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A B S T R A C T   

The production of electronic waste, also known as e-waste, has risen with the growing reliance on electronic 
products. To reduce negative environmental impact and achieve sustainable industrial processes, recovering and 
reusing products is crucial. Advances in AI and robotics can help in this effort by reducing workload for human 
workers and allowing them to stay away from hazardous materials. However, autonomous human motion/ 
intention perception is a primary barrier in e-waste remanufacturing. To address the research gap, this study 
combined experimental data collection with deep learning models for accurate disassembly task recognition. 
Over 570,000 frames of motion data were collected from inertial measurement units (IMU) worn by 22 par
ticipants. A novel sequence-based correction (SBC) algorithm was also proposed to further improve the accuracy 
of the overall pipeline. Results showed that models (CNN, LSTM, and GoogLeNet) had an overall accuracy of 
88–92%. The proposed SBC algorithm improved accuracy to 95%.   

1. Introduction 

In comparison to the ongoing fourth industrial revolution, which 
focuses on the cyber-physical system by leveraging advances in AI and 
the internet of things, the upcoming fifth industrial revolution will place 
a greater emphasis on the collaboration between humans and the 
intelligent machines to achieve green and sustainable industrial pro
cesses (Breque et al., 2021). As our dependence on electronic products 
increases, the amount of electronic waste (e-waste) being produced has 
been increasing each year. According to the Global E-waste Monitor 
2020 (Forti et al., 2020), 53.6 million tonnes of e-waste were produced 
worldwide in 2019, with a growth rate of 21%. As e-waste management 
is becoming a growing concern, there has been an increased interest in 
end-of-use product recovery to reduce e-waste (Zuidwijk and Krikke, 
2008). To extract valuable components and materials from end-of-use 
electronic products, the process of disassembly is a necessary step. 

While disassembly could increase the number of product components 
available for recovery and reuse, the process is often labor-intensive 
with significant occupational hazards, both physically and psycholog
ically, for workers (Acquah et al., 2019). Currently, disassembly is still 

dominated by human workers. Automation and robotics-based methods 
are not widely seen due to the inherent complexity of the task such as 
demanding precision and high flexibility. In compliance with Industry 
5.0 paradigm, research efforts have been put into designing and 
implementing robot assistants to complement human workers and 
mitigate work-related safety issues (Xu et al., 2021; Sajedi et al., 2022; 
Chen et al., 2022a; Chen et al., 2022b). In order to enable the robot 
assistance in the disassembly process, human task recognition is neces
sary due to the fact that robots need to be able to understand human 
behavior and activity to collaborate with them effectively. By recog
nizing human activity, the robot can interpret their intentions and adjust 
its behavior accordingly. This is critical for developing a safe and 
seamless collaboration between the robot and human. However, 
real-time human task recognition, as an essential component in the 
system workflow, still remains a significant challenge, limiting the use of 
robotic-assisted disassembly safely and effectively. 

Task recognition is the process of identifying and understanding the 
specific task that needs to be completed, and it can be an important and 
necessary step in many different fields, such as AI and HRC. To name a 
few studies, Kiruba et al. (2019) developed a hexagonal volume local 
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binary pattern descriptor by considering the motion and temporal in
formation, with a single RGB camera. The approach achieved body-pose 
recognition accuracy rates of over 84% across multiple benchmark 
datasets. In Sajedi et al. (2022), deep learning models for hand recog
nition were created to explicitly quantify the prediction uncertainty 
based on two-dimensional images. Zhang et al. (2021) proposed a 
hybrid approach to recognize human assembling actions during HRC 
leveraging an image-based CNN model and variable-length Markov 
modeling. Despite solo usage of RGB camera for achieving satisfactory 
results, several studies, such as (Mazhar et al., 2019; Arivazhagan et al., 
2019), used both RGB camera and depth sensitivity functions of the 
device (RGB-D system, Microsoft Kinect) for improved hand gesture 
recognition. 

The aforementioned approaches have been proposed to track and 
recognize human actions using image data. However, their real-time 
capabilities were not guaranteed due to the heavy computing power 
and advanced hardware required for image processing. Furthermore, 
typical computer vision issues, such as being sensitive to camera oc
clusions, light variations, and shiny surfaces, may compromise the 
performance of vision-based approaches in real-world applications 
(Pfister et al., 2014; Roda-Sanchez et al., 2021). To overcome these 
challenges, Inertial Measurement Unit (IMU), a widely used wearable 
technology to provide motion data for human activity recognition (Lara 
and Labrador, 2012; Hu et al., 2021; Luo et al., 2020a), has shown 
promise in industrial operation processes (Koskimaki et al., 2009; Kos
kimäki et al., 2013). In Roda-Sanchez et al. (2021), an experiment was 
undertaken to compare an RGB-D based approach against an IMU-based 
gesture recognition algorithm in remanufacturing context. The results 
indicated that the proposed IMU-based approach had recognition ac
curacy rates up to 8.5 times higher. Moreover, it was shown that accu
racy of the RGB-D based approach differs significantly depending on the 
plane where movements are performed as well as other factors such as 
ambient luminosity and focal length, making it unsuitable for complex 
movements like hand flips and screw/unscrew that are commonly car
ried out in disassembly processes. 

Even though prior research has demonstrated promising results in 
task recognizing using IMUs, a major challenge is the lack of publicly 
available datasets. Unlike video datasets, which are well-established in 
both RGB (Schuldt et al., 2004; Liu et al., 2009; Zhou et al., 2018) and 
RGB-D (Wang et al., 2012; Koppula et al., 2013) modalities, there are 
currently far fewer IMU datasets. The authors are aware of IMU datasets 
for task recognition in common daily activities (Zhang and Sawchuk, 
2012), air-writing (Tripathi et al., 2021), and gait analysis (Luo et al., 
2020b), etc., however, they are even rarer for industrial operations 
(Dallel et al., 2020). To the best of our knowledge, no dataset for human 
task recognition in the e-waste disassembly process is currently avail
able, which significantly restricts the broad attention from the machine 
learning and artificial intelligence communities. 

Given the fact that the e-waste disassembly process could present 
many challenges that are not conducive to the application of computer 
vision methods, such as camera occlusions, light variations, and shiny 
surfaces, the primary objective of this study is to develop deep learning 
models that use IMU data to accurately detect disassembly tasks in 
complex disassembly settings of consumer electronics (Fig. 1). To fill the 
gap of lacking IMU datasets in the e-waste disassembly process, a set of 
experiments have been conducted to obtain human motion data from 
wearable IMUs. Then, Convolution Neural Networks (CNN), Long Short- 
Term Memory (LSTM), and GoogLeNet models were trained with the 
collected motion data and their performance were compared. Finally, a 
novel sequence-based correction approach was developed to increase 
the accuracy of the task recognition model. The main contributions of 
the study are:  

• The development of IMU-based deep learning models for task recognition 
allows intelligent systems, such as robot assistants, to detect human 
intention during complex disassembly processes.  

• A sequence-based correction approach is proposed for enhancing the 
accuracy of the task recognition model in real-time based on a known 
disassembly sequence. 

2. Methods 

2.1. Participants 

Twenty-two participants (fourteen males and eight females) were 
recruited from the university students to participate in this study. Their 
mean (SD) age, height, and body weight were 25.4 (4.3) years, 174.6 
(10.3) cm, and 65.4 (20.0) kg. All participants reported being healthy, 
having normal or corrected to normal vision with contact lenses, and 
without any musculoskeletal injuries that required medical treatment in 
the past 12 months. The majority of the participants, 20 out of 22, self- 
reported as being right-handed, while one participant claimed to be left- 
handed and the other claimed to be ambidextrous. Participants 
completed informed consent before any data collection, and the exper
imental protocol was approved by the University of Florida Institutional 
Review Board (IRB202200211). 

2.2. Experimental data collection 

Desktop computers have been selected for the study due to their wide 
application and contribution to the total e-waste generation. Six com
ponents were targeted for removal in a fixed sequence: 1) the thumb
screw, 2) the cover, 3) the hard disk drive, 4) the fan, 5) the heat sink, 
and 6) the memory module (RAM). The specific product used in the 

Fig. 1. The conceptual overview of the proposed task recognition method and 
an example application of robotic-assisted disassembly. 
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study was a Dell OptiPlex 7050 Micro desktop computer (Dell Inc., 
Round Rock, TX). The components were selected based on their poten
tial for reuse, recycling, or recovery. For example, as a general practice, 
hard drives are expected to be manually pulled out before starting the 
recycling process due to potential privacy concerns. On the other hand, 
during end-of-life electronic recycling and disassembly operations, RAM 
modules are usually easier to reuse and yield more favorable economic 
returns. The disassembly sequence was determined mainly due to the 
physical and design constraint. For example, the heat sink and RAM can 
only be removed after the fan to gain access. While it is true that 
different strategies or sequences for product component extraction may 
influence the results, or there may be other confounding factors, they are 
not the focus of the study, which aims to develop an IMU-based human 
task recognition method during e-waste disassembly operations. 

Before the formal data collection, adequate training was provided to 
the participants based on the manufacturer’s teardown removal guide to 
ensure that they were comfortable and confident in completing the 
disassembly tasks. Subsequently, participants were tasked to remove the 
six components in the predetermined sequence. Each component had to 
be positioned in the exact spot, as shown in Fig. 2. Each participant 
repeated the disassembly process five times, with each trial lasting 90 s, 
on average. To capture human motion, participants wore six IMU sen
sors (MVN Awinda, Xsens Technologies BV, Enschede, Netherlands) 
while performing disassembly tasks. The six sensors were placed on the 
left & right hands, left & right forearms, and left & right upper arms. The 
sampling frequency was set at 60 Hz. Fig. 3 shows a participant using the 
hand tool to remove the heat sink while wearing the six IMU sensors set. 

2.3. Initial data processing 

Over 570,000 frames of motion data were collected from 22 partic
ipants. Joint angle and segment position were exported using MVN 
Analyze (Xsens Technologies BV, Enschede, Netherlands) and used as 
inputs for task recognition. For the joint angle, bilateral side of elbow 
ulnar deviation, protonation, and flexion angles were utilized. For the 
segment position, both the right hand and left hand’s tri-axial co
ordinates (x, y, z) were used. In addition, a sliding window of 4 frames 
(66.7 ms) was applied to segment and augment the time-series data 
obtained from IMUs (please refer to Results and Discussion section for 
the determination of the window length). Thus, the input of the models 
at each time was a vector with a size of 1 × 1 × 48 (2 sides × 2 variables 
× 3 channels × 4 frames). 

The output of the models was the task label of the current frame, i.e., 
0: the thumbscrew disassembly, 1: the cover disassembly, 2: the hard 
disk drive disassembly, 3: the fan disassembly, 4: the heat sink disas
sembly, or 5: the RAM disassembly. The ground truth labels were 
marked manually by researchers. The implementation of the sliding 
window is shown in Fig. 4. The input and output of the task recognition 
models are summarized in Table 1. The input was the time-series motion 
data of the current frame plus the previous 3 frames, i.e., T. The output is 

the task label of the current frame, i.e., Y. 
Since the two variables (joint angle and segment position) had 

different units, and the range of each channel was substantially 
different, the min-max normalization was applied to restrict the range of 
values from 0 to 1. 

Fig. 2. Target positions for the six components (left). An example picture of a completed disassembly trial (right). Note that the target position of the thumbscrew is 
identical to that of the cover. 

Fig. 3. A participant is performing the removal of the heat sink with a 
hand tool. 

Fig. 4. The sliding window concept that was implemented in the study.  
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2.4. Model selection and architecture 

After data collection, the next step is to predict the disassembly tasks 
using IMU motion data. Three architectures, i.e., CNN, LSTM, and 
GoogLeNet, were trained and compared based on their performance. 

2.4.1. CNN 
The CNN architecture used in this study involves the application of 

2D transposed convolution in the first layer since the input was time- 
series data with a size of 1 × 1 × 48. The 2D transposed convolution 
converted the input size from 1 × 1 × 48 to 224 × 224 × 3, which is a 
commonly used size in the transfer learning models such as GoogLeNet 
and ResNet-50 (He et al., 2016). The batch normalization was applied to 
convolution layers. The optimizer was stochastic gradient descent (SGD) 
with a 0.001 learning rate and 0.9 momentum. The loss function was the 
cross-entropy loss. 

2.4.2. LSTM 
The LSTM network is proposed by Hochreiter and Schmidhuber to 

implement feedback connections in traditional feedforward neural net
works (Hochreiter and Schmidhuber, 1997). In this study, five different 
hidden sizes of LSTM, i.e., 16, 32, 64, 128, 256, and 512, were selected 
as general settings suggested in the previous literature (Hu et al., 2018). 
The learning rate was 0.01. The optimizer was the adaptive moment 
estimation (Adam). The decay learning rate was applied with 0.1 for 
every 7 epochs. The cross-entropy loss function was applied because of 
the classification problem. The output layer was the linear activation 
function. After training and testing the models with five different hidden 
sizes, the hidden size with the best performance was selected for the task 
recognition. 

2.4.3. GoogLeNet 
GoogLeNet is a widely accepted model developed by Google in 2014 

(Szegedy et al., 2015). There are 22 layers in GoogLeNet, which was 
trained by one million images with one thousand types of objects. In this 
study, we applied transfer learning by using GoogLeNet’s 
pre-parameters. The learning rate was 0.001 with a momentum of 0.9 
and the SGD optimizer. The decay learning rate was 0.1 for every 7 
epochs. To satisfy the input size requirement of GoogLeNet, we modified 
the structure of GoogLeNet by adding one additional layer of a 2D 
transposed convolution at the beginning with the batch normalization to 
convert the size to 224 × 224 × 3. The shape of 2D transposed convo
lution was the same as the CNN model. 

2.5. Model implementation and training 

The experiment data was divided into training, validation, and 
testing. Three random trials of each participant were selected for 
training and the remaining two trials were used for validation and 
testing. The total number of trials for training, validation, and testing 
was 66 (22 participants × 3 trials), 22 (22 participants × 1 trial), and 22, 
respectively. Before training, the data was sufficiently shuffled. The 
number of training, validation, and testing samples were 375668, 

93917, and 108710, respectively. All training and testing were per
formed on a desktop computer with a i9-10900K CPU @ 3.70 GHz, an 
NVIDIA Quadro RTX 4000 GPU, and 64 GB RAM. 

2.6. Sequence-based correction algorithm 

In addition to the training of the aforementioned prediction models, 
we introduced a sequence-based correction (SBC) algorithm that can 
further improve the task recognition accuracy. The proposed algorithm 
includes the following rules:  

• Rule 1: Given the input Y(t), which is the frame t task label obtained 
from the prediction model, subtract 1 from it, i.e., Y(t)-1, if the result 
doesn’t equal the task label of the previous frame, i.e., Y (t-1), then 
replace Y(t) with Y (t-1).  

• Rule 2: If Y(t)-1 equals the task label of the previous frame, i.e., Y (t- 
1), then check the task labels of the next 180 frames and replace Y(t) 
with the task label that appears most often in the next 180 frames. 
The replaced task label can only be Y(t) or Y (t-1) due to the 
sequence-based constraint. 

Since all participants were tasked to perform the disassembly task in 
a fixed sequence, the output labels should adhere to the sequence-based 
requirement. For example, if the current task is removing the thumb
screw (label 0), the following task should be either removing the 
thumbscrew (label 0) or removing the cover (label 1). Other task labels 
are not reasonable. Based on the idea, rule 1 was applied to add the 
sequence-based constraint. 

The aim of rule 2 is to check when the next task has begun. For 
example, if Y(t) and Y (t-1) are equal to 1 and 0, respectively, it is 
required to check whether task 1 has started or Y(t) is a prediction error. 
To do this, the task labels of the next 3 s (3 s × 60 Hz = 180 frames, the 
duration of 3 s is empirically defined) are used to check whether the next 
task starts. If the number of label 1 is more than the number of label 
0 among the 180 frames, it is assumed that task 1 has started, thus Y(t) is 
considered to be correct and no correction is needed. Otherwise, Y(t) is 
regarded to be a prediction error, meaning task 1 has not started yet, in 
which case Y(t) is changed to Y (t-1) = 0. The pseudocode of the pro
posed SBC algorithm is presented below: 

Algorithm 1. Sequence-based correction (SBC) algorithm 

Given that some of these modifications need the knowledge of the 
“future” 180 frames in advance, in this study, the SBC algorithm was 
launched 3 s after the machine learning model started running. 

Table 1 
The input and output of task recognition models.  

Variable Channel Input lead time T Output label 
Y 

Joint angle  1 Right/left elbow ulnar 
deviation  

2. Right/left elbow 
pronation  

3. Right/left elbow flexion 

T(t), T (t-1), T (t-2), 
T (t-3) 

0: screw 
1: cover 
2: hard disk 
drive 
3: fan 
4: heat sink 
5: RAM 

Segment 
position  

1 Right/left x  
2 Right/left y  
3 Right/left z  
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3. Results and Discussion 

The accuracy is the primary metric utilized to compare the perfor
mance of prediction models. In addition, the performance of the pro
posed SBC sequence-based correction algorithm is evaluated by 
applying it to the model with the highest accuracy. Furthermore, a 
comparison of the models’ training time and input-output delay are 
compiled. 

3.1. CNN 

The optimal length of the sliding window was determined by training 
the CNN model. As shown in Fig. 5, the highest prediction accuracy 
(88%) is achieved with a sliding window of 4 frames (66.7 ms), i.e., t~(t- 
3). Hence, the window length of 4 frames was used for the training of all 
models in this study. Fig. 6 shows the normalized confusion matrix of the 
CNN model, which summarizes its classification performance. This 
matrix represents the actual vs. predicted labels of the task, where the 
diagonal elements denote the percentage of correct predictions, and the 
off-diagonal elements represent the percentage of incorrect predictions. 
The CNN model achieved an overall accuracy of 88%. 

3.2. LSTM 

Six different hidden sizes of LSTM were trained in this study. The 
testing accuracy increases as the hidden size increases (Table 2). The 
testing accuracy converged to 91% when the hidden size was more than 
or equal to 128. The hidden size refers to the dimension of the hidden 
state. The results indicate that the hidden size should be over 128 to 
accurately depict the complexity of task recognition during disassembly. 
Fig. 7 shows the testing results for LSTM with the hidden size of 128. 

3.3. GoogLeNet 

Fig. 8 summarizes the testing results of GoogLeNet. The overall 
testing accuracy was 92%, higher than the 88% accuracy of CNN. More 
specifically, the GoogLeNet prediction accuracy range from 81 to 96 
percent for each task, whereas CNN performance varies from 70 to 96 
percent (Fig. 6). Significant increases in task recognition accuracy were 
observed in task 1: the cover disassembly, task 2: the hard disk drive 
disassembly, task 3: the fan disassembly, and task 6: the RAM disas
sembly. GoogLeNet outperformed CNN since, in contrast to the serial 
architecture of CNN, the inception layers of GoogLeNet allow for con
current training of multiple convolutional and pooling layers. 

GoogLeNet also outperformed LSTM even though it had a 91% 
overall accuracy. While there is only a 1% difference in the overall ac
curacy between the testing results of LSTM-HS128 (Fig. 7) and 

GoogLeNet (Fig. 8), their prediction accuracy for each individual task 
was substantially different. Although the GoogLeNet showed lower ac
curacies than the LSTM-HS128 in task 3: the fan disassembly and task 4: Fig. 5. Different window lengths and their corresponding accuracies.  

Fig. 6. The normalized confusion matrix of CNN on the testing set with 
88% accuracy. 

Table 2 
Testing results of LSTM with different hidden sizes.  

Hidden size Testing accuracy 

16 89% 
32 89% 
64 90% 
128 91% 
256 91% 
512 91%  

Fig. 7. The normalized confusion matrix of LSTM-HS128 on the testing set with 
91% accuracy. 

Fig. 8. The normalized confusion matrix of the GoogLeNet on the testing set 
with 92% accuracy. 
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the heat sink disassembly, significantly higher accuracies could be seen 
in task 0: the thumbscrew disassembly, task 1: the cover disassembly, 
task 2: the hard disk drive disassembly, and task 5: the RAM 
disassembly. 

A possible reason for the superior performance of GoogLeNet over 
both the CNN and LSTM models could be attributed to its deeper and 
wider architecture, which allows it to capture complex features and their 
interrelationships more effectively than the CNN and LSTM models. The 
observed improvements in task recognition accuracy suggest that Goo
gLeNet is better able to distinguish between different disassembly tasks, 
which can ultimately lead to a more efficient and effective disassembly 
process. 

3.4. Sequence-based correction algorithm 

Since GoogLeNet demonstrated the highest performance, the pro
posed sequence-based correction algorithm was applied to GoogLeNet. 
The result is shown in Fig. 9. By utilizing the information of the known 
fixed task sequence and a majority voting mechanism to correct the task 
classification results given by GoogLeNet, the proposed SBC algorithm 
enhances the overall task recognition accuracy of GoogLeNet from 92% 
to 95%. More specifically, a significant increase in prediction accuracy 
was observed for every individual task. Except for task 2, all disassembly 
tasks achieved recognition accuracies above 90%. Furthermore, after 
applying the algorithm, there were only three possible prediction out
comes for a certain task: 1) the task is labeled correctly; 2) the task is 
wrongly identified as the one immediately preceding it; and 3) the task is 
wrongly identified as the one immediately following it. 

3.5. Model training time and input-output delay 

As mentioned in Methods section, the aforementioned models were 
trained and tested using data collected during the simulated desktop 
disassembly tasks. There are 375668, 93917, and 108710 samples in the 
training, validation, and testing data sets. All training and testing were 
performed on a desktop computer with a i9-10900K CPU @ 3.70 GHz, an 
NVIDIA Quadro RTX 4000 GPU, and 64 GB RAM. In addition to the 
testing accuracy, the training time and the input-output delay of each 
model were recorded (Table 3). 

While GoogLeNet showed a higher testing accuracy (92%), it re
quires more training time and has a longer input-out time delay than 
CNN and LSTM-HS128 as it has a more complicated architecture. 
However, we argue that the input-output delay of GoogLeNet (5.27 ±
5.48 ms), which is less than the frame rate of IMU system (16.67ms), is 
quick enough to fulfill the need of the real-time application during 
collaborative human-robot e-waste disassembly processes. 

Due to the lack of previous research in disassembly task recognition 
during HRC and the scarcity of publicly available IMU datasets, no 
benchmark exists for us to use as a comparison. Most comparable to our 

research is the work in Wen et al. (2019), which proposed an 
image-based 3D CNN model for human assembly task recognition during 
HRC. The recognition accuracy was 82% and the real-time imple
mentation was not guaranteed. While the comparison may not be fair, 
the performance of our proposed model, especially GoogLeNet with 92% 
accuracy, still supports the feasibility of IMU-based deep learning 
models for task recognition during collaborative human-robot e-waste 
disassembly. 

In addition to the model selection, we also introduced a sequence- 
based correction algorithm to further improve the task recognition 
performance. As shown in Table 3, after applying the SBC algorithm to 
GoogLeNet, its testing accuracy increased from 92% to 95%. The 
training time remained constant since the SBC algorithm did not affect 
the model training process. 

While our proposed algorithm enhanced the testing accuracy, a 
significantly higher input-out delay was observed (~3s). The SBC al
gorithm was launched 3 s after the machine learning model, which 
resulted in a delay of about 3 s. However, it is worth noting that 
recognizing a disassembly task needs longer timespans than recognizing 
an action as a task often consists of several actions. In our experiment, 
each of the six tasks took more than 3 s to complete. That being said, 
there would not be any missed tasks during the ~3s delay. Furthermore, 
from the operational safety perspective, the delay in task recognition 
gives the robot assistant a buffer of time before executing any motions, 
preventing any concurrent movement of the human worker and the 
robot that might lead to safety issues such as surprise to the worker or 
even collisions. In summary, even though there is an input-output delay, 
but the improved accuracy of the proposed algorithm may demonstrate 
a worthwhile trade-off. It should be noted that the setting of 180 frames 
(3s) in the SBC algorithm was defined empirically for the proof-of- 
concept purpose. If the task changes, this setting might be drastically 
altered. However, our preliminary results reveal that the proposed 
sequence-based correction algorithm can be used to improve the accu
racy for any process with a fixed sequence. The future research will focus 
on determining the optimal time setting and how it relates to the task’s 
characteristics. 

4. Conclusions 

This study proposed a framework to recognize human tasks during 
robotic-assisted disassembly processes. The framework consists of two 
main elements: (1) a prediction architecture for the task recognition, 
and (2) a sequence-based correction algorithm. CNN, LSTM, and Goo
gLeNet architectures have been used for task recognition, and a two-rule 
tuning algorithm was proposed to improve the task recognition accuracy 
further. 

An experimental study has been conducted on the disassembly of a 
desktop computer to collect data needed for accurate prediction of the 
disassembly tasks. Over 570,000 frames of motion data were collected 
from 22 participants. The highest task recognition accuracy was ach
ieved by GoogLeNet on the IMU motion data. Furthermore, the proposed 
correction algorithm was able to improve the accuracy from 92% to 
95%. 

The study was limited by the lack of validation in a real-world job 
setting. For example, the performance of the model on individuals who Fig. 9. The normalized confusion matrix of the GoogLeNet with SBC algorithm 

on the testing set. The overall accuracy is 95%. 

Table 3 
The testing accuracy, training time, and input-out delay of each model.  

Model Testing 
accuracy 

Training time 
(s) 

Input-output delay 
(ms) 

CNN 88% 6491 0.66 ± 1.76 
LSTM-HS128 91% 1265 0.26 ± 1.30 
GoogLeNet 92% 12509 5.29 ± 4.23 
GoogLeNet +

SBC 
95% 12509 (3000 + 5.53) ± 4.33  

Y. Chen et al.                                                                                                                                                                                                                                    



Applied Ergonomics 113 (2023) 104090

7

were not included in the study remains unknown and requires further 
testing. Furthermore, the effective integration of the proposed task 
recognition technique into real-world applications, such as HRC, needs 
further investigation. Several ways in which the study can be extended 
are as follows: First, a human-in-the-loop experiment can be carried out 
to evaluate the model performance in real-time. Moreover, when 
implementing HRC, concerns on human physical and mental safety need 
to be further discussed (Lu et al., 2022; Chen et al., 2022c). Second, 
instead of merely relying on IMU or image data, a hybrid model using 
data fusion may improve both the accuracy and robustness of task 
recognition during the disassembly process (Amorim et al., 2021). 
Finally, when there are more than one feasible disassembly sequences, 
the determination of the optimal disassembly sequence is crucial as it is 
a prerequisite for the proposed sequence-based correction algorithm. 
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