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ABSTRACT 
Activity recognition is a crucial aspect in smart 

manufacturing and human-robot collaboration, as robots play a 
vital role in improving efficiency and safety by accurately 
recognizing human intentions and proactively assisting with 
tasks.  Current human intention recognition applications only 
consider the accuracy of recognition but ignore the importance 
of predicting it in advance. Given human reaching movements, 
we want to equip the robot with the ability to predict human 
intent not only with precise recognition but also at an early stage. 
In this paper, we propose a framework to apply Transformer-
based and LSTM-based models to learn motion intentions. 
Second, based on the observation of distances of human joints 
along the motion trajectory, we explore how we can use the 
hidden Markov model to find intent state transitions, i.e., intent 
uncertainty and intent certainty. Finally, two data types are 
generated, one for the full data and the other for the length of 
data before state transitions; both data are evaluated on models 
to assess the robustness of intention prediction. We conducted 
experiments in a manufacturing workspace where the 
experimenter reaches multiple scattered targets and further this 
experimental scenario was designed to examine how intents 
differ, but motions are only slightly different. The proposed 

models were then evaluated with experimental data, and further 
performance comparisons were made between models and 
between different intents. Finally, early predictions were 
validated to be better than using full-length data.  

Keywords: Human intention recognition, Early prediction, 
Transformer, Hidden Markov model, Human-robot 
collaboration, Manufacturing  

 
1. INTRODUCTION 
 In recent years, human-robot collaboration (HRC) has 
become increasingly popular for common co-assembly tasks in 
manufacturing settings. A widely spread application is where a 
human retrieves components and places them, then the robot 
picks up the placed components and begins assembling them into 
a product [1]. Moreover, in the pursuit of an efficient robotic 
cooperative environment, robots are able to respond quickly or 
slowly depending on the speed of the human in the assembly task 
[2]. However, human operators and robots usually work 
separately and are treated as independent agents, because 
humans can perform in a more flexible manner, but robots are set 
to a fixed automation mode. Additionally, humans can perceive 
others' actions and infer their intentions as a way to start off 
relevant complementary actions, which are difficult for robots to 
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predict. Therefore, a higher level of understanding of human 
intent and enhanced rapid adaptation of robots are required. 

Unlike other physical features, such as location coordinates 
or distance traveled, human intent is implicitly contextual and 
does not have direct observability; however, it is actually 
encoded and expressed in human actions [3]. In particular, the 
movement and orientation of workers have a significant impact 
on the recognition of intent in the warehouse [4]. With respect to 
abundant information encoded in human actions, observing and 
interpreting it is beneficial for us to understand human intent. 
Recently, researchers have proposed new considerations for 
cooperation between humans and robots, in which the 
recognition of human intent can be leveraged to control the robot 
[5]. Among other advantages, the sequence of assembly 
activities is predicted by modeling the motion to recognize 
human intent [6]. Another application in the assembly process is 
the measurement of quality insurance and human failure 
detection through the recognition of human intent [7]. 

Inspired by the necessity of intent recognition and the 
legibility of actions, achieving explicit human intent recognition 
is the driving force behind our research. Driven by the 
development of deep learning, state-of-the-art algorithms are 
showing great promise in providing intelligent solutions [8]. 
Convolutional recurrent neural networks (CRNN) effectively 
learn the temporal and spatial relationships embedded in human 
body actions [9]. Other researchers have introduced recursive 
Bayesian filtering methods to explore the correlation between 
intent and non-verbal behavior [10]. Although there are a variety 
of case studies [3]–[5] on assessing human intention recognition, 
the importance of how to effectively predict it has been 
overlooked. Inspired by improving the efficiency of HRC, we 
design an intention recognition framework, as shown in Figure 
1, and further implement prediction at an early stage.  

The objective of this study is to propose a novel framework 
for motion-based human intention recognition. In terms of model 
selection, two types of architectures including Bidirectional 
Long short-term memory (Bi-LSTM) and Transformer have 
been used for the prediction purposes. We choose Bi-LSTM 
network, which is capable of learning inputs by forward and 
backward directions. Also, empowered by the novelty of the 
Transformer model, we apply it to validate its performance on 
the task of intent recognition.  

Further, given the practice of the Hidden Markov Model 
(HMM) for continuous action division, we incorporate the joint 
distance to an operator into the HMM for segmenting uncertainty 
of intent and certainty of intent.  

In this study, human intent is defined as judging the 
operator's goal based on the observed trajectory of reaching 
movements. We have conducted two cases of experimental 
studies, specifically, one in which similar targets are grouped 
together and the other in which different intentions are identified 
by separating them when the motion trajectories are very similar. 
The operator's arm motion captured by the Vicon system is the 
input to the model, and the intent based on the motion is 
subsequently predicted.  

We compare in detail the performance of the Transformer and 
Bi-LSTM models in both cases and present recommendations for 
model selection regarding the task specificity case. In addition, 
we use the HMM to compute the state transitions for each 
reaching trajectory and evaluate the performance of the early 
predictions over the predictions for all data. 
 

 
FIGURE 1: INTENTION RECOGNITION AND EARLY 
PREDICTION FRAMEWORK 
 

The rest of the paper is structured as follows. Section 2 
compares related studies on the topic of intent recognition. 
Section 3 describes the Transformer and Bi-LSTM architectures. 
Section 4 presents the experimental design, the data set, and 
practical results. This section describes the results of each phase 
and the comparison between models. Section 5 concludes the 
paper and extends to potential future work. 

 
2. RELATED WORK 

In this section, we briefly summarize related work in the 
literature dealing with the importance of intention learning, its 
perception methods, and prediction methods.  

In teamwork, team members can coordinate their actions 
among themselves by predicting each other's intentions. 
Although we humans possess this knowledge, it is still a 
challenge to get robots to predict and adjust their actions 
accordingly. For example, in manufacturing, if collaborative 
robots are programmed in a fixed offline manner, it is labor-
intensive to recode the corresponding unexpected collaborations 
that are likely to occur with a change in human intent [11]. On 
the other hand, considering situational needs people have been 
shown to unconsciously adjust their behavior, such as movement 
speed and execution paths [12]. This situation has a high 
probability to happen in a manufacturing workplace where an 
operator has multiple trajectories of motion to pick up and place 
a large number of tools or parts during assembly. Both the speed 
of movement and the path of movement are not stable, so we 
think that human intent is informative and understanding it 
becomes more crucial. 

Within task-specific scenarios, there are plenty of 
interpretations that can make human intent legible to robots. By 
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collecting Electroencephalography (EEG) signals on a person's 
scalp, it is possible to understand the person's intentions, as the 
EGG signal fluctuates in different patterns when a person wants 
to move parts of the body [9]. Similarly, surface 
electromyography (sEMG) signals can be used to estimate 
associated biomechanics motion by measuring the velocity or 
acceleration of muscles [13]. At the same time, there are some 
limitations to collecting bioelectrical signals, namely, the 
collected signals contain too much noise, and the sensor 
equipment affects the flexibility of experimenters. Along with 
the popularity of image data, more recognition tasks in the 
manufacturing field with images as the theme are proposed [14], 
[15]. For instance, the context of human movements can be 
recorded in images as they operate any part or tool [16]. Even for 
visual data involving rich motion information, processing them 
to extract and analyze intent requires a lot of manual labeling 
work. Taking advantage of the motion tracking sensor system, 
we infer intent directly through the motion trajectory data. 

Recently, the safety of HRC has received more attention. 
For its part, the operator's intent or goal is a prerequisite so that 
the robot's behavior can be adjusted correspondingly. The 
underlying methods can be divided into two groups: machine 
learning-based models and deep learning-based models. In terms 
of machine learning methods, the researchers use support vector 
machine and random forest algorithms for feature retrieval and 
daily motion classification [17], [18]. In addition to this, neural 
network-based deep learning has a wide range of applications in 
intent estimation. Based on predefined goals in the workspace, 
RNN is trained to switch between various human motion data by 
continuously updating the input bias values [19]. In particular, as 
a representative of RNN, LSTM can learn linear and nonlinear 
features of sequential data and overcome the weakness of time 
dependence [20].  

The quality performance of Transformers in predicting the 
intention and trajectory of pedestrians inspires us to apply it to 
the intent classification task in manufacturing sites [21]. A 
special attention mechanics in Transformer allows us to pursue 
connections in any part of sequential data [22]. Besides just a 
single intent recognition task, we discuss how to predict intent 
early and verify whether the use of full-length sequences is 
necessary to achieve accurate predictions. We use HMM as an 
elaboration algorithm to discretize sequences into states [23]. 
Such state division technique becomes a well fit when we pursue 
from states with uncertain intentions to states with certain 
intentions. 

 
3. METHODOLOGY 

In this section, we propose Transformer and Bi-LSTM 
models to learn the relationship between human intentions and 
motion trajectories. Furthermore, we apply HMM to find the 
transition from uncertainty of intent to certainty of intent and find 
the length of the sequence data as input to classifier networks.  

 
3.1 Transformer Model for Intention Recognition  

Transformer is first proposed by its unique application of 
attention mechanism [24]. The advanced nature of the attention 

mechanism is that it allows modeling sequential dependencies 
regardless of their position in the input or output. Consequently, 
Transformers have achieved good performance in language 
processing tasks [25]. However, it has been observed that 
Transformers have not been widely employed for motion-based 
analysis of human intent.  

In our study, the Transformer model introduced is displayed 
in Figure 2. First, each sequence of trajectories of human motion 
is taken as input and will be normalized. As the core of the 
Transformer, the attention mechanism will build a representation 
with query, key and value vectors to model each data point of the 
input sequence, given by 

 
 

𝐴𝑡𝑡𝑒𝑛𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 
(1) 

           
where Q , K and V are vectors named as query, key and value 
respectively and √𝑑𝑘 is the so-called scale factor. This Scaled 
Dot-Product Attention calculates the attention value of each 
input element. 
Then, the Multi-Head Attention will parallelly compute and join 
the complex information of more representations at different 
positions of input data. Since no recurrence or convolution 
calculation is required in the Multi-Head Attention, each input 
element is provided to the feedforward network along with the 
associated positional information. Last, all embedded elements 
are passed through a normalization layer to speed up learning, 
and then a classifier with a SoftMax activation function is used 
to determine the intent class. 

 
FIGURE 2: THE TRANSFORMER MODEL’S STRUCTURE 

 
3.2 Bi-LSTM Model for Intention Recognition 

Besides Transformer, we also used Bi-LSTM. Before the 
emergence of Transformers, LSTM architectures are often 
selected to learn the long-time dependencies of sequential data. 
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The results of this study demonstrate that an LSTM network is 
allowed to learn features in the temporal domain and recognize 
human activities correspondingly [26]. It validates the ability of 
LSTM to extract behavioral features from time series data. 
Nevertheless, an LSTM layer only learns the data structure in a 
fixed direction, i.e., after starting from the motion, but lacks 
learning from later motion to forward.   

In order to learn motion sequences not only in the 
feedforward direction but also in the backward direction, we 
design the Bi-LSTM model in Figure 3.  

 

 

 
FIGURE 3: (a) THE BI-LSTM MODEL’S STRUCTURE. (b) 
THE LSTM CELL WORKFLOW.  

 
As seen in Figure 3(a), there are two ways of stacking LSTM 

cells. In the forward network flow, it learns each piece of 
information from previous elements to the future time; in the 
backward network flow, it learns the upcoming information in 

the reverse time. In detail, Figure 3(b) illustrates how each 
LSTM cell performs operations. Equation (2) – Equation (6) are 
mathematically interpreted as [27] 
 

𝑓𝑡 = 𝜎(𝑤𝑓𝑥𝑥𝑡 + 𝑤𝑓ℎℎ𝑡−1 + 𝑏𝑓) (2) 
𝑖𝑡 = 𝜎(𝑤𝑖𝑥𝑥𝑡 + 𝑤𝑖ℎℎ𝑡−1 + 𝑏𝑖) (3) 

𝑜𝑡 = 𝜎(𝑤𝑜𝑥𝑥𝑡 + 𝑤𝑜ℎℎ𝑡−1 + 𝑏𝑜) (4) 
𝑐𝑡 = 𝑐𝑡−1 ⊙ 𝑓𝑡 

+ 𝑖𝑡 ⊙ tanh(𝑤𝑐𝑡𝑥𝑡 + 𝑤𝑐ℎℎ𝑡−1 + 𝑏𝑐) 
(5) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡) (6) 
 
where 𝑓𝑡 , 𝑖𝑡  and 𝑜𝑡  are namly the forget gate, input gate, and 
output gate. 𝑥𝑡  and ℎ𝑡  are input element and hidden state. ⨀ 
represent element-wise vectors multiplication.  
 
3.3 HMM Model for Intent State Transition 
In addition to deep learning-based intention learning methods, an 
HMM has been applied separately to perform state transitions. 
The HMM model presents a successful case for segmenting 
continuous behavior [28]. For a given input sequence, the HMM 
can model the data as different states by measuring the 
likelihood. Taking advantage of dividing continuous motions, 
we plan to use an HMM to compute the probability of hidden 
states, where the information of state transitions is related to 
intent shifts in time. 

The proposed HMM model is described in Figure 4. First, 
we calculate the Euclidean distance of joints in each motion 
trajectory. It can be easily understood that the motion starts with 
a slow, but gradually moves away from the original position. 
These Euclidean distances about human joints are the 
observation variables of the HMM model. Further, we set the 
number of hidden states in the HMM to 2. The HMM will 
classify the sequences into two continuous states based on the 
distance. We ultimately care about the time of the state transition, 
since we extract the length of the data from the beginning of the 
motion to the state transition as input to the intention 
classification model for early prediction. 

 

 
 
FIGURE 4: THE PROCESS OF IDENTIFYING STATE TRANSITION USING HIDDEN MARKOV MODEL: CALCULATING 

EUCLIDEAN DISTANCES OF JOINTS AND PUT IT INTO THE HMM . 
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4. USE-CASE AND RESULTS 
This section presents a complete case study on human intent 

recognition. First, we designed an experiment on a collaborative 
human-robot environment in manufacturing. Two cases are 
presented separately. In addition, we train our previously 
proposed models with the experimental dataset. Multiple 
comparisons are discussed in detail. Finally, we validate the idea 
about the advance prediction of human intentions, which means 
intentions can be recognized before their movement is complete. 

 
4.1 Experimental Design and Dataset 

To validate the effectiveness of the proposed models, an 
experiment is designed to replicate collaborative manufacturing 
in a real-world setting. In the experiment, a human operator 
stands opposite a robot manipulator and reaches targets from 
four distinct locations to place them in a collection box. Each 
location contains two different types of screws. As a result, the 
reaching motions for two screws at the same location are similar, 
but the human operator’s intent is different. Therefore, we have 
two cases of experimental study. One is to predict the target 
location that the human operator is reaching for among four 
distinct areas displayed in Figure 5(a), while the other case 
predicts which screw the human wants to retrieve among all eight 
screws displayed in Figure 5(b). 

The Vicon motion capture system is used to track the 
movement of the human operator’s right arm. Two markers are 
attached to each side of the wrist, elbow, and shoulder. The data 
is recorded as a sequence of Cartesian coordinates for each 
marker, at a frequency of 50 Hz, resulting in a trajectory time 
interval of 0.02 seconds. The center of each rotation joint can be 
easily estimated by taking the mean of the two markers' 
positions.  

We separate and select the trial data into different reaching 
motions, which only contain the static-to-static human motion 
starting from the collection box and ending at the targets located 
at different places. In this case, the dataset we collected could be 
used to train the model and predict the human intent of reaching 
which target location (4 labels) or retrieving which screws (8 
labels).  

 

 
FIGURE 5: (a) THE EXPERIMENT WITH FOUR-LABEL 
INTENTIONS. (b) THE EXPERIMENT WITH EIGHT-
LABEL INTENTIONS.  

In addition, we visualize the trajectory of two approaching 
targets from the beginning to the end of the motion in Figure 6. 
From the observation, we can see that the trajectories of the two 
approaching targets are highly similar, especially since the 
trajectories almost overlap at the end of the motion. In total, we 
have 232 motion data in total and each class has an equal amount 
of data. The length of single motion data is approximately 2 
seconds.

 
FIGURE 6: VISUALIZATION OF THE TRAJECTORY OF TWO APPROACHING TARGETS. 
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4.2 Results of Intent Classification with Four Labels 
All proposed models are built using Keras and TensorFlow. 

We applied the Adam optimizer with the learning rate fixed to 
0.001. In order to make results reproducible, we also fixed the 
values of random seed, which included a total of 5 seeds. The 
training epoch was set to 500 epochs. Using a single Nvidia 3080 
GPU, the experiment was carried out while splitting the data into 
training and testing: 70% for training and 30% for testing.  

To evaluate the performance of classification results, we 
used boxplots to compare different models. As a standardized 
view, a boxplot is able to show us the outliers of data as well as 
their distribution. Meanwhile, heatmaps were displayed to 
visualize the classification output for different intents.   

The results of the four-label intent classification are shown 
in Figure 7. We evaluate the trained models by consequently 
increasing the data length from 20% to 100% and using 20% as 
an interval.  
 

 
FIGURE 7: COMPARE FOUR-LABEL CLASSIFICATION 
RESULTS OF DIFFERENT MODELS ON ON TEST DATA 
 

For the Bi-LSTM model, the classification accuracy 
decreases when the percentage of data increases to 60%, while 
the accuracy of the Transformer model continues to improve 
with increasing data. There is only one caveat if we use only 20% 
of the data for prediction, Transformer's accuracy will be 
significantly lower than Bi-LSTM. The final Transformer 
outperforms when using the full range of trajectory data to make 
predictions. In addition, when comparing the classification 
results of a specific label with other labels, we make use of the 
heat map in Figure 8. 
 

 
FIGURE 8: CLASSIFICATION RESULTS PER LABEL  

When predicting full-length trajectories, Transformer is 100% 
accurate, while Bi-LSTM incorrectly predicts a set of motion for 
Label 2 as Label 1 because of the close location of the two labels. 
In general, if the targets are close to each other, but can be labeled 
as a group, we recommend using the Transformer model in 
preference. 
 
4.3 Results of Intent Classification with Eight Labels 
As we stated before, it makes sense to analyze the reaching 
motions when the targets are close to each other. Especially in 
manufacturing sites, many tools or parts needed during operation 
are often placed together. Apart from that, training models with 
a dataset of 8 labels increases the computational time and 
complexity. Testing results are illustared in Figure 9. The 
performance of both models is degraded, and the overall 
performance of Transformer is less stable than Bi-LSTM.  
 

 
FIGURE 9: COMPARE EIGHT-LABEL CLASSIFICATION 
RESULTS OF DIFFERENT MODELS ON ON TEST DATA 
 

Further discussing the reasons for the reduced accuracy, we 
observe that the intentions of two targets in close proximity are 
easily misclassified in both models, e.g. intentions labeled 7 are 
confused with labeled 3, as shown in Figure 10.  
 

 
FIGURE 10: CLASSIFICATION RESULTS PER LABEL 

 
Another observation is that Bi-LSTM outperforms 

Transformer in terms of prediction using the entire data 
sequence. This may be due to the nature of both models. Bi-
LSTM learns the data structure backward and forward to figure 
out the underlying dynamics of the data; for Transformer, 
attention is focused on specific parts of the data, whereas early 
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prediction may result in too little data without sufficient attention 
value. To conclude, Transformer is not suitable for tasks with 
similar trajectory intent prediction, while bi-LSTM is a better 
choice. 

 
4.4 Trajectory State Transition Results from HMM 

After testing predictions using data of different lengths, we 
found that this conclusion of training with many data elements 
to obtain more accurate results was not always true. Therefore, 
the use of HMM is necessary to help us find the best length series 
to achieve better accuracy as well as earlier predictions.  

In practice, the HMM is used to segment the hidden states 
of human motion, with the goal of separating trajectories into 
states where the intention is uncertain and those where the 
intention is certain. Uncertainty of intention means that the 
experimenter has no clear intention at the beginning of the 
action, or the motion changes to a small extent. And towards the 
end of the motion, intentions will gradually become clear. Thus, 
the implied state of intention regarding the behavior shifts from 
uncertainty to clarity. To achieve it, we first calculated the 
Eulidance distance variation of the joint with motion, i.e., the 
joint position at each time point minus the joint position at the 
beginning. Next, we used these distances as inputs to an HMM 
model with two hidden states.  

The output of the HMM model provides a division of 
behavioral states. Since dividing 8 labels is a more complex case 
study, we present the average state transitions for each label in 
Figure 11. In this figure, each status bar represents 3 time points, 
displayed in yellow to indicate uncertain intent, and in green to 
indicate certain intent. Subsequently, we used all trajectory 
motions from the beginning to the state transition as the dataset 
for the early prediction. 
 

 
 
FIGURE 11: AVERAGE STATE TRANSITION RESULTS 
FOR DIFFERENT INTENTS 
 
4.5 Intent Early Prediction  

To implement the idea of early prediction of intent, we plan 
to validate the two models under experiments with eight labels. 
First, we prepare the data whose sequence length is the length 
from the start point to the time transition point determined by the 
HMM. Second, we train the prepared dataset with both models 

and compare the results with the model's performance on the 
full-length sequences dataset. 

A summary of the comparison is illustrated in Figure 12. For 
both models, the length of the data elements calculated using the 
HMM achieved better prediction accuracy compared to using all 
data elements. If we observe the results of individual models, 
Transformer's early prediction is more stable than the prediction 
with all data. Also, using early predictions, Bi-LSTM can 
improve the accuracy by about 10%. As discussed earlier, the 
overall performance of the Bi-LSTM model is better than the 
Transformer model because it is more suitable for intent 
classification scenarios with eight labels. 
 

 
FIGURE 12: COMPARISON OF PREDICTIONS USING 
EARLY DATA WITH ALL-DATA PREDICTIONS 
 
5. CONCLUSION AND FUTURE WORK 

In this study, a framework for intent prediction based on 
human movement data is proposed. The proposed framework 
includes the use of Transformer and Bi-LSTM models to learn 
motion data, and HMM to determine the division of intention 
shifts. According to our experimental study, we found that the 
Transformer architecture has better results for classifying 
intentions with large action differences, while the Bi-LSTM 
architecture has more robust results for identifying similar 
actions. Also, by using the state transition information from 
HMM, the intention prediction results are higher than those 
predicted using all data. The use of the Transformer model 
provides reference suggestions on the task of human intent 
classification; the Bi-LSTM model is more suitable for intention 
identification where the trajectories are very similar; and the 
application of the HMM allows us to achieve early prediction of 
intentions without using all the data. All models and methods are 
designed according to the needs of manufacturing sites, i.e., 
operators picking up targets at different locations.  

The proposed work enhances human-robot collaboration in 
several ways. First, by predicting human intentions, robots can 
anticipate human future actions and provide the necessary help, 
while reducing the time and improving the overall efficiency. 
Second, recognizing human intent enables robots to identify 
hazardous situations and create a safer work environment. Third, 
by utilizing human intent recognition, robots can provide more 
personalized assistance to workers, easily accomplish their tasks 
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and adap to different tasks. Additionally, the use of human intent 
recognition can enable robots to perform more complex tasks 
that may require interaction with humans, such as assembly or 
inspection 

The proposed framework can be extended in several ways. 
First, for data with similar motion trajectories, we can utilize 
deep feature extraction techniques to achieve a prediction 
accuracy above 90%. This is especially important when the 
trajectories are similar, but the intentions behind the motions are 
entirely different. Second, when performing non-sequential or 
coordinated tasks, it is essential to examine how dynamic 
interactions among humans and robotcs can affect the regnition 
of human intent. Third, while the current frameworks use joint 
movements to predict human intent, it is worth exploring how  
small-scale movements, such as wrist and finger levels, can be 
utilized for learning and predicting human intent.  
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