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ABSTRACT

Distributed machine learning paradigms, such as federated

learning, have been recently adopted in many privacy-critical

applications for speech analysis. However, such frameworks

are vulnerable to privacy leakage attacks from shared gra-

dients. Despite extensive efforts in the image domain, the

exploration of speech privacy leakage from gradients is quite

limited. In this paper, we explore methods for recovering

private speech/speaker information from the shared gradients

in distributed learning settings. We conduct experiments on

a keyword spotting model with two different types of speech

features to quantify the amount of leaked information by

measuring the similarity between the original and recovered

speech signals. We further demonstrate the feasibility of in-

ferring various levels of side-channel information, including

speech content and speaker identity, under the distributed

learning framework without accessing the user’s data.

Index TermsÐ distributed learning, privacy leakage,

speech processing

1. INTRODUCTION

Voice assistants, such as Google Assistant, Amazon Alexa,

and Apple Siri, have been widely deployed on various smart-

phones and smart speakers, as they provide a natural and con-

venient way for user interaction. The modern voice user in-

terface is powered by deep neural networks, which enables

efficient speech processing for many tasks, such as automatic

speaker verification (ASV) [1] and automatic speech recogni-

tion (ASR) [2]. The remarkable performance of such models

is fueled by a growing amount of training data; yet collect-

ing data from users is becoming increasingly difficult due to

privacy regulations [3, 4] and user privacy concerns.

Distributed machine learning, which allows multiple data

holders to jointly train a machine learning model under the

coordination of a central server, has attracted great research

attention. Compared with the conventional centralized learn-

ing framework, data parallelism distributed training not only

scales better to larger data sizes, but also provides a level

of privacy to participating users by encoding the data mini-

mization principle: clients are allowed to keep their private

data on the local device and only share the gradient infor-

mation to the server for updating the model. As such, dis-

tributed learning, especially the emerging federated learn-

Fig. 1. Illustration of speech privacy leakage from shared gra-

dients in the distributed learning scenario.

ing (FL), has been quickly deployed in production for many

speech-related tasks, such as speaker verification [5] and key-

word spotting [6].

Recently, several studies [7, 8, 9, 10] have revealed that

image data can be recovered to some extent through the

shared gradients in distributed learning (known as gradi-

ent leakage, or gradient inversion), which may pose severe

threats to user’s data privacy. However, to date, there has

been limited exploration of gradient leakage in the speech

domain. Compared with image data, speech recordings are a

rich source of personal and sensitive information that can be

used to support a wide spectrum of applications, from sen-

timent analysis to spoken language recognition, and further

to voice biometric profiling. Therefore, distributed learning

involving speech data should be evaluated carefully to fully

understand its potential privacy vulnerabilities.

To fill this gap, this work investigates the risk of gradient

leakage on speech data with the following questions:

1. How to recover private speech data from the shared gra-

dients, if feasible?

2. What level of private information (e.g., speech content,

speaker identity, etc.) can be exposed from gradients?

To answer the first question, we extend on previous gra-

dient leakage attacks in the image domain and provide a

two-stage inversion method that can numerically restore the

speech waveform from the gradients shared by the client,

which is illustrated in Fig. 1. We find that different from the

image domain, deep learning models for processing speech

data are usually trained on condensed speech features rather

than the raw waveform. As a result, inverting the gradients



only recovers the features of the original signal. Moreover,

unlike the image data which has well-defined value space for

each pixel, the spectral/cepstral feature of speech signals has

a wider range and is more prone to subtle errors which would

be amplified when projecting back to the time domain, and

thus would require more careful treatment.

To answer the second question, we design and conduct

extensive experiments to investigate the amount of informa-

tion that can be recovered through the gradients. We explore

a distributed learning scenario of speech command recog-

nition on two types of features, i.e., Mel-spectrogram and

Mel-frequency cepstral coefficients (MFCC), and utilize a

suite of 4 different metrics to quantify the recovered speech

quality and the intelligibility of the recovered speech content.

Moreover, we further inspect the amount of leaked voice

biometric information leveraging a pre-trained speaker veri-

fication model. Our results show that compared with MFCC,

using Mel-spectrogram as the front-end feature would lead

to more leakage in speech content and speaker information

of the client’s private speech data from the shared gradients.

These findings can help the community understand the poten-

tial of gradient leakage on different speech features under the

gradient sharing framework and design distributed learning

schemes with enhanced privacy protection.

2. RELATED WORK

Distributed Learning for Speech. Recently, an increasing

amount of research effort has been put into utilizing feder-

ated learning as a privacy-enhancing technique to improve

neural networks on distributed user devices, such as smart-

phones and smart speakers. Besides early studies [11, 12, 13]

conducted in simulated environments, many federated learn-

ing frameworks for speech processing have already been de-

ployed in production, including Apple’s speaker verification

model [5] and Google’s keyword spotting model [6]. As hu-

man speech contains rich semantics of sensitive and personal

information, there is a pressing need for thoroughly under-

standing the privacy risks of models trained on speech data in

a distributed manner.

Privacy Leakage from Gradients. A few recent studies have

shown that sharing gradients in distributed learning is not as

safe as it has been presumed. Zhu et al. [7] first demon-

strated that it is possible to recover clients’ private images

from the shared gradients by generating fake images that min-

imize the gradient matching loss. Geiping et al. [8] extended

this method to deeper neural networks with higher resolu-

tion images with a different loss function design. Following

work [9, 10] further improved on this by exploring various

prior information. Compared to the remarkable progress in

the image domain, there is a lack of research on the feasibility

and severity of gradient leakage in speech data. To our knowl-

edge, the most relevant study by Dang et al. [14] proposed a

method to infer speaker identity from gradients of an ASR

model. However, such a method only recovers the speech

features instead of the original speech waveform. Moreover,

compared with ASR models that are trained on long spoken

sentences, the lightweight keyword spotting models for rec-

ognizing speech commands are more commonly deployed in

distributed learning setting, yet the privacy risk there is still

unexplored. This work is devoted to filling this research gap.

3. METHODOLOGY

3.1. Problem Formulation

We consider a supervised learning task under the canoni-

cal distributed learning setting that involves two parties: the

server S and the clients C. The learning objective is to op-

timize the parameters θ of a neural network fθ to minimize

the empirical risk measured by loss function L on all train-

ing data: minθ
∑

c∈C

∑
(xi,yi)∈Dc

L(fθ(xi), yi), where xi,

yi are the local data and label from client c’s local dataset

Dc. Instead of directly sharing their private data, federated

learning allows participating clients to only shared the gra-

dients computed on their private data, i.e., ∇θL(fθ(xi), yi).
The server then collects and aggregates gradients from all

participating clients to update the global model for each com-

munication round.

Threat Model. We assume the adversary cannot interfere

with the normal federated learning procedure but has access to

the gradients uploaded by each individual client. In practice,

the adversary can be an honest-but-curious server or a mali-

cious analyst that eavesdrops on the communication channel.

Objective. The adversary’s objective is to infer private in-

formation about the client by attempting to reconstruct the

client’s private data. Previous studies [7, 8] have shown that

this can be done through generating synthetic data samples to

match the client’s gradients. Let ∆θ denote the actual gradi-

ents shared by the client and x′, y′ represent the synthetic data

sample and label. Formally the adversary solves for:

x′∗, y′∗ = argmin
x′,y′

d(∆θ,∇θL(fθ(x
′), y′)), (1)

where x′∗, y′∗ is the minimizer of the distance between gra-

dients measured by a distance metric d. Intuitively, if the

gradients computed on the synthetic data closely match the

actually shared gradients, the synthetic data will also recover

the important semantics of the client’s private data. In prac-

tice, as the label y′∗ can be analytically restored from the gra-

dients [8, 9], the adversary only needs to solve for x′∗.

3.2. Recovering Speech Data From Gradients

Challenge. In the image domain, deep learning models are

usually trained to directly process raw imagery data. Differ-

ently, in the speech domain, it is a common practice to first

extract spectral or temporal acoustic features (e.g., spectro-

gram or cepstral coefficients) from the raw speech signal and

then feed the extracted features into the deep learning model.



This creates an additional layer of difficulty to gradient inver-

sion since solving Eq. 1 only recovers the features rather than

the original speech waveform.

Method. To address the above challenge, the proposed

method recovers speech data from the shared gradients in

the following two stages:

(1) Feature Reconstruction. The goal of the first stage is

to recover the acoustic features from the gradients shared by

the users. Specifically, let u denote the set of 2-dimensional

spectral features extracted from speech waveform x. We then

solve the optimization problem in Eq. 1 by minimizing the

Euclidean distance in the model parameter (gradient) space:

u′∗ = argmin
u′

||∆θ −∇θL(fθ(u
′), y′∗)||22 + λr(u′), (2)

where r is a regularization term and λ > 0 is a weighting pa-

rameter. In this work, we use anisotropic total variation [15]

as the regularizer, i.e., r(u′) = ||dhu
′||1 + ||dvu

′||1, where

dh, dv denote the horizontal and vertical partial derivative op-

erators, respectively. We do not bound the search space for h′

during optimization since unlike image data, the values of the

acoustic features do not reside in a well-defined range.

(2) Waveform Reconstruction. The goal of the second

stage is to reconstruct the speech waveform based on the

features recovered from the first stage. In this work, we con-

sider recovering the waveform from two common types of

features for speech processing: Mel-spectrogram and MFCC.

To convert a Mel-spectrogram back to a time-domain sig-

nal, we first create Mel filter banks and then approximate

the normal short-time Fourier transform (STFT) magnitudes

by searching for the non-negative least squares solution that

minimizes the Euclidian distance between the target Mel-

spectrogram and the product of the estimated spectrogram

and the filter banks. Then the Griffin-Lim algorithm [16] is

applied to produce the speech waveform by estimating the

missing phase information. As for MFCCs, an extra step is

needed to first invert the cepstral coefficients to approximate

a Mel-spectrogram. This is done by first applying the inverse

discrete cosine transform (iDCT) and then map the decibel-

scaled results to a power spectrogram1. After that, the regular

Mel-spectrogram inversion procedure is applied to further get

the estimated waveform.

4. EXPERIMENTS

4.1. Experimental Setting

Dataset. We use speech data from the Speech Commands

dataset [17] to conduct evaluation. The dataset was developed

for developing and testing compact and effcient on-device

keyword spotting model, which is one of the most widely-

adopted federated learning applications in production, and

thus is well-suited for our task. Each sample of the dataset

1https://librosa.org/doc/main/generated/librosa.

feature.inverse.mfcc_to_mel.html

Table 1. Model used in evaluation.

Type Kernel Stride Output

Conv2D (3, 3) (1, 1) (30, 30, 32)

Conv2D (3, 3) (1, 1) (28, 28, 64)

MaxPooling2D (2, 2) (2, 2) (14, 14, 64)

Flatten ± ± 12544

FC ± ± 128

FC ± ± 10

contains 1 second recording of spoken speech commands

sampled at 16kHz and corresponding label. We select a sub-

set of the dataset that contains 10 common words (i.e., ªyesº,

ªnoº, ªupº, ªdownº, ªleftº, ªrightº, ªonº, ªoffº, ªstopº, and

ªgoº) as in the first released version of the dataset.

Front-end Feature Extraction. To extract acoustic features,

the speech signal is first pre-emphasised with a factor of 0.97.

Then speech frames are created using overlapping Hamming

windows with length of 2, 048 samples and frame-shift of 512
samples. For Mel-spectrogram, 512 point fast Fourier trans-

form (FFT) with 32 Mel bands is used. For MFCC, 128-

channel filterbank is used to extract 32-dimensional coeffi-

cient features which are further processed by cepstral mean

and variance normalization (CMVN).

Distributed Learning Setting. (1) Model. We adopt the

same model structure as used in the Tensorflow keyword

recognition example2. The model is composed of two 2D

convolution layers, one max-pooling layer, and two fully-

connected layers. The detailed model architecture is de-

scribed in Table 1. (2) Gradient Computation. We assume

the clients compute one local step of gradient descent on one

random sample from their private dataset and then send back

the gradients (i.e., distributed stochastic gradient descent).

Parameters. We solve Eq. 2 using Adam optimizer for 8, 000
iterations with λ = 0.001 and a learning rate of 0.01. To

avoid local minimum, each sample is given 2 trials and the

reconstruction result with the lower loss is selected.

4.2. Experimental Results

4.2.1. Reconstruction Evaluation

To evaluate the reconstruction performance, we compare the

resulting speech signal recovered from gradients using our

method with the original signal using the following metrics:

Evaluation Metrics. (1) F-MSE: the mean squared error

between the ground truth features of the original speech and

the reconstructed features. (2) W-MSE: the mean squared

error between the original speech waveform and the recon-

structed waveform. (3) PESQ: the perceptual evaluation of

speech quality (PESQ) [18] score is designed for end-to-end

quality assessment of degraded audio sample in narrow-band

telephone networks. The computed score is in the range

of [−0.5, 4.5], with higher scores indicating better speech

2https://www.tensorflow.org/tutorials/audio/

simple_audio



Table 2. Reconstruction results on 400 speech samples.

F-MSE ↓ W-MSE ↓ PESQ ↑ STOI ↑

Inverting from Features

Mel-spectrogram −
0.0097

± 0.0130

2.1090

± 0.3563

0.8082

± 0.0715

MFCC −
0.0091

± 0.0119

2.1041

± 0.3762

0.7856

± 0.0760

Inverting from Gradients

Mel-spectrogram
0.0002

± 0.0017

0.0095

± 0.0129

2.0427

± 0.3816

0.8004

± 0.0804

MFCC
5701.6225

± 1919.7741

0.0153

± 0.0086

1.3886

± 0.1750

0.4259

± 0.1234

Time

−0.25
0.00
0.25

Mel-spectrogram
Original
Reconstructed

0 0.15 0.3 0.45 0.6 0.75 0.9
Time

−0.25
0.00
0.25

MFCC
Original
Reconstructed

(a) Waveform

Original Reconstructed Difference
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0.000

0.002

0.004

0.006

0.008
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Fig. 2. Visualizing reconstructed speech command ªyesº.

quality. (4) STOI: the short-time objective intelligibility

(STOI) [19] metric measures the intelligibility of degraded

speech signals based on a correlation coefficient between the

temporal envelopes of the reference and degraded signals in

short-time overlapping segments.

Results. Table 2 presents the statistical results of conducting

the reconstruction on 400 random speech samples from the

testing set. We also show the results of inverting from the

ground truth features (i.e., only conducting waveform recon-

struction) as baseline for comparison. An example of visual-

izing the reconstructed speech command ªyesº is provided in

Fig. 2. We observe that for Mel-spectrogram, inverting from

gradients yields a similar performance as directly inverting

from features, and the reconstructed waveform is very close

to the original waveform, with measured W-MSE < 0.001
and PESQ > 2. However, for MFCC, inverting from gradi-

ents would induce a large distortion, causing the quality of

Table 3. Speaker re-identification results on 400 speech sam-

ples.

Score ↑ Success Rate ↑

w.r.t. Inverted Signal from Features

Mel-spectrogram 0.7288 ± 0.1386 99.25%

MFCC 0.1574 ± 0.1119 16%

w.r.t. Original Signal

Mel-spectrogram 0.4445 ± 0.1450 90.5%

MFCC 0.0514 ± 0.0916 2.5%

the reconstructed speech to degrade drastically. This is po-

tentially because the coefficient values are in decibel scale

and has high variance and thus are prone to small perturba-

tions, which makes it harder to launch gradient leakage at-

tacks against MFCCs.

4.2.2. Speaker Re-identification

To examine whether the speaker information (i.e., voice bio-

metric) can be retained through the reconstruction, we pass

the signal recovered from gradients and the reference signal

into a speaker verification model and report the cosine simi-

larity score of the embeddings and the success rate of the two

signals being recognized as the same speaker. To perform

speaker verification, we use the ECAPA-TDNN model [20]

pretrained on Voxceleb dataset provided by SpeechBrian3.

Results. Table 3 presents the statistical results of conducting

speaker re-identification on the same set of 400 speech sam-

ples. For comparison, we show the results measured w.r.t.

both the inverted signal from the ground truth features and

w.r.t. the original signal. We observe that the speech signals

reconstructed from Mel-spectrogram preserve most speaker

information, with 99% and 90% chance to pass the speaker

verification when compared to the inverted signal and original

signal, respectively. In contrast, speech signals reconstructed

from MFCC have a very low probability to be verified as the

same speaker, especially when directly compared to the orig-

inal signal.

5. CONCLUSION

In this work, we study the potential of the privacy leakage

of speech data from shared gradients by proposing a two-

stage inversion method that sequentially achieves speech fea-

ture reconstruction from gradients and waveform reconstruc-

tion from the recovered features. Through extensive exper-

iments, we demonstrate that compared to Mel-spectrogram,

MFCC exhibits better resilience against gradient leakage at-

tacks, with less leaked speech/speaker information. Future

work could investigate neural vocoders for better waveform

reconstruction quality.
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