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The production of electronic waste, also known as e-waste, has risen with the growing reliance on electronic
products. To reduce negative environmental impact and achieve sustainable industrial processes, recovering and
reusing products is crucial. Advances in Al and robotics can help in this effort by reducing workload for human
workers and allowing them to stay away from hazardous materials. However, autonomous human motion/

intention perception is a primary barrier in e-waste remanufacturing. To address the research gap, this study
combined experimental data collection with deep learning models for accurate disassembly task recognition.
Over 570,000 frames of motion data were collected from inertial measurement units (IMU) worn by 22 par-
ticipants. A novel sequence-based correction (SBC) algorithm was also proposed to further improve the accuracy
of the overall pipeline. Results showed that models (CNN, LSTM, and GoogLeNet) had an overall accuracy of
88-92%. The proposed SBC algorithm improved accuracy to 95%.

1. Introduction

In comparison to the ongoing fourth industrial revolution, which
focuses on the cyber-physical system by leveraging advances in Al and
the internet of things, the upcoming fifth industrial revolution will place
a greater emphasis on the collaboration between humans and the
intelligent machines to achieve green and sustainable industrial pro-
cesses (Breque et al., 2021). As our dependence on electronic products
increases, the amount of electronic waste (e-waste) being produced has
been increasing each year. According to the Global E-waste Monitor
2020 (Forti et al., 2020), 53.6 million tonnes of e-waste were produced
worldwide in 2019, with a growth rate of 21%. As e-waste management
is becoming a growing concern, there has been an increased interest in
end-of-use product recovery to reduce e-waste (Zuidwijk and Krikke,
2008). To extract valuable components and materials from end-of-use
electronic products, the process of disassembly is a necessary step.

While disassembly could increase the number of product components
available for recovery and reuse, the process is often labor-intensive
with significant occupational hazards, both physically and psycholog-
ically, for workers (Acquah et al., 2019). Currently, disassembly is still
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dominated by human workers. Automation and robotics-based methods
are not widely seen due to the inherent complexity of the task such as
demanding precision and high flexibility. In compliance with Industry
5.0 paradigm, research efforts have been put into designing and
implementing robot assistants to complement human workers and
mitigate work-related safety issues (Xu et al., 2021; Sajedi et al., 2022;
Chen et al., 2022a; Chen et al., 2022b). In order to enable the robot
assistance in the disassembly process, human task recognition is neces-
sary due to the fact that robots need to be able to understand human
behavior and activity to collaborate with them effectively. By recog-
nizing human activity, the robot can interpret their intentions and adjust
its behavior accordingly. This is critical for developing a safe and
seamless collaboration between the robot and human. However,
real-time human task recognition, as an essential component in the
system workflow, still remains a significant challenge, limiting the use of
robotic-assisted disassembly safely and effectively.

Task recognition is the process of identifying and understanding the
specific task that needs to be completed, and it can be an important and
necessary step in many different fields, such as Al and HRC. To name a
few studies, Kiruba et al. (2019) developed a hexagonal volume local
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binary pattern descriptor by considering the motion and temporal in-
formation, with a single RGB camera. The approach achieved body-pose
recognition accuracy rates of over 84% across multiple benchmark
datasets. In Sajedi et al. (2022), deep learning models for hand recog-
nition were created to explicitly quantify the prediction uncertainty
based on two-dimensional images. Zhang et al. (2021) proposed a
hybrid approach to recognize human assembling actions during HRC
leveraging an image-based CNN model and variable-length Markov
modeling. Despite solo usage of RGB camera for achieving satisfactory
results, several studies, such as (Mazhar et al., 2019; Arivazhagan et al.,
2019), used both RGB camera and depth sensitivity functions of the
device (RGB-D system, Microsoft Kinect) for improved hand gesture
recognition.

The aforementioned approaches have been proposed to track and
recognize human actions using image data. However, their real-time
capabilities were not guaranteed due to the heavy computing power
and advanced hardware required for image processing. Furthermore,
typical computer vision issues, such as being sensitive to camera oc-
clusions, light variations, and shiny surfaces, may compromise the
performance of vision-based approaches in real-world applications
(Pfister et al., 2014; Roda-Sanchez et al., 2021). To overcome these
challenges, Inertial Measurement Unit (IMU), a widely used wearable
technology to provide motion data for human activity recognition (Lara
and Labrador, 2012; Hu et al., 2021; Luo et al., 2020a), has shown
promise in industrial operation processes (Koskimaki et al., 2009; Kos-
kimaki et al., 2013). In Roda-Sanchez et al. (2021), an experiment was
undertaken to compare an RGB-D based approach against an IMU-based
gesture recognition algorithm in remanufacturing context. The results
indicated that the proposed IMU-based approach had recognition ac-
curacy rates up to 8.5 times higher. Moreover, it was shown that accu-
racy of the RGB-D based approach differs significantly depending on the
plane where movements are performed as well as other factors such as
ambient luminosity and focal length, making it unsuitable for complex
movements like hand flips and screw/unscrew that are commonly car-
ried out in disassembly processes.

Even though prior research has demonstrated promising results in
task recognizing using IMUs, a major challenge is the lack of publicly
available datasets. Unlike video datasets, which are well-established in
both RGB (Schuldt et al., 2004; Liu et al., 2009; Zhou et al., 2018) and
RGB-D (Wang et al., 2012; Koppula et al., 2013) modalities, there are
currently far fewer IMU datasets. The authors are aware of IMU datasets
for task recognition in common daily activities (Zhang and Sawchuk,
2012), air-writing (Tripathi et al., 2021), and gait analysis (Luo et al.,
2020b), etc., however, they are even rarer for industrial operations
(Dallel et al., 2020). To the best of our knowledge, no dataset for human
task recognition in the e-waste disassembly process is currently avail-
able, which significantly restricts the broad attention from the machine
learning and artificial intelligence communities.

Given the fact that the e-waste disassembly process could present
many challenges that are not conducive to the application of computer
vision methods, such as camera occlusions, light variations, and shiny
surfaces, the primary objective of this study is to develop deep learning
models that use IMU data to accurately detect disassembly tasks in
complex disassembly settings of consumer electronics (Fig. 1). To fill the
gap of lacking IMU datasets in the e-waste disassembly process, a set of
experiments have been conducted to obtain human motion data from
wearable IMUs. Then, Convolution Neural Networks (CNN), Long Short-
Term Memory (LSTM), and GoogLeNet models were trained with the
collected motion data and their performance were compared. Finally, a
novel sequence-based correction approach was developed to increase
the accuracy of the task recognition model. The main contributions of
the study are:

o The development of IMU-based deep learning models for task recognition
allows intelligent systems, such as robot assistants, to detect human
intention during complex disassembly processes.
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Fig. 1. The conceptual overview of the proposed task recognition method and
an example application of robotic-assisted disassembly.

e A sequence-based correction approach is proposed for enhancing the
accuracy of the task recognition model in real-time based on a known
disassembly sequence.

2. Methods
2.1. Participants

Twenty-two participants (fourteen males and eight females) were
recruited from the university students to participate in this study. Their
mean (SD) age, height, and body weight were 25.4 (4.3) years, 174.6
(10.3) cm, and 65.4 (20.0) kg. All participants reported being healthy,
having normal or corrected to normal vision with contact lenses, and
without any musculoskeletal injuries that required medical treatment in
the past 12 months. The majority of the participants, 20 out of 22, self-
reported as being right-handed, while one participant claimed to be left-
handed and the other claimed to be ambidextrous. Participants
completed informed consent before any data collection, and the exper-
imental protocol was approved by the University of Florida Institutional
Review Board (IRB202200211).

2.2. Experimental data collection

Desktop computers have been selected for the study due to their wide
application and contribution to the total e-waste generation. Six com-
ponents were targeted for removal in a fixed sequence: 1) the thumb-
screw, 2) the cover, 3) the hard disk drive, 4) the fan, 5) the heat sink,
and 6) the memory module (RAM). The specific product used in the
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study was a Dell OptiPlex 7050 Micro desktop computer (Dell Inc.,
Round Rock, TX). The components were selected based on their poten-
tial for reuse, recycling, or recovery. For example, as a general practice,
hard drives are expected to be manually pulled out before starting the
recycling process due to potential privacy concerns. On the other hand,
during end-of-life electronic recycling and disassembly operations, RAM
modules are usually easier to reuse and yield more favorable economic
returns. The disassembly sequence was determined mainly due to the
physical and design constraint. For example, the heat sink and RAM can
only be removed after the fan to gain access. While it is true that
different strategies or sequences for product component extraction may
influence the results, or there may be other confounding factors, they are
not the focus of the study, which aims to develop an IMU-based human
task recognition method during e-waste disassembly operations.
Before the formal data collection, adequate training was provided to
the participants based on the manufacturer’s teardown removal guide to
ensure that they were comfortable and confident in completing the
disassembly tasks. Subsequently, participants were tasked to remove the
six components in the predetermined sequence. Each component had to
be positioned in the exact spot, as shown in Fig. 2. Each participant
repeated the disassembly process five times, with each trial lasting 90 s,
on average. To capture human motion, participants wore six IMU sen-
sors (MVN Awinda, Xsens Technologies BV, Enschede, Netherlands)
while performing disassembly tasks. The six sensors were placed on the
left & right hands, left & right forearms, and left & right upper arms. The
sampling frequency was set at 60 Hz. Fig. 3 shows a participant using the
hand tool to remove the heat sink while wearing the six IMU sensors set.

2.3. Initial data processing

Over 570,000 frames of motion data were collected from 22 partic-
ipants. Joint angle and segment position were exported using MVN
Analyze (Xsens Technologies BV, Enschede, Netherlands) and used as
inputs for task recognition. For the joint angle, bilateral side of elbow
ulnar deviation, protonation, and flexion angles were utilized. For the
segment position, both the right hand and left hand’s tri-axial co-
ordinates (X, y, z) were used. In addition, a sliding window of 4 frames
(66.7 ms) was applied to segment and augment the time-series data
obtained from IMUs (please refer to Results and Discussion section for
the determination of the window length). Thus, the input of the models
at each time was a vector with a size of 1 x 1 x 48 (2 sides x 2 variables
x 3 channels x 4 frames).

The output of the models was the task label of the current frame, i.e.,
0: the thumbscrew disassembly, 1: the cover disassembly, 2: the hard
disk drive disassembly, 3: the fan disassembly, 4: the heat sink disas-
sembly, or 5: the RAM disassembly. The ground truth labels were
marked manually by researchers. The implementation of the sliding
window is shown in Fig. 4. The input and output of the task recognition
models are summarized in Table 1. The input was the time-series motion
data of the current frame plus the previous 3 frames, i.e., T. The output is
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Fig. 3. A participant is performing the removal of the heat sink with a
hand tool.
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Fig. 4. The sliding window concept that was implemented in the study.

the task label of the current frame, i.e., Y.

Since the two variables (joint angle and segment position) had
different units, and the range of each channel was substantially
different, the min-max normalization was applied to restrict the range of
values from O to 1.

ﬂ Thumbscrew

Fig. 2. Target positions for the six components (left). An example picture of a completed disassembly trial (right). Note that the target position of the thumbscrew is

identical to that of the cover.
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Table 1
The input and output of task recognition models.
Variable Channel Input lead time T Output label
Y
Joint angle 1 Right/left elbow ulnar T(t), T (t-1), T (t-2), 0: screw
deviation T (t-3) 1: cover
2. Right/left elbow 2: hard disk
pronation drive
3. Right/left elbow flexion 3: fan
Segment 1 Right/left x 4: heat sink
position 2 Right/lefty 5: RAM
3 Right/left z

2.4. Model selection and architecture

After data collection, the next step is to predict the disassembly tasks
using IMU motion data. Three architectures, i.e., CNN, LSTM, and
GoogLeNet, were trained and compared based on their performance.

2.4.1. CNN

The CNN architecture used in this study involves the application of
2D transposed convolution in the first layer since the input was time-
series data with a size of 1 x 1 x 48. The 2D transposed convolution
converted the input size from 1 x 1 x 48 to 224 x 224 x 3, which is a
commonly used size in the transfer learning models such as GoogLeNet
and ResNet-50 (He et al., 2016). The batch normalization was applied to
convolution layers. The optimizer was stochastic gradient descent (SGD)
with a 0.001 learning rate and 0.9 momentum. The loss function was the
cross-entropy loss.

2.4.2. LSTM

The LSTM network is proposed by Hochreiter and Schmidhuber to
implement feedback connections in traditional feedforward neural net-
works (Hochreiter and Schmidhuber, 1997). In this study, five different
hidden sizes of LSTM, i.e., 16, 32, 64, 128, 256, and 512, were selected
as general settings suggested in the previous literature (Hu et al., 2018).
The learning rate was 0.01. The optimizer was the adaptive moment
estimation (Adam). The decay learning rate was applied with 0.1 for
every 7 epochs. The cross-entropy loss function was applied because of
the classification problem. The output layer was the linear activation
function. After training and testing the models with five different hidden
sizes, the hidden size with the best performance was selected for the task
recognition.

2.4.3. GoogLeNet

GoogLeNet is a widely accepted model developed by Google in 2014
(Szegedy et al., 2015). There are 22 layers in GoogLeNet, which was
trained by one million images with one thousand types of objects. In this
study, we applied transfer learning by using GoogLeNet’s
pre-parameters. The learning rate was 0.001 with a momentum of 0.9
and the SGD optimizer. The decay learning rate was 0.1 for every 7
epochs. To satisfy the input size requirement of GoogLeNet, we modified
the structure of GoogLeNet by adding one additional layer of a 2D
transposed convolution at the beginning with the batch normalization to
convert the size to 224 x 224 x 3. The shape of 2D transposed convo-
lution was the same as the CNN model.

2.5. Model implementation and training

The experiment data was divided into training, validation, and
testing. Three random trials of each participant were selected for
training and the remaining two trials were used for validation and
testing. The total number of trials for training, validation, and testing
was 66 (22 participants x 3 trials), 22 (22 participants x 1 trial), and 22,
respectively. Before training, the data was sufficiently shuffled. The
number of training, validation, and testing samples were 375668,
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93917, and 108710, respectively. All training and testing were per-
formed on a desktop computer with a i9-10900K CPU @ 3.70 GHz, an
NVIDIA Quadro RTX 4000 GPU, and 64 GB RAM.

2.6. Sequence-based correction algorithm

In addition to the training of the aforementioned prediction models,
we introduced a sequence-based correction (SBC) algorithm that can
further improve the task recognition accuracy. The proposed algorithm
includes the following rules:

e Rule 1: Given the input Y(t), which is the frame t task label obtained
from the prediction model, subtract 1 from it, i.e., Y(t)-1, if the result
doesn’t equal the task label of the previous frame, i.e., Y (t-1), then
replace Y(t) with Y (t-1).

e Rule 2: If Y(t)-1 equals the task label of the previous frame, i.e., Y (t-
1), then check the task labels of the next 180 frames and replace Y(t)
with the task label that appears most often in the next 180 frames.
The replaced task label can only be Y(t) or Y (t-1) due to the
sequence-based constraint.

Since all participants were tasked to perform the disassembly task in
a fixed sequence, the output labels should adhere to the sequence-based
requirement. For example, if the current task is removing the thumb-
screw (label 0), the following task should be either removing the
thumbscrew (label 0) or removing the cover (label 1). Other task labels
are not reasonable. Based on the idea, rule 1 was applied to add the
sequence-based constraint.

The aim of rule 2 is to check when the next task has begun. For
example, if Y(t) and Y (t-1) are equal to 1 and O, respectively, it is
required to check whether task 1 has started or Y(t) is a prediction error.
To do this, the task labels of the next 3 s (3 s x 60 Hz = 180 frames, the
duration of 3 s is empirically defined) are used to check whether the next
task starts. If the number of label 1 is more than the number of label
0 among the 180 frames, it is assumed that task 1 has started, thus Y(t) is
considered to be correct and no correction is needed. Otherwise, Y(t) is
regarded to be a prediction error, meaning task 1 has not started yet, in
which case Y(t) is changed to Y (t-1) = 0. The pseudocode of the pro-
posed SBC algorithm is presented below:

Algorithm 1. Sequence-based correction (SBC) algorithm

Algorithm 1 Sequence-based correction (SBC) algorithm
Input: The frame t task label obtained from the prediction
model, i.e., Y(t)
Output: The corrected task label of frame t, i.e., Y’(t)

1:  function SBC(Y(t))

2: if Y(t)-1 doesn’t equal to Y(t-1) then

3: replace Y(t) with Y(t-1). Y’(t) stands for the
result

4: return Y’(t)

5: else if Y(t)-1 is equals to Y(t-1) then

6: check task labels of the next 180 frames

7: if amount of Y(t) is larger than amount of Y(t-1)
in Y(t) to Y(t+180) then

8: return Y(t)

9: else

10: replace Y(t) with Y(t-1). Y’(t) stands for the
result

11: return Y’(t)

12: end if

13:  endif

14: end function

Given that some of these modifications need the knowledge of the
“future” 180 frames in advance, in this study, the SBC algorithm was
launched 3 s after the machine learning model started running.
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3. Results and Discussion

The accuracy is the primary metric utilized to compare the perfor-
mance of prediction models. In addition, the performance of the pro-
posed SBC sequence-based correction algorithm is evaluated by
applying it to the model with the highest accuracy. Furthermore, a
comparison of the models’ training time and input-output delay are
compiled.

3.1. CNN

The optimal length of the sliding window was determined by training
the CNN model. As shown in Fig. 5, the highest prediction accuracy
(88%) is achieved with a sliding window of 4 frames (66.7 ms), i.e., t~(t-
3). Hence, the window length of 4 frames was used for the training of all
models in this study. Fig. 6 shows the normalized confusion matrix of the
CNN model, which summarizes its classification performance. This
matrix represents the actual vs. predicted labels of the task, where the
diagonal elements denote the percentage of correct predictions, and the
off-diagonal elements represent the percentage of incorrect predictions.
The CNN model achieved an overall accuracy of 88%.

3.2. LSTM

Six different hidden sizes of LSTM were trained in this study. The
testing accuracy increases as the hidden size increases (Table 2). The
testing accuracy converged to 91% when the hidden size was more than
or equal to 128. The hidden size refers to the dimension of the hidden
state. The results indicate that the hidden size should be over 128 to
accurately depict the complexity of task recognition during disassembly.
Fig. 7 shows the testing results for LSTM with the hidden size of 128.

3.3. GoogLeNet

Fig. 8 summarizes the testing results of GoogLeNet. The overall
testing accuracy was 92%, higher than the 88% accuracy of CNN. More
specifically, the GoogLeNet prediction accuracy range from 81 to 96
percent for each task, whereas CNN performance varies from 70 to 96
percent (Fig. 6). Significant increases in task recognition accuracy were
observed in task 1: the cover disassembly, task 2: the hard disk drive
disassembly, task 3: the fan disassembly, and task 6: the RAM disas-
sembly. GoogLeNet outperformed CNN since, in contrast to the serial
architecture of CNN, the inception layers of GoogLeNet allow for con-
current training of multiple convolutional and pooling layers.

GoogLeNet also outperformed LSTM even though it had a 91%
overall accuracy. While there is only a 1% difference in the overall ac-
curacy between the testing results of LSTM-HS128 (Fig. 7) and

95
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30 77
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Fig. 5. Different window lengths and their corresponding accuracies.
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Fig. 6. The normalized confusion matrix of CNN on the testing set with
88% accuracy.

Table 2
Testing results of LSTM with different hidden sizes.

Hidden size Testing accuracy

16 89%
32 89%
64 90%
128 91%
256 91%
512 91%

—

8]

Actual
(98]

0

51 0 il 1 4

Predict

Fig. 7. The normalized confusion matrix of LSTM-HS128 on the testing set with
91% accuracy.

4

Predict

Fig. 8. The normalized confusion matrix of the GoogLeNet on the testing set
with 92% accuracy.

GoogLeNet (Fig. 8), their prediction accuracy for each individual task
was substantially different. Although the GoogLeNet showed lower ac-
curacies than the LSTM-HS128 in task 3: the fan disassembly and task 4:
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the heat sink disassembly, significantly higher accuracies could be seen
in task O: the thumbscrew disassembly, task 1: the cover disassembly,
task 2: the hard disk drive disassembly, and task 5: the RAM
disassembly.

A possible reason for the superior performance of GooglLeNet over
both the CNN and LSTM models could be attributed to its deeper and
wider architecture, which allows it to capture complex features and their
interrelationships more effectively than the CNN and LSTM models. The
observed improvements in task recognition accuracy suggest that Goo-
gLeNet is better able to distinguish between different disassembly tasks,
which can ultimately lead to a more efficient and effective disassembly
process.

3.4. Sequence-based correction algorithm

Since GoogLeNet demonstrated the highest performance, the pro-
posed sequence-based correction algorithm was applied to GoogLeNet.
The result is shown in Fig. 9. By utilizing the information of the known
fixed task sequence and a majority voting mechanism to correct the task
classification results given by GoogLeNet, the proposed SBC algorithm
enhances the overall task recognition accuracy of GoogLeNet from 92%
to 95%. More specifically, a significant increase in prediction accuracy
was observed for every individual task. Except for task 2, all disassembly
tasks achieved recognition accuracies above 90%. Furthermore, after
applying the algorithm, there were only three possible prediction out-
comes for a certain task: 1) the task is labeled correctly; 2) the task is
wrongly identified as the one immediately preceding it; and 3) the task is
wrongly identified as the one immediately following it.

3.5. Model training time and input-output delay

As mentioned in Methods section, the aforementioned models were
trained and tested using data collected during the simulated desktop
disassembly tasks. There are 375668, 93917, and 108710 samples in the
training, validation, and testing data sets. All training and testing were
performed on a desktop computer with a i9-10900K CPU @ 3.70 GHz, an
NVIDIA Quadro RTX 4000 GPU, and 64 GB RAM. In addition to the
testing accuracy, the training time and the input-output delay of each
model were recorded (Table 3).

While GoogLeNet showed a higher testing accuracy (92%), it re-
quires more training time and has a longer input-out time delay than
CNN and LSTM-HS128 as it has a more complicated architecture.
However, we argue that the input-output delay of GoogLeNet (5.27 +
5.48 ms), which is less than the frame rate of IMU system (16.67ms), is
quick enough to fulfill the need of the real-time application during
collaborative human-robot e-waste disassembly processes.

Due to the lack of previous research in disassembly task recognition
during HRC and the scarcity of publicly available IMU datasets, no
benchmark exists for us to use as a comparison. Most comparable to our

0

Predict

Fig. 9. The normalized confusion matrix of the GoogLeNet with SBC algorithm
on the testing set. The overall accuracy is 95%.
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Table 3
The testing accuracy, training time, and input-out delay of each model.

Model Testing Training time Input-output delay
accuracy (s) (ms)
CNN 88% 6491 0.66 + 1.76
LSTM-HS128 91% 1265 0.26 + 1.30
GoogLeNet 92% 12509 5.29 + 4.23
GoogLeNet + 95% 12509 (3000 + 5.53) + 4.33
SBC

research is the work in Wen et al. (2019), which proposed an
image-based 3D CNN model for human assembly task recognition during
HRC. The recognition accuracy was 82% and the real-time imple-
mentation was not guaranteed. While the comparison may not be fair,
the performance of our proposed model, especially GoogLeNet with 92%
accuracy, still supports the feasibility of IMU-based deep learning
models for task recognition during collaborative human-robot e-waste
disassembly.

In addition to the model selection, we also introduced a sequence-
based correction algorithm to further improve the task recognition
performance. As shown in Table 3, after applying the SBC algorithm to
GoogLeNet, its testing accuracy increased from 92% to 95%. The
training time remained constant since the SBC algorithm did not affect
the model training process.

While our proposed algorithm enhanced the testing accuracy, a
significantly higher input-out delay was observed (~3s). The SBC al-
gorithm was launched 3 s after the machine learning model, which
resulted in a delay of about 3 s. However, it is worth noting that
recognizing a disassembly task needs longer timespans than recognizing
an action as a task often consists of several actions. In our experiment,
each of the six tasks took more than 3 s to complete. That being said,
there would not be any missed tasks during the ~3s delay. Furthermore,
from the operational safety perspective, the delay in task recognition
gives the robot assistant a buffer of time before executing any motions,
preventing any concurrent movement of the human worker and the
robot that might lead to safety issues such as surprise to the worker or
even collisions. In summary, even though there is an input-output delay,
but the improved accuracy of the proposed algorithm may demonstrate
a worthwhile trade-off. It should be noted that the setting of 180 frames
(3s) in the SBC algorithm was defined empirically for the proof-of-
concept purpose. If the task changes, this setting might be drastically
altered. However, our preliminary results reveal that the proposed
sequence-based correction algorithm can be used to improve the accu-
racy for any process with a fixed sequence. The future research will focus
on determining the optimal time setting and how it relates to the task’s
characteristics.

4. Conclusions

This study proposed a framework to recognize human tasks during
robotic-assisted disassembly processes. The framework consists of two
main elements: (1) a prediction architecture for the task recognition,
and (2) a sequence-based correction algorithm. CNN, LSTM, and Goo-
gLeNet architectures have been used for task recognition, and a two-rule
tuning algorithm was proposed to improve the task recognition accuracy
further.

An experimental study has been conducted on the disassembly of a
desktop computer to collect data needed for accurate prediction of the
disassembly tasks. Over 570,000 frames of motion data were collected
from 22 participants. The highest task recognition accuracy was ach-
ieved by GoogLeNet on the IMU motion data. Furthermore, the proposed
correction algorithm was able to improve the accuracy from 92% to
95%.

The study was limited by the lack of validation in a real-world job
setting. For example, the performance of the model on individuals who
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were not included in the study remains unknown and requires further
testing. Furthermore, the effective integration of the proposed task
recognition technique into real-world applications, such as HRC, needs
further investigation. Several ways in which the study can be extended
are as follows: First, a human-in-the-loop experiment can be carried out
to evaluate the model performance in real-time. Moreover, when
implementing HRC, concerns on human physical and mental safety need
to be further discussed (Lu et al., 2022; Chen et al., 2022c¢). Second,
instead of merely relying on IMU or image data, a hybrid model using
data fusion may improve both the accuracy and robustness of task
recognition during the disassembly process (Amorim et al., 2021).
Finally, when there are more than one feasible disassembly sequences,
the determination of the optimal disassembly sequence is crucial as it is
a prerequisite for the proposed sequence-based correction algorithm.
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