Check for
Updates

Is Sharing Caring? Analyzing the Incentives for Shared Cloud

Clusters
Talha Mehboob Noman Bashir
tmehboob@umass.edu nbashir@umass.edu
University of Massachusetts Amherst University of Massachusetts Amherst
Ambherst MA, USA Ambherst MA, USA
Michael Zink David Irwin
mzink@umass.edu deirwin@umass.edu
University of Massachusetts Amherst University of Massachusetts Amherst
Ambherst MA, USA Ambherst MA, USA
ABSTRACT KEYWORDS

Many organizations maintain and operate large shared computing
clusters, since they can substantially reduce computing costs by
leveraging statistical multiplexing to amortize it across all users.
Importantly, such shared clusters are generally not free to use, but
have an internal pricing model that funds their operation. Since
employees at many large organizations, especially Universities,
have some budgetary autonomy over purchase decisions, internal
shared clusters are increasingly competing for users with cloud
platforms, which may offer lower costs and better performance. As
a result, many organizations are shifting their shared clusters to
operate on cloud resources. This paper empirically analyzes the
user incentives for shared cloud clusters under two different pricing
models using an 8-year job trace from a large shared cluster for a
large University system.

Our analysis shows that, with either pricing model, a large frac-
tion of users have little financial incentive to participate in a shared
cloud cluster compared to directly acquiring resources from a cloud
platform. While shared cloud clusters can provide some limited re-
ductions in cost by leveraging reserved instances at a discount, due
to bursty workloads, realizing these reductions generally requires
imposing long job waiting times, which for many users are likely
not worth the cost reduction. In particular, we show that, assuming
users defect from the shared cluster if their wait time is greater
than 15x their average job runtime, over 80% of the users would
defect, which increases the price of the remaining users such that
it eliminates any incentive to participate in a shared cluster. Thus,
while shared cloud clusters may provide users other benefits, their
financial incentives are weak.

CCS CONCEPTS

» Computer systems organization — Cloud computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE °23, April 15-19, 2023, Coimbra, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0068-2/23/04...$15.00
https://doi.org/10.1145/3578244.3583730

Cloud computing; Provisioning policies; Trace analysis

ACM Reference Format:

Talha Mehboob, Noman Bashir, Michael Zink, and David Irwin. 2023. Is
Sharing Caring? Analyzing the Incentives for Shared Cloud Clusters. In
Proceedings of the 2023 ACM/SPEC International Conference on Performance
Engineering (ICPE °23), April 15-19, 2023, Coimbra, Portugal. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3578244.3583730

1 INTRODUCTION

Public cloud platforms, such as Amazon Web Services (AWS),
Google Compute Engine (GCE), and Microsoft Azure, continue
to grow rapidly [13] due to their many benefits, including low cost,
pay-as-you-go billing, and scalability. These public cloud platforms
are expected to continue to grow for the foreseeable future [6],
as a substantial amount of computing is still done on private on-
premises infrastructure. In general, such “on-prem” [10] computing
is significantly more expensive [11] than cloud platforms, since
cloud datacenters benefit from economies-of-scale and more statis-
tical multiplexing [20]. While, in some cases, on-prem clusters are
necessary due to regulatory or privacy [12] concerns, many have
the potential to migrate to cloud platforms.

Given the high cost of deploying and operating on-prem comput-
ing clusters, large organizations generally operate them as shared
clusters, such that users submit their jobs to a scheduler that either
runs them immediately or queues them up for later execution [9].
Thus, by operating shared on-prem clusters, large organizations
leverage some of the statistical multiplexing benefits of the cloud.
Organizations determine the size of on-prem clusters based on
their expected demand and cost constraints: the more resources,
the lower the job waiting times but the higher the cost, and vice
versa. As we discuss, workloads tend to be highly bursty with many
periods of relative idleness interspersed with large bursts of jobs,
which can cause long job waiting times for all but the highest-cost,
most over-provisioned clusters. Of course, determining the size of
an on-prem cluster [27], i.e., number of resources, is a key issue,
since their workload intensity is not known a priori.

Given the advantages of public cloud platforms, many large orga-
nizations, such as Universities, are considering shifting their shared
on-prem clusters to the public cloud. Cloud clusters are cheaper to
both purchase and administer—with all administrative functions
available remotely in software. There are multiple options when
transitioning a shared on-prem cluster to the public cloud. The most

ICPE 23, April 15-19, 2023, Coimbra, Portugal

basic option is “lift-and-shift”, where organizations reserve similar
resources as they have in their shared on-prem cluster and use the
same management software, i.e., scheduler. Cloud platforms enable
users to reserve virtual machine (VM) instances in advance for long
periods, e.g., 1 or 3 years, at a discount, similar to how organizations
purchase physical servers (often with a volume discount) for shared
clusters. However, this approach suffers from the same drawback as
above: organizations must determine the optimal number of VMs
to reserve based on uncertain future workload demand. Purchasing
too few resources causes high job waiting times, while purchasing
too many resources incurs high costs.

Notably, cloud platforms offer other options beyond the sim-
plistic “lift-and-shift” approach. In particular, users could aban-
don a shared cluster, and rent cloud VMs themselves on demand.
While the per-hour cost of on-demand VMs is generally more (~35-
40%) [2] than that of highly utilized reserved VMs, by “flying solo,”
a user’s jobs would experience no waiting time, as cloud platforms
are provisioned to satisfy any on-demand requests. In addition, the
per-hour cost of “flying solo” might not be higher if the shared
cloud cluster is over-provisioned due to an inaccurate demand fore-
cast, which causes its actual cost to exceed the optimal cost. In
addition, there is also a middle ground where shared cloud clus-
ters conservatively reserve some number of cloud resources, but
to reduce waiting times during job bursts, use an autoscaler to
automatically provision on-demand VMs to run queued jobs. This
approach presents a configurable tradeoff between cost and job
waiting time: the longer jobs are willing to wait, the lower the
overall cost, since the cluster uses fewer high-cost on-demand VMs.

Importantly, even shared clusters have an internal pricing model
that funds their operation. Since employees at many large organi-
zations, especially Universities, have some budgetary autonomy
over purchase decisions, shared clusters are increasingly directly
competing with cloud platforms, which can potentially offer lower
costs and better performance. While the cost for users “flying solo”
and renting resources directly from the cloud is clear, the cost for
users of a shared cloud cluster is based on clusters’ internal pricing
models, which are often complex and vary widely by institution.
In this paper, we examine two pricing models at the different ends
of a spectrum. Specifically, we examine i) a socialist pricing model
that amortizes the per-hour cost of all reserved and on-demand
resources, and charges users a single per-hour amortized price and
ii) a capitalist pricing model that charges users the on-demand price
if the scheduler runs their jobs on on-demand VMs and the dis-
counted reserved price if it uses reserved VMs. As we show, both
policies introduce incentives for a set of users to defect from the
shared cluster, such that their cost for “flying solo” is similar to or
less than when using the shared cluster while also yielding better
performance. Ultimately, we analyze whether shared cloud clusters
are viable given the incentives introduced by both internal pricing
models at current cloud prices.

We conduct our analysis of the different cloud provisioning and
pricing policies above using a large-scale longitudinal workload
trace of a shared cluster from a large University system, which
includes several large campuses. The trace covers 8 years of opera-
tion and includes 67 million job submissions for a shared cluster
hosting a diverse workload of jobs submitted by researchers in the
scientific, engineering, and medical fields.

Talha Mehboob, Noman Bashir, Michael Zink, & David Irwin

We use trace-driven simulations to evaluate the cost and wait-
ing times for servicing this cluster’s workload under the different
cloud provisioning and internal pricing policies above, and use our
results to analyze the incentives for users to participate in shared
cloud clusters or to defect and “fly solo” by renting their own cloud
resources to run jobs.

Our hypothesis is that cloud platforms already pass on most of

their cost benefits to users in their on-demand price, and thus there
is little financial incentive for large organizations to operate shared
cloud clusters. As we show, many users will defect from a shared
cloud cluster, since their cost to “fly solo” is similar and yields better
performance. These defections in-turn raise the per-user cost of a
shared cloud cluster, causing yet more users to defect. In evaluating
our hypothesis, we make the following contributions.
Large-scale Workload Analysis. We analyze our large-scale
workload trace to better understand users’ job characteristics, in-
cluding the number of submissions, runtimes, and burstiness. We
highlight characteristics that impact the provisioning and pricing
policies for shared cloud clusters.
Provisioning and Pricing Policy Incentives. We analyze the
cost and job waiting times for different provisioning and pricing
policies for shared cloud clusters, and discuss their impact on users’
incentive to participate in a shared cluster or to defect and “fly solo”
Implementation and Evaluation. We implement a trace-driven
job scheduling simulator, and evaluate the cost and job waiting
time of our cloud provisioning and pricing policies on a large-
scale 8-year workload trace. We quantify the cost and job waiting
times for users under different provisioning and pricing policy
combinations, which ultimately determines their incentive to defect
from a shared cloud cluster. In particular, we show that, assuming
users defect from the shared cluster if their wait time is greater
than 15X their average job runtime, over 80% of the users would
defect, which would increase the price of the remaining users such
that it eliminates any incentive to participate in the shared cluster.
Thus, while shared cloud clusters may provide users other benefits,
their financial incentives are weak.

2 BACKGROUND

We provide background on transitioning on-prem shared clusters
to cloud platforms, and discuss the various pricing models and job
scheduling policies that affect user incentives.

2.1 Transitioning to Shared Cloud Clusters

Given the growing need for computation, large organizations, and
especially Universities, are establishing large shared clusters to
satisfy their users’ demand. Critically, sharing compute resources
and leveraging statistical multiplexing reduces users’ computation
costs [11]. Organizations purchase and operate these shared facili-
ties on-premises, and have complete control over their operation,
including the hardware, software, and operational policies, i.e., for
prioritizing users. Typically, these clusters operate a job scheduler,
such as Slurm [36] or Kubernetes [28], which schedules jobs that
users submit based on a pre-defined policy. The size of a shared
on-prem cluster is generally fixed, as adding new servers requires
manually installing them in the cluster. As a result, jobs submitted
to shared clusters can experience long waiting times if the number

Is Sharing Caring?

ICPE 23, April 15-19, 2023, Coimbra, Portugal

Plan [Instance [Price/Hour [Cores [Memory | Discount
On-Demand Cégd.16xLarge $ 2.4576 64 128 GB -

Reserved (3 years) | Cé6gd.16xLarge $1.062 64 128 GB 57 %

Reserved (1 years) | Cé6gd.16xLarge $1.548 64 128 GB 37 %

Table 1: Amazon EC2 Pricing Model for On-demand and Reserved Instances.

of submitted jobs exceeds the cluster’s fixed resources. As we dis-
cuss, since jobs are often submitted in bursts, this can occur often
even when most of the cluster remains idle most of the time.

Since cloud platforms offer a number of benefits for hosting a
shared cluster, many organizations are considering transitioning
their shared clusters to the cloud. Cloud platforms still provide
organizations full control over their compute infrastructure, but
without both i) the large upfront expenses for purchasing servers
and provisioning space/cooling for them and ii) the ongoing mainte-
nance costs. Instead, cloud platforms enable renting servers hosted
in cloud datacenters, and paying for them incrementally over time.
Importantly, cloud platforms offer servers under multiple different
pricing models with different levels of discount. In particular, cloud
platforms enable users to rent servers “on demand” for a per-hour
price, or reserve servers for long periods, e.g., 1 or 3 years, for a
discounted price (e.g., ~40-60% less).

The problem with renting on-demand servers for a shared cloud
cluster is that it offers no cost benefit to users. Unlike an on-prem
cluster, in this case, users can simply use the cloud platform directly
to rent resources at the same cost as using the shared cloud cluster.
However, shared cloud clusters can potentially provide a benefit to
users by reserving servers at a discount. In this case, a shared cloud
cluster can leverage statistical multiplexing among many users
to offer resources at a lower overall cost than an individual user
renting on-demand resources. In this paper, we evaluate whether
this cost incentive is high enough to warrant deploying a shared
cloud cluster based on user workloads and different pricing models.

2.2 Pricing Models

Cloud pricing models are simple for users, as users simply pay for
their own resource usage. For example, in Amazon’s Elastic Com-
pute Cloud (EC2), users can either reserve servers of a particular
type for 1 or 3 years for a fixed price, or rent them on-demand
and pay a per-hour price based on their usage time. To illustrate,
based on current prices in Table 1, renting a C6dg. 16xLarge server,
which offers 128 GB of memory and 64 cores, at the on-demand
price for a year costs $21,528, at an hourly rate of $2.4576, while re-
serving it for a year costs around $13,560, at an hourly rate of $1.548.
Thus, reserving the server provides a discount of 37% for one year,
assuming the server is fully utilized for the entire year. If the server
is utilized less than 63% of the time, then renting an on-demand
server for only the utilized time period would be cheaper. While
cloud platforms offer spot [1, 4] or preemptible VMs [8], which are
cheaper than highly utilized fixed VMs, not all jobs can use them.

Unlike in the cloud, internal shared clusters generally have a
wider variety of pricing models that distribute the burden of the
cluster’s cost across the users. While shared clusters may charge
users a uniform price for the time their jobs run, they may also
use other pricing models. As we discuss, when considering pricing
models for shared cloud clusters there are two basic options: the

shared cloud cluster can charge users a uniform rate that divides
the clusters total cost by the total number of hours jobs run (based
on the proportion of reserved and on-demand resources used), or
it can charge users a variable rate based on their own usage of
reserved and on-demand resources, which incur different costs.

2.3 Scheduling and Waiting Policies

In addition to cost, users also consider their performance, i.e.,
how long their jobs must wait to be scheduled, when determin-
ing whether to use a shared cluster. A job scheduler implements a
scheduling policy that determines the order in which jobs run when
resources become available. Most schedulers use simple scheduling
policies, such as first-come-first-serve with various options, e.g.,
backfilling, priorities, etc., since optimal policies, such as shortest
job first (SJF) [32], require accurate information on job runtimes
that is generally not available [26]. Thus, in this paper, we assume
a simple FCFS [32] scheduling policy. The interactions between
scheduling, waiting, and cloud bursting are outside the scope of
this paper. Instead, this paper’s focus is on analyzing the incentives
introduced by various provisioning policies and pricing models in
conjunction with a common baseline scheduling policy.

In addition to its scheduling policy, a shared cloud cluster’s
cost and performance is also a function of its waiting policy [17].
To provide a cost incentive to users, shared cloud clusters should
provide a discount over the on-demand by reserving some resources.
However, unlike a fixed-size on-prem cluster, a shared cloud cluster
can dynamically increase its size by “bursting” [21, 29] into the
cloud and renting on-demand servers when its demand is high, and
jobs are experiencing excessively long waiting times. In this case,
the waiting policy determines how long jobs wait before the cluster
dynamically provisions an on-demand server to execute the job. As
prior work shows [17], waiting policies offer a tradeoff between cost
and job waiting time. The longer jobs wait for reserved resources,
the higher the waiting time, but the lower the overall cost, since
more jobs run on reserved resources than on-demand resources.

3 JOB WORKLOAD CHARACTERISTICS

The incentives for using a shared cloud cluster depend on its users’
workload characteristics. We first analyze workload characteristics
from an 8-year job trace from an on-prem shared cluster for a large
University system. We use this trace in Section 6 to evaluate the
performance of cloud provisioning and pricing policies in Section 4.

3.1 Workload Overview

Our job trace derives from an on-prem shared cluster comprised
of ~14,300 cores and includes jobs from a wide range of computa-
tional disciplines, including the scientific, engineering, and medical
research communities. Thus, the trace is highly representative of
the type of large shared research cluster operated by Universities.

ICPE 23, April 15-19, 2023, Coimbra, Portugal

Arrival Rate across Jobs
Arrival Rate across Users - - - -

Runtime across Jobs
Runtime across Users - - - -

10 - 1 - -
N <
b\ Zoomed .
0.8 | 0.8
w 0.6 w 0.6
Q [=]
© 0.4 ° 0.4 N
.4
AN
ol 02 0 10 20 30
0 0
0 40 80 120 160 200 0 400 800 1200 1600
Job Runtime (hrs) Job Arrival Rate / 5 mints
(a) Runtime (b) Arrival Rate

Figure 1: Cummulative Distribution Function (CDF) of (a) job
runtime across jobs and users (on average) and (b) arrival rate
per 5 minutes across jobs and users (on average) for our job
trace spanning from 2014 to 2021.

As we show, while the cluster’s size is large relative to its average
demand, users can experience significant wait times for their jobs
due to the “burstiness” of job arrivals. Our trace covers an 8-year
period from 2014 to 2021, and includes data on 67 million jobs sub-
mitted by 1790 distinct users. Each job entry contains a user ID,
the maximum time limit for the job, its actual runtime, number of
requested cores, CPU runtime, total memory required, job status,
and submission time.

We analyze various aspects of this workload that impact the
incentives for using a shared cloud cluster, including the aggregate
and per-user job runtime distributions, job burstiness based on job
arrival rates over time, and changes in both the number of distinct
users and their total usage (in core-hours) over time. Many of our
observations are general and have also been noted in prior work
on analyzing the workload characteristics for large shared clusters.
For example, in aggregate, our dataset is similar to a recently re-
leased Google trace, as we show in prior work [18]. However, other
publicly-available datasets, e.g., released by Google, Azure, Alibaba,
etc., differ in that they do not contain per-user information, and
cover relatively short time periods, e.g., one month. As a result,
these traces are not useful for much of our analysis, which requires
per-user data over a long period of time. That said, given the ag-
gregate similarities, our insights and analysis may be applicable to
other similar large, general-purpose clusters.

3.2 Job Runtime Distributions

We analyze workload’s job runtime distribution in aggregate and
for each individual user. This analysis enables us to compare each
user’s average job runtime to the mean waiting time for reserved
resources under the different provisioning policies in Section 4,
which is important, as typically a job’s waiting time should not be
significantly longer than its runtime. For example, a 10-minute job
is less likely to wait 24 hours to run, compared to a 48-hour job.
The CDF of the runtime for all jobs is shown in Figure la. As
shown, nearly 94% of the jobs have a runtime of 4 hours or less,
and almost 75% of the users have an average job runtime of 4 hours
or less. This indicates that most of the jobs are relatively short,
and that the majority of users have relatively small average job
runtimes. Jobs with such short runtimes are likely more sensitive to

10

Talha Mehboob, Noman Bashir, Michael Zink, & David Irwin

751 L ; ;
0 L VE
3 60r q‘,!vk qu;tq /]| steep decline |
2 a5 | -‘AM/ Py i !|| in users
5 Fer I
as 30 | | | | | | | u |
'g | Cluster Closed due i ;'u*-.\ _'. "\i
3 15 i|| to Maintenance i
= : : i i i i

2014 2015 2016 2017 2018 2019 2020 2021
Time

Figure 2: Moving average of the number of unique users using
the shared cluster per day during 2014 to 2021.

Compute hours (hrs)
HLIITIININNY

Time
Figure 3: Total core-hours across all users per year.

waiting for resources. Our analysis also shows that there are some
users (~25%) with long job runtimes of several hundreds of hours.
Key takeaway. Most of the jobs in our workload, and for each user,
have short runtimes, e.g., well under 4 hours.

3.3 Burstiness

The on-prem shared cluster that hosted our job trace is primarily
used by the researchers from academia, where resource usage in-
creases around well-defined deadlines, e.g., for research papers and
proposals. Such burstiness of job arrivals has a significant effect on
the cost and performance of a shared cloud cluster. To analyze the
burstiness of job arrivals, we determine the number of jobs that are
submitted within a 5-minute interval, and plot the CDF of the job
arrival rate. Figure 1b shows the results. The solid line in Figure
1b shows that ~90% of the time, only 30 jobs or less arrive in a 5-
minute interval. The remaining 10% represent intervals with much
higher job arrivals (some with more than 200 jobs per interval),
which indicates periods of extreme burstiness.

Key Takeaway. Many users periodically submit large bursts of jobs,
which can cause either high waiting times (in a shared on-prem
cluster) or high costs (in a shared cloud cluster).

3.4 Workload Variability

The benefit of our longitudinal trace is the ability to study how
the utilization of a shared cluster varies over many years. Such
data is vital to inform long-term decisions on resource provision-
ing. For example, a highly uniform workload where the number of
users and the total utilized core-hours remains constant over time
enables administrators to more accurately provision resources to
meet demand, as we discuss in Section 6.2. In contrast, a highly
variable demand makes it more challenging to accurately provision
resources, and introduces a tradeoff between cost and waiting time.
That is, provisioning more resources may reduce waiting times,

Is Sharing Caring?

[C"7] Reserved Resources

[71Jobs waiting

[] Delayed Jobs

ICPE 23, April 15-19, 2023, Coimbra, Portugal

[|Delayed Jobs [| Reserved Resources
\ @ On-Demand Resources

l:lUser 1 DUser 3 l:lUser 2

|:|Reserved Resources

»

A
'U‘ A] Reserved Resources = fHHEE On-Demand Resources
=
g g
g Utilization E Util?zation
= = Discount =] = Discount
N o
2k g
= =
=3 =3
w w
o 9
=2 ~
Time - Time
(a) Lift & Shift (b) Bursting without Waiting

"g [] Jobs waiting _a‘ p

< =

£ - 5

s Utilization & I

e = Discount & g é;i
"

154 g =

5

=] =]

2]

[~ [~

Time " Time
(c) Bursting with Waiting (d) Fly Solo

Figure 4: (a) All the jobs wait to get serviced on the fixed resources and no jobs execute on the on-demand resources. (b) On-demand
resources are acquired by scheduler instantly without waiting for the fixed resources to be available again. (c) Jobs wait for the
fixed resources to be available for a certain amount of time before going to on-demand resources. (d) User’s provision resources on
the public cloud on their own, without being part of the shared cluster.

but it increases cost. In the extreme, on-prem clusters must provi-
sion resources to satisfy their peak workload demand (often at a
prohibitively high cost) to ensure no waiting time.

To illustrate cluster variability, Figure 2 plots the average number
of users in a day, as a moving average with a window size of 30,
which clearly shows an increasing and then decreasing trend in
users over the trace period. The cluster started operation on April
1st, 2014 but was put under maintenance from September 9th 2014 to
January 2015, and thus executed no jobs during this period. Between
January 2015 and December 2018, we observe a steady increase in
users, followed by a steep drop at the start of 2019. The drop roughly
correlates with an updated pricing model for users. Figure 3, which
plots the total core-hours over the year, shows a similar trend with
the core-hours dropping substantially at the same time. The steep
decline in users above motivates our analysis of the incentives for
using a shared cloud cluster. Large shared on-prem clusters are
already competing with cloud platforms at Universities, and other
organizations, where users have some budgetary autonomy.
Key Takeaway. Shared clusters may experience large variability, ie.,
large increases and decreases, in their usage.

4 PROVISIONING AND PRICING

There are many possible provisioning and pricing options when
moving shared clusters to cloud platforms. Below, we analyze the
cost and performance tradeoffs associated with each option, and
highlight how they might affect users’ incentives differently based
on their own individual workload. In particular, the incentive for
any individual user to participate in a shared cloud cluster is a func-
tion of the characteristics of their own workload and performance
requirements, as well as the specific provisioning and pricing policy.

4.1 Resource Provisioning Policies

We define and analyze three resource provisioning policies for
shared cloud clusters: lift-and-shift, cloud bursting, and flying solo.
These policies represent points along a spectrum defined by the
tradeoff between the amount of cloud resources a shared cluster
reserves versus acquires on-demand.

4.1.1 Lift-and-Shift. The lift-and-shift policy is akin to moving a
traditional static on-prem cluster to a cloud platform by simply
reserving a fixed amount of resources in the cloud, rather than
purchasing and installing them on-premises. This policy generally

1

requires no changes to cluster schedulers, as it does not take ad-
vantage of the cloud’s ability to rent resources on-demand. Thus,
under bursty workloads, if resources are fully utilized, queued jobs
must wait until other jobs complete and fixed resources become
available before executing. Figure 4a illustrates the lift-and-shift
policy, where all jobs must wait for fixed reserved resources, and
the scheduler never acquires resources on-demand to execute jobs.

As in on-prem clusters, the lift-and-shift policy benefits users by
acquiring many discounted reserved resources (rather than higher-
cost on-demand resources), and leverages statistical multiplexing
to increase their utilization. This can result in a lower normalized
per-hour price for resources, i.e., the cost of reserved resources
divided by the total time they are utilized, than individual users
could get either by reserving their own resources or acquiring their
own on-demand resources. Since most users’ workload intensity
is not high enough to make reserving any resources cost-effective,
they can potentially leverage the shared cluster to execute their
jobs for less than the on-demand price.

Unfortunately, lift-and-shift has at least two problems, which
also manifest themselves in static on-prem clusters. Most impor-
tantly, periodic job bursts, where demand for resources substantially
exceeds the supply, can result in long job waiting times for users.
In addition, provisioning the number of fixed reserved resources
is also challenging, since it represents a tradeoff between cost and
waiting time and requires unknown future knowledge of the work-
load. Over-provisioning the shared cluster can eliminate any cost
benefit it offered, while under-provisioning it can result in very
long waiting times. Both scenarios can incentivize users to defect
from a shared cloud cluster, and instead directly acquire resources
from cloud. Finally, as we observed in §3, the longitudinal job trace
we analyzed experienced significant changes in workload intensity
each year, which illustrates the challenge of optimal provisioning.

4.1.2 Cloud Bursting. The cloud bursting policy builds on the lift-
and-shift policy by enabling the cluster scheduler to dynamically
acquire on-demand cloud resources to service jobs if fixed reserved
resources are fully utilized. Below, we consider two cases of the
cloud bursting policy: without job waiting and with job waiting.

Cloud Bursting without Job Waiting. Cloud bursting without
waiting is typically referred to as autoscaling: in this case, if any
job arrives to the scheduler and fixed reserved resources are fully
utilized, then, as illustrated in Figure 4b, the scheduler dynami-
cally acquires on-demand cloud resources to execute the job, and

ICPE 23, April 15-19, 2023, Coimbra, Portugal

releases them when the job is complete. A shared cloud cluster that
utilizes cloud bursting without job waiting addresses the problem of
excessively long waiting under bursty workloads from the lift-and-
shift policy. While the potential for over- or under-provisioning
the fixed reserved resources remains, shared cloud clusters that
use cloud bursting generally need to reserve fewer fixed resources
to minimize their cost (as some of the workload executes on on-
demand resources). However, the discount this policy offers users
is a function of the workload’s characteristics. In particular, if the
workload is highly bursty, then a high fraction of jobs will execute
on on-demand resources, which will increase the overall cost. Since
many batch workloads are bursty, as we show in §6, this policy
offers little discount relative to users defecting from the shared
cluster and acquiring on-demand resources themselves.

Cloud Bursting with Waiting. We can address the high cost of
the cloud bursting without waiting by having the cluster sched-
uler force some jobs to wait for fixed reserved resources for some
amount of time. As mentioned in §2, prior work defines a range of
waiting policies that force jobs to wait based on the queue or job
characteristics. In general, these policies define thresholds on job
length and waiting time, and force jobs to wait if they are longer
than some threshold, or if they would wait less than some thresh-
old. Such policies provide a tradeoff, depending on the thresholds,
between the lower cost and high waiting time of the lift and shift
policy, and the higher cost and zero waiting time of the cloud burst-
ing without waiting policy. Importantly, the optimal provisioning
of fixed reserved resources will be a function of the thresholds. For
example, if the waiting time threshold is infinite, then the sched-
uler will never acquire on-demand resources and the provisioning
problem devolves to lift and shift, while, similarly, if the threshold
is zero, then the provisioning problem devolves to cloud bursting
without waiting. Figure 4c depicts cloud bursting with waiting.

In general, the longer the shared cloud cluster forces jobs to
wait for resources, the higher the utilization of the fixed reserved
resources, which are discounted, and lower the use of high-cost on-
demand resources, which results in a lower overall cost. However,
as shown in §3, since many jobs are small, e.g., 75% of users have
an average job runtime <4 hours, even moderate absolute waiting
times are often high relative to users’ average job runtime. As we
discuss in §6, this may incentivize users with small jobs to defect
from a shared cluster and acquire cloud resources themselves unless
the shared cluster offers a substantial discount.

4.1.3 Flying Solo. Finally, the flying solo policy refers to a special
case where a shared cluster acquires zero fixed reserved resources
at a discount, i.e., there is no shared cloud cluster, which effectively
requires users to acquire cloud resources themselves. Figure 4d
illustrates provisioning for multiple users that are flying solo. In
this case, users determine how many resources they reserve versus
acquire on-demand based on their own individual workload’s char-
acteristics, as well as cost and performance requirements. Note that
this approach does not benefit from any statistical multiplexing
of low-price fixed reserved resources between users. As a result,
individual users benefit much less from reserving low-price fixed
resources: the typical cost-optimal approach for users is to reserve
zero (or a small number of resources) and dynamically acquire on-
demand resources to execute most jobs. This results in a higher

12

Talha Mehboob, Noman Bashir, Michael Zink, & David Irwin

price, often at or near the on-demand price, but zero waiting time,
which is similar to the cloud bursting without waiting policy above.

4.2 Resource Pricing Policies

As discussed above, shared cloud clusters run jobs from many users
on low-cost fixed reserved resources and, potentially, on higher-
cost on-demand resources. Shared cloud clusters have multiple
options for how to distribute these resources’ cost across users. As
discussed below, we consider two pricing policies at different ends
of the economic spectrum.

4.2.1 Socialist Pricing Policy. We define a socialist pricing policy
that evenly divides the total cost of the shared cluster by the total
computation time, and charges all users a fixed price per unit time
their jobs run on the cluster. We call this the cluster’s normalized
price. This pricing policy distributes the costs evenly across all users.
We generally refer to a cluster’s normalized price as a fraction of
the on-demand price. So, for example, a normalized price of 0.9
means that users receive a 10% discount for using the shared cluster
compared to flying solo and acquiring on-demand resources to
execute their jobs. Since the socialist pricing policy does not charge
users more if their jobs run on higher-cost on-demand resources, it
advantages users with bursty workloads.

Under the cloud bursting provisioning policies, bursty users
are more likely to cause the shared cluster to acquire on-demand
resources to execute their jobs at a higher cost. However, under our
socialist pricing policy, these costs are amortized across all users.
Likewise, users with steadier workloads that are more likely to run
on fixed reserved resources are effectively penalized, as they must
pay a normalized price that is higher than the discounted price
of the reserved resources. Thus, this policy weakens the financial
incentive for steadier users to participate in a shared cloud cluster.
4.2.2 Capitalist Pricing Policy. The capitalist pricing policy charges
users based on the resources their jobs actually execute on. Thus,
if a user’s job executes on an on-demand resource, then the user
simply pays the corresponding on-demand price, while if the job ex-
ecutes on a fix reserved resource, then the user pays the discounted
reserved price (normalized by utilization of the reserved resources).
Unlike the socialist policy, the capitalist policy does not distribute
costs across users. Thus, under the cloud bursting policies, users
with a highly bursty workload will pay more than those with a
steadier workload, since their jobs will be more likely to run on
higher-cost on-demand resources. As a result, the capitalist policy
weakens the financial incentive for bursty users to participate in a
shared cloud cluster.

5 IMPLEMENTATION

We adapted and extended an open-source trace-driven job simula-
tor [14], written in python, to evaluate the effect of the provisioning
and pricing policies from the previous section [17]. Specifically, we
augmented the simulator to compute cost based on the socialist and
capitalist pricing policies for the different provisioning policies in
the previous section. The simulator takes a job trace as input, with
a specified provisioning and pricing policy, the number of fixed
reserved resources, and the relative price of fixed reserved and
on-demand resources, and simulates the scheduling of jobs on the
fixed reserved and on-demand resources, if applicable. Each fixed

Is Sharing Caring?

Lift and Shift
1.3
1.2
11 ae -

1 On-Demand Price .- fad

0.9 - -

0.8 et

0.7
0.63
0

Bursting with waiting - 24hr - @ - Bursting without Waiting —&—

S e----e-

Normalized Price (%)
L[]

25 50 75 100 125 150

Fixed Resources
Figure 5: Normalized price of shared cloud cluster under dif-
ferent resource provisioning policies.

175 200 225 250

resource includes some number of cores and memory, and each job
in the trace requires some number of cores and memory. In our case,
we set the relative price of fixed reserved resources to be 60% that
of on-demand resources, which is roughly the same discount level
offered by Amazon Web Services and Google Compute Platform.

Our simulator uses a best-fit heuristic to place jobs on reserved
resources. Our simulator also assumes that, similar to most cloud
platforms, multiple types of on-demand resources are available
of different sizes, e.g., memory and cores, and that their price is
proportional to their size. When selecting an on-demand resource to
execute a job, the simulator selects the smallest (and thus cheapest)
on-demand resource that is large enough to fit the job. We model
the sizes and prices for fixed and on-demand resources using the m5
family of general-purpose server instances offered by Amazon Web
Services. We use a First-Come-First-Serve (FCFS) scheduling policy.
While FCFS is non-optimal, recent work shows that combining FCFS
with cloud bursting to bound wait time mitigates the advantage of
optimal scheduling policies, such as Shortest Job First [18].

The simulator also implements various waiting policies depend-
ing on the provisioning scenario. Specifically, the lift-and-shift
policy assumes an all-jobs-wait waiting policy, the cloud burst-
ing policy without waiting assumes a no-jobs-wait policy, and the
cloud bursting with waiting policy assumes a some-jobs-wait pol-
icy, which forces jobs to wait based on configurable thresholds on
their runtime and waiting time. For our evaluation, jobs generally
wait for fixed reserved resources if their waiting time is less than
24 hours or if their running time is greater than 3 minutes. Finally,
the simulator computes each job’s waiting time, whether it ran on
fixed or on-demand resources, and the total cost of resources.

6 EVALUATION

We use the simulator above to evaluate the user incentives of the
different provisioning and pricing policies from §4 on the longitu-
dinal job trace analyzed in §3. We analyze the incentives for each
pricing policy to understand whether users are incentivized to par-
ticipate in a shared cloud cluster, or if they would defect. Most of
our analyses focus on the year 2016, as a representative year, unless
otherwise stated.

6.1 Lift-and-Shift Policy

Figure 5 shows the normalized price using the socialist pricing
policy with the lift-and-shift provisioning policy as a function of
provisioning different numbers of fixed resources. The graph also
shows the normalized price of the cloud bursting policies, which
we discuss below. Recall that the normalized price is the price users

13

ICPE 23, April 15-19, 2023, Coimbra, Portugal

Lift and Shift

Bursting without Waiting —&—
Bursting with waiting - 24hr - -e- -

B 40

£

3 32

= 24 i

s 8 e

g M S S
50 75 100 125 150 175 200 225 250

Fixed Resources
Figure 6: Mean job waiting time of shared cloud cluster under
different resource provisioning policies.

2017 -+ 2018 —=— 2019 - -o- 2020

_

2\1 1.2 .
[

(2]

=

o

T

(7]

N

®

£

5

Z 038

0 25 50 75 100

Fixed Resources
Figure 7: Normalized price as a function of fixed resources for
each year of our job trace.

125 150

pay per unit time as a function of the on-demand price; thus, a
normalized price of 1 is equivalent to paying the on-demand price.
The graph shows that lift-and-shift’s static provisioning generally
offers a lower price than the cloud bursting policies, and reaches a
minimum price of 60% the on-demand price at 125 fixed resources—
at this point, the fixed resources are 100% utilized.

By contrast, the cloud bursting policies have a higher normalized
cost because they use some higher-cost on-demand resources to
service a fraction of the workload. However, Figure 6 shows the
tradeoff in waiting time: the lift-and-shift waiting time is more than
a week (not pictured) at the optimal 125 fixed resources. Even when
reserving 225 resources, the average job waiting time is 14 hours,
and the normalized price is near 1, offering nearly zero discount.
Pricing and Defection Analysis. Since jobs execute on fixed
reserved resources under lift-and-shift, the socialist and capitalist
pricing policies are equivalent. Our results show that reserving
resources using lift-and-shift is not a viable strategy for a shared
cloud cluster, since users are incentivized to defect due to very high
waiting times caused by bursty workloads, as they can always use
on-demand resources without incurring any waiting time.

6.2 Cloud Bursting Policy

We evaluate cloud bursting both without and with waiting.

6.2.1 Cloud Bursting without Waiting. Figure 5 shows that cloud
bursting without job waiting results in a substantially higher cost
than the other policies. The minimum price occurs at 50 reserved
resources, and results in a normalized cost under the socialist pric-
ing policy of ~94% of servicing the workload using on-demand
resources, or a ~6% discount. While small, this approach does of-
fer a modest 6% discount for users along with a guarantee of no
job waiting, as shown in Figure 6. The problem is that achiev-
ing even this small discount requires the shared cloud cluster to
optimally provision the fixed resources. As Figure 5 shows, the

ICPE 23, April 15-19, 2023, Coimbra, Portugal

Per Job —— PerUser - - =

LQI- It
3] 04
04} .
0.2 } __—""'-_-
’
0.2} 0
0x 10x 20x 30x 40x

0
Ox 12000x 24000x 36000x 48000x

Wait time as fraction of job runtime (1x)

Figure 8: CDF of average waiting time (as a factor of job run-
ning time) across users and jobs.

discount reduces, and is ultimately eliminated, if fixed resources
are over- or under-provisioned. If over-provisioned too many re-
served resources, the normalized price can actually exceed the cost
of servicing the workload using on-demand resources.

Thus, shared cloud clusters are generally incentivized to under-

provision the fixed resources to prevent high costs, which, in prac-
tice, would likely reduce the small discount even further. Figure 7
shows the normalized price across 4 different years of our job trace
as a function of the number of fixed reserved resources, and shows
that the optimal number varies significantly from year-to-year,
and is difficult to predict. For example, if a shared cloud cluster
reserved 75 resources in 2019 based on the optimal amount from
2018, the cluster’s normalized price would be much higher than
the on-demand price, since the optimal fixed resources in 2020 was
many fewer resources due to changes in the workload.
Pricing and Defection Analysis. As shown above, the socialist
pricing policy provides a small discount for users at the risk of
potentially paying a high price if the cluster over-provisions re-
sources. In contrast, the capitalist pricing policy results in different
normalized prices for different users, ranging between near the
maximum discount of 60% to near 0% discount (for highly bursty
users). In general, large users with bursty workloads, which is ~7%
of the users in our trace, pay a higher than the average normalized
price (since many of their jobs execute on on-demand resources),
while smaller users with fewer jobs receive a higher discount (since
their jobs tend to run on reserved resources).

Under optimal provisioning, users have no incentive to defect
from a shared cloud cluster without waiting, as they all receive some,
albeit potentially small, discount. That said, given the generally
small discount, there is also not a strong incentive for users to
participate, especially when factoring in the risk of a higher cost
due to non-optimal provisioning.

6.2.2 Cloud Bursting with Waiting. Figure 5 also shows the nor-
malized price of cloud bursting with job waiting. In this case, the

14

Talha Mehboob, Noman Bashir, Michael Zink, & David Irwin

Normalized Price —=— Remaining Users after Defection - -e- -

;@ 1.04 27 ;\;;
.2‘; o----°"""71 24 ‘m’
5 8 1.02 et o E
0= .- =
= .- On-Demand Price 18 £
o)) 1 ” ©
£ § / 15 4E>
£ =098 2 C
EE . s 2
285 09%]

= 6 D

0x 5x 10x 15x 20x 25x 30x 35x

Defection threshold (waiting time < x)

Figure 9: Normalized price (left y-axis) and fraction of par-
ticipating users (right y-axis) as a function of a defection
threshold, which is defined in terms of waiting time as a fac-
tor of a user’s average job run time.

scheduler dynamically acquires on-demand resources to run any
job that would wait more than 24 hours to run on the fixed re-
sources. The figure shows that this policy significantly reduces the
normalized price compared to cloud bursting without waiting. In
particular, at the optimal number of reserved resources, the normal-
ized price is ~0.77, and thus offers a ~23% discount relative to using
on-demand resources (or a 15% increase relative to no waiting).

However, Figure 6 shows that this approach also substantially

increases job waiting time: at the optimal price, the waiting time is
13.5 hours. Recall from §3 that most jobs are small. Figure 8 plots the
CDF of average waiting time (as a factor of job running time) across
jobs and users for the case above. The graph shows i) that 50% of
jobs must wait at least 10X their run time, and ii) that 20% of users
have an average job waiting time more than 15X their average job
run time. While the waiting time decreases if the cluster provisions
more fixed resources, the discount does as well.
Pricing and Defection Analysis. The likelihood of a user de-
fecting from a shared cloud cluster in the case above depends on
their sensitivity to both price and performance. Some users might
be willing to tolerate high wait times for a discount, while others
might not. Importantly, though, when users defect, they increase
the normalized price that other users pay, since they reduce the
total number of users over which the shared cluster amortizes its
cost. To understand this dynamic, Figure 9 plots a defection thresh-
old on the x-axis, as a function of waiting time (as a factor of a
user’s average job runtime), the normalized price on the left y-axis,
and the percentage of remaining users in the cluster on the right
y-axis. As the threshold increases, more users participate in the
shared cloud cluster because they are willing to wait longer, and
the normalized price goes down. However, even at excessively high
thresholds, the fraction of participation is low (<30%), which signif-
icantly diminishes the discount (down to just a few percent). This
occurs because, as shown in §3, most of the jobs are small, and thus
their wait times are quite high relative to their job length.

As shown, if the defection threshold is less than 15X, the incen-
tives collapse and there is no incentive to participate, since the price
of a shared cluster becomes too high. Under the capitalist pricing
policy, the incentives collapse even faster. Figure 10 shows the price
for every user in order under capitalist pricing. As shown, roughly
22% of the, generally larger and burstier, users actually pay more
than the average normalized price in this case. These users would
thus defect earlier than under the socialist pricing policy.

Is Sharing Caring?

ICPE 23, April 15-19, 2023, Coimbra, Portugal

Nor d Price - Capitalist Pricing Model ——

[
0
a 09
° . . - .
.g 0.8 Aggregate Normalized Price (Socialist Pricing)
g 07
1
o
Z 0.6

0 100
= Normalized Price —=— Waiting Time - - -
E‘ ™o Aggregate Mean Waiting Time / 118 E
8 o9 12 £
= " - .\ [
= o . 19 E
g 0.8 “ Aggregate Normalized Price % -

- 16

N s N g)
© . . . =
g 0.7 SRS =
S 0.6k 0 =
Z 70 1 2 3 4 5 6 7

Fixed Resources

Figure 11: Normalized price (left y-axis) and waiting time
(right y-axis) as a function of fixed reserved resources for a
representative user “flying solo.”

6.3 Flying Solo

The analyses above indicate that there is little financial incentive to
operate shared cloud clusters, and motivates users to “fly solo” and
acquire cloud resources themselves to service their own workload.
In this approach, users can still potentially make use of discounted
fixed reserved resources if their workload is large enough to have
some continuous baseload. For example, Figure 11 shows one such
user from our job trace. This user’s minimum price when flying
solo is 4 fixed reserved resources, which offers a lower price than
the cloud bursting with waiting scenario above, while also offering
a much lower waiting time. Thus, even if this user were tolerant of
long wait times (and thus would participate in the cluster above),
flying solo is a better option in terms of both price and waiting time.
However, only ~2% of users in our trace fall into this category.
The rest of the users fall into one of two broad categories: small
users (46%) and bursty users (52%). Reserving resources is not cost-
effective for either category, since neither has a baseload. Based
on our analysis above, small users that infrequently submit small
jobs may be sensitive to long waiting times, and thus might prefer
on-demand resources. The bursty users submit larger numbers of
jobs in bursts, and get the most benefit from a shared cloud cluster,
especially under the socialist pricing policy (which distributes the
cost of handling job bursts using on-demand resources across all
users). These users might also be more tolerant of long waiting
times, since their jobs are submitted in large bursts.
Pricing and Defection Analysis. Based on the analysis above,
roughly 48% of users receive a lower waiting time (and in a few
cases also a lower price) compared to using a shared cloud cluster
(using the cloud bursting with waiting policy). These users are
unlikely to participate in a shared cloud cluster. The remaining 52%
can get a cost benefit from using a shared cloud cluster, but this is
generally at the expense of the other 48%. If many users defect, the
price increase eliminates a shared cloud cluster’s incentives.

400 500 547

Users
Figure 10: Each user’s normalized price (in order) under capitalist pricing and cloud bursting with waiting.

15

7 RELATED WORK

Our work is related to a variety of prior work on cloud sched-
uling, bursting, and cost optimization. However, in general, our
work differs from this prior work in its focus on the incentives for
shared cloud clusters, rather than a particular policy for scheduling,
bursting, or allocating resources.

Cloud Scheduling. There has been a substantial amount of work
on optimizing the provisioning of fixed reserved resources on cloud
platforms. Much of this work makes strong assumptions about the
job workload distribution, i.e., that it is continuous and uniform,
rather than consisting of discrete jobs. As a result, many of the
approaches adopt dynamic and linear programming-based solu-
tions [23, 24, 31, 34, 35]. Our work differs in that we analyze a
specific, large-scale job trace that is representative of other large-
scale batch traces. We compute optimal prices directly using the
trace, rather based on an idealized analytical model of the workload.
Cloud Bursting. Our analysis is also related to prior work on
resource provisioning, job scheduling, and autoscaling for hybrid
clouds, which execute jobs on fixed on-prem resources but period-
ically burst into the cloud [3, 19, 21, 22, 25, 30]. Similarly, shared
cloud clusters can also periodically burst by acquiring on-demand
resources to execute queued jobs. However, again, our work does
not propose particular policies for provisioning or scheduling, but
rather analyzes the cost and waiting time for multiple different re-
source provisioning and pricing policies for a shared cloud cluster
to understand users’ participation incentives.

Cloud Cost Optimization. Finally, there is also significant work
on cloud cost optimization, which focuses on selecting the type and
number of VM instances specific applications require to minimize
their cost for a given level of performance [5, 7, 16, 33]. These
approaches often use machine learning to profile jobs’ resource
usage and then match them with the minimum size and cost VM that
best aligns with their resource usage profile. Our work is orthogonal
to this work. In general, job schedulers require users to specify
the resources their jobs require. In our analysis, we assume these
resource requests are accurate, although jobs may utilize fewer
resources. While improving resource efficiency may change the
absolute numbers in our analysis, it is unlikely to change the broader
insight of our work, which is that there are weak-to-no incentives
for shared cloud clusters given the current reserved discount.

8 CONCLUSION

Large organizations have long operated shared cloud clusters to
reduce costs by taking advantage of statistical multiplexing among
users. Many of these organizations are, or are considering, moving
these shared clusters to cloud platforms. Our analysis shows that

ICPE 23, April 15-19, 2023, Coimbra, Portugal

there is little financial benefit from statistical multiplexing of dis-
counted fixed reserved resources on shared cloud clusters, and that
most users are incentivized to directly acquire resources from the
cloud, since it provides a lower waiting time (and sometimes a lower
cost). Thus, while there may be, potentially numerous, other rea-
sons for hosting shared cloud clusters, i.e., ease-of-administration,
there is little-to-no financial benefit.

Acknowledgements. This work is funded, in part, by National
Science Foundation grants CNS-1908536, CNS-1925464 and CNS-
2213636. We also acknowledge and thank the Research Computing
team at the UMass Medical School for providing access to the lon-
gitudinal batch traces from the UMass Green High Performance
Computing Cluster (GHPCC) [15].

REFERENCES

(1]
(2]

(3]
(4]

[12]

[13]

[14]
[15]

[16]

[17]

2022. Amazon EC2 Spot Instances. https://aws.amazon.com/ec2/spot/.

2022. AWS - Discounts on Reserving Resources.
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/.

2022. AWS ParallelCluster Auto Scaling. https://docs.aws.amazon.com/
parallelcluster/latest/ug/autoscaling.html.
2022. Azure Spot Virtual Machines.
us/products/virtual-machines/spot/.

2022. Cloud Cost Optimizer. https://research.redhat.com/blog/research_project/
cloud- cost-optimizer/.

2022. Cloud Growth in Future. https://www.globenewswire.com/news-
release/2022/05/06/2437934/0/en/Cloud- Computing-Market- to- Grow-at-a-
CAGR-of-11-until- 2028-BlueWeave- Consulting.html.

2022. Curator. https://github.com/operate-first/curator/.

2022. Google Preemptible Virtual
https://cloud.google.com/compute/docs/instances/preemptible.
2022. Kubernetes on AWS. https://aws.amazon.com/kubernetes/.
2022. On-Prem Computing. https://www.techslang.com/definition/what-is-on-

https://azure.microsoft.com/en-

Machines.

premises/.

2022. On-Prem Computing, Expensive than Cloud.
https://www.executech.com/insights/the-cloud-vs-on-premise-cost-
comparison/.

2022. Privacy and Regulatory on On-Prem Computing.

https://www.cleo.com/blog/knowledge-base-on-premise-vs-cloud.

2022. Rapid Growth of Cloud. https://www.capacitymedia.com/article/
2afswwuvis94wy12r320w/news/google-cloud- growing-45-a-year-with-azure-
at-40-says-canalys.

2023. Job Simulator. https://github.com/sustainablecomputinglab/waitinggame/
tree/master/simulator.

2023. University of Massachusetts Green High Performance Computing Cluster.
http://wiki.umassrc.org/wiki/index.php/MainPage.

Abdullah Alzaqebah, Rizik Al-Sayyed, and Raja Masadeh. 2019. Task Scheduling
Based on Modified Grey Wolf Optimizer in Cloud Computing Environment. In
2019 2nd International Conference on new Trends in Computing Sciences (ICTCS).
IEEE.

Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy. 2020. Waiting
Game: Optimally Provisioning Fixed Resources for Cloud-Enabled Schedulers. In
International Conference for High Performance Computing, Networking, Storage

16

[18

(19]

[20

[21

~
&,

[23

[24

[25

[26

‘%
S

(34

[35

(36]

Talha Mehboob, Noman Bashir, Michael Zink, & David Irwin

and Analysis (SC). IEEE.

Pradeep Ambati, Noman Bashir, David Irwin, and Prashant Shenoy. 2021. Good
Things Come to Those Who Wait: Optimizing Job Waiting in the Cloud. In
Proceedings of the ACM Symposium on Cloud Computing.

Tekin Bicer, David Chiu, and Gagan Agrawal. 2011. A Framework for Data-
Intensive Computing with Cloud Bursting. In IEEE International Conference on
Cluster Computing. IEEE.

Kavitha Chandra. 2003. Statistical Multiplexing. Wiley Encyclopedia of Telecom-
munications 5 (January 2003).

Tian Guo, Upendra Sharma, Prashant Shenoy, Timothy Wood, and Sambit Sahu.
2014. Cost-Aware Cloud Bursting for Enterprise Applications. ACM Transactions
on Internet Technology (TOIT) (2014).

Tian Guo, Upendra Sharma, Timothy Wood, Sambit Sahu, and Prashant Shenoy.
2012. Seagull: Intelligent Cloud Bursting for Enterprise Applications. In USENIX
Annual Technical Conference.

Yu-Ju Hong, Jiachen Xue, and Mithuna Thottethodi. 2011. Dynamic Server
Provisioning to Minimize Cost in an IaaS Cloud. In Special Interest Group on
Measurement and Evaluation (SIGMETRICS).

Menglan Hu, Jun Luo, and Bharadwaj Veeravalli. 2012. Optimal Provisioning for
Scheduling Divisible Loads with Reserved Cloud Resources. In IEEE International
Conference on Networks (ICON).

Sriram Kailasam, Nathan Gnanasambandam, Janakiram Dharanipragada, and
Naveen Sharma. 2010. Optimizing Service Level Agreements for Autonomic
Cloud Bursting Schedulers. In International Conference on Parallel Processing
Workshops. IEEE.

Michael Kuchnik, Jun Woo Park, Chuck Cranor, Elisabeth Moore, Nathan De-
Bardeleben, and George Amvrosiadis. 2019. This is Why ML-driven Cluster
Scheduling Remains Widely Impractical. Technical Report (2019).

Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. 2014. A Review
of Auto-Scaling Techniques for Elastic Applications in Cloud Environments.
Journal of Grid Computing (2014).

Marko Luksa. 2017. Kubernetes in Action. Simon and Schuster.

Michael Mattess, Christian Vecchiola, Saurabh Kumar Garg, and Rajkumar Buyya.
2011. Cloud Bursting: Managing Peak Loads by Leasing Public Cloud Services.
In Cloud Computing: Methodology, Systems, and Applications. CRC Press.
Shuangcheng Niu, Jidong Zhai, Xiaosong Ma, Xiongchao Tang, and Wenguang
Chen. 2013. Cost-effective Cloud HPC Resource Provisioning by Building Semi-
Elastic Virtual Clusters. In The International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC).

Siqi Shen, Kefeng Deng, Alexandru Iosup, and Dick Epema. 2013. Scheduling
Jobs in the Cloud using On-demand and Reserved Instances. In International
European Conference on Parallel and Distributed Computing (Euro-Par).
Abraham Silberschatz, Peter B Galvin, and Greg Gagne. 2018. Operating System
Concepts, 10e Abridged Print Companion. John Wiley & Sons.

Jose Luis Lucas Simarro, Rafael Moreno-Vozmediano, Ruben S Montero, and
Ignacio Martin Llorente. 2011. Dynamic Placement of Virtual Machines for Cost
Optimization in Multi-Cloud Environments. In 2011 International Conference on
High Performance Computing & Simulation. IEEE.

Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. 2015. IaaS
Reserved Contract Procurement Optimisation with Load Prediction. Future
Generation Computer Systems (2015).

Wei Wang, Baochun Li, and Ben Liang. 2013. To Reserve or Not to Reserve: Opti-
mal Online Multi-Instance Aquisition in IaaS Clouds. In International Conference
on Autonomic Computing (ICAC).

Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux Utility
for Resource Management. In Job Scheduling Strategies for Parallel Processing.
Springer.

