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ABSTRACT

Activity recognition is a crucial aspect in smart
manufacturing and human-robot collaboration, as robots play a
vital role in improving efficiency and safety by accurately
recognizing human intentions and proactively assisting with
tasks. Current human intention recognition applications only
consider the accuracy of recognition but ignore the importance
of predicting it in advance. Given human reaching movements,
we want to equip the robot with the ability to predict human
intent not only with precise recognition but also at an early stage.
In this paper, we propose a framework to apply Transformer-
based and LSTM-based models to learn motion intentions.
Second, based on the observation of distances of human joints
along the motion trajectory, we explore how we can use the
hidden Markov model to find intent state transitions, i.e., intent
uncertainty and intent certainty. Finally, two data types are
generated, one for the full data and the other for the length of
data before state transitions; both data are evaluated on models
to assess the robustness of intention prediction. We conducted
experiments in a manufacturing workspace where the
experimenter reaches multiple scattered targets and further this
experimental scenario was designed to examine how intents
differ, but motions are only slightly different. The proposed
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models were then evaluated with experimental data, and further
performance comparisons were made between models and
between different intents. Finally, early predictions were
validated to be better than using full-length data.

Keywords: Human intention recognition, Early prediction,
Transformer, Hidden  Markov  model,  Human-robot
collaboration, Manufacturing

1. INTRODUCTION

In recent years, human-robot collaboration (HRC) has
become increasingly popular for common co-assembly tasks in
manufacturing settings. A widely spread application is where a
human retrieves components and places them, then the robot
picks up the placed components and begins assembling them into
a product [1]. Moreover, in the pursuit of an efficient robotic
cooperative environment, robots are able to respond quickly or
slowly depending on the speed of the human in the assembly task
[2]. However, human operators and robots usually work
separately and are treated as independent agents, because
humans can perform in a more flexible manner, but robots are set
to a fixed automation mode. Additionally, humans can perceive
others' actions and infer their intentions as a way to start off
relevant complementary actions, which are difficult for robots to
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predict. Therefore, a higher level of understanding of human
intent and enhanced rapid adaptation of robots are required.

Unlike other physical features, such as location coordinates
or distance traveled, human intent is implicitly contextual and
does not have direct observability; however, it is actually
encoded and expressed in human actions [3]. In particular, the
movement and orientation of workers have a significant impact
on the recognition of intent in the warehouse [4]. With respect to
abundant information encoded in human actions, observing and
interpreting it is beneficial for us to understand human intent.
Recently, researchers have proposed new considerations for
cooperation between humans and robots, in which the
recognition of human intent can be leveraged to control the robot
[5]. Among other advantages, the sequence of assembly
activities is predicted by modeling the motion to recognize
human intent [6]. Another application in the assembly process is
the measurement of quality insurance and human failure
detection through the recognition of human intent [7].

Inspired by the necessity of intent recognition and the
legibility of actions, achieving explicit human intent recognition
is the driving force behind our research. Driven by the
development of deep learning, state-of-the-art algorithms are
showing great promise in providing intelligent solutions [8].
Convolutional recurrent neural networks (CRNN) effectively
learn the temporal and spatial relationships embedded in human
body actions [9]. Other researchers have introduced recursive
Bayesian filtering methods to explore the correlation between
intent and non-verbal behavior [10]. Although there are a variety
of case studies [3]-[5] on assessing human intention recognition,
the importance of how to effectively predict it has been
overlooked. Inspired by improving the efficiency of HRC, we
design an intention recognition framework, as shown in Figure
1, and further implement prediction at an early stage.

The objective of this study is to propose a novel framework
for motion-based human intention recognition. In terms of model
selection, two types of architectures including Bidirectional
Long short-term memory (Bi-LSTM) and Transformer have
been used for the prediction purposes. We choose Bi-LSTM
network, which is capable of learning inputs by forward and
backward directions. Also, empowered by the novelty of the
Transformer model, we apply it to validate its performance on
the task of intent recognition.

Further, given the practice of the Hidden Markov Model
(HMM) for continuous action division, we incorporate the joint
distance to an operator into the HMM for segmenting uncertainty
of intent and certainty of intent.

In this study, human intent is defined as judging the
operator's goal based on the observed trajectory of reaching
movements. We have conducted two cases of experimental
studies, specifically, one in which similar targets are grouped
together and the other in which different intentions are identified
by separating them when the motion trajectories are very similar.
The operator's arm motion captured by the Vicon system is the
input to the model, and the intent based on the motion is
subsequently predicted.

We compare in detail the performance of the Transformer and
Bi-LSTM models in both cases and present recommendations for
model selection regarding the task specificity case. In addition,
we use the HMM to compute the state transitions for each
reaching trajectory and evaluate the performance of the early
predictions over the predictions for all data.

Predict intention in advance

State transition: hidden ~ Deep leaming models
Markov model

Predict intention 1

Human motion Deep leaming models 1

FIGURE 1: INTENTION RECOGNITION AND EARLY
PREDICTION FRAMEWORK

The rest of the paper is structured as follows. Section 2
compares related studies on the topic of intent recognition.
Section 3 describes the Transformer and Bi-LSTM architectures.
Section 4 presents the experimental design, the data set, and
practical results. This section describes the results of each phase
and the comparison between models. Section 5 concludes the
paper and extends to potential future work.

2. RELATED WORK

In this section, we briefly summarize related work in the
literature dealing with the importance of intention learning, its
perception methods, and prediction methods.

In teamwork, team members can coordinate their actions
among themselves by predicting each other's intentions.
Although we humans possess this knowledge, it is still a
challenge to get robots to predict and adjust their actions
accordingly. For example, in manufacturing, if collaborative
robots are programmed in a fixed offline manner, it is labor-
intensive to recode the corresponding unexpected collaborations
that are likely to occur with a change in human intent [11]. On
the other hand, considering situational needs people have been
shown to unconsciously adjust their behavior, such as movement
speed and execution paths [12]. This situation has a high
probability to happen in a manufacturing workplace where an
operator has multiple trajectories of motion to pick up and place
a large number of tools or parts during assembly. Both the speed
of movement and the path of movement are not stable, so we
think that human intent is informative and understanding it
becomes more crucial.

Within task-specific scenarios, there are plenty of
interpretations that can make human intent legible to robots. By
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collecting Electroencephalography (EEG) signals on a person's
scalp, it is possible to understand the person's intentions, as the
EGG signal fluctuates in different patterns when a person wants
to move parts of the body [9]. Similarly, surface
electromyography (sEMG) signals can be used to estimate
associated biomechanics motion by measuring the velocity or
acceleration of muscles [13]. At the same time, there are some
limitations to collecting bioelectrical signals, namely, the
collected signals contain too much noise, and the sensor
equipment affects the flexibility of experimenters. Along with
the popularity of image data, more recognition tasks in the
manufacturing field with images as the theme are proposed [14],
[15]. For instance, the context of human movements can be
recorded in images as they operate any part or tool [16]. Even for
visual data involving rich motion information, processing them
to extract and analyze intent requires a lot of manual labeling
work. Taking advantage of the motion tracking sensor system,
we infer intent directly through the motion trajectory data.

Recently, the safety of HRC has received more attention.
For its part, the operator's intent or goal is a prerequisite so that
the robot's behavior can be adjusted correspondingly. The
underlying methods can be divided into two groups: machine
learning-based models and deep learning-based models. In terms
of machine learning methods, the researchers use support vector
machine and random forest algorithms for feature retrieval and
daily motion classification [17], [18]. In addition to this, neural
network-based deep learning has a wide range of applications in
intent estimation. Based on predefined goals in the workspace,
RNN is trained to switch between various human motion data by
continuously updating the input bias values [19]. In particular, as
a representative of RNN, LSTM can learn linear and nonlinear
features of sequential data and overcome the weakness of time
dependence [20].

The quality performance of Transformers in predicting the
intention and trajectory of pedestrians inspires us to apply it to
the intent classification task in manufacturing sites [21]. A
special attention mechanics in Transformer allows us to pursue
connections in any part of sequential data [22]. Besides just a
single intent recognition task, we discuss how to predict intent
early and verify whether the use of full-length sequences is
necessary to achieve accurate predictions. We use HMM as an
elaboration algorithm to discretize sequences into states [23].
Such state division technique becomes a well fit when we pursue
from states with uncertain intentions to states with certain
intentions.

3. METHODOLOGY

In this section, we propose Transformer and Bi-LSTM
models to learn the relationship between human intentions and
motion trajectories. Furthermore, we apply HMM to find the
transition from uncertainty of intent to certainty of intent and find
the length of the sequence data as input to classifier networks.

3.1 Transformer Model for Intention Recognition
Transformer is first proposed by its unique application of
attention mechanism [24]. The advanced nature of the attention

mechanism is that it allows modeling sequential dependencies
regardless of their position in the input or output. Consequently,
Transformers have achieved good performance in language
processing tasks [25]. However, it has been observed that
Transformers have not been widely employed for motion-based
analysis of human intent.

In our study, the Transformer model introduced is displayed
in Figure 2. First, each sequence of trajectories of human motion
is taken as input and will be normalized. As the core of the
Transformer, the attention mechanism will build a representation
with query, key and value vectors to model each data point of the
input sequence, given by

. (QKT> (1)
Attenion(Q,K,V) = softmax | — |V

N

where Q , K and V are vectors named as query, key and value

respectively and \/dik is the so-called scale factor. This Scaled
Dot-Product Attention calculates the attention value of each
input element.

Then, the Multi-Head Attention will parallelly compute and join
the complex information of more representations at different
positions of input data. Since no recurrence or convolution
calculation is required in the Multi-Head Attention, each input
element is provided to the feedforward network along with the
associated positional information. Last, all embedded elements
are passed through a normalization layer to speed up learning,
and then a classifier with a SoftMax activation function is used
to determine the intent class.
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FIGURE 2: THE TRANSFORMER MODEL’S STRUCTURE

3.2 Bi-LSTM Model for Intention Recognition

Besides Transformer, we also used Bi-LSTM. Before the
emergence of Transformers, LSTM architectures are often
selected to learn the long-time dependencies of sequential data.
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The results of this study demonstrate that an LSTM network is
allowed to learn features in the temporal domain and recognize
human activities correspondingly [26]. It validates the ability of
LSTM to extract behavioral features from time series data.
Nevertheless, an LSTM layer only learns the data structure in a
fixed direction, i.e., after starting from the motion, but lacks
learning from later motion to forward.

In order to learn motion sequences not only in the
feedforward direction but also in the backward direction, we
design the Bi-LSTM model in Figure 3.
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FIGURE 3: (a) THE BI-LSTM MODEL’S STRUCTURE. (b)
THE LSTM CELL WORKFLOW.

As seen in Figure 3(a), there are two ways of stacking LSTM
cells. In the forward network flow, it learns each piece of
information from previous elements to the future time; in the
backward network flow, it learns the upcoming information in

the reverse time. In detail, Figure 3(b) illustrates how each
LSTM cell performs operations. Equation (2) — Equation (6) are
mathematically interpreted as [27]

ft = o(Wrxxe + Wephe_q + by) 2)
it = o(Wixxy + wiphi_q + by) A3)
0 = 0(WyrXs + Wophe—1 + b,) 4)
¢t =C-1 O ft (5)

+i; © tanh(wgex; + wepheq + b.)
h; = o; © tanh (c;) (6)

where f;,i; and o, are namly the forget gate, input gate, and
output gate. x; and h; are input element and hidden state. ®
represent element-wise vectors multiplication.

3.3 HMM Model for Intent State Transition

In addition to deep learning-based intention learning methods, an
HMM has been applied separately to perform state transitions.
The HMM model presents a successful case for segmenting
continuous behavior [28]. For a given input sequence, the HMM
can model the data as different states by measuring the
likelihood. Taking advantage of dividing continuous motions,
we plan to use an HMM to compute the probability of hidden
states, where the information of state transitions is related to
intent shifts in time.

The proposed HMM model is described in Figure 4. First,
we calculate the Euclidean distance of joints in each motion
trajectory. It can be easily understood that the motion starts with
a slow, but gradually moves away from the original position.
These Euclidean distances about human joints are the
observation variables of the HMM model. Further, we set the
number of hidden states in the HMM to 2. The HMM will
classify the sequences into two continuous states based on the
distance. We ultimately care about the time of the state transition,
since we extract the length of the data from the beginning of the
motion to the state transition as input to the intention
classification model for early prediction.
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FIGURE 4: THE PROCESS OF IDENTIFYING STATE TRANSITION USING HIDDEN MARKOV MODEL: CALCULATING
EUCLIDEAN DISTANCES OF JOINTS AND PUT IT INTO THE HMM .
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4. USE-CASE AND RESULTS

This section presents a complete case study on human intent
recognition. First, we designed an experiment on a collaborative
human-robot environment in manufacturing. Two cases are
presented separately. In addition, we train our previously
proposed models with the experimental dataset. Multiple
comparisons are discussed in detail. Finally, we validate the idea
about the advance prediction of human intentions, which means
intentions can be recognized before their movement is complete.

4.1 Experimental Design and Dataset

To validate the effectiveness of the proposed models, an
experiment is designed to replicate collaborative manufacturing
in a real-world setting. In the experiment, a human operator
stands opposite a robot manipulator and reaches targets from
four distinct locations to place them in a collection box. Each
location contains two different types of screws. As a result, the
reaching motions for two screws at the same location are similar,
but the human operator’s intent is different. Therefore, we have
two cases of experimental study. One is to predict the target
location that the human operator is reaching for among four
distinct areas displayed in Figure 5(a), while the other case
predicts which screw the human wants to retrieve among all eight
screws displayed in Figure 5(b).

The Vicon motion capture system is used to track the
movement of the human operator’s right arm. Two markers are
attached to each side of the wrist, elbow, and shoulder. The data
is recorded as a sequence of Cartesian coordinates for each
marker, at a frequency of 50 Hz, resulting in a trajectory time
interval of 0.02 seconds. The center of each rotation joint can be
easily estimated by taking the mean of the two markers'
positions.

We separate and select the trial data into different reaching
motions, which only contain the static-to-static human motion
starting from the collection box and ending at the targets located
at different places. In this case, the dataset we collected could be
used to train the model and predict the human intent of reaching
which target location (4 labels) or retrieving which screws (8
labels).

Human right arm movement toward a target

0.4 0.4
0.2 02
0.0 0.0
-0.a 04
—-0.2 o. -0.2 0 a
.4 }
0.0 0.6 0.0, 0.6
ER 0.8 0.3 0.8
0.4 1.0 0.4 10
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
0.4 —0.a_
02 e -02 o
o9 06 0.0 - 06
0.2 0.8 0208
0.4 10 04 10
Time t=0s

FIGURE 5: (a) THE EXPERIMENT WITH FOUR-LABEL
INTENTIONS. (b) THE EXPERIMENT WITH EIGHT-
LABEL INTENTIONS.

In addition, we visualize the trajectory of two approaching
targets from the beginning to the end of the motion in Figure 6.
From the observation, we can see that the trajectories of the two
approaching targets are highly similar, especially since the
trajectories almost overlap at the end of the motion. In total, we
have 232 motion data in total and each class has an equal amount
of data. The length of single motion data is approximately 2
seconds.

Human right arm movement toward the other target
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FIGURE 6: VISUALIZATION OF THE TRAJECTORY OF TWO APPROACHING TARGETS.
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4.2 Results of Intent Classification with Four Labels

All proposed models are built using Keras and TensorFlow.
We applied the Adam optimizer with the learning rate fixed to
0.001. In order to make results reproducible, we also fixed the
values of random seed, which included a total of 5 seeds. The
training epoch was set to 500 epochs. Using a single Nvidia 3080
GPU, the experiment was carried out while splitting the data into
training and testing: 70% for training and 30% for testing.

To evaluate the performance of classification results, we
used boxplots to compare different models. As a standardized
view, a boxplot is able to show us the outliers of data as well as
their distribution. Meanwhile, heatmaps were displayed to
visualize the classification output for different intents.

The results of the four-label intent classification are shown
in Figure 7. We evaluate the trained models by consequently
increasing the data length from 20% to 100% and using 20% as
an interval.
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FIGURE 7: COMPARE FOUR-LABEL CLASSIFICATION
RESULTS OF DIFFERENT MODELS ON ON TEST DATA

For the Bi-LSTM model, the classification accuracy
decreases when the percentage of data increases to 60%, while
the accuracy of the Transformer model continues to improve
with increasing data. There is only one caveat if we use only 20%
of the data for prediction, Transformer's accuracy will be
significantly lower than Bi-LSTM. The final Transformer
outperforms when using the full range of trajectory data to make
predictions. In addition, when comparing the classification
results of a specific label with other labels, we make use of the
heat map in Figure 8.

(b) Bi-LSTM

(a) Transformer
FIGURE 8: CLASSIFICATION RESULTS PER LABEL

When predicting full-length trajectories, Transformer is 100%
accurate, while Bi-LSTM incorrectly predicts a set of motion for
Label 2 as Label 1 because of the close location of the two labels.
In general, if the targets are close to each other, but can be labeled
as a group, we recommend using the Transformer model in
preference.

4.3 Results of Intent Classification with Eight Labels
As we stated before, it makes sense to analyze the reaching
motions when the targets are close to each other. Especially in
manufacturing sites, many tools or parts needed during operation
are often placed together. Apart from that, training models with
a dataset of 8 labels increases the computational time and
complexity. Testing results are illustared in Figure 9. The
performance of both models is degraded, and the overall
performance of Transformer is less stable than Bi-LSTM.
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FIGURE 9: COMPARE EIGHT-LABEL CLASSIFICATION
RESULTS OF DIFFERENT MODELS ON ON TEST DATA

Further discussing the reasons for the reduced accuracy, we
observe that the intentions of two targets in close proximity are
easily misclassified in both models, e.g. intentions labeled 7 are
confused with labeled 3, as shown in Figure 10.

7 9
—-ﬂmooonug - 0 o o 0o o0 o o

8

N*DED [i] [i] 3 0 0 6 ~n=- 0 0 0 o (1] o 0 5

N B BN R  EIIEEE

<-0 0 o-o o BBl 2 » -0 0 o o 0 o 2 s

w38 0 o o3 2 o o 3 w- 0 0 0 ﬂnz o 0 -4

o- 1 1 0 0 0 0 0 w- 0 1 0 0 L-D 0 -3

-2

~-0 0 2 0 0 o0 0 ~- 0 0“0 o o BN o 2

-1 . N

w-0 o o M o o 2 2 -0 0 0 1 0 0 o0 N L,
12 3 a4 5 & 71 8 - 12 3 &4 5 6 7 8

FIGURE 10: CLASSIFICATION RESULTS PER LABEL

Another observation is that Bi-LSTM outperforms
Transformer in terms of prediction using the entire data
sequence. This may be due to the nature of both models. Bi-
LSTM learns the data structure backward and forward to figure
out the underlying dynamics of the data; for Transformer,
attention is focused on specific parts of the data, whereas early
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prediction may result in too little data without sufficient attention
value. To conclude, Transformer is not suitable for tasks with
similar trajectory intent prediction, while bi-LSTM is a better
choice.

4.4 Trajectory State Transition Results from HMM

After testing predictions using data of different lengths, we
found that this conclusion of training with many data elements
to obtain more accurate results was not always true. Therefore,
the use of HMM is necessary to help us find the best length series
to achieve better accuracy as well as earlier predictions.

In practice, the HMM is used to segment the hidden states
of human motion, with the goal of separating trajectories into
states where the intention is uncertain and those where the
intention is certain. Uncertainty of intention means that the
experimenter has no clear intention at the beginning of the
action, or the motion changes to a small extent. And towards the
end of the motion, intentions will gradually become clear. Thus,
the implied state of intention regarding the behavior shifts from
uncertainty to clarity. To achieve it, we first calculated the
Eulidance distance variation of the joint with motion, i.e., the
joint position at each time point minus the joint position at the
beginning. Next, we used these distances as inputs to an HMM
model with two hidden states.

The output of the HMM model provides a division of
behavioral states. Since dividing 8§ labels is a more complex case
study, we present the average state transitions for each label in
Figure 11. In this figure, each status bar represents 3 time points,
displayed in yellow to indicate uncertain intent, and in green to
indicate certain intent. Subsequently, we used all trajectory
motions from the beginning to the state transition as the dataset
for the early prediction.
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FIGURE 11: AVERAGE STATE TRANSITION RESULTS
FOR DIFFERENT INTENTS

4.5 Intent Early Prediction

To implement the idea of early prediction of intent, we plan
to validate the two models under experiments with eight labels.
First, we prepare the data whose sequence length is the length
from the start point to the time transition point determined by the
HMM. Second, we train the prepared dataset with both models

and compare the results with the model's performance on the
full-length sequences dataset.

A summary of the comparison is illustrated in Figure 12. For
both models, the length of the data elements calculated using the
HMM achieved better prediction accuracy compared to using all
data elements. If we observe the results of individual models,
Transformer's early prediction is more stable than the prediction
with all data. Also, using early predictions, Bi-LSTM can
improve the accuracy by about 10%. As discussed earlier, the
overall performance of the Bi-LSTM model is better than the
Transformer model because it is more suitable for intent
classification scenarios with eight labels.
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0.80 All-data prediction
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Prediction accuracy
P
w

)
transformer Bi-LSTM

FIGURE 12: COMPARISON OF PREDICTIONS USING
EARLY DATA WITH ALL-DATA PREDICTIONS

5. CONCLUSION AND FUTURE WORK

In this study, a framework for intent prediction based on
human movement data is proposed. The proposed framework
includes the use of Transformer and Bi-LSTM models to learn
motion data, and HMM to determine the division of intention
shifts. According to our experimental study, we found that the
Transformer architecture has better results for classifying
intentions with large action differences, while the Bi-LSTM
architecture has more robust results for identifying similar
actions. Also, by using the state transition information from
HMM, the intention prediction results are higher than those
predicted using all data. The use of the Transformer model
provides reference suggestions on the task of human intent
classification; the Bi-LSTM model is more suitable for intention
identification where the trajectories are very similar; and the
application of the HMM allows us to achieve early prediction of
intentions without using all the data. All models and methods are
designed according to the needs of manufacturing sites, i.e.,
operators picking up targets at different locations.

The proposed work enhances human-robot collaboration in
several ways. First, by predicting human intentions, robots can
anticipate human future actions and provide the necessary help,
while reducing the time and improving the overall efficiency.
Second, recognizing human intent enables robots to identify
hazardous situations and create a safer work environment. Third,
by utilizing human intent recognition, robots can provide more
personalized assistance to workers, easily accomplish their tasks
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and adap to different tasks. Additionally, the use of human intent
recognition can enable robots to perform more complex tasks
that may require interaction with humans, such as assembly or
inspection

The proposed framework can be extended in several ways.
First, for data with similar motion trajectories, we can utilize
deep feature extraction techniques to achieve a prediction
accuracy above 90%. This is especially important when the
trajectories are similar, but the intentions behind the motions are
entirely different. Second, when performing non-sequential or
coordinated tasks, it is essential to examine how dynamic
interactions among humans and robotcs can affect the regnition
of human intent. Third, while the current frameworks use joint
movements to predict human intent, it is worth exploring how
small-scale movements, such as wrist and finger levels, can be
utilized for learning and predicting human intent.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation—USA under grants # 2026276 and 2026533.
Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] Morato, C. W., Kaipa, K. N., & Gupta, S. K.,
2017, "System State Monitoring to Facilitate
Safe and Efficient Human-Robot Collaboration
in Hybrid Assembly Cells," Proceedings of the
IDETC/CIE, Cleveland, Ohio, August 6-9,
2017, vol. 58110, p. VOO1T02A012.

[2] Etzi, R., Huang, S., Scurati, G. W., Lyu, S.,
Ferrise, F., Gallace, A., ... & Bordegoni, M.,
2019, "Using Virtual Reality to Test Human-
Robot Interaction During a Collaborative Task,"
Proceedings of the IDETC/CIE, Anaheim,
California, August 18-21, 2019, vol. 59179, p.
V001T02A080.

[3] Stulp, F., Grizou, J., Busch, B., & Lopes, M.,
2015, "Facilitating intention prediction for
humans by optimizing robot motions," 2015
IEEE/RSJ  International  Conference on
Intelligent Robots and Systems (IROS),
Hamburg, Germany, 2015, pp. 1249-1255.

[4] Petkovi¢, T., Puljiz, D., Markovié, 1., & Hein, B.,
2019, “Human intention estimation based on
hidden Markov model motion validation for safe
flexible robotized warehouses,” Robotics and
Computer-Integrated Manufacturing, 57, pp.
182-196.

[5] Losey, D. P., McDonald, C. G., Battaglia, E., and
O'Malley, M. K., 2018, "A Review of Intent
Detection, Arbitration, and Communication
Aspects of Shared Control for Physical Human—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Robot Interaction," ASME. Appl. Mech. Rev.,
70(1).

Manns, M., Tuli, T. B., & Schreiber, F., 2021,
“Identifying human intention during assembly
operations using wearable motion capturing
systems including eye focus,” Procedia CIRP,
104, pp. 924-929.

Gajjar, N. K., Rekik, K., Kanso, A., & Miiller,
R., 2022, “Human intention and workspace
recognition for collaborative assembly,” IFAC-
PapersOnLine, 55(10), pp. 365-370.
Nahavandi, S., 2019, “Industry 5.0-A Human-
Centric Solution,” Sustainability, 11(16), pp.
4371.

Zhang, D., Yao, L., Chen, K., Wang, S., Chang,
X., & Liu, Y., 2019, “Making sense of spatio-
temporal preserving representations for EEG-
based human intention recognition,” IEEE
transactions on cybernetics, 50(7), pp. 3033-
3044.

Jain, S., & Argall, B., 2019, “Probabilistic
human intent recognition for shared autonomy in
assistive robotics,” ACM Transactions on
Human-Robot Interaction (THRI), 9(1), pp. 1-
23.

Wang, W.,, Li, R., Chen, Y., & Jia, Y., 2018,
“Human intention prediction in human-robot
collaborative tasks,” In Companion of the 2018
ACM/IEEE international conference on human-
robot interaction, pp. 279-280.

Koppenborg, M., Nickel, P., Naber, B., Lungfiel,
A., & Huelke, M., 2017, “Effects of movement
speed and predictability in human—robot
collaboration,” Human Factors and Ergonomics
in Manufacturing & Service Industries, 27(4),
pp- 197-209.

Zhang, L., Liu, G., Han, B., Wang, Z., & Zhang,
T., 2019, “sEMG based human motion intention
recognition,” Journal of Robotics, 2019.

Zhang, X., Eltouny, K., Liang, X., & Behdad, S.,
2023, “Automatic Screw Detection and Tool
Recommendation  System  for  Robotic
Disassembly,” Journal of Manufacturing
Science and Engineering, 145(3), pp. 031008.
Liao, H. Y., Zheng, M., Hu, B., & Behdad, S.,
2022, “Human Hand Motion Prediction in
Disassembly Operations,” Proceedings of the
IDETC/CIE, St. Louis, Missouri, August 14-17,
2022, vol. 86250, p. VOOST05A021.

Wang, P., Liu, H., Wang, L., & Gao, R. X, 2018,
“Deep  learning-based ~ human  motion
recognition for predictive context-aware human-
robot collaboration,” CIRP annals, 67(1), pp.
17-20.

© 2023 by ASME



[20]

[21]

[22]

(23]

[24]

[26]

(28]

Vu, C. C., & Kim, J., 2018, “Human motion
recognition by textile sensors based on machine
learning algorithms,” Sensors, 18(9), pp. 3109.
Batool, M., Jalal, A., & Kim, K., 2019, “Human
intention estimation based on neural networks
for enhanced collaboration with robots,” In
2019 international conference on applied and
engineering mathematics (ICAEM), pp. 145-
150.

Yan, L., Gao, X., Zhang, X., & Chang, S., 2019,
“Human-robot collaboration by intention
recognition using deep LSTM neural network,”
In 2019 IEEE 8th International Conference on
Fluid Power and Mechatronics (FPM), pp. 1390-
1396.

Sui, Z., Zhou, Y., Zhao, X., Chen, A., & Ni, Y.,
2021, “Joint intention and trajectory prediction
based on transformer,” In 2021 IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS), pp. 7082-7088.
Henderson, M., Casanueva, 1., Mrks$ié¢, N., Su, P.
H., Wen, T. H., & Vuli¢, 1., 2019, “ConveRT:
Efficient =~ and  accurate  conversational
representations from transformers,” arXiv
preprint arXiv:1911.03688.

Liu, H., & Wang, L., 2017, “Human motion
prediction for human-robot collaboration,”
Journal of Manufacturing Systems, 44, pp. 287-
294,

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A. N., ... & Polosukhin, I.,
2017, “Attention is all you need,” Advances in
neural information processing systems, 30.
Devlin, J., Chang, M. W., Lee, K., & Toutanova,
K., 2018, “Bert: Pre-training of deep
bidirectional  transformers for language
understanding,” arXiv preprint
arXiv:1810.04805.

Chen, Z., Zhang, L., Cao, Z., & Guo, J., 2018,
“Distilling the knowledge from handcrafted
features for human activity recognition,” IEEE
Transactions on Industrial Informatics, 14(10),
pp. 4334-4342,

Tong, Y., Liang, Y., Spasic, 1., Hicks, Y., Hu, H.,
& Liu, Y., 2022, “A Data-Driven Approach for
Integrating Hedonic Quality and Pragmatic
Quality in User Experience Modeling,” Journal
of Computing and Information Science in
Engineering, 22(6), pp. 061002.

Yi, D., Musall, S., Churchland, A., Padilla-
Coreano, N., & Saxena, S., 2022, “Disentangled
multi-subject and social behavioral
representations through a constrained subspace
variational autoencoder (CS-VAE),” bioRxiv,
2022-09.

© 2023 by ASME



