

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Talha Mehboob, Noman Bashir, Michael Zink, & David Irwin

basic option is “lift-and-shift”, where organizations reserve similar

resources as they have in their shared on-prem cluster and use the

same management software, i.e., scheduler. Cloud platforms enable

users to reserve virtual machine (VM) instances in advance for long

periods, e.g., 1 or 3 years, at a discount, similar to how organizations

purchase physical servers (often with a volume discount) for shared

clusters. However, this approach suffers from the same drawback as

above: organizations must determine the optimal number of VMs

to reserve based on uncertain future workload demand. Purchasing

too few resources causes high job waiting times, while purchasing

too many resources incurs high costs.

Notably, cloud platforms offer other options beyond the sim-

plistic “lift-and-shift” approach. In particular, users could aban-

don a shared cluster, and rent cloud VMs themselves on demand.

While the per-hour cost of on-demand VMs is generally more (∼35-

40%) [2] than that of highly utilized reserved VMs, by “flying solo,”

a user’s jobs would experience no waiting time, as cloud platforms

are provisioned to satisfy any on-demand requests. In addition, the

per-hour cost of “flying solo” might not be higher if the shared

cloud cluster is over-provisioned due to an inaccurate demand fore-

cast, which causes its actual cost to exceed the optimal cost. In

addition, there is also a middle ground where shared cloud clus-

ters conservatively reserve some number of cloud resources, but

to reduce waiting times during job bursts, use an autoscaler to

automatically provision on-demand VMs to run queued jobs. This

approach presents a configurable tradeoff between cost and job

waiting time: the longer jobs are willing to wait, the lower the

overall cost, since the cluster uses fewer high-cost on-demand VMs.

Importantly, even shared clusters have an internal pricing model

that funds their operation. Since employees at many large organi-

zations, especially Universities, have some budgetary autonomy

over purchase decisions, shared clusters are increasingly directly

competing with cloud platforms, which can potentially offer lower

costs and better performance. While the cost for users “flying solo”

and renting resources directly from the cloud is clear, the cost for

users of a shared cloud cluster is based on clusters’ internal pricing

models, which are often complex and vary widely by institution.

In this paper, we examine two pricing models at the different ends

of a spectrum. Specifically, we examine i) a socialist pricing model

that amortizes the per-hour cost of all reserved and on-demand

resources, and charges users a single per-hour amortized price and

ii) a capitalist pricing model that charges users the on-demand price

if the scheduler runs their jobs on on-demand VMs and the dis-

counted reserved price if it uses reserved VMs. As we show, both

policies introduce incentives for a set of users to defect from the

shared cluster, such that their cost for “flying solo” is similar to or

less than when using the shared cluster while also yielding better

performance. Ultimately, we analyze whether shared cloud clusters

are viable given the incentives introduced by both internal pricing

models at current cloud prices.

We conduct our analysis of the different cloud provisioning and

pricing policies above using a large-scale longitudinal workload

trace of a shared cluster from a large University system, which

includes several large campuses. The trace covers 8 years of opera-

tion and includes 67 million job submissions for a shared cluster

hosting a diverse workload of jobs submitted by researchers in the

scientific, engineering, and medical fields.

We use trace-driven simulations to evaluate the cost and wait-

ing times for servicing this cluster’s workload under the different

cloud provisioning and internal pricing policies above, and use our

results to analyze the incentives for users to participate in shared

cloud clusters or to defect and “fly solo” by renting their own cloud

resources to run jobs.

Our hypothesis is that cloud platforms already pass on most of

their cost benefits to users in their on-demand price, and thus there

is little financial incentive for large organizations to operate shared

cloud clusters. As we show, many users will defect from a shared

cloud cluster, since their cost to “fly solo” is similar and yields better

performance. These defections in-turn raise the per-user cost of a

shared cloud cluster, causing yet more users to defect. In evaluating

our hypothesis, we make the following contributions.

Large-scale Workload Analysis. We analyze our large-scale

workload trace to better understand users’ job characteristics, in-

cluding the number of submissions, runtimes, and burstiness. We

highlight characteristics that impact the provisioning and pricing

policies for shared cloud clusters.

Provisioning and Pricing Policy Incentives. We analyze the

cost and job waiting times for different provisioning and pricing

policies for shared cloud clusters, and discuss their impact on users’

incentive to participate in a shared cluster or to defect and “fly solo.”

Implementation and Evaluation. We implement a trace-driven

job scheduling simulator, and evaluate the cost and job waiting

time of our cloud provisioning and pricing policies on a large-

scale 8-year workload trace. We quantify the cost and job waiting

times for users under different provisioning and pricing policy

combinations, which ultimately determines their incentive to defect

from a shared cloud cluster. In particular, we show that, assuming

users defect from the shared cluster if their wait time is greater

than 15× their average job runtime, over 80% of the users would

defect, which would increase the price of the remaining users such

that it eliminates any incentive to participate in the shared cluster.

Thus, while shared cloud clusters may provide users other benefits,

their financial incentives are weak.

2 BACKGROUND

We provide background on transitioning on-prem shared clusters

to cloud platforms, and discuss the various pricing models and job

scheduling policies that affect user incentives.

2.1 Transitioning to Shared Cloud Clusters

Given the growing need for computation, large organizations, and

especially Universities, are establishing large shared clusters to

satisfy their users’ demand. Critically, sharing compute resources

and leveraging statistical multiplexing reduces users’ computation

costs [11]. Organizations purchase and operate these shared facili-

ties on-premises, and have complete control over their operation,

including the hardware, software, and operational policies, i.e., for

prioritizing users. Typically, these clusters operate a job scheduler,

such as Slurm [36] or Kubernetes [28], which schedules jobs that

users submit based on a pre-defined policy. The size of a shared

on-prem cluster is generally fixed, as adding new servers requires

manually installing them in the cluster. As a result, jobs submitted

to shared clusters can experience long waiting times if the number

Is Sharing Caring? ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Plan Instance Price/Hour Cores Memory Discount

On-Demand C6gd.16xLarge $ 2.4576 64 128 GB -

Reserved (3 years) C6gd.16xLarge $ 1.062 64 128 GB 57 %

Reserved (1 years) C6gd.16xLarge $ 1.548 64 128 GB 37 %

Table 1: Amazon EC2 Pricing Model for On-demand and Reserved Instances.

of submitted jobs exceeds the cluster’s fixed resources. As we dis-

cuss, since jobs are often submitted in bursts, this can occur often

even when most of the cluster remains idle most of the time.

Since cloud platforms offer a number of benefits for hosting a

shared cluster, many organizations are considering transitioning

their shared clusters to the cloud. Cloud platforms still provide

organizations full control over their compute infrastructure, but

without both i) the large upfront expenses for purchasing servers

and provisioning space/cooling for them and ii) the ongoing mainte-

nance costs. Instead, cloud platforms enable renting servers hosted

in cloud datacenters, and paying for them incrementally over time.

Importantly, cloud platforms offer servers under multiple different

pricing models with different levels of discount. In particular, cloud

platforms enable users to rent servers “on demand” for a per-hour

price, or reserve servers for long periods, e.g., 1 or 3 years, for a

discounted price (e.g., ∼40-60% less).

The problem with renting on-demand servers for a shared cloud

cluster is that it offers no cost benefit to users. Unlike an on-prem

cluster, in this case, users can simply use the cloud platform directly

to rent resources at the same cost as using the shared cloud cluster.

However, shared cloud clusters can potentially provide a benefit to

users by reserving servers at a discount. In this case, a shared cloud

cluster can leverage statistical multiplexing among many users

to offer resources at a lower overall cost than an individual user

renting on-demand resources. In this paper, we evaluate whether

this cost incentive is high enough to warrant deploying a shared

cloud cluster based on user workloads and different pricing models.

2.2 Pricing Models

Cloud pricing models are simple for users, as users simply pay for

their own resource usage. For example, in Amazon’s Elastic Com-

pute Cloud (EC2), users can either reserve servers of a particular

type for 1 or 3 years for a fixed price, or rent them on-demand

and pay a per-hour price based on their usage time. To illustrate,

based on current prices in Table 1, renting a C6dg.16xLarge server,

which offers 128 GB of memory and 64 cores, at the on-demand

price for a year costs $21,528, at an hourly rate of $2.4576, while re-

serving it for a year costs around $13,560, at an hourly rate of $1.548.

Thus, reserving the server provides a discount of 37% for one year,

assuming the server is fully utilized for the entire year. If the server

is utilized less than 63% of the time, then renting an on-demand

server for only the utilized time period would be cheaper. While

cloud platforms offer spot [1, 4] or preemptible VMs [8], which are

cheaper than highly utilized fixed VMs, not all jobs can use them.

Unlike in the cloud, internal shared clusters generally have a

wider variety of pricing models that distribute the burden of the

cluster’s cost across the users. While shared clusters may charge

users a uniform price for the time their jobs run, they may also

use other pricing models. As we discuss, when considering pricing

models for shared cloud clusters there are two basic options: the

shared cloud cluster can charge users a uniform rate that divides

the clusters total cost by the total number of hours jobs run (based

on the proportion of reserved and on-demand resources used), or

it can charge users a variable rate based on their own usage of

reserved and on-demand resources, which incur different costs.

2.3 Scheduling and Waiting Policies

In addition to cost, users also consider their performance, i.e.,

how long their jobs must wait to be scheduled, when determin-

ing whether to use a shared cluster. A job scheduler implements a

scheduling policy that determines the order in which jobs run when

resources become available. Most schedulers use simple scheduling

policies, such as first-come-first-serve with various options, e.g.,

backfilling, priorities, etc., since optimal policies, such as shortest

job first (SJF) [32], require accurate information on job runtimes

that is generally not available [26]. Thus, in this paper, we assume

a simple FCFS [32] scheduling policy. The interactions between

scheduling, waiting, and cloud bursting are outside the scope of

this paper. Instead, this paper’s focus is on analyzing the incentives

introduced by various provisioning policies and pricing models in

conjunction with a common baseline scheduling policy.

In addition to its scheduling policy, a shared cloud cluster’s

cost and performance is also a function of its waiting policy [17].

To provide a cost incentive to users, shared cloud clusters should

provide a discount over the on-demand by reserving some resources.

However, unlike a fixed-size on-prem cluster, a shared cloud cluster

can dynamically increase its size by “bursting” [21, 29] into the

cloud and renting on-demand servers when its demand is high, and

jobs are experiencing excessively long waiting times. In this case,

the waiting policy determines how long jobs wait before the cluster

dynamically provisions an on-demand server to execute the job. As

prior work shows [17], waiting policies offer a tradeoff between cost

and job waiting time. The longer jobs wait for reserved resources,

the higher the waiting time, but the lower the overall cost, since

more jobs run on reserved resources than on-demand resources.

3 JOB WORKLOAD CHARACTERISTICS

The incentives for using a shared cloud cluster depend on its users’

workload characteristics. We first analyze workload characteristics

from an 8-year job trace from an on-prem shared cluster for a large

University system. We use this trace in Section 6 to evaluate the

performance of cloud provisioning and pricing policies in Section 4.

3.1 Workload Overview

Our job trace derives from an on-prem shared cluster comprised

of ∼14,300 cores and includes jobs from a wide range of computa-

tional disciplines, including the scientific, engineering, and medical

research communities. Thus, the trace is highly representative of

the type of large shared research cluster operated by Universities.

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Talha Mehboob, Noman Bashir, Michael Zink, & David Irwin

✥

�✁✂

✄☎✆

✝✞✟

✠✡☛

☞

✌ ✍✎ ✏✑ ✒✓✔ ✕✖✗ ✘✙✚

❈
✛
✜

❏✢✣ ✤✦✧★✩✪✫ ✬✭✮✯✰

❘✱✲✳✴✵✶ ✷✸✹✺✻✼ ✽✾✿❀
❁❂❃❄❅❆❇ ❉❊❋●❍■ ❑▲▼◆❖

P◗❙

❚❯❱

❲❳❨

❩❬❭

❪

❫ ❴ ❵ ❛

(a) Runtime

❜

❝❞❡

❢❣❤

✐❥❦

❧♠♥

♦

♣ qrs t✉✈ ✇①②③ ④⑤⑥⑦

⑧
⑨
⑩

❶❷❸ ❹❺❻❼❽❾❿ ➀➁➂➃ ➄ ➅ ➆➇➈➉➊

➋➌➍➎➏➐➑ ➒➓➔→ ➣↔↕➙➛➜ ➝➞➟➠
➡➢➤➥➦➧➨ ➩➫➭➯ ➲➳➵➸➺➻ ➼➽➾➚➪

➶➹➘

➴➷➬

➮➱✃

❐

❒ ❮❰ ÏÐ ÑÒ

(b) Arrival Rate

Figure 1: Cummulative Distribution Function (CDF) of (a) job
runtime across jobs and users (on average) and (b) arrival rate
per 5 minutes across jobs and users (on average) for our job
trace spanning from 2014 to 2021.

As we show, while the cluster’s size is large relative to its average

demand, users can experience significant wait times for their jobs

due to the “burstiness” of job arrivals. Our trace covers an 8-year

period from 2014 to 2021, and includes data on 67 million jobs sub-

mitted by 1790 distinct users. Each job entry contains a user ID,

the maximum time limit for the job, its actual runtime, number of

requested cores, CPU runtime, total memory required, job status,

and submission time.

We analyze various aspects of this workload that impact the

incentives for using a shared cloud cluster, including the aggregate

and per-user job runtime distributions, job burstiness based on job

arrival rates over time, and changes in both the number of distinct

users and their total usage (in core-hours) over time. Many of our

observations are general and have also been noted in prior work

on analyzing the workload characteristics for large shared clusters.

For example, in aggregate, our dataset is similar to a recently re-

leased Google trace, as we show in prior work [18]. However, other

publicly-available datasets, e.g., released by Google, Azure, Alibaba,

etc., differ in that they do not contain per-user information, and

cover relatively short time periods, e.g., one month. As a result,

these traces are not useful for much of our analysis, which requires

per-user data over a long period of time. That said, given the ag-

gregate similarities, our insights and analysis may be applicable to

other similar large, general-purpose clusters.

3.2 Job Runtime Distributions

We analyze workload’s job runtime distribution in aggregate and

for each individual user. This analysis enables us to compare each

user’s average job runtime to the mean waiting time for reserved

resources under the different provisioning policies in Section 4,

which is important, as typically a job’s waiting time should not be

significantly longer than its runtime. For example, a 10-minute job

is less likely to wait 24 hours to run, compared to a 48-hour job.

The CDF of the runtime for all jobs is shown in Figure 1a. As

shown, nearly 94% of the jobs have a runtime of 4 hours or less,

and almost 75% of the users have an average job runtime of 4 hours

or less. This indicates that most of the jobs are relatively short,

and that the majority of users have relatively small average job

runtimes. Jobs with such short runtimes are likely more sensitive to

Ó

ÔÕ

Ö×

ØÙ

ÚÛ

ÜÝ

Þßàá âãäå æçèé êëìí îïðñ òóôõ ö÷øù úûüý

þ
ÿ
◆
�
✁
✂
✄
☎
✆
✝
✞
✟✠

❚✡☛☞

Figure 2:Moving average of the number of unique users using
the shared cluster per day during 2014 to 2021.

✵

✷

✹

✻

✽

✌✍✎✏ ✑✒✓✔ ✕✖✗✘ ✙✚✛✜ ✢✣✤✥ ✦✧★✩ ✪✫✬✭ ✮✯✰✱

①✲✳✼

❈
✴
✶
✸
✺
✾✿
❀
❁
❂
❃❄
❅❆
❇❉
❊

❋●❍■

Figure 3: Total core-hours across all users per year.

waiting for resources. Our analysis also shows that there are some

users (∼25%) with long job runtimes of several hundreds of hours.

Key takeaway. Most of the jobs in our workload, and for each user,

have short runtimes, e.g., well under 4 hours.

3.3 Burstiness

The on-prem shared cluster that hosted our job trace is primarily

used by the researchers from academia, where resource usage in-

creases around well-defined deadlines, e.g., for research papers and

proposals. Such burstiness of job arrivals has a significant effect on

the cost and performance of a shared cloud cluster. To analyze the

burstiness of job arrivals, we determine the number of jobs that are

submitted within a 5-minute interval, and plot the CDF of the job

arrival rate. Figure 1b shows the results. The solid line in Figure

1b shows that ∼90% of the time, only 30 jobs or less arrive in a 5-

minute interval. The remaining 10% represent intervals with much

higher job arrivals (some with more than 200 jobs per interval),

which indicates periods of extreme burstiness.

Key Takeaway. Many users periodically submit large bursts of jobs,

which can cause either high waiting times (in a shared on-prem

cluster) or high costs (in a shared cloud cluster).

3.4 Workload Variability

The benefit of our longitudinal trace is the ability to study how

the utilization of a shared cluster varies over many years. Such

data is vital to inform long-term decisions on resource provision-

ing. For example, a highly uniform workload where the number of

users and the total utilized core-hours remains constant over time

enables administrators to more accurately provision resources to

meet demand, as we discuss in Section 6.2. In contrast, a highly

variable demand makes it more challenging to accurately provision

resources, and introduces a tradeoff between cost and waiting time.

That is, provisioning more resources may reduce waiting times,

Is Sharing Caring? ICPE ’23, April 15–19, 2023, Coimbra, Portugal

(a) Lift & Shift (b) Bursting without Waiting (c) Bursting with Waiting (d) Fly Solo

Figure 4: (a) All the jobs wait to get serviced on the fixed resources and no jobs execute on the on-demand resources. (b) On-demand
resources are acquired by scheduler instantly without waiting for the fixed resources to be available again. (c) Jobs wait for the
fixed resources to be available for a certain amount of time before going to on-demand resources. (d) User’s provision resources on
the public cloud on their own, without being part of the shared cluster.

but it increases cost. In the extreme, on-prem clusters must provi-

sion resources to satisfy their peak workload demand (often at a

prohibitively high cost) to ensure no waiting time.

To illustrate cluster variability, Figure 2 plots the average number

of users in a day, as a moving average with a window size of 30,

which clearly shows an increasing and then decreasing trend in

users over the trace period. The cluster started operation on April

1st, 2014 butwas put undermaintenance from September 9th 2014 to

January 2015, and thus executed no jobs during this period. Between

January 2015 and December 2018, we observe a steady increase in

users, followed by a steep drop at the start of 2019. The drop roughly

correlates with an updated pricing model for users. Figure 3, which

plots the total core-hours over the year, shows a similar trend with

the core-hours dropping substantially at the same time. The steep

decline in users above motivates our analysis of the incentives for

using a shared cloud cluster. Large shared on-prem clusters are

already competing with cloud platforms at Universities, and other

organizations, where users have some budgetary autonomy.

Key Takeaway. Shared clusters may experience large variability, i.e.,

large increases and decreases, in their usage.

4 PROVISIONING AND PRICING

There are many possible provisioning and pricing options when

moving shared clusters to cloud platforms. Below, we analyze the

cost and performance tradeoffs associated with each option, and

highlight how they might affect users’ incentives differently based

on their own individual workload. In particular, the incentive for

any individual user to participate in a shared cloud cluster is a func-

tion of the characteristics of their own workload and performance

requirements, as well as the specific provisioning and pricing policy.

4.1 Resource Provisioning Policies

We define and analyze three resource provisioning policies for

shared cloud clusters: lift-and-shift, cloud bursting, and flying solo.

These policies represent points along a spectrum defined by the

tradeoff between the amount of cloud resources a shared cluster

reserves versus acquires on-demand.

4.1.1 Li!-and-Shi!. The lift-and-shift policy is akin to moving a

traditional static on-prem cluster to a cloud platform by simply

reserving a fixed amount of resources in the cloud, rather than

purchasing and installing them on-premises. This policy generally

requires no changes to cluster schedulers, as it does not take ad-

vantage of the cloud’s ability to rent resources on-demand. Thus,

under bursty workloads, if resources are fully utilized, queued jobs

must wait until other jobs complete and fixed resources become

available before executing. Figure 4a illustrates the lift-and-shift

policy, where all jobs must wait for fixed reserved resources, and

the scheduler never acquires resources on-demand to execute jobs.

As in on-prem clusters, the lift-and-shift policy benefits users by

acquiring many discounted reserved resources (rather than higher-

cost on-demand resources), and leverages statistical multiplexing

to increase their utilization. This can result in a lower normalized

per-hour price for resources, i.e., the cost of reserved resources

divided by the total time they are utilized, than individual users

could get either by reserving their own resources or acquiring their

own on-demand resources. Since most users’ workload intensity

is not high enough to make reserving any resources cost-effective,

they can potentially leverage the shared cluster to execute their

jobs for less than the on-demand price.

Unfortunately, lift-and-shift has at least two problems, which

also manifest themselves in static on-prem clusters. Most impor-

tantly, periodic job bursts, where demand for resources substantially

exceeds the supply, can result in long job waiting times for users.

In addition, provisioning the number of fixed reserved resources

is also challenging, since it represents a tradeoff between cost and

waiting time and requires unknown future knowledge of the work-

load. Over-provisioning the shared cluster can eliminate any cost

benefit it offered, while under-provisioning it can result in very

long waiting times. Both scenarios can incentivize users to defect

from a shared cloud cluster, and instead directly acquire resources

from cloud. Finally, as we observed in §3, the longitudinal job trace

we analyzed experienced significant changes in workload intensity

each year, which illustrates the challenge of optimal provisioning.

4.1.2 Cloud Bursting. The cloud bursting policy builds on the lift-

and-shift policy by enabling the cluster scheduler to dynamically

acquire on-demand cloud resources to service jobs if fixed reserved

resources are fully utilized. Below, we consider two cases of the

cloud bursting policy: without job waiting and with job waiting.

Cloud Bursting without Job Waiting. Cloud bursting without

waiting is typically referred to as autoscaling: in this case, if any

job arrives to the scheduler and fixed reserved resources are fully

utilized, then, as illustrated in Figure 4b, the scheduler dynami-

cally acquires on-demand cloud resources to execute the job, and

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Talha Mehboob, Noman Bashir, Michael Zink, & David Irwin

releases them when the job is complete. A shared cloud cluster that

utilizes cloud bursting without job waiting addresses the problem of

excessively long waiting under bursty workloads from the lift-and-

shift policy. While the potential for over- or under-provisioning

the fixed reserved resources remains, shared cloud clusters that

use cloud bursting generally need to reserve fewer fixed resources

to minimize their cost (as some of the workload executes on on-

demand resources). However, the discount this policy offers users

is a function of the workload’s characteristics. In particular, if the

workload is highly bursty, then a high fraction of jobs will execute

on on-demand resources, which will increase the overall cost. Since

many batch workloads are bursty, as we show in §6, this policy

offers little discount relative to users defecting from the shared

cluster and acquiring on-demand resources themselves.

Cloud Bursting with Waiting.We can address the high cost of

the cloud bursting without waiting by having the cluster sched-

uler force some jobs to wait for fixed reserved resources for some

amount of time. As mentioned in §2, prior work defines a range of

waiting policies that force jobs to wait based on the queue or job

characteristics. In general, these policies define thresholds on job

length and waiting time, and force jobs to wait if they are longer

than some threshold, or if they would wait less than some thresh-

old. Such policies provide a tradeoff, depending on the thresholds,

between the lower cost and high waiting time of the lift and shift

policy, and the higher cost and zero waiting time of the cloud burst-

ing without waiting policy. Importantly, the optimal provisioning

of fixed reserved resources will be a function of the thresholds. For

example, if the waiting time threshold is infinite, then the sched-

uler will never acquire on-demand resources and the provisioning

problem devolves to lift and shift, while, similarly, if the threshold

is zero, then the provisioning problem devolves to cloud bursting

without waiting. Figure 4c depicts cloud bursting with waiting.

In general, the longer the shared cloud cluster forces jobs to

wait for resources, the higher the utilization of the fixed reserved

resources, which are discounted, and lower the use of high-cost on-

demand resources, which results in a lower overall cost. However,

as shown in §3, since many jobs are small, e.g., 75% of users have

an average job runtime <4 hours, even moderate absolute waiting

times are often high relative to users’ average job runtime. As we

discuss in §6, this may incentivize users with small jobs to defect

from a shared cluster and acquire cloud resources themselves unless

the shared cluster offers a substantial discount.

4.1.3 Flying Solo. Finally, the flying solo policy refers to a special

case where a shared cluster acquires zero fixed reserved resources

at a discount, i.e., there is no shared cloud cluster, which effectively

requires users to acquire cloud resources themselves. Figure 4d

illustrates provisioning for multiple users that are flying solo. In

this case, users determine how many resources they reserve versus

acquire on-demand based on their own individual workload’s char-

acteristics, as well as cost and performance requirements. Note that

this approach does not benefit from any statistical multiplexing

of low-price fixed reserved resources between users. As a result,

individual users benefit much less from reserving low-price fixed

resources: the typical cost-optimal approach for users is to reserve

zero (or a small number of resources) and dynamically acquire on-

demand resources to execute most jobs. This results in a higher

price, often at or near the on-demand price, but zero waiting time,

which is similar to the cloud bursting without waiting policy above.

4.2 Resource Pricing Policies

As discussed above, shared cloud clusters run jobs from many users

on low-cost fixed reserved resources and, potentially, on higher-

cost on-demand resources. Shared cloud clusters have multiple

options for how to distribute these resources’ cost across users. As

discussed below, we consider two pricing policies at different ends

of the economic spectrum.

4.2.1 Socialist Pricing Policy. We define a socialist pricing policy

that evenly divides the total cost of the shared cluster by the total

computation time, and charges all users a fixed price per unit time

their jobs run on the cluster. We call this the cluster’s normalized

price. This pricing policy distributes the costs evenly across all users.

We generally refer to a cluster’s normalized price as a fraction of

the on-demand price. So, for example, a normalized price of 0.9

means that users receive a 10% discount for using the shared cluster

compared to flying solo and acquiring on-demand resources to

execute their jobs. Since the socialist pricing policy does not charge

users more if their jobs run on higher-cost on-demand resources, it

advantages users with bursty workloads.

Under the cloud bursting provisioning policies, bursty users

are more likely to cause the shared cluster to acquire on-demand

resources to execute their jobs at a higher cost. However, under our

socialist pricing policy, these costs are amortized across all users.

Likewise, users with steadier workloads that are more likely to run

on fixed reserved resources are effectively penalized, as they must

pay a normalized price that is higher than the discounted price

of the reserved resources. Thus, this policy weakens the financial

incentive for steadier users to participate in a shared cloud cluster.

4.2.2 Capitalist Pricing Policy. The capitalist pricing policy charges

users based on the resources their jobs actually execute on. Thus,

if a user’s job executes on an on-demand resource, then the user

simply pays the corresponding on-demand price, while if the job ex-

ecutes on a fix reserved resource, then the user pays the discounted

reserved price (normalized by utilization of the reserved resources).

Unlike the socialist policy, the capitalist policy does not distribute

costs across users. Thus, under the cloud bursting policies, users

with a highly bursty workload will pay more than those with a

steadier workload, since their jobs will be more likely to run on

higher-cost on-demand resources. As a result, the capitalist policy

weakens the financial incentive for bursty users to participate in a

shared cloud cluster.

5 IMPLEMENTATION

We adapted and extended an open-source trace-driven job simula-

tor [14], written in python, to evaluate the effect of the provisioning

and pricing policies from the previous section [17]. Specifically, we

augmented the simulator to compute cost based on the socialist and

capitalist pricing policies for the different provisioning policies in

the previous section. The simulator takes a job trace as input, with

a specified provisioning and pricing policy, the number of fixed

reserved resources, and the relative price of fixed reserved and

on-demand resources, and simulates the scheduling of jobs on the

fixed reserved and on-demand resources, if applicable. Each fixed

Is Sharing Caring? ICPE ’23, April 15–19, 2023, Coimbra, Portugal

✵�✁✂
✄☎✆

✝✞✟

✠✡☛

✶

☞✌✍

✎✏✑

✒✓✔

✥ ✕✖ ✗✘ ✙✚ ✛✜✢ ✣✤✦ ✧★✩ ✪✫✬ ✭✮✯ ✰✱✲ ✳✴✷

❖✸✹✺✻✼✽✾✿ ❀❁❂❃❄

◆
❅
❆❇
❈
❉❊
❋
●
❍
■
❏❑
▲
▼
P◗
❘

❙❚❯❱❲ ❳❨❩❬❭❪❫❴❵

❛❜❝❞ ❡❢❣ ❤✐❥❦❧ ♠♥♦♣qrst ✉✈✇① ②③④⑤⑥⑦⑧ ⑨ ⑩❶❷❸ ❹❺❻❼❽❾❿➀ ➁➂➃➄➅➆➇ ➈➉➊➋➌➍➎

Figure 5: Normalized price of shared cloud cluster under dif-
ferent resource provisioning policies.

resource includes some number of cores and memory, and each job

in the trace requires some number of cores and memory. In our case,

we set the relative price of fixed reserved resources to be 60% that

of on-demand resources, which is roughly the same discount level

offered by Amazon Web Services and Google Compute Platform.

Our simulator uses a best-fit heuristic to place jobs on reserved

resources. Our simulator also assumes that, similar to most cloud

platforms, multiple types of on-demand resources are available

of different sizes, e.g., memory and cores, and that their price is

proportional to their size.When selecting an on-demand resource to

execute a job, the simulator selects the smallest (and thus cheapest)

on-demand resource that is large enough to fit the job. We model

the sizes and prices for fixed and on-demand resources using the m5

family of general-purpose server instances offered by Amazon Web

Services. We use a First-Come-First-Serve (FCFS) scheduling policy.

While FCFS is non-optimal, recent work shows that combining FCFS

with cloud bursting to bound wait time mitigates the advantage of

optimal scheduling policies, such as Shortest Job First [18].

The simulator also implements various waiting policies depend-

ing on the provisioning scenario. Specifically, the lift-and-shift

policy assumes an all-jobs-wait waiting policy, the cloud burst-

ing policy without waiting assumes a no-jobs-wait policy, and the

cloud bursting with waiting policy assumes a some-jobs-wait pol-

icy, which forces jobs to wait based on configurable thresholds on

their runtime and waiting time. For our evaluation, jobs generally

wait for fixed reserved resources if their waiting time is less than

24 hours or if their running time is greater than 3 minutes. Finally,

the simulator computes each job’s waiting time, whether it ran on

fixed or on-demand resources, and the total cost of resources.

6 EVALUATION

We use the simulator above to evaluate the user incentives of the

different provisioning and pricing policies from §4 on the longitu-

dinal job trace analyzed in §3. We analyze the incentives for each

pricing policy to understand whether users are incentivized to par-

ticipate in a shared cloud cluster, or if they would defect. Most of

our analyses focus on the year 2016, as a representative year, unless

otherwise stated.

6.1 Lift-and-Shift Policy

Figure 5 shows the normalized price using the socialist pricing

policy with the lift-and-shift provisioning policy as a function of

provisioning different numbers of fixed resources. The graph also

shows the normalized price of the cloud bursting policies, which

we discuss below. Recall that the normalized price is the price users

➏

➐

➑➒

➓➔

→➣

↔↕

➙➛ ➜➝ ➞➟➠ ➡➢➤ ➥➦➧ ➨➩➫ ➭➯➲ ➳➵➸ ➺➻➼
➽
➾
➚
➪
➶
➹
➘➴
➷
➬➮
➱
✃❐
❒❮
❰

ÏÐÑÒÓ ÔÕÖ×ØÙÚÛÜ

ÝÞßà áâã äåæçè
éêëìíîïð ñòóô õö÷øùúû ü ýþÿ❇

�✁✂✄☎✆✝✞ ✟✠✡☛☞✌✍ ✎✏✑✒✓✔✕

Figure 6:Mean job waiting time of shared cloud cluster under
different resource provisioning policies.

✥✖✗

✘✙✚

✛

✜✢✣

✤✦✧

★ ✩✪ ✫✬ ✭✮ ✯✰✱ ✲✳✴ ✵✶✷

❖✸✹✺✻✼✽✾✿ ❀❁❂❃❄

◆
❅
❆❈
❉
❊❋
●
❍
■
❏
❑▲
▼
P
◗❘
❙

❚❯❱❲❳ ❨❩❬❭❪❫❴❵❛

❜❝❞❡ ❢❣❤✐ ❥❦❧♠ ♥♦♣q

Figure 7: Normalized price as a function of fixed resources for
each year of our job trace.

pay per unit time as a function of the on-demand price; thus, a

normalized price of 1 is equivalent to paying the on-demand price.

The graph shows that lift-and-shift’s static provisioning generally

offers a lower price than the cloud bursting policies, and reaches a

minimum price of 60% the on-demand price at 125 fixed resources—

at this point, the fixed resources are 100% utilized.

By contrast, the cloud bursting policies have a higher normalized

cost because they use some higher-cost on-demand resources to

service a fraction of the workload. However, Figure 6 shows the

tradeoff in waiting time: the lift-and-shift waiting time is more than

a week (not pictured) at the optimal 125 fixed resources. Even when

reserving 225 resources, the average job waiting time is 14 hours,

and the normalized price is near 1, offering nearly zero discount.

Pricing and Defection Analysis. Since jobs execute on fixed

reserved resources under lift-and-shift, the socialist and capitalist

pricing policies are equivalent. Our results show that reserving

resources using lift-and-shift is not a viable strategy for a shared

cloud cluster, since users are incentivized to defect due to very high

waiting times caused by bursty workloads, as they can always use

on-demand resources without incurring any waiting time.

6.2 Cloud Bursting Policy

We evaluate cloud bursting both without and with waiting.

6.2.1 Cloud Bursting without Waiting. Figure 5 shows that cloud

bursting without job waiting results in a substantially higher cost

than the other policies. The minimum price occurs at 50 reserved

resources, and results in a normalized cost under the socialist pric-

ing policy of ∼94% of servicing the workload using on-demand

resources, or a ∼6% discount. While small, this approach does of-

fer a modest 6% discount for users along with a guarantee of no

job waiting, as shown in Figure 6. The problem is that achiev-

ing even this small discount requires the shared cloud cluster to

optimally provision the fixed resources. As Figure 5 shows, the

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Talha Mehboob, Noman Bashir, Michael Zink, & David Irwin

✥

�✁✂

✄☎✆

✝✞✟

✠✡☛

☞

✵✌ ✶✍✎✏✑✒ ✷✓✔✕✖✗ ✸✘✙✚✛✜ ✹✢✣✤✦✧

❈
★
✩

❲✪✫✬ ✭✮✯✰ ✱✲ ✳✴✺✻✼✽✾✿ ❀❁ ❂❃❄ ❅❆❇❉❊❋● ❍■❏❑

▲▼◆ ❖P◗ ❘❙❚ ❯❱❳❨

❩

❬❭❪

❫❴❵

❛❜❝

❞❡ ❢❣❤ ✐❥❦ ❧♠♥ ♦♣q

Figure 8: CDF of average waiting time (as a factor of job run-
ning time) across users and jobs.

discount reduces, and is ultimately eliminated, if fixed resources

are over- or under-provisioned. If over-provisioned too many re-

served resources, the normalized price can actually exceed the cost

of servicing the workload using on-demand resources.

Thus, shared cloud clusters are generally incentivized to under-

provision the fixed resources to prevent high costs, which, in prac-

tice, would likely reduce the small discount even further. Figure 7

shows the normalized price across 4 different years of our job trace

as a function of the number of fixed reserved resources, and shows

that the optimal number varies significantly from year-to-year,

and is difficult to predict. For example, if a shared cloud cluster

reserved 75 resources in 2019 based on the optimal amount from

2018, the cluster’s normalized price would be much higher than

the on-demand price, since the optimal fixed resources in 2020 was

many fewer resources due to changes in the workload.

Pricing and Defection Analysis. As shown above, the socialist

pricing policy provides a small discount for users at the risk of

potentially paying a high price if the cluster over-provisions re-

sources. In contrast, the capitalist pricing policy results in different

normalized prices for different users, ranging between near the

maximum discount of 60% to near 0% discount (for highly bursty

users). In general, large users with bursty workloads, which is ∼7%

of the users in our trace, pay a higher than the average normalized

price (since many of their jobs execute on on-demand resources),

while smaller users with fewer jobs receive a higher discount (since

their jobs tend to run on reserved resources).

Under optimal provisioning, users have no incentive to defect

from a shared cloud cluster without waiting, as they all receive some,

albeit potentially small, discount. That said, given the generally

small discount, there is also not a strong incentive for users to

participate, especially when factoring in the risk of a higher cost

due to non-optimal provisioning.

6.2.2 Cloud Bursting with Waiting. Figure 5 also shows the nor-

malized price of cloud bursting with job waiting. In this case, the

rst✉

✈✇①②

③

④⑤⑥⑦

⑧⑨⑩❶

❷❸ ❹❺ ❻❼❽ ❾❿➀ ➁➂➃ ➄➅➆ ➇➈➉ ➊➋➌
➍

➎

➏➐

➑➒

➓➔

→➣

↔↕

➙➛

➜
➝
➞
➟
➠➡
➢➤
➥
➦
➧
➨
➩➫
➭

➯➲➳➵➸➺➻➼➽ ➾➚➪➶➹

➘
➴
➷➬
➮
➱✃
❐❒
❮
❰
ÏÐ
Ñ
Ò
ÓÔ
Õ

Ö
×
Ø
ÙÚ
Û
Ü
Ý
Þ
ßà
áâ
ã
äå
æ

çèéêëìíîï ðñòóôõö÷ø ùúûüýþÿ❉ �✁✂✄ ☎ ✆✝

◆✞✟✠✡☛☞✌✍✎ ✏✑✒✓✔ ❘✕✖✗✘✙✚✛✜ ✢✣✤✥✦ ✧★✩✪✫ ✬✭✮✯✰✱✲✳✴

Figure 9: Normalized price (le# y-axis) and fraction of par-
ticipating users (right y-axis) as a function of a defection
threshold, which is defined in terms of waiting time as a fac-
tor of a user’s average job run time.

scheduler dynamically acquires on-demand resources to run any

job that would wait more than 24 hours to run on the fixed re-

sources. The figure shows that this policy significantly reduces the

normalized price compared to cloud bursting without waiting. In

particular, at the optimal number of reserved resources, the normal-

ized price is ∼0.77, and thus offers a ∼23% discount relative to using

on-demand resources (or a 15% increase relative to no waiting).

However, Figure 6 shows that this approach also substantially

increases job waiting time: at the optimal price, the waiting time is

13.5 hours. Recall from §3 that most jobs are small. Figure 8 plots the

CDF of average waiting time (as a factor of job running time) across

jobs and users for the case above. The graph shows i) that 50% of

jobs must wait at least 10× their run time, and ii) that 20% of users

have an average job waiting time more than 15× their average job

run time. While the waiting time decreases if the cluster provisions

more fixed resources, the discount does as well.

Pricing and Defection Analysis. The likelihood of a user de-

fecting from a shared cloud cluster in the case above depends on

their sensitivity to both price and performance. Some users might

be willing to tolerate high wait times for a discount, while others

might not. Importantly, though, when users defect, they increase

the normalized price that other users pay, since they reduce the

total number of users over which the shared cluster amortizes its

cost. To understand this dynamic, Figure 9 plots a defection thresh-

old on the !-axis, as a function of waiting time (as a factor of a

user’s average job runtime), the normalized price on the left y-axis,

and the percentage of remaining users in the cluster on the right

y-axis. As the threshold increases, more users participate in the

shared cloud cluster because they are willing to wait longer, and

the normalized price goes down. However, even at excessively high

thresholds, the fraction of participation is low (<30%), which signif-

icantly diminishes the discount (down to just a few percent). This

occurs because, as shown in §3, most of the jobs are small, and thus

their wait times are quite high relative to their job length.

As shown, if the defection threshold is less than 15×, the incen-

tives collapse and there is no incentive to participate, since the price

of a shared cluster becomes too high. Under the capitalist pricing

policy, the incentives collapse even faster. Figure 10 shows the price

for every user in order under capitalist pricing. As shown, roughly

22% of the, generally larger and burstier, users actually pay more

than the average normalized price in this case. These users would

thus defect earlier than under the socialist pricing policy.

Is Sharing Caring? ICPE ’23, April 15–19, 2023, Coimbra, Portugal

✥�✁

✂✄☎

✆✝✞

✟✠✡

☛

☞ ✌✍✎ ✏✑✒ ✓✔✕ ✖✗✘ ✙✚✛ ✜✢✣

❆✤✦✧★✩✪✫✬ ✭✮✯✰✱✲✳✴✵✶ ✷✸✹✺✻ ✼✽✾✿❀❁❂❃❄❅ ❇❈❉❊❋●❍■

◆
❏
❑▲
▼
❖P
◗❘
❙
❚
❯❱
❲
❳

❨❩❬❭❪

❫❴❵❛❜❝❞❡❢❣ ❤✐❥❦❧ ♠ ♥♦♣qrst✉✈✇ ①②③④⑤⑥⑦ ⑧⑨⑩❶❷

Figure 10: Each user’s normalized price (in order) under capitalist pricing and cloud bursting with waiting.

❸❹❺

❻❼❽

❾❿➀

➁➂➃

➄

➅ ➆ ➇ ➈ ➉ ➊ ➋ ➌
➍

➎

➏

➐

➑➒

➓➔

→➣↔↕➙➛➜➝➞ ➟➠➡➢➤➥➦➧➨➩ ➫➭➯➲➳

➵➸➺➻➼➽➾➚➪ ➶➹➘➴ ➷➬➮➱✃❐❒ ❮❰ÏÐ

Ñ
Ò
ÓÔ
Õ
Ö×
Ø
Ù
Ú
Û
ÜÝ
Þ
ß
àá
â

ã
ä
åæ
çè
é
ê
ëì
í
îï
ðñ
ò

óôõö÷ øùúûüýþÿ❋

◆�✁✂✄☎✆✝✞✟ ✠✡☛☞✌ ❲✍✎✏✑✒✓ ✔✕✖✗

Figure 11: Normalized price (le# y-axis) and waiting time
(right y-axis) as a function of fixed reserved resources for a
representative user “flying solo.”

6.3 Flying Solo

The analyses above indicate that there is little financial incentive to

operate shared cloud clusters, and motivates users to “fly solo” and

acquire cloud resources themselves to service their own workload.

In this approach, users can still potentially make use of discounted

fixed reserved resources if their workload is large enough to have

some continuous baseload. For example, Figure 11 shows one such

user from our job trace. This user’s minimum price when flying

solo is 4 fixed reserved resources, which offers a lower price than

the cloud bursting with waiting scenario above, while also offering

a much lower waiting time. Thus, even if this user were tolerant of

long wait times (and thus would participate in the cluster above),

flying solo is a better option in terms of both price and waiting time.

However, only ∼2% of users in our trace fall into this category.

The rest of the users fall into one of two broad categories: small

users (46%) and bursty users (52%). Reserving resources is not cost-

effective for either category, since neither has a baseload. Based

on our analysis above, small users that infrequently submit small

jobs may be sensitive to long waiting times, and thus might prefer

on-demand resources. The bursty users submit larger numbers of

jobs in bursts, and get the most benefit from a shared cloud cluster,

especially under the socialist pricing policy (which distributes the

cost of handling job bursts using on-demand resources across all

users). These users might also be more tolerant of long waiting

times, since their jobs are submitted in large bursts.

Pricing and Defection Analysis. Based on the analysis above,

roughly 48% of users receive a lower waiting time (and in a few

cases also a lower price) compared to using a shared cloud cluster

(using the cloud bursting with waiting policy). These users are

unlikely to participate in a shared cloud cluster. The remaining 52%

can get a cost benefit from using a shared cloud cluster, but this is

generally at the expense of the other 48%. If many users defect, the

price increase eliminates a shared cloud cluster’s incentives.

7 RELATEDWORK

Our work is related to a variety of prior work on cloud sched-

uling, bursting, and cost optimization. However, in general, our

work differs from this prior work in its focus on the incentives for

shared cloud clusters, rather than a particular policy for scheduling,

bursting, or allocating resources.

Cloud Scheduling. There has been a substantial amount of work

on optimizing the provisioning of fixed reserved resources on cloud

platforms. Much of this work makes strong assumptions about the

job workload distribution, i.e., that it is continuous and uniform,

rather than consisting of discrete jobs. As a result, many of the

approaches adopt dynamic and linear programming-based solu-

tions [23, 24, 31, 34, 35]. Our work differs in that we analyze a

specific, large-scale job trace that is representative of other large-

scale batch traces. We compute optimal prices directly using the

trace, rather based on an idealized analytical model of the workload.

Cloud Bursting. Our analysis is also related to prior work on

resource provisioning, job scheduling, and autoscaling for hybrid

clouds, which execute jobs on fixed on-prem resources but period-

ically burst into the cloud [3, 19, 21, 22, 25, 30]. Similarly, shared

cloud clusters can also periodically burst by acquiring on-demand

resources to execute queued jobs. However, again, our work does

not propose particular policies for provisioning or scheduling, but

rather analyzes the cost and waiting time for multiple different re-

source provisioning and pricing policies for a shared cloud cluster

to understand users’ participation incentives.

Cloud Cost Optimization. Finally, there is also significant work

on cloud cost optimization, which focuses on selecting the type and

number of VM instances specific applications require to minimize

their cost for a given level of performance [5, 7, 16, 33]. These

approaches often use machine learning to profile jobs’ resource

usage and thenmatch themwith theminimum size and cost VM that

best aligns with their resource usage profile. Our work is orthogonal

to this work. In general, job schedulers require users to specify

the resources their jobs require. In our analysis, we assume these

resource requests are accurate, although jobs may utilize fewer

resources. While improving resource efficiency may change the

absolute numbers in our analysis, it is unlikely to change the broader

insight of our work, which is that there are weak-to-no incentives

for shared cloud clusters given the current reserved discount.

8 CONCLUSION

Large organizations have long operated shared cloud clusters to

reduce costs by taking advantage of statistical multiplexing among

users. Many of these organizations are, or are considering, moving

these shared clusters to cloud platforms. Our analysis shows that

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Talha Mehboob, Noman Bashir, Michael Zink, & David Irwin

there is little financial benefit from statistical multiplexing of dis-

counted fixed reserved resources on shared cloud clusters, and that

most users are incentivized to directly acquire resources from the

cloud, since it provides a lower waiting time (and sometimes a lower

cost). Thus, while there may be, potentially numerous, other rea-

sons for hosting shared cloud clusters, i.e., ease-of-administration,

there is little-to-no financial benefit.

Acknowledgements. This work is funded, in part, by National

Science Foundation grants CNS-1908536, CNS-1925464 and CNS-

2213636. We also acknowledge and thank the Research Computing

team at the UMass Medical School for providing access to the lon-

gitudinal batch traces from the UMass Green High Performance

Computing Cluster (GHPCC) [15].

REFERENCES
[1] 2022. Amazon EC2 Spot Instances. https://aws.amazon.com/ec2/spot/.
[2] 2022. AWS - Discounts on Reserving Resources.

https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/.
[3] 2022. AWS ParallelCluster Auto Scaling. https://docs.aws.amazon.com/

parallelcluster/latest/ug/autoscaling.html.
[4] 2022. Azure Spot Virtual Machines. https://azure.microsoft.com/en-

us/products/virtual-machines/spot/.
[5] 2022. Cloud Cost Optimizer. https://research.redhat.com/blog/research_project/

cloud-cost-optimizer/.
[6] 2022. Cloud Growth in Future. https://www.globenewswire.com/news-

release/2022/05/06/2437934/0/en/Cloud-Computing-Market-to-Grow-at-a-
CAGR-of-11-until-2028-BlueWeave-Consulting.html.

[7] 2022. Curator. https://github.com/operate-first/curator/.
[8] 2022. Google Preemptible Virtual Machines.

https://cloud.google.com/compute/docs/instances/preemptible.
[9] 2022. Kubernetes on AWS. https://aws.amazon.com/kubernetes/.
[10] 2022. On-Prem Computing. https://www.techslang.com/definition/what-is-on-

premises/.
[11] 2022. On-Prem Computing, Expensive than Cloud.

https://www.executech.com/insights/the-cloud-vs-on-premise-cost-
comparison/.

[12] 2022. Privacy and Regulatory on On-Prem Computing.
https://www.cleo.com/blog/knowledge-base-on-premise-vs-cloud.

[13] 2022. Rapid Growth of Cloud. https://www.capacitymedia.com/article/
2afswwuvis94wy12r320w/news/google-cloud-growing-45-a-year-with-azure-
at-40-says-canalys.

[14] 2023. Job Simulator. https://github.com/sustainablecomputinglab/waitinggame/
tree/master/simulator.

[15] 2023. University of Massachusetts Green High Performance Computing Cluster.
http://wiki.umassrc.org/wiki/index.php/MainPage.

[16] Abdullah Alzaqebah, Rizik Al-Sayyed, and Raja Masadeh. 2019. Task Scheduling
Based on Modified Grey Wolf Optimizer in Cloud Computing Environment. In
2019 2nd International Conference on new Trends in Computing Sciences (ICTCS).
IEEE.

[17] Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy. 2020. Waiting
Game: Optimally Provisioning Fixed Resources for Cloud-Enabled Schedulers. In
International Conference for High Performance Computing, Networking, Storage

and Analysis (SC). IEEE.
[18] Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy. 2021. Good

Things Come to Those Who Wait: Optimizing Job Waiting in the Cloud. In
Proceedings of the ACM Symposium on Cloud Computing.

[19] Tekin Bicer, David Chiu, and Gagan Agrawal. 2011. A Framework for Data-
Intensive Computing with Cloud Bursting. In IEEE International Conference on
Cluster Computing. IEEE.

[20] Kavitha Chandra. 2003. Statistical Multiplexing. Wiley Encyclopedia of Telecom-
munications 5 (January 2003).

[21] Tian Guo, Upendra Sharma, Prashant Shenoy, Timothy Wood, and Sambit Sahu.
2014. Cost-Aware Cloud Bursting for Enterprise Applications. ACM Transactions
on Internet Technology (TOIT) (2014).

[22] Tian Guo, Upendra Sharma, Timothy Wood, Sambit Sahu, and Prashant Shenoy.
2012. Seagull: Intelligent Cloud Bursting for Enterprise Applications. In USENIX
Annual Technical Conference.

[23] Yu-Ju Hong, Jiachen Xue, and Mithuna Thottethodi. 2011. Dynamic Server
Provisioning to Minimize Cost in an IaaS Cloud. In Special Interest Group on
Measurement and Evaluation (SIGMETRICS).

[24] Menglan Hu, Jun Luo, and Bharadwaj Veeravalli. 2012. Optimal Provisioning for
Scheduling Divisible Loads with Reserved Cloud Resources. In IEEE International
Conference on Networks (ICON).

[25] Sriram Kailasam, Nathan Gnanasambandam, Janakiram Dharanipragada, and
Naveen Sharma. 2010. Optimizing Service Level Agreements for Autonomic
Cloud Bursting Schedulers. In International Conference on Parallel Processing
Workshops. IEEE.

[26] Michael Kuchnik, Jun Woo Park, Chuck Cranor, Elisabeth Moore, Nathan De-
Bardeleben, and George Amvrosiadis. 2019. This is Why ML-driven Cluster
Scheduling Remains Widely Impractical. Technical Report (2019).

[27] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. 2014. A Review
of Auto-Scaling Techniques for Elastic Applications in Cloud Environments.
Journal of Grid Computing (2014).

[28] Marko Luksa. 2017. Kubernetes in Action. Simon and Schuster.
[29] Michael Mattess, Christian Vecchiola, Saurabh Kumar Garg, and Rajkumar Buyya.

2011. Cloud Bursting: Managing Peak Loads by Leasing Public Cloud Services.
In Cloud Computing: Methodology, Systems, and Applications. CRC Press.

[30] Shuangcheng Niu, Jidong Zhai, Xiaosong Ma, Xiongchao Tang, and Wenguang
Chen. 2013. Cost-effective Cloud HPC Resource Provisioning by Building Semi-
Elastic Virtual Clusters. In The International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC).

[31] Siqi Shen, Kefeng Deng, Alexandru Iosup, and Dick Epema. 2013. Scheduling
Jobs in the Cloud using On-demand and Reserved Instances. In International
European Conference on Parallel and Distributed Computing (Euro-Par).

[32] Abraham Silberschatz, Peter B Galvin, and Greg Gagne. 2018. Operating System
Concepts, 10e Abridged Print Companion. John Wiley & Sons.

[33] Jose Luis Lucas Simarro, Rafael Moreno-Vozmediano, Ruben S Montero, and
Ignacio Martín Llorente. 2011. Dynamic Placement of Virtual Machines for Cost
Optimization in Multi-Cloud Environments. In 2011 International Conference on
High Performance Computing & Simulation. IEEE.

[34] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. 2015. IaaS
Reserved Contract Procurement Optimisation with Load Prediction. Future
Generation Computer Systems (2015).

[35] Wei Wang, Baochun Li, and Ben Liang. 2013. To Reserve or Not to Reserve: Opti-
mal Online Multi-Instance Aquisition in IaaS Clouds. In International Conference
on Autonomic Computing (ICAC).

[36] Andy B Yoo, Morris A Jette, andMark Grondona. 2003. Slurm: Simple linux Utility
for Resource Management. In Job Scheduling Strategies for Parallel Processing.
Springer.

