2022 IEEE International Conference on Big Data (Big Data) | 978-1-6654-8045-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/BigData55660.2022.10020573

2022 IEEE International Conference on Big Data (Big Data)

Profiling-free Configuration Adaptation and
Latency-Aware Resource Scheduling for Video
Analytics

Tian Zhou*, Fubao

Wu*, Lixin Gao*

* Department of Electrical and Computer Engineering, University of Massachusetts Amherst, USA
tzhou@umass.edu, fubaowu@umass.edu, 1gao@ecs.umass.edu

Abstract—With increasingly deployed cameras and the rapid
advances of Computer Vision, large-scale live video analytics
becomes feasible. However, analyzing videos is compute-intensive.
In addition, live video analytics needs to be performed in real
time. In this paper, we design an edge server system for live
video analytics. We propose to perform configuration adaptation
without profiling v ideo o nline. W e s elect ¢ onfigurations wi th a
prediction model based on object movement features. In addition,
we reduce the latency through resource orchestration on video
analytics servers. The key idea of resource orchestration is
to batch inference tasks that use the same CNN model, and
schedule tasks based on a priority value that estimates their
impact on the total latency. We evaluate our system with two
video analytic applications, road traffic m onitoring a nd pose
detection. The experimental results show that our profiling-free
adaptation reduces the workload by 80% of the state-of-the-art
adaptation without lowering the accuracy. The average serving
latency is reduced by up to 95% comparing with the profiling-
based adaptation.

I. INTRODUCTION

Millions of cameras have been deployed in various areas
such as road intersections, airports, factories, homes, and
classrooms. The proliferation of cameras makes video analyt-
ics possible for diverse applications including traffic control,
business intelligence, crime prevention, smart factories, and
distance education [1]. For example, Microsoft collaborated
with the City of Bellevue in Washington State to use the
widely deployed traffic c amera f eeds t o p roduce actionable
insights for the goal of zero traffic deaths and serious injuries
by 2030 [2]. They deployed a video analytics platform to
produce directional counts of traffic users (vehicles, bicycles,
etc.), and live alerts on abnormal traffic v olumes. Video
analytics provides organizations with hindsight, insight, and
foresight into their operations through automatically analyzing,
detecting, and trigger alerts seen by cameras, and are poised
to revolutionize the efficiency a nd e ffectiveness o f video
surveillance technologies.

Video analytics relies on Computer Vision (CV) techniques
such as object detection and classification. R ecent advances
in computer vision and deep learning provide increasingly
accurate deep neural networks (DNNs) for these tasks. How-
ever, DNN models usually demand more compute power and

978-1-6654-8045-1/22/$31.00 ©2022 IEEE 1202

is usually handled with Graphics Processing Units (GPUs).
Currently, it is not feasible for an edge camera (even the
most powerful camera) to perform real-time object detection
with these DNN models. For example, the latest Raspberry Pi
4B model augmented with the Intel Movius Neural Compute
Stick, which is a plug-and-play hardware to accelerate neural
network computation, can process only 2-4 frames per second
with YOLOv3-tiny model [3], [4]. Therefore, smart cameras
typically offload analytics tasks to an edge server, which
empowered with powerful computing resource and is located
close to the camera on the Internet.

Building a video analytic system on an edge server that
supports tens or hundreds of cameras can be challenging. First,
analyzing video streams is compute-intensive. For example,
GeForce GTX 1080 Ti GPU can only process 33 frames
per second with YOLOv4 [5]. Even powered with a high-
end GeForce RTX 2080 Ti GPU, an edge server can process
only 62 frames per second [6]. This is barely enough for
serving two 30 frame-per-second live video streams. Second,
the DNN models might need to be adapted over time due
to changes in video content. For example, when a traffic
congestion happens, the density of vehicles greatly increases
and a powerful DNN model may be needed. Meanwhile, when
there are very few vehicles on roads, such as at midnight,
a simple DNN model might be accurate enough to identify
all vehicles. Third, the resource orchestration for performing
live video analytics on multiple streams is challenging. The
resource demand of different stream may vary significantly.
It is challenging to schedule computing resources to maintain
good overall throughput while preventing high latency.

We propose a live video processing system for multiple
video streams on edge servers. First, we propose a config-
uration adaptation scheme that does not need to perform
profiling online. The configuration adaptation is to select a
configuration, such as the video resolution and frame rate, for
video analysis that provides an acceptable accuracy. The state-
of-the-art adaptation methods [7]-[9] profile video periodically
to select a configuration. These schemes periodically profile
the workload and accuracy of each candidate configuration by
analyzing sampled video clips. These profiling-based methods
incur heavy workloads at the profiling points. Different from
these profiling-based adaptation methods [7], [8], [10]-[12],
we propose a profiling-free adaptation that selects a config-

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 26,2023 at 17:07:28 UTC from IEEE Xplore. Restrictions apply.

uration using a prediction model based on object movement
features. We find that the best configuration highly correlates
with the movement speed of objects in the video. For example,
when the key object in a video moves slowly, we can process
the video by sampling some frames periodically without losing
track of the object. We train a prediction model to capture
the relationship. Compared to the profiling-based adaptations,
our method requires much less computing resources. And
it does not require a burst of computation resources during
profiling. Further, we can perform configuration adaptation
more frequently than periodic profiling adaptations. As a
result, our method reacts more promptly to pattern changes
of object movement.

Second, we design a task processing engine for resource
orchestration. Our task processing engine schedules GPU
resources for video analytics on adapted video streams, where
consecutive frames may be adapted to various resolutions. We
design a batching mechanism. It picks and batches frames
according to their resolutions and target DNNSs, instead of their
source streams. This enables us to perform batch-processing
on adapted video streams. In addition, we propose a prioritized
scheduling policy. Different from typical scheduling policies
that optimize the latency of serving each frame, our policy
takes the latency of a stream into consideration. As a result,
we provide lower overall latency.

We evaluate our system with two live video analytic appli-
cations: traffic monitoring and pose detection. Our evaluation
results show that our profiling-free adaptation approach is
able to reduce the workload by about 80% of the periodic
profiling adaptation, without reducing the accuracy of video
analytics. With our resource orchestration, the average serving
latency is reduced by 95% comparing with the state-of-the-art
configuration adaptation method. We are able to analyzes ten
720p traffic monitoring video streams with average latency of
200ms with one GPU.

The rest sections of this paper are organized as follows. In
Section II, we briefly introduce video analytics on edge servers
about common techniques and challenges. Then, we introduce
our profiling-free configuration adaptation idea for live video
analytics in Section III, and the resource scheduling for
adapted video frames in Section IV. After that, we implement
a profiling-free video analytic system PFad in Section V and
evaluate it in Section VI. Finally, we introduce related works
and conclude our work in Section VII and VIII respectively.

II. MOTIVATION

Cameras have been widely deployed and empowered many
video analytic applications. But smart cameras are usually not
powerful enough to analyze live video streams.

It is common to use edge servers to provide computing
power for video analytics. These edge servers locate close to
cameras. So that cameras can stream their video data to the
edge server in real time. We illustrate the edge server systems
that serve video analytics in Fig. 1. Usually, an edge server is
responsible for analyzing videos from several cameras.

1203

Cameras Cameras

Internet

Fig. 1. Video Analytics on Edge Servers

Video analytics utilize computer vision techniques such as
object detection, image classification, and optical character
recognition. With recent advances in computer vision, many
powerful DNN models with high detection accuracy have
been proposed. However, inference with DNN models is
compute-intensive. An edge server usually needs to equip
with specialized hardware, such as Graphics Processing Units
(GPUys), to analyze videos with DNN.

Simply equipping with some GPUs is usually not enough to
fulfill DNN inference for multiple video streams. For example,
YOLO and faster-R-CNN are the state-of-the-art DNN models
for object detection. A high-end GeForce RTX 2080 Ti GPU
can process 62 frames per second with YOLOv4 [6]. That sup-
ports just two streams of 30-FPS videos. A less powerful GPU
model, such as GeForce GTX 1080 Ti, just runs 33 FPS [5].
The faster-R-CNN model is a more accurate but slower object
detection model. A faster-R-CNN model with ResNet-101 just
processes 20 frames per second on an NVIDIA Tesla V100
GPU (about 20% faster than its commodity vision NVIDIA
GeForce 1080 Ti) [13].

In many cases, it is possible to downgrade the frame rate
and resolution without affecting the video analytic results. For
example, in a speeder detection application, we want to detect
vehicles that move faster than a predefined speed limit and
capture their plates. The video stream from the surveillance
camera is in resolution 1920x1080 and 30 frames per second
(FPS). Actually, for the purpose of identifying cars, it is
accurate enough to use a lower resolution such as 854x480.
The corresponding object detection model usually costs less
computing resource. And it is usually good enough to track
vehicles using 10 frames per second instead 30.

The best frame rate and resolution required at different
video segments can also be different. In the above example,
when a traffic jam happens or the traffic light is red, all
vehicles moves slowly. We can identify and track all vehicles
at the frame rate of 1 or 2 FPS. And only when a speeder
is found, we need to use a high resolution to read its plate.
Otherwise, we can just use the low resolution to identify cars.

Configuration adaptation has been proposed for video ana-
Iytics. State-of-the-art adaptation methods choose frame rate
and resolution dynamically through periodical profiling. They
compute the accuracy the workload on the first few seconds
of each video segment for all candidate configurations [1],

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 26,2023 at 17:07:28 UTC from IEEE Xplore. Restrictions apply.

[7], [12], [14], and then select the best one based on certain
accuracy or workload requirements. Despite many ideas are
proposed for reducing the number of candidate configurations
to profile [1], [7], [11], there are still tens of configurations to
examine. Since the profiling procedure performs the analytics
for all candidate configurations, it is compute-intensive.

An edge server needs to analyze several video streams.
These streams compete for the computing resources of GPUs
on the edge server. To make better use of GPU computing re-
sources, frames should be packed as batches before submitting
to a GPU. For example, compared to submitting frames one-
by-one, the throughput of a ResNet-152 model triples when
frames are submitted as batches of 8-frames on an NVIDIA
Tesla K80 GPU [15]. But only frames of the same size can
be batched. Frames from different streams may be in different
sizes. After adaptation, even consecutive frames of the same
stream may be of different resolutions. Different from the
image analytics, frames in a video are related. Their sequential
order matters for video analytics. So the scheduling of frame
analytic tasks is crucial for edge servers.

ITII. PROFILING-FREE CONFIGURATION ADAPTATION

In this section, we propose a profiling-free configuration
adaptation for video analytics. We first introduce the idea of
adapting with a object movement-based configuration predic-
tion model. Then, we describe movement features and the
prediction model.

A. Profiling-free Adaptation

Consecutive frames in a video are correlated. Usually, it is
unnecessary to analyze every frame to locate and track objects
in the video. Even when a video frame is analyzed, it does not
have to be analyzed with the highest resolution. In this paper,
we refer to the combination of frame rate and resolution as
a configuration. Analyzing a video with a lower resolution or
lower frame rate costs less computing resources. So, state-of-
the-art video analytic systems adapt the configuration to speed
up the video analytics [1], [7], [11], [12], [14].

Current configuration adaptation methods are profiling-
based. They select configurations by profiling the first few
seconds of a video segment. By analyzing the same piece
of video with a set of candidate configurations, they are
able to choose the configuration that satisfies the analytic
accuracy requirement and costs the least amount of computing
resources. But the profiling itself is very costly in terms of
computing resources.

We notice a strong correlation between the object movement
and the configuration. For example, Fig. 2 shows the maximum
speed of cars and mean distances among cars in a traffic
surveillance video. It also shows the best configuration (the
fastest configuration that satisfies an accuracy requirement) for
a car counting application. As shown in the figure, in most
parts of the video, cars move slowly. The low configuration
of 426x240 resolution and 2 FPS is enough to count all cars.
At second 100 the traffic light turn green, cars start to speed
up. Meanwhile, new cars keep getting in the screen and old

1204

£ Sa—— N M |
5 G 480
52 | I“U“ ?\IN 1 "_“

i gl

0 50 100 150 200 250 300 350 400
time (s)

Fig. 2. Correlation between object movement features and minimum config-
uration

cars keep moving out of the screen. As highlighted with gray
background, the maximum speed drastically changes in the
period 100-250 second. Correspondingly, the best frame rate
changes when the maximum speed changes. Similarly, when
the mean distance among cars suddenly drops or increases, we
need a higher resolution.

We propose a profiling-free adaptation mechanism that
predicts configuration based on movement features of video
objects. By learning the relationship between the movement of
objects and the best configuration, we predict the configuration
instead of choosing one by profiling all candidate configura-
tions. Then, we generate analytic tasks of frame based on the
predicted configuration.

The movement of objects can be got from the interme-
diate video analytic results without additional cost. Object
identification and tracking are usually the core operations of
video analytics. The movement trajectory from the tracking
operation cannot only be used to compute the analytic results,
but also be used to extract movement features such as speed.
We capture the relationship between the movement features
and the best configuration with a machine learning model.
Then, we can use the model to predict the configuration for the
next video segment based on the current movement features.

B. Movement-Based Video Features

We extract the movement of all video objects within a time
slot into movement features. We model two types of features,
object-level and video-level. The object-level features describe
the information of each individual object. The video-level
features describe the information across objects. For example,
it captures the distance among objects.

We extract the feature based on the movement trajectory
of each object. The trajectory of an object k describe its
center position p(k), height hA(k) and width w(k) of the object
in each frame. It is formulated with a sequence of pairs
[, (@i(k), hi(k),w;(k)),- -] where i is the frame index. To
describe information such as movement speed, we also need
the time of each frame ¢;.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 26,2023 at 17:07:28 UTC from IEEE Xplore. Restrictions apply.

1) Object-Level Features: For each object, we capture four
features, including its size and three kinds of movement. Since
the number of objects in each time slot is dynamic and the
number of analyzed frames in each time slot is also non-
predefined, we summarize the information of each object in
each frame to get the feature for that time slot.

e Size. The size of objects directly relate to the resolution.
An object k’s size s;(k) in frame ¢ can be derived with the
following equation.

si(k) = w;(k) - hi(k) (D

Denoting the size of each object in each frame with a vector
S, we summarize the size feature f with its sufficient statistics
fs as Equ. (2).

fs = [min(S), mean(S), max(S), std(S)] 2)

e Position Change Rate (xy-plane Velocity). The physical
movement of an object in the real world can be projected to
the movement in the frame and movement perpendicular to the
frame. We capture the movement in frames using the position
change rate. The position change of object k at frame i is
computed with its position 7;(k) and time ¢; as the following

equation. B =
pi(k) — pi-1(k)

vi(k) = t; —ti—1

3)
Its L2-norm ||¥;(k)|| is its position change rate. Similar to the
size feature, we summarize the position change feature f,, with
its sufficient statistics using Equ. (2).

e Size Change Rate (z-axis Velocity). We capture an object’s
movement perpendicular to the frame with its size change rate.
Using the size computed with Equ. (1), we get the size change
rate z;(k) of object k at fame ¢ with following equation.

ZZ(,Z{Z) _ Sl(k) — Si_l(k‘)
ti —ti1
We summarize size change rate feature as f,.
e Aspect Ratio Change Rate (Rotation and Morphing).
Movement consists of translation and rotation. The shape
change is a quick identifier for object rotation. It can be
captured with the change of aspect ratio. In addition, the
change of aspect ratio also indicates the morphing of an object,
which usually relates to the movement of the object parts such
as the limbs of a human object. We compute the change rate of
the aspect ratio a;(k) for object k at frame i as the following
equation.

“4)

_ wi(k)/hi(k) — wi—1(k)/hi—1(k)
b —ti1

We summarize the aspect ratio change rate feature as f,.

2) Video-Level Feature: The video-level features capture
information from a global view, such as the spreed of objects
in a frame. In addition, we also consider global information
such the previous configuration. Different from object-level
features, the video-level features usually capture the relation-
ship among objects. So for each frame, there is a n X n
matrix to describe the movement information, suppose there

a; (k) &)

1205

are n objects in the frame. We flatten the matrix sequence to
summarize them.

e Distance Distribution. The location of objects affects the
resolution. When two objects stick close to each other, we
may need a higher resolution to distinguish them. Similarly,
we may also need a higher resolution when objects spreed
away from each other. Suppose there are k objects in frame
1, dai)b denotes the distance between object a and b in frame
i, and Dj denotes the pairwise distance matrix of all objects.

d\), = ||pi(a) — 5 (0] ©)
0 di di dy')

o (U ds) dg), -
6 0 0 0

For a time slot starting from frame f and ending at frame
[, we extract all the non-trivial distances into a vector D as
follows.

D = |[triur(D¢), triur(Dgy1), - - -, triur(Dy)] 8)

Then, we summarize the distance distribution feature over D
as fg using Equ. (2).

e Relative Velocity Distribution. The relative movement be-
tween objects provides additional information to the individual
movement. For example, when two objects are moving towards
each other and about to overlap, we need to use higher frame
rate and higher resolution in the future time slots. We denote
the relative velocity between objects a and b in frame ¢ as TL%
as follows.

r@
a,b

||Ui(a) — ()])

We can build up a matrix R; about the relative movement
velocity among all object pairs for each frame ¢. Using the
same extraction method as the distance distribution feature, we
extract the non-trivial entries into a vector R and summarize
the relative velocity distribution feature as f;.

o Number of Objects. In addition to the movement features,
we include the number of detected objects in the current time
slot. A larger number usually indicates a higher volume and a
higher frame rate. We denote the number of objects in frame
1 with n; and the sequence of each selected frame as IN.

N:['I'Lf, ,’I’Ll] (10

We summarize the number feature as f,.

e Configuration. We also consider the current configuration
as part of the global-scope feature. Since the detection is
performed on the adapted frames, the adaptation configuration
affects the detection results and extracted movement features.
So it provides confidence information for the extracted move-
ment features. Thus, we add the resolution and frame rate
with its corresponding movement features. Since time slot is
the basic unit of adaptation, the resolution and frame rate of
a time slot is static.

(1)

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 26,2023 at 17:07:28 UTC from IEEE Xplore. Restrictions apply.

]

I
LY)
movement

feature hidden layer

accuracy

output

Fig. 3. Prediction Model for Accuracy

3) Summary of Features: To predict the configuration for
the next time slot, we consider the feature of several recent
time slots. For each time slot 4, we get its unit feature f () ags
the composition of the features mentioned above.

£ — [fs(i)7 fv(i), fz(i)7 fa(i)7 fd(i)7 fr(i)’ fn(i)7 fc(i)] (12)

The unit feature of one time slot just describes the video
dynamics in a short period. It can hardly describe the patterns
lasting for several time slots. Therefore, we derive the feature
of a time slot as the composition of unit features of the most
recent k time slots.

FO) — [pl-k+D) . pGm) p)]

13)
C. Configuration Prediction Model

We predict the accuracy of each configuration and select
one for the next time slot based on the predictions. We design
a neural network to predict the accuracy from features. So
given a minimum acceptable accuracy, we select the fastest
configuration that satisfies the requirement. To make the model
simpler, we discretize the accuracy value and predict its range
instead of the accuracy value. We pay more attention to the
range where people care the most. For example, we have
ranges: 0-70%, 70%-80%, 80%-85%, 85%-90%, 90%-95%,
95%-100%.

Basically, we can predict the accuracy of each configuration
with a neural network. In order to ensure fast prediction, we
keep the neural network simple.

Inspired by the deep neural network design of the computer
vision field [16], [17], we extract the common computation
of all configurations as a backbone network. The accuracy
prediction part of each configuration shares the output of the
backbone network. As shown in Fig. 3, we process the input
features with a fully-connected layer and derive an interme-
diate feature in the hidden layer. Then, each configuration
predicts its own accuracy based on the hidden layer.

IV. SCHEDULING FOR ADAPTATION TASKS

The adaptation brings additional challenges for serving
analytic tasks with low latency. First, the adaptation makes
the resolution of consecutive frames different, and correspond-
ingly they are usually handled by different DNN models. It

1206

prevents us from getting analytic results of a video segment
in one batch. While processing frames one-by-one or with
smaller batches results in higher overhead. So we adopt a
multiple-queue mechanism that batches frames according to
their target model regardless of their source streams and
temporal order.

The cross-stream batching technique improves the overall
throughput at the cost of increased serving latency in extreme
cases. Frames are independent during DNN inference. But
the temporal order is important for following steps such as
tracking. The tracking step requires the detected objects to
be submitted in the right temporal order. Otherwise, identical
objects in different frames may not be able to be associated
correctly. But consecutive frames in a stream may be put into
different queues based on their resolutions. If the queue with
later frames are processed by the GPU first, the processing
results cannot be submitted to the tracking step until the earlier
frames are processed. That introduces additional latency. And
in some extreme cases, that leads to starvation of some video
streams.

Existing scheduling policies, such as the first-come-first-
serve (FCES) policy, prevent the task starvation. When the
GPU is available, we can choose the queue whose first batch
waits the longest time. Since frames of the same stream
arrives in the temporal order, we can guarantee that a frame is
processed at most (N —1) B frames behind its precedent frame,
where N is the number of queues and B is the maximum
number of frames in each batch.

But the FCFS policy does not consider the processing time
of batches from different queues or the current workload of
the system. As a result it may lower the average latency
of the whole system. The shortest-job-first (SJF) policy re-
duces the global latency. The DNN model for an image with
smaller resolution is usually simpler and takes less inference
time. Therefore, given the same amount of waiting tasks,
processing the queue of a smaller resolution can result in
lower global latency. However, in many cases, the stream is
adapted to a relatively low configuration for most cameras.
Such as the traffic volume is low on all roads at midnight. So
corresponding queues hold more tasks than others. Scheduling
such queues earlier reduces the waiting time of all tasks and
correspondingly the overall latency.

We propose a latency-aware scheduling policy that aims
to reduce the overall stream-level latency. It selects queues
based on how the selection affects the overall latency. In
our scheduling, the expected processing time of each selected
batch is known, and the processing is non-preemptive. First,
we avoid starvation while pursuing high throughput. Since
the expected processing time of a batch is known, we can
compute how much total waiting time is removed by spending
one unit of processing time, which is the return-on-investment
of selecting a queue. For the efficiency of computation, we
approximate the total waiting time of the first batch in a queue
with its upper bound, which is the waiting time of the first task
in the queue. Therefore, we have the return-on-investment of
a queue ¢ as t!/t? where t! is the waiting time of the first

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 26,2023 at 17:07:28 UTC from IEEE Xplore. Restrictions apply.

task in queue i, and ¢! is the expected processing time of the
batch.

For every stream, frame analytic results are used in the
temporal order. Each stream waits for its next frame analytic
results for tracking. Suppose there are two batches with same
return-on-investment. One batch contains n frames from the
same stream, while the other one contains the first frame of n
different stream. By processing the second batch, the tracking
and successive stream-level analytic steps of n streams are
able to move forward. While, for the first batch, only when
the n frames are consecutive and are the first n unprocessed
frames, the first batch put forward the stream-level processing
by n frames. Otherwise, less than n frames are pushed
forward. Therefore, the total stream-level latency of selecting
the second batch is no worse than selecting the first one. When
configuration switch happens, it is better.

We put the stream-level latency into consideration. The
oldest unprocessed task of a stream is the critical task of the
stream. Processing a batch with more critical tasks results
in better overall performance. Therefore, we propose the
following priority function of each queue ¢ as Equ. (14).

pi=1li - 1]/}

where [; is the number of critical tasks in the first batch of
queue . It can be derived by maintaining a task pointer for
each stream.

The policy balances the overall latency of all streams and
the stream-level latency of each stream. When the workload
is light, the 1/¢¥ term dominates. Our policy tends to select
the queue with a smaller processing time, which is close to
the SJF policy. It makes better use of batch processing. But
different from SJF, due to the existence of the [; -t;’ term, our
policy does not starve any queue. It is easy to prove that as
long as the system’s processing capacity is not overwhelmed,
the maximum delay between consecutive frames in a stream is
% where [V is the number of queues and B is the
maximum batch size. When the workload is heavy, the I; - td
term dominates. Our policy selects the queues with a longer
total waiting time.

(14)

V. PFAD: PROFILING-FREE VIDEO ANALYTICS SYSTEM

In this section, we introduce our design for video analytics
on edge servers with profiling-free adaptation, PFad. We first
give an overview of our design. Then, we introduce the
processing pipeline of a video stream using our profiling-
free adaptation mechanism. After that, we describe the task
processing engine module in our system, which manages
computing resources and serve DNN tasks of all video streams.

An edge server handles the real-time analytics of multiple
video streams. Due to the data loading and CUDA kernel
initialization overhead, submitting images as batches to a DNN
model usually brings higher throughput on a GPU. However,
allowing the analytic pipeline of each video stream to access
the GPU is inefficient. First, batching frames also introduces
additional waiting time. If the frame rate of a video is not
high enough, non-batching submission may result in lower

1207

Edge Server,
ks
y A | Stream es >
4 > Task
" Processor i Processing
A, Engine
g
= 2 Stream
ﬁl‘ 8 | Processor
h-]
>
y : :
5| Stream
[——>
\‘| | Processor - -
Results
Cameras

Fig. 4. Overview of PFad

latency. Second, tasks from different streams compete for
the computing resource. Lowering the latency of a stream
by disabling batching costs more computing resource. That
further jeopardizes the performance of other streams.

To serve multiple streams efficiently, we decouple the
stream processing and DNN processing. Fig. 4 shows the basic
structure of our system. Each video stream is handled by a
dedicated stream processing module, referred to as a stream
processor. It parses the video stream and generates frame-level
analytic fasks. Then, tasks are submitted to a task processing
engine, which manages the GPU(s) and serves tasks of all
streams. After the tasks are served, their results are sent back
to their source stream processors for further processing.

The stream processor serves the analytics of a video stream.
Fig. 5 illustrates the structure of a stream processor. It analyzes
a video stream with a pipeline shown with gray boxes. First,
it decodes the incoming video stream and get individual
frames. The raw frames are adapted by sampling and re-
sizing according to the configuration predicted by profiling-
free configuration adaptation. Then, the adapted frames are
encapsulated into analytic tasks and submitted to the task
processing engine. Then, objects in frame analytic results are
processed through tracking. It associates identical objects in
different frames and outputs the trajectory of each unique
object. After that, objects and their trajectories are converted to
the application-specific analytic results. For example, we can
use an object detection model for cars on a traffic surveillance
video stream. With the car detection results in each frame,
we can get their trajectories through tracking. Then, with the
trajectories, we can get the traffic volume by counting the
number of unique trajectories, or detect speeders by examining
the speed using car trajectories.

The stream processor dynamically adapts the configuration
for the DNN processing phase. It gets the object move-
ment features through the object trajectories, which is the
intermediate results of object tracking. Then, we predict the
configuration using the profiling-free configuration adaptation
described in Section III. The feature is extracted from the result
of frame DNN analytic and it takes time. It may involve some
additional latency for waiting for features of configuration
prediction. To avoid the latency, we decouple the configuration
prediction and video adaptation with two parallel threads.
The configuration prediction happens when necessary object

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 26,2023 at 17:07:28 UTC from IEEE Xplore. Restrictions apply.

Stream Processor

Profiling-free Adaptation l
I __N | Decode Sample Resize | tasks > TaSk.
\“-' Frames Frames Frames Processing
> Engine
Camera A\
Configuration Feature
Prediction Extraction task results

Application-
specific

Processing

e’

>
- Analytic Results

Fig. 5. Stream Processor

trajectories are ready. And we use a buffer to remember the
latest predicted configuration. When a configuration is needed
in the adaptation thread, we use whatever we have currently.

We delegate the GPU access of all tasks from video streams
with a unified task processing engine. It receives frame an-
alytic tasks from stream processors and organizes them into
task queues. Then, it schedules the tasks as batches and serves
them on GPU. After that, the engine sends task results back
to their source stream processors.

The task processing engine focuses on reducing the latency
of each stream by orchestrating GPU. First, it reduces the wait-
ing time and total computing time by batching tasks regardless
of their source streams and temporal order. However, the out-
of-order batching may introduce some reordering latency. As
a result, the stream-level increase. So secondly, to reduce the
stream latency, we use the latency-aware scheduling policy
described in Section IV.

VI. EVALUATION

In this section, we evaluate our system. We first analyze
the performance of the configuration prediction model. Then,
we compare the total workload and video analytic accuracy of
our profiling-free adaptation with those of the profiling-based
adaptation. After, that we compare the latency of different
scheduling policies.

A. Settings

We evaluate our video analysis system with two live video
analytic applications on a server with Quadro RTX 5000
GPU. We perform a traffic monitoring application and a pose
detection application. We collect traffic surveillance videos and
dancing videos from YouTube. TABLE I shows more details of
our evaluation dataset. For the traffic monitoring application,
we count the number of unique vehicles that pass through the
camera. We count the ground truth number by human-labeling.
For the pose detection application, we estimate the position
of the 17 key points defined by COCO [18] for all frames.
We predict poses for skipped frames using a speed-based
position estimation [19] and compare them with ground truth
poses via the object keypoint similarity (OKS) metric [20].
We collect the ground truth poses of each frame using the raw
resolution, which is usually 1080p or 4K. To thoroughly test

1208

TABLE I
VIDEO DATASET SUMMARY

Application length # clips | # objects (per
(min.) frame)

Traffic Monitoring | 600 90 0-20

Pose Detection 750 75 0-1

the performance of our system, we exclude the raw resolution
from the adaptation knobs.

The setting of the stream processor is listed as follows. We
adapt among 4 resolutions [240p, 360p, 480p and 720p] and
6 frame rates [1, 2, 5, 10, 15 and 30] FPS. We perform the
configuration adaptation every second. We use the cascading
accuracy thresholds for adaptation as [0.95,0.9,0.8,0.7,0.5].
It means that if no configuration is predicted to be more
accurate than 0.95, we will try to select the fastest one with
accuracy no less than 0.9. If not one satisfies 0.9, we try the
next threshold 0.8. We train the prediction model for each
application separately.

We compare our system with the periodic profiling config-
uration adaptation method. Since the traffic light and danc-
ing pattern usually change at the level of several tens of
seconds, We select a configuration every 30 second. We
implement the periodic profiling adaptation with state-of-the-
art optimizations. We first reduce the configuration space
using the Pareto principle through an offline profiling [1],
[7], [11]. Then, we compute a frame alignment table for each
resolution based on the candidate configurations. It points out
the common frame used by different frame rates. So during
online profiling, we just need to process those frame once. For
example, given a 30FPS video, to profile configuraitons 480p-
15FPS, 480p-10FPS, 480p-5FPS, 480p-3FPS,480p-1FPS, we
just need to process 15+1=16 frames per second instead of
15+10+5+3+1=34 frames.

We implement our system in Python and utilize existing
object detecting models. We employ the YOLOv5-median
model [21] for vehicle detection and the OpenPose model [22]
for pose detection. For the tracking phase after the object
detection, we adopt the SORT algorithm [23] for tracking
bounding boxes (vehicle monitoring) and the nearest-neighbor
algorithm for key points (pose detection). The code is open-
source and public available '.

B. Impact of Features on Configuration Prediction

We examine the impact of different features on the con-
figuration prediction accuracy. We compare the prediction
accuracy of prediction models trained with only parts of
features in TABLE II. Some different configurations may result
in roughly the same video analytic accuracy and workload. So
we consider a prediction is correct as long as the predicted
configuration’s video analytic accuracy and workload is 5%
and 10% around the ground-truth configuration respectively.

When all features are used, we archive the prediction
accuracy of 0.622 and 0.679 on the traffic monitoring and pose

'Source Code: https://github.com/yxtj/VideoServing

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 26,2023 at 17:07:28 UTC from IEEE Xplore. Restrictions apply.

TABLE II
CONFIGURATION PREDICTION ACCURACY USING DIFFERENT FEATURES

Feature Traffic Monitor Pose Detection
Object-level only 0.582 0.611

- no PCR (xy-move) 0.275 0.193

- no SCR (z-move) 0.511 0.495

- no ACR (rotation) 0.518 0.512
Video-level only 0.356 0.534
All features 0.622 0.679

detection application respectively. The accuracy drops about
0.05 - 0.25 if we use the object-level or video-level features
only. In both applications, the prediction model trained with
object-level features outperforms the model using video-level
features. Compared with pose detection, the traffic monitoring
application benefits less from the video-level features. In
the traffic monitoring application, vehicles on the same road
roughly follow the same movement pattern and there are on
strong interactions among cars. The object-level features are
good enough to capture the movement pattern. While for
dancing, the joints of a human body do not share the same
moving pattern and the movement of human body is more
complex. So the relative movement captured by the video-
level features also plays an important role in deciding the
configuration.

We further analyze the impact of different types of move-
ment captured in the object-level features. We remove the
position change rate (PCR), size change rate (SCR), and aspect
ratio change rate (ACR) from the object-level features respec-
tively, and compare the corresponding prediction accuracy.
They indicate the movement in the frame (x- and y-axis),
movement perpendicular to the frame plane (z-axis), and the
rotation of objects respectively. As shown in TABLE II, after
removing the position change rate, the prediction accuracy sig-
nificantly drops to about 0.2 from 0.6 above. While removing
the size change rate or aspect ratio change rate decreases the
accuracy by about 0.1.

C. Performance of Profiling-Free Adaptation

We compare our profiling-free adaptation with the periodic
profiling adaptation. Shown in Fig. 6, we compare the compute
resource requirement and accuracy for each second of an
example video clip on both the traffic monitoring and pose
detection. As shown in both Fig. 6(a) and 6(c), the profiling-
free adaptation significantly reduces the resource demand.
For the traffic monitoring application, The average resource
requirement of the periodic profiling adaptation is 428.80
GFLOPs (giga floating point operations) while that of our
profiling-free adaptation is 55.57 GFLOPs, which is about just
13% of the profiling-based method. For the pose detection,
our profiling-free adaptation requires about 25% of workload
compared to the periodic profiling adaptation on average.
In addition, the profiling-free adaptation also significantly
reduces the peak resource requirement. On the two example
videos, the peak resource requirement of the profiling-free
adaptation is just about 2.5% and 6% of the periodic profiling

1209

method. It is because that the periodic profiling adaptation
needs to profile all candidate configurations at the beginning
of each segment. While the profiling-free adaptation just
processes the video with one configuration at any time. The
lower peak resource requirement helps in lowering the overall
serving latency. We show it in later sections.

The video analytic accuracy using the profiling-free adap-
tation is higher than that of the periodic profiling adaptation.
Fig. 6(b) and 6(d) show the video analytic accuracy of each
video second. In most time, the profiling-free adaptation
performs the same as the periodic profiling adaptation, since
the two adaptation methods choose the same configuration at
the time. For about 20% time, the profiling-free adaptation
choose a different configuration. Because the profiling-free
adaptation adapts the best configuration more frequently, it
reacts the content changes more quickly. So for those period,
the profiling-free adaptation reaches higher video analytic
accuracy on average. For traffic monitoring, the profiling-
free adaptation increases the average accuracy from 0.846 to
0.869. And for the pose detection application, it increases the
accuracy from 0.828 to 0.845.

D. Impact of Latency-aware Scheduling

We compare the serving latency of our latency-aware
scheduling policy with some popular scheduling policies. We
launch 20 video streams for traffic monitoring and sched-
ule them with the first-come-first-server (FCFS), short-job-
first (SJF) and our latency-aware scheduling (LAS) policy.
Therefore, we limit the maximum GPU usage to 110% of the
average workload, so that the capacity matches the workload
and the latency caused by busy parts in videos can be caught
up later. and measure the average latency of all streams in
every second in Fig. 7(a). We annotate the period during which
the workload overwhelms the computing capacity with gray
background. The FCFS policy performs the worst with average
latency 0.338 second, while SJF and LAS reaches 0.297 and
0.300 second respectively. We zoom in to the busy periods
(including 5 seconds after) and show the latency distribution in
Fig. 7(b). Scheduling with the LAS policy, 99% tasks finishes
in 1.299 second, while that number is 1.346 and 1.576 for the
FCFS and SJF policy respectively.

The scheduling also affects the configuration prediction ac-
curacy. It is because that movement features for configuration
prediction are derived from frame analyzing results. And due
to the serving latency, the movement feature is usually not
computed from the latest frames. We compare the prediction
accuracy under different scheduling policies for the traffic
monitoring and pose detection application. Since our LAS
policy reaches lower latency, its configuration prediction accu-
racy outperforms FCFS and SJF by about 5%. The experiment
setting is same as the latency experiment above.

E. Serving Multiple Streams

We evaluate the latency of our system under 20 video
streams. Shown in Fig. 8, the average latency of our system is
0.208 second and 0.387 second for traffic monitoring and pose

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 26,2023 at 17:07:28 UTC from IEEE Xplore. Restrictions apply.

= 105 —— prf-based 1.00 \ ||j
S prf-free J \ﬁ I
e ~0.75 \] H
© 104 E
o 5 0.50
2 0.25 prf-based
[2
£10%9 1 LR I010 L 0.00 prf-free
0 100 200 300 400 0 100 200 300 400
time (s) time (s)

(a) Traffic Monitoring - Workload (b) Traffic Monitoring - Accuracy

104 1.00
—~ —— prf-based N » P
o A AA JYYY, A
S prf-free 0.754 '\ MN“ f“‘fﬁ WY
L 10° >0- ! d
<] 19
- < 0.50
=3 ©
e 100 W 0.251 — prf-based
g A Ll
= k '] | W ,,.\J e 0.00 prf-free

0 200 400 600 0 200 400 600
time (s) time (s)

(c) Pose Detection - Workload (d) Pose Detection - Accuracy

Fig. 6. Performance of Profiling-Free Adaptation

IS

latency (s)
- N w
I
>
w
s

) J\‘/A‘ ““\"ﬂv-/'/k,f H".»‘A?:
0 3

100 200 00
time (s)

latency (s)

(a) Average Latency Overtime (b) Latency in Busy Periods

Fig. 7. Latency of Different Scheduling Policies

TABLE III
CONFIGURATION PREDICTION ACCURACY UNDER SCHEDULING POLICIES

Policy Traffic Monitor Pose Detection
FCFS 0.561 0.632
SJF 0.599 0.628
LAS 0.614 0.661

detection application respectively. While the average latency
of using the periodic profiling adaptation is 5.05 and 7.23
respectively. Our system is about 20x faster.

VII. RELATED WORKS

Configuration adaptation is an important part of video serv-
ing. It is used for both reducing the bandwidth consumption
and compute resource requirement. VideoStorm [11] profiles a
video stream offline and use the selected configuration for the
whole lifespan of the video. Systems such as AWStream [7],
Chamelon [8], JetStream [24], VideoEdge [1], JCAB [25]
profile video streams online. They dynamically select the best
configuration based on the profiling result of current video
segment and current bandwidth. For better performance of

10.0 —— prf-based 15 —— prf-based
I~ prf-free I~ prf-free
=~ 7.5 ~ 10
> >
2 2
i 5.0 i
o £ 5
© ©
~ 2.5 ~

0.0 T T T T T 0 T T T T

0 100 200 300 400 0 200 400 600

time time

(a) Traffic Monitoring (b) Pose Detection

Fig. 8. End-to-End Comparison of Serving Latency with 20 Streams

1210

online profiling, some works reduce the number of candidate
configurations by combining the offline and online profil-
ing [1], [7], [11].

The relationship between video content and configuration is
studied in recently years. VCMaker [26] and Cuttlefish [27]
utilize the speed of video objects together with bandwidth
information to decide the configuration. They adopt rein-
forcement learning models to select configurations. Kim et
al.propose to reduce the workload of profiling by utilizing
the underlying characteristics including movement of video
objects [28]. The work uses the movement information to
estimate the performance of some configurations without ac-
tually profiling them. MIRIS [29] adjusts the frame rate for
tracking queries. It uses a low frame rate to compute possible
trajectories of cars and figures how to which part of the video
they should look carefully to resolve the uncertainty.

Some researchers utilize the computing power on cameras
to offload some computation workloads [1], [11], [30], [31].
EIf [32] executes counting queries completely on cameras.
CloudSeg [33] reduces network traffic by uploading low-
resolution frames and recovering them via super resolution.
Reducto [14] dynamically filters frames on cameras by an-
alyzing the time-varying relationship between video content,
filtering threshold, and query accuracy. Zero-streaming [34]
pre-processes videos and execute video queries using the
computing power of both cluster and cameras.

Scheduling of DNN tasks is studied from many perspec-
tives recently. InferLine [15] adjusts batch sizes and chooses
different hardware types, including GPU, TPU, and FPGA.
It employs both a low-frequency planer and a high-frequency
planer to schedule DNN tasks. Nexus [35] schedules DNN
tasks among a GPU cluster. It considers the data transfer across
nodes while batching tasks. Yao’s work [36] casts ML tasks
as imprecise computations, each with a mandatory part and
several optional parts. By scheduling among these parts, it
achieves both good latency and accuracy.

VIII. CONCLUSION

In this paper, we propose a video analytic system for
massive video streams. First, we propose a profiling-free
adaptation to reduce analytic workload without comprising
accuracy. It selects configurations with a prediction model in-
stead of profiling. Second, we design an out-of-order batching
and prioritized scheduling policy for resource orchestration.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 26,2023 at 17:07:28 UTC from IEEE Xplore. Restrictions apply.

They improve the serving throughput and reduces the stream-

[15]

level latency. We evaluate our system with real-world videos.
Experiment results show that compared to the state-of-the-art

profiling-based adaptation, our system improves the overall

[16]

accuracy by about 3% while consumes about 20% workload.

And our average latency for live analytics is about 20x smaller

(17]

than state-of-the-art periodic profiling adaptation.

This work was supported in part by National Science

IX. ACKNOWLEDGMENT [18]

[19]

Foundation Grants CNS-1815412, CNS-1908536.

[1]

[2]

[3]

[4]

[5]
[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[20]

REFERENCES 21]

C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik,
M. Yu, V. Bahl, and M. Philipose, “Videoedge: Processing camera
streams using hierarchical clusters,” in 2018 IEEE/ACM Symposium
on Edge Computing (SEC), October 2018, pp. 115-131. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
videoedge-processing-camera-streams-using- hierarchical-clusters/

G. Ananthanarayanan, V. Bahl, Y. Shu, F. Loewenherz, D. Lai,
D. Akers, P. Cao, F. Xia, J. Zhang, and A. Song, “Traffic video
analytics - case study report,” Tech. Rep. MSR-TR-1970-3, December
2019. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/traffic- video-analytics-case- study-report/

“Intel neural compute stick 2 (intel ncs2),” https://www.intel.com/
content/www/us/en/developer/tools/neural-compute-stick/overview.
html, 2021.

A. Rosebrock, “Yolo and tiny-yolo object detection on the raspberry
pi and movidius ncs,” https://www.pyimagesearch.com/2020/01/27/
yolo-and-tiny-yolo-object-detection-on-the-raspberry- pi-and-movidius-ncs/.
Tan 2020. 271
A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” 2020.

C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-YOLOv4:
Scaling cross stage partial network,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2021, pp. 13029-13 038.

B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: adaptive wide-area streaming analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication. ACM, 2018, pp. 236-252.

J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication. ACM, 2018, pp. 253-266.

F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis, “Llama: A
heterogeneous & serverless framework for auto-tuning video analytics
pipelines,” arXiv preprint arXiv:2102.01887, 2021.

S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishna-
murthy, “Mcdnn: An approximation-based execution framework for deep
stream processing under resource constraints,” in Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and
Services, 2016, pp. 123-136.

H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in 14th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 17), 2017, pp. 377-392.

H. Shen, S. Han, M. Philipose, and A. Krishnamurthy, “Fast video
classification via adaptive cascading of deep models,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2017, pp. 3646-3654.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European Conference on Computer Vision. Springer, 2020, pp. 213—
229.

Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Ne-
travali, “Reducto: On-camera filtering for resource-efficient real-time
video analytics,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 359-376.

[22]

[23]

[24]

[25]

[26]

[28]

[29]

(30]

[31]

[32]

(33]

[34]

[35]

(36]

1211

D. Crankshaw, G.-E. Sela, X. Mo, C. Zumar, 1. Stoica, J. Gonzalez,
and A. Tumanov, “Inferline: latency-aware provisioning and scaling
for prediction serving pipelines,” in Proceedings of the 11th ACM
Symposium on Cloud Computing, 2020, pp. 477-491.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961-2969.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, pp. 91-99, 2015.

“Coco - common object in context,” https://cocodataset.org/.

F. Wu, L. Gao, T. Zhou, and X. Wang, “Motrack: Real-time configuration
adaptation for video analytics through movement tracking,” pending on
GLOBECOM 2021.

“Coco - keypoint evaluation,” https://cocodataset.org/#keypoints-eval.
G. Jocher, A. Stoken, J. Borovec, and et. al., “Yolov5,” https://github.
com/ultralytics/yolov5, https://doi.org/10.5281/zenodo.4418161.

G. H. Martinez, “Openpose: Whole-body pose estimation,” 2019.

A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in 2016 IEEE international conference on image
processing (ICIP). 1EEE, 2016, pp. 3464-3468.

A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman, “Aggregation
and degradation in jetstream: Streaming analytics in the wide area,”
in 11th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 14), 2014, pp. 275-288.

C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based real-
time video analytics,” in IEEE INFOCOM 2020-1EEE Conference on
Computer Communications. 1EEE, 2020, pp. 257-266.

N. Chen, S. Zhang, S. Quan, Z. Ma, Z. Qian, and S. Lu, “Vcmaker:
Content-aware configuration adaptation for video streaming and analysis
in live augmented reality,” Computer Networks, vol. 200, p. 108513,
2021.

N. Chen, S. Quan, S. Zhang, Z. Qian, Y. Jin, J. Wu, W. Li, and
S. Lu, “Cuttlefish: Neural configuration adaptation for video analysis in
live augmented reality,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 4, pp. 830-841, 2020.

W.-J. Kim and C.-H. Youn, “Lightweight online profiling-based config-
uration adaptation for video analytics system in edge computing,” IEEE
Access, vol. 8, pp. 116881-116 899, 2020.

F. Bastani, S. He, A. Balasingam, K. Gopalakrishnan, M. Alizadeh,
H. Balakrishnan, M. Cafarella, T. Kraska, and S. Madden, “Miris: Fast
object track queries in video,” in Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, 2020, pp. 1907-1921.
G. Ananthanarayanan, Y. Shu, M. Kasap, A. Kewalramani,
M. Gada, and V. Bahl, “Live video analytics with microsoft
rocket for reducing edge compute costs,” July 2020. [Online].
Available: https://www.microsoft.com/en-us/research/publication/
live-video-analytics- with-microsoft-rocket-for-reducing-edge-compute-costs/
G. Ananthanarayanan, Y. Shu, L. Cox, and V. Bahl, “Project rocket
platform—designed for easy, customizable live video analytics—is
open source,” Microsoft Research Blog, January 2020. [Online].
Available: https://www.microsoft.com/en-us/research/publication/

project-rocket-platform-designed-for-easy-customizable-live- video-analytics-is-open-s

M. Xu, X. Zhang, Y. Liu, G. Huang, X. Liu, and F. X. Lin, “Approximate
query service on autonomous iot cameras,” in Proceedings of the 18th
International Conference on Mobile Systems, Applications, and Services,
2020, pp. 191-205.

Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen, “Bridging the edge-
cloud barrier for real-time advanced vision analytics,” in 1/th { USENIX}
Workshop on Hot Topics in Cloud Computing (HotCloud 19), 2019.
M. Xu, T. Xu, Y. Liu, X. Liu, G. Huang, and F. X. Lin, “A query
engine for zero-streaming cameras,” in Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking, 2020,
pp. 1-3.

H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose, A. Krishna-
murthy, and R. Sundaram, “Nexus: A gpu cluster engine for accelerating
dnn-based video analysis,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, 2019, pp. 322-337.

S. Yao, Y. Hao, Y. Zhao, H. Shao, D. Liu, S. Liu, T. Wang, J. Li,
and T. Abdelzaher, “Scheduling real-time deep learning services as
imprecise computations,” in 2020 IEEE 26th International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA). 1EEE, 2020, pp. 1-10.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on September 26,2023 at 17:07:28 UTC from IEEE Xplore. Restrictions apply.

