracts deeply embedded spatio-temporal
features from the data and represents them in latent space.
Second, considering the dependencies between consecutive
actions, an HMM uses the low-dimensional latent represen-
tation features to automatically delineate the states associated
with the active process. Third, based on the results of state
segmentation, the SVM classifier is trained to validate feature-
activity matching for clear human activity recognition. The
choice of the classification algorithm should not largely affect
the performance in recognizing the actions; we chose SVM
due to its simplicity and accuracy in most of the classification
tasks. The end-to-end human activity recognition learning
framework outputs unlabeled human activity information to
facilitate robot operations.
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Fig. 2: Structure of Seq-VAE: the frames are fed into the CNN-GRU-based encoder model for feature extraction and
reconstructed in the CNN-GRU-based decoder model to force the encoder to learn richer representations.

B. Sequential Variatonal Autoencoder (Seq-VAE)

Here we developed a model that can directly extract useful
action motifs from sequential video data (Fig. 2). The work
is inspired by [25], in which the authors aimed to reconstruct
sequential pose estimation data at the current time point while
also reconstructing n step ahead future data. In our case,
instead of using poses as the input data, we directly use video
frames as the input and predict the frames one step ahead. We
provide the mathematical details of the model below.

First, we define the input frame sequence at time ¢ as X; =
{X—w,X—w+1,..,% }, and the corresponding one step ahead
frame sequence as X;ij. The corresponding reconstructed
variables are denoted as X; and X, |, respectively. The latent
space variable at time 7 is denoted as z.

Our model aims to learn a d dimensional latent z; which
captures both the spatial and temporal information about the
input frames x; and x;41. The mapping from images to latent
is achieved by the following steps. First, the current input
frames x; go through a series of convolutional layers to capture
essential features from the frames. Then, a forward GRU
layer is implemented to capture the temporal information.
The latent is regularized using a KL divergence as detailed
in the following paragraph, and then is passed through two
decoders in parallel. Both of these decoders contain a GRU
layer followed by a series of CNN layers. This process results
in the reconstruction of the current input frame and predictions
of the future input frames. As a result, the latent z; at time ¢
captures both the past, current and future information about
the action.

We denote the encoding process described above as f, while
the decoding process as fy_currenr and fy_gurure; therefore, the
latent z, is expressed as:

2 = fe(Xt) (L
The decoder output for current reconstruction:
X = fa currem (z) 2
The decoder output for future prediction:
Xii1 = fa_puture(21) 3)

In a VAE model, the latent variables p(z|X) are regularized
through the KL divergence. The goal is to minimize the
distance between the unknown distribution p(z|X) and a prior
normal distribution p(z).

To deal with the unknown distribution p(z|X), the KL
divergence can be calculated through the Evidence Lower
Bound (ELBO) [26]:

Zergo = Eyx)llog(p(X[2)] — KL[q(z[X)|[p(z)] (D

The first term in the loss above is defined as the loss over
frames, Zeurrens_frames- Since the latent z; can predict the future
input X;41, we add another loss term in the above equation 4
to calculate the loss over the anticipated frames % ure_frames-
The loss function can be expressed as:

gELBO = gcurrent,frames + gfuture,frames + gKL
= Ey(x,) [log(p(Xe|2:)] + By, 1x,) log(p(Xi4112)]
—KL[g(z|x)|lp(z)]  (5)

We minimize this loss function to obtain model parameters
and latent variables that we treat as features in downstream
steps.

We use principal component analysis (PCA) and autoen-
coders (AEs) as comparisons to the Seq-VAE. In an AE model,
there is no regularization on the latent variables; the loss
is directly the reconstruction error of the frames, which is
calculated as the following, where N is the total number of

frames.
N

Luse =Y (= %) /N

t

(6)

C. Human Action Recognition

Here, we introduce a model to identify the motifs in the
data through an HMM. Our HMM consists of a set of dis-
crete hidden states S; € {1,2,..K} and observation sequences
{Z21,25,...Zu} where Zy, = {Zm,,Zmys--Zmp }» Zmy € R4, In our
model, z are the latent variables as identified by the Seq-VAE,
m e {1,2,..,M} is the trial number, m, represents the ¢/ time
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step in trial m, M is the total number of trials, K is the number
of hidden states, and d is the observation dimension.

In the HMM, there are three sets of parameters. The state
transition matrix A € RV*V where each entries A; j represents
the probability to switch from state i to state j:

AiJ = P(St+1 = j‘St = i) @)

The emission matrix B € R¥*S where B; ; represents the

probability that the observation is i given that we are in state
J:
Bi,j:P(Zt:i|St:j) ®)

The probability distribution P € R where P;(S;) represents
the probability of being in state S; at time f. We use the
Expectation-Maximization (EM) algorithm to fit the HMM
parameters and obtain the hidden states from the given ob-
servations; mathematical details can be found in [27].

We adopted the open source software from Linderman et
al. [28] for implementing the algorithm. The HMM fits with
the observations as the latent variables from the Seq-VAE.
After obtaining the HMM parameters using the training set,
we feed the model with the new testing set and generate the
hidden states.

The HMM typically results in sub-actions performed by the
human, at a temporal scale that may be shorter than human-
annotated actions. Thus, sub-actions obtained using HMM
may be combined to produce a manually-defined dissembling
action. We trained a classifier to validate whether the hidden
state generated by the HMM is consistent with the ground-
truth (human-annotated) actions. The process is described as
follows. We first annotate the actions at each time step as
a € {1,2,...,J}, with J being the total number of actions.
We then train an SVM model to output ground truth action
labels a; given the HMM states as inputs. Specifically, as
inputs at time ¢, we augment the current HMM state S; with
the length of the current state, as well as the last two HMM
states visited in the past and the length of these states. Given
this 6-dimensional vector as input, we classify the current
action label a;, and note the accuracy using our framework
as compared to other methods. Thus, we validate the HMM
states using the ground truth labels.

V. USE-CASE AND EXPERIMENTS

This section introduces a case study of end-of-use hard
disk drive (HDD) disassembly. We first demonstrate that
applying the Seq-VAE for feature extraction separates the
human actions through time. In addition, we compare our
model with two baselines- AutoEncoder (AE) and PCA. We
apply the latent to an HMM for motif identification and human
action recognition. Finally, we validate our framework with an
SVM for comparison to ground truth labels.

A. Task Design and Data Collection

The experiment is designed as follows. Only one user
is in charge of the disassembly workstation. An end-of-use
open-case HDD is used as the experiment’s target, which
is assumed to be of good internal condition. Moreover, we

A.

1. Grab tool 2. Loose screws 3. Remove screws

2B 1

Fig. 3: Experimental design: A. Experimental workstation. B.
Disassembly target. C. Disassembly action arrangement.
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current state image and predicting the future state image. B.
The correlation heatmap for latents generated by Seq-VAE and
AE. C. The latent traversals for the Seq-VAE and AE.

represent uncertainties of an end-of-use device by designing
three different cases, including an HDD with 2 screws, 3
screws, and 4 screws, illustrated in Fig. 3 A, B. The number of
screws affects the overall disassembly planning as thousands of
electronics are sent to remanufacturing sites every day. Small
differences in the used electronics can also make a difference
to the collaboration between human operators and robots,
as effective collaboration requires small or no gaps among
different disassembly steps. In order to eliminate bias in the
movements, the user was tasked to perform disassembly by a
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Seq-VAE latent variables. B. Action tree that reveals the relation between the manually annotated actions and the recovered
HMM states. The color of the actions nodes correspond to the color in part A (1,3,4). The color of the HMM states correspond
to the color in part A (2). The purple placement action represents the placement tool, while the blue action represents the
placement component. C. The HMM results and the ground truth comparison for the three feature extraction models. Only in
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specific sequence, including actions of grabbing a screwdriver,
loosing screws, removing screws, removing printed-circuit-
board (PCB), and finally delivering HDD. Each case scenario
is repeated 15 times to collect sufficient data, as illustrated in
Fig. 3 C.

For data pre-processing, the raw video is split into frames
that were recorded by a digital camera at 29.97 frames per
second (fps). These frames were converted from RGB with a
resolution of 1920 x 1080 to gray scale images of 128 x 128
pixels. The inputs to the model are two series of pre-processed
images: one defined as the current input and the other as
a future input, one frame later than the current input. They
both have a window size of W. Note that W is an important
hyperparameter and needs to be carefully defined, as detailed
in Sec. IV-B (2).

In order to match the divided action states to human
interpretable activity categories, we used a labeling strategy
with less human interference. Specifically, since the transitions
of the hidden states of the HMM represent changes in motion,
we referred to the starting and ending positions of the states
in the HMM to reduce the labeling workload.

B. Model Setup

1) Model Training: The feature extraction model was devel-
oped using TensorFlow and Keras. We applied a symmetric
image encoder and decoder, each with 14 convolution layers.
We applied the Adam optimizer with the learning rate fixed

to be 1073, batch size to be 64 and trained for 100 epochs
on a single Nvidia 3080 GPU. The experiment was carried
out while splitting the trials into training and testing: 80% for
training and 20% for testing.

2) Hyperparameters Selection: Three coefficients need to be
determined in our model as indicated above: {W,d,K}. In our
case, W is chosen to be 20 which well captures the action
dynamics through time as compared to smaller quantities;
moreover, it is relatively computationally efficient as compared
to the larger quantities. d is determined by visualizing the
correlation matrix for each latent; one can get useful latents
when the correlation between the individual latents is lower
than 0.5. We showed that d equals to 5. K can be chosen by
computing the log-likelihood as a function of number of states.
Too few states do not allow for a multi-scale representation
of behavior, and more states do not yield better models when
comparing log-likelihood functions [23], [25]. Here, we show
results for K=6; results are similar for K=5 and K=7. The
combination of each lower-level action forms the desired
action.

C. Behavior Reconstruction

We performed the experiment 5 times with different training
and testing sets each time by randomly shuffling the trials. The
Mean Square Error (MSE) for each individual pixel given by
the Seq-VAE model is as follows. For the training set, the error
is 7.90+0.23-107° for the current state reconstruction while
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SVM classification based on different latent variable models. B. Confusion matrix for the SVM classification accuracy and a
comparison between different models. C. The SVM classification accuracy and F1 score comparison.

7.86+£0.13-107° for the future state prediction. For the test
set, the values are 11.260.69-10~" and 11.46£0.68- 1077,
respectively. The reconstruction images are shown in Fig. 4A.
We compared the current reconstruction error with the error
generated by using the autoencoder. The MSE error per pixel
given by AE is 1.4240.65-107'0 on the test set. Our model
produces comparable MSE results.

D. Latent Space Representation

We evaluated the independence of each latent obtained from
Seq-VAE by showing the correlation matrix of each latent.
From the Fig. 4B, the latent variables are largely uncorrelated
with each other after training the Seq-VAE, similarly to the
AE model, which points to a well-regularized solution in both
cases. Next, we examined the interpretability of the latent
variables. In our experimental setting, the movements of the
human, here the arms, are the most important part of the
video. We performed latent traversals on our latent variables
to identify what each latent variable corresponds to in the
video, and if any of the latents successfully captures the arms’
movement. The term ‘latent traversal’ refers to the study of
how the image varies with a change in latent [22]. Briefly, a
base image is chosen by randomly picking one frame from the
videos, and the goal is to visualize and quantify the effect of
changing a specific latent at a time. Practically, we changed
the value of one latent to achieve its maximum value across
all frames, and this new set of latents form the input to
the decoder. We obtained the corresponding output from the
decoder as the ‘latent traversal’ image. Finally, we visualized
the difference between the ‘latent traversal’ image and the
base image, here denoted in red in the Fig. 4C. We showed
the latent traversal for one of the latents in Seq-VAE and the
closest corresponding latent in the AE model; the Seq-VAE
latent successfully captures the movement of the arms while
the AE latent encodes the image in a distributed way.

Finally, for visualization of the latent space, we performed
t-SNE on the latent variables and plot these in a two-

dimensional space (Fig. 5A). Here, each dot corresponds
to one frame in the trial. The frames manually labeled as
a specific ground truth action are clustered together in the
Seq-VAE latent space, and show adequate separation across
different actions. The same is not as clear in the AE or
PCA latent space, where much more overlap between different
actions.

E. Action Clustering

To automatically identify different discrete actions, we used
a hidden Markov model on the Seq-VAE latent variables.
The resulting discrete states are shown in Fig. 6A as an
ethogram, along with a comparison to ground truth actions
as well as discrete states identified by applying HMMs to
AE and PCA latents. Here, one can easily observe that the
combinations of different Seq-VAE states can be recognized
as various actions. While the ground truth labels encompass
long actions such as ‘grab tool’, these actions can be further
broken down into ‘pick up tool’ and ‘place tool’. We see in the
ethogram that the Seq-VAE states consistently subdivide the
ground truth actions into different sub-actions. In Figure 5B,
we show a hierarchical tree showing the breakdown of ground
truth actions into the different sub-actions. The hierarchical
mapping maintains consistency between the different levels.
The different colors in the bottom level represent different
states, which are automatically segmented by the HMM. Due
to complex motions contained in a single activity, each human-
annotated activity (middle level of the tree) consists of multiple
states found by the HMM. The conditional probabilities of
states to activities are calculated based on the frequency of
HMM states present in that activity. At the topmost level,
sequential activities form a disassembly task. We see in Fig.
5A (1) and (2) that the Seq-VAE states also capture actions
that are potentially missed by human annotation. For example,
the human annotation labels the overall action of ‘loose
screws’, but the Seq-VAE states capture the different sub-
actions involved, such as ‘loose left part of screws’, and ‘loose

Authorized licensed use limited to: University of Florida. Downloaded on September 15,2023 at 14:30:52 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/T11.2023.3264284

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXXX

right part of screws’.

In Fig. 6A, we show the ethograms for disassembling the
HDD with 2, 3, and 4 screws. The pattern of the Seq-VAE
states is maintained across the three conditions. In addition,
by comparing the ethogram with the ground truth states, one
can observe that they are well overlapped with each other.

Although the t-SNE analysis shows that different actions
separate well in the Seq-VAE latent space and HMM on these
latents captures the sub-actions well, we validate these Seq-
VAE states by automatically identifying the labeled ground
truth actions from the states. To do this, we train an SVM
to directly classify the human actions. We show the results
on held-out data in Fig. 6B,C. Here, we compared with
classifying the previously extracted latents and states using
PCA and AE. We see that using PCA systematically re-
sults in action 3 (‘remove screws’) being over-represented.
Moreover, the model has a hard time recovering the final
action, ‘delivery HDD’, using the PCA or the AE latents.
Our unsupervised framework, Seq-VAE, recovers the true label
with high accuracy across the five actions. With the SVM
classification accuracy being 62.93 +3.53%, 85.77 +4.08%,
and 91.52 +3.04%, and the F1 score being 61.32 +3.96%,
85.124+4.39%, and 91.33 +2.87% for feature extraction using
PCA, AE, and Seq-VAE, respectively, our methods succeed in
capturing the human actions.

F. Model Robustness to Unseen Scenarios

New experiments were conducted under the same experi-
mental workstation setup shown in Fig. 3A. The first case (a)
is: the operator grabs a screwdriver, loses 2 screws, but after
putting down the screwdriver, the screwdriver starts to roll, the
operator puts the screwdriver back in place, and then removes
the screws at the end. The second case (b) is: the operator
grabs a screwdriver, loses 4 screws, removes the screws and
removes the PCB, but the PCB is fastened to the HDD and
the operator needs to remove it with force and then deliver the
HDD at the end. In both cases, activities that are not related
to the previously defined disassembly actions include putting
the rolling screwdriver back in place B; and removing the
PCB with force B;. Activities such as these are very likely to
occur at the remanufacturing site and to affect the disassembly
process.

To test the performance of our model for unseen actions, we
directly input the data with two experiments into the model
for testing, without retraining the model. Based on the HMM
results in Fig. 7A, we distinguish unseen actions by looking
for state changes that differ from the sequence of states in
seen actions. Specifically, B; is distinguished because the red
state occurs, and Bj is distinguished because the combined
yellow and blue states occur. In addition, we further verify how
the SVM corresponds to the generated latent. In Fig. 7B, the
region boundaries of the SVM are obtained from the training
data and visualized using PCA applied to the augmented HMM
states. The square points are the test data in the new scenarios.
We can observe that the position corresponding to Bj is far
from the positions of the previous A; (orange) and the next A3
(blue). Similarly, the position of B, is far from A4 (pink) and

A.
New : Elz
scenario (a) I :—._

New

B,
scenario (b) |:-l] | ]: :

© Place @ Loose left part of the screws
O Grab @ Loose right part of the screws
O Place© Delivery

8

7} New scenario(a): B, ﬁf} New scenario(b): B,

© Grab tool © Loose screws
© Remove screws©® Remove PCB © Delivery HDD

Fig. 7: HMM and SVM results on new scenarios B; and B;
show that these unseen scenarios are distinguishable by the
model. A. HMM results applied to the new scenarios show
that unseen actions are distinguishable by considering state
changes. B. SVM boundaries visualized using PCA on the
augmented HMM states, with squares indicating the position
of the states surrounding the scenarios B; and B;.

As (green). Thus, our framework has ability to successfully
distinguish between unseen and predefined actions.

When it comes to the potential of applying our framework
to human-robot interactions, we believe that accurately identi-
fying different demolition activities allows the robot to provide
assistance proactively. Specifically, given the safety issues that
may arise if the robot moves while the human operator is
working, it is desirable to have the robot assist after the human
has completed an activity. In this way, the question of when the
robot should provide assistance needs to be addressed in the
context of human-robot collaboration. In our case study, the
robot can help recycle the disassembled part immediately after
the disassembly activity is completed, as indicated in Fig. 6A.
The robot can help retrieve the disassembled parts whenever
the related activities, such as Az,A4,As, are completed.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes an end-to-end unsupervised framework
to efficiently perform human action recognition on a disassem-
bly task by combining explicit feature extraction and multiple
algorithms integration. The proposed framework consists of
two main steps. First, a novel Seq-VAE architecture has been
developed to process video data and extract spatio-temporal
features of behaviors from video streams. Second, an HMM is
used to identify the hidden discrete states, termed sub-actions.
Finally, to understand the relationship to manually-labeled
human motions, a nonlinear SVM kernel has been applied. The
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proposed framework has been validated with experimental data
extracted from disassembly tasks of a hard disk drive under
unknown use-cases. The proposed scheme displays an advan-
tage in identifying continuous complex activities compared to
other widely applicable unsupervised learning methods.

In this paper, an end-of-use open-case HDD is used as
the experiment’s target, which is assumed to be of good
internal condition. Since we focus on extracting features
related to the operator’s actions, we propose an unsupervised
learning framework where temporally varying features are key
towards distinguishing human activities. Large variations in
the quality of the product may have an effect on the proposed
unsupervised learning framework. However, we posit that this
variation in quality will lead to variations in the duration of
each activity that should be captured by our model. We will
validate this in future work.

The work highlights the potential of unsupervised learning
for the recognition of human disassembly tasks. These studies
can be extended to consider advanced self-supervised learning
methods such as reinforcement learning. Directly learning rich
input representations can facilitate robots to adapt disassem-
bly skills from unlabeled video data. In the future, further
experimental studies can be conducted by enrolling robots in
disassembly tasks to validate this framework for human-robot
collaboration. Another future goal is to extend this framework
to enable robots to learn disassembly tasks in a self-supervised
manner.
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