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is usually handled with Graphics Processing Units (GPUs).

Currently, it is not feasible for an edge camera (even the

most powerful camera) to perform real-time object detection

with these DNN models. For example, the latest Raspberry Pi

4B model augmented with the Intel Movius Neural Compute

Stick, which is a plug-and-play hardware to accelerate neural

network computation, can process only 2-4 frames per second

with YOLOv3-tiny model [3], [4]. Therefore, smart cameras

typically offload analytics tasks to an edge server, which

empowered with powerful computing resource and is located

close to the camera on the Internet.

Building a video analytic system on an edge server that

supports tens or hundreds of cameras can be challenging. First,

analyzing video streams is compute-intensive. For example,

GeForce GTX 1080 Ti GPU can only process 33 frames

per second with YOLOv4 [5]. Even powered with a high-

end GeForce RTX 2080 Ti GPU, an edge server can process

only 62 frames per second [6]. This is barely enough for

serving two 30 frame-per-second live video streams. Second,

the DNN models might need to be adapted over time due

to changes in video content. For example, when a traffic

congestion happens, the density of vehicles greatly increases

and a powerful DNN model may be needed. Meanwhile, when

there are very few vehicles on roads, such as at midnight,

a simple DNN model might be accurate enough to identify

all vehicles. Third, the resource orchestration for performing

live video analytics on multiple streams is challenging. The

resource demand of different stream may vary significantly.

It is challenging to schedule computing resources to maintain

good overall throughput while preventing high latency.

We propose a live video processing system for multiple

video streams on edge servers. First, we propose a config-

uration adaptation scheme that does not need to perform

profiling online. The configuration adaptation is to select a

configuration, such as the video resolution and frame rate, for

video analysis that provides an acceptable accuracy. The state-

of-the-art adaptation methods [7]–[9] profile video periodically

to select a configuration. These schemes periodically profile

the workload and accuracy of each candidate configuration by

analyzing sampled video clips. These profiling-based methods

incur heavy workloads at the profiling points. Different from

these profiling-based adaptation methods [7], [8], [10]–[12],

we propose a profiling-free adaptation that selects a config-

Abstract—With increasingly deployed cameras and the rapid
advances of Computer Vision, large-scale live video analytics
becomes feasible. However, analyzing videos is compute-intensive.
In addition, live video analytics needs to be performed in real
time. In this paper, we design an edge server system for live
video analytics. We propose to perform configuration adaptation
without profiling v ideo o nline. W e s elect c onfigurations wi th a
prediction model based on object movement features. In addition,
we reduce the latency through resource orchestration on video
analytics servers. The key idea of resource orchestration is
to batch inference tasks that use the same CNN model, and
schedule tasks based on a priority value that estimates their
impact on the total latency. We evaluate our system with two
video analytic applications, road traffic m onitoring a nd pose
detection. The experimental results show that our profiling-free
adaptation reduces the workload by 80% of the state-of-the-art
adaptation without lowering the accuracy. The average serving
latency is reduced by up to 95% comparing with the profiling-
based adaptation.

I. INTRODUCTION

Millions of cameras have been deployed in various areas

such as road intersections, airports, factories, homes, and

classrooms. The proliferation of cameras makes video analyt-

ics possible for diverse applications including traffic control,

business intelligence, crime prevention, smart factories, and

distance education [1]. For example, Microsoft collaborated

with the City of Bellevue in Washington State to use the

widely deployed traffic c amera f eeds t o p roduce actionable

insights for the goal of zero traffic deaths and serious injuries

by 2030 [2]. They deployed a video analytics platform to

produce directional counts of traffic u sers ( vehicles, bicycles,

etc.), and live alerts on abnormal traffic v olumes. Video

analytics provides organizations with hindsight, insight, and

foresight into their operations through automatically analyzing,

detecting, and trigger alerts seen by cameras, and are poised

to revolutionize the efficiency a nd e ffectiveness o f video

surveillance technologies.

Video analytics relies on Computer Vision (CV) techniques

such as object detection and classification. R ecent advances

in computer vision and deep learning provide increasingly

accurate deep neural networks (DNNs) for these tasks. How-

ever, DNN models usually demand more compute power and
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1) Object-Level Features: For each object, we capture four

features, including its size and three kinds of movement. Since

the number of objects in each time slot is dynamic and the

number of analyzed frames in each time slot is also non-

predefined, we summarize the information of each object in

each frame to get the feature for that time slot.

• Size. The size of objects directly relate to the resolution.

An object k’s size si(k) in frame i can be derived with the

following equation.

si(k) = wi(k) · hi(k) (1)

Denoting the size of each object in each frame with a vector

S, we summarize the size feature fs with its sufficient statistics

fs as Equ. (2).

fs = [min(S),mean(S),max(S), std(S)] (2)

• Position Change Rate (xy-plane Velocity). The physical

movement of an object in the real world can be projected to

the movement in the frame and movement perpendicular to the

frame. We capture the movement in frames using the position

change rate. The position change of object k at frame i is

computed with its position !pi(k) and time ti as the following

equation.

!vi(k) =
!pi(k)− !pi−1(k)

ti − ti−1
(3)

Its L2-norm ||!vi(k)|| is its position change rate. Similar to the

size feature, we summarize the position change feature fv with

its sufficient statistics using Equ. (2).

• Size Change Rate (z-axis Velocity). We capture an object’s

movement perpendicular to the frame with its size change rate.

Using the size computed with Equ. (1), we get the size change

rate zi(k) of object k at fame i with following equation.

zi(k) =
si(k)− si−1(k)

ti − ti−1
(4)

We summarize size change rate feature as fz.

• Aspect Ratio Change Rate (Rotation and Morphing).

Movement consists of translation and rotation. The shape

change is a quick identifier for object rotation. It can be

captured with the change of aspect ratio. In addition, the

change of aspect ratio also indicates the morphing of an object,

which usually relates to the movement of the object parts such

as the limbs of a human object. We compute the change rate of

the aspect ratio ai(k) for object k at frame i as the following

equation.

ai(k) =
wi(k)/hi(k)− wi−1(k)/hi−1(k)

ti − ti−1
(5)

We summarize the aspect ratio change rate feature as fa.

2) Video-Level Feature: The video-level features capture

information from a global view, such as the spreed of objects

in a frame. In addition, we also consider global information

such the previous configuration. Different from object-level

features, the video-level features usually capture the relation-

ship among objects. So for each frame, there is a n × n
matrix to describe the movement information, suppose there

are n objects in the frame. We flatten the matrix sequence to

summarize them.

• Distance Distribution. The location of objects affects the

resolution. When two objects stick close to each other, we

may need a higher resolution to distinguish them. Similarly,

we may also need a higher resolution when objects spreed

away from each other. Suppose there are k objects in frame

i, d
(i)
a,b denotes the distance between object a and b in frame

i, and Di denotes the pairwise distance matrix of all objects.

d
(i)
a,b = ||!pi(a)− !pi(b)|| (6)
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For a time slot starting from frame f and ending at frame

l, we extract all the non-trivial distances into a vector D as

follows.

D = [triur(Df ), triur(Df+1), · · · , triur(Dl)] (8)

Then, we summarize the distance distribution feature over D

as fd using Equ. (2).

• Relative Velocity Distribution. The relative movement be-

tween objects provides additional information to the individual

movement. For example, when two objects are moving towards

each other and about to overlap, we need to use higher frame

rate and higher resolution in the future time slots. We denote

the relative velocity between objects a and b in frame i as r
(i)
a,b

as follows.

r
(i)
a,b = ||!vi(a)− !vi(b)|| (9)

We can build up a matrix Ri about the relative movement

velocity among all object pairs for each frame i. Using the

same extraction method as the distance distribution feature, we

extract the non-trivial entries into a vector R and summarize

the relative velocity distribution feature as fr.

• Number of Objects. In addition to the movement features,

we include the number of detected objects in the current time

slot. A larger number usually indicates a higher volume and a

higher frame rate. We denote the number of objects in frame

i with ni and the sequence of each selected frame as N.

N = [nf , · · · , nl] (10)

We summarize the number feature as fn.

• Configuration. We also consider the current configuration

as part of the global-scope feature. Since the detection is

performed on the adapted frames, the adaptation configuration

affects the detection results and extracted movement features.

So it provides confidence information for the extracted move-

ment features. Thus, we add the resolution and frame rate

with its corresponding movement features. Since time slot is

the basic unit of adaptation, the resolution and frame rate of

a time slot is static.

fc = [r, f ] (11)
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Fig. 3. Prediction Model for Accuracy

3) Summary of Features: To predict the configuration for

the next time slot, we consider the feature of several recent

time slots. For each time slot i, we get its unit feature f
(i) as

the composition of the features mentioned above.

f
(i) = [fs

(i), fv
(i), fz

(i), fa
(i), fd

(i), fr
(i), fn

(i), fc
(i)] (12)

The unit feature of one time slot just describes the video

dynamics in a short period. It can hardly describe the patterns

lasting for several time slots. Therefore, we derive the feature

of a time slot as the composition of unit features of the most

recent k time slots.

F
(i) = [f (i−k+1), · · · , f (i−1), f (i)] (13)

C. Configuration Prediction Model

We predict the accuracy of each configuration and select

one for the next time slot based on the predictions. We design

a neural network to predict the accuracy from features. So

given a minimum acceptable accuracy, we select the fastest

configuration that satisfies the requirement. To make the model

simpler, we discretize the accuracy value and predict its range

instead of the accuracy value. We pay more attention to the

range where people care the most. For example, we have

ranges: 0-70%, 70%-80%, 80%-85%, 85%-90%, 90%-95%,

95%-100%.

Basically, we can predict the accuracy of each configuration

with a neural network. In order to ensure fast prediction, we

keep the neural network simple.

Inspired by the deep neural network design of the computer

vision field [16], [17], we extract the common computation

of all configurations as a backbone network. The accuracy

prediction part of each configuration shares the output of the

backbone network. As shown in Fig. 3, we process the input

features with a fully-connected layer and derive an interme-

diate feature in the hidden layer. Then, each configuration

predicts its own accuracy based on the hidden layer.

IV. SCHEDULING FOR ADAPTATION TASKS

The adaptation brings additional challenges for serving

analytic tasks with low latency. First, the adaptation makes

the resolution of consecutive frames different, and correspond-

ingly they are usually handled by different DNN models. It

prevents us from getting analytic results of a video segment

in one batch. While processing frames one-by-one or with

smaller batches results in higher overhead. So we adopt a

multiple-queue mechanism that batches frames according to

their target model regardless of their source streams and

temporal order.

The cross-stream batching technique improves the overall

throughput at the cost of increased serving latency in extreme

cases. Frames are independent during DNN inference. But

the temporal order is important for following steps such as

tracking. The tracking step requires the detected objects to

be submitted in the right temporal order. Otherwise, identical

objects in different frames may not be able to be associated

correctly. But consecutive frames in a stream may be put into

different queues based on their resolutions. If the queue with

later frames are processed by the GPU first, the processing

results cannot be submitted to the tracking step until the earlier

frames are processed. That introduces additional latency. And

in some extreme cases, that leads to starvation of some video

streams.

Existing scheduling policies, such as the first-come-first-

serve (FCFS) policy, prevent the task starvation. When the

GPU is available, we can choose the queue whose first batch

waits the longest time. Since frames of the same stream

arrives in the temporal order, we can guarantee that a frame is

processed at most (N−1)B frames behind its precedent frame,

where N is the number of queues and B is the maximum

number of frames in each batch.

But the FCFS policy does not consider the processing time

of batches from different queues or the current workload of

the system. As a result it may lower the average latency

of the whole system. The shortest-job-first (SJF) policy re-

duces the global latency. The DNN model for an image with

smaller resolution is usually simpler and takes less inference

time. Therefore, given the same amount of waiting tasks,

processing the queue of a smaller resolution can result in

lower global latency. However, in many cases, the stream is

adapted to a relatively low configuration for most cameras.

Such as the traffic volume is low on all roads at midnight. So

corresponding queues hold more tasks than others. Scheduling

such queues earlier reduces the waiting time of all tasks and

correspondingly the overall latency.

We propose a latency-aware scheduling policy that aims

to reduce the overall stream-level latency. It selects queues

based on how the selection affects the overall latency. In

our scheduling, the expected processing time of each selected

batch is known, and the processing is non-preemptive. First,

we avoid starvation while pursuing high throughput. Since

the expected processing time of a batch is known, we can

compute how much total waiting time is removed by spending

one unit of processing time, which is the return-on-investment

of selecting a queue. For the efficiency of computation, we

approximate the total waiting time of the first batch in a queue

with its upper bound, which is the waiting time of the first task

in the queue. Therefore, we have the return-on-investment of

a queue i as tqi /t
p
i where tqi is the waiting time of the first
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TABLE II
CONFIGURATION PREDICTION ACCURACY USING DIFFERENT FEATURES

Feature Traffic Monitor Pose Detection

Object-level only 0.582 0.611

- no PCR (xy-move) 0.275 0.193

- no SCR (z-move) 0.511 0.495

- no ACR (rotation) 0.518 0.512

Video-level only 0.356 0.534

All features 0.622 0.679

detection application respectively. The accuracy drops about

0.05 - 0.25 if we use the object-level or video-level features

only. In both applications, the prediction model trained with

object-level features outperforms the model using video-level

features. Compared with pose detection, the traffic monitoring

application benefits less from the video-level features. In

the traffic monitoring application, vehicles on the same road

roughly follow the same movement pattern and there are on

strong interactions among cars. The object-level features are

good enough to capture the movement pattern. While for

dancing, the joints of a human body do not share the same

moving pattern and the movement of human body is more

complex. So the relative movement captured by the video-

level features also plays an important role in deciding the

configuration.

We further analyze the impact of different types of move-

ment captured in the object-level features. We remove the

position change rate (PCR), size change rate (SCR), and aspect

ratio change rate (ACR) from the object-level features respec-

tively, and compare the corresponding prediction accuracy.

They indicate the movement in the frame (x- and y-axis),

movement perpendicular to the frame plane (z-axis), and the

rotation of objects respectively. As shown in TABLE II, after

removing the position change rate, the prediction accuracy sig-

nificantly drops to about 0.2 from 0.6 above. While removing

the size change rate or aspect ratio change rate decreases the

accuracy by about 0.1.

C. Performance of Profiling-Free Adaptation

We compare our profiling-free adaptation with the periodic

profiling adaptation. Shown in Fig. 6, we compare the compute

resource requirement and accuracy for each second of an

example video clip on both the traffic monitoring and pose

detection. As shown in both Fig. 6(a) and 6(c), the profiling-

free adaptation significantly reduces the resource demand.

For the traffic monitoring application, The average resource

requirement of the periodic profiling adaptation is 428.80

GFLOPs (giga floating point operations) while that of our

profiling-free adaptation is 55.57 GFLOPs, which is about just

13% of the profiling-based method. For the pose detection,

our profiling-free adaptation requires about 25% of workload

compared to the periodic profiling adaptation on average.

In addition, the profiling-free adaptation also significantly

reduces the peak resource requirement. On the two example

videos, the peak resource requirement of the profiling-free

adaptation is just about 2.5% and 6% of the periodic profiling

method. It is because that the periodic profiling adaptation

needs to profile all candidate configurations at the beginning

of each segment. While the profiling-free adaptation just

processes the video with one configuration at any time. The

lower peak resource requirement helps in lowering the overall

serving latency. We show it in later sections.

The video analytic accuracy using the profiling-free adap-

tation is higher than that of the periodic profiling adaptation.

Fig. 6(b) and 6(d) show the video analytic accuracy of each

video second. In most time, the profiling-free adaptation

performs the same as the periodic profiling adaptation, since

the two adaptation methods choose the same configuration at

the time. For about 20% time, the profiling-free adaptation

choose a different configuration. Because the profiling-free

adaptation adapts the best configuration more frequently, it

reacts the content changes more quickly. So for those period,

the profiling-free adaptation reaches higher video analytic

accuracy on average. For traffic monitoring, the profiling-

free adaptation increases the average accuracy from 0.846 to

0.869. And for the pose detection application, it increases the

accuracy from 0.828 to 0.845.

D. Impact of Latency-aware Scheduling

We compare the serving latency of our latency-aware

scheduling policy with some popular scheduling policies. We

launch 20 video streams for traffic monitoring and sched-

ule them with the first-come-first-server (FCFS), short-job-

first (SJF) and our latency-aware scheduling (LAS) policy.

Therefore, we limit the maximum GPU usage to 110% of the

average workload, so that the capacity matches the workload

and the latency caused by busy parts in videos can be caught

up later. and measure the average latency of all streams in

every second in Fig. 7(a). We annotate the period during which

the workload overwhelms the computing capacity with gray

background. The FCFS policy performs the worst with average

latency 0.338 second, while SJF and LAS reaches 0.297 and

0.300 second respectively. We zoom in to the busy periods

(including 5 seconds after) and show the latency distribution in

Fig. 7(b). Scheduling with the LAS policy, 99% tasks finishes

in 1.299 second, while that number is 1.346 and 1.576 for the

FCFS and SJF policy respectively.

The scheduling also affects the configuration prediction ac-

curacy. It is because that movement features for configuration

prediction are derived from frame analyzing results. And due

to the serving latency, the movement feature is usually not

computed from the latest frames. We compare the prediction

accuracy under different scheduling policies for the traffic

monitoring and pose detection application. Since our LAS

policy reaches lower latency, its configuration prediction accu-

racy outperforms FCFS and SJF by about 5%. The experiment

setting is same as the latency experiment above.

E. Serving Multiple Streams

We evaluate the latency of our system under 20 video

streams. Shown in Fig. 8, the average latency of our system is

0.208 second and 0.387 second for traffic monitoring and pose
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They improve the serving throughput and reduces the stream-

level latency. We evaluate our system with real-world videos.

Experiment results show that compared to the state-of-the-art

profiling-based adaptation, our system improves the overall

accuracy by about 3% while consumes about 20% workload.

And our average latency for live analytics is about 20x smaller

than state-of-the-art periodic profiling adaptation.
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