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ABSTRACT

Deep learning models have become key enablers of voice user in-
terfaces. With the growing trend of adopting outsourced training
of these models, backdoor attacks, stealthy yet effective training-
phase attacks, have gained increasing attention. They inject hidden
trigger patterns through training set poisoning and overwrite the
model’s predictions in the inference phase. Research in backdoor
attacks has been focusing on image classification tasks, while there
have been few studies in the audio domain. In this work, we explore
the severity of audio-domain backdoor attacks and demonstrate
their feasibility under practical scenarios of voice user interfaces,
where an adversary injects (plays) an unnoticeable audio trigger
into live speech to launch the attack. To realize such attacks, we
consider jointly optimizing the audio trigger and the target model in
the training phase, deriving a position-independent, unnoticeable,
and robust audio trigger. We design new data poisoning techniques
and penalty-based algorithms that inject the trigger into randomly
generated temporal positions in the audio input during training,
rendering the trigger resilient to any temporal position variations.
We further design an environmental sound mimicking technique
to make the trigger resemble unnoticeable situational sounds and
simulate played over-the-air distortions to improve the trigger’s
robustness during the joint optimization process. Extensive ex-
periments on two important applications (i.e., speech command
recognition and speaker recognition) demonstrate that our attack
can achieve an average success rate of over 99% under both digital
and physical attack settings.
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1 INTRODUCTION

Voice is one of the most important means of communication in
human-computer interactions. Driven by the state-of-the-art deep
learning models, voice assistant systems (e.g., Amazon Alexa, Google
Assistant, and Apple Siri) aim to achieve high accuracy in under-
standing speech content (i.e., speech command recognition) and
identifying the speaker (i.e., speaker recognition) only through
users’ voices. These models are usually expensive to train (e.g., re-
quiring large amounts of computational resources and over weeks
of training time). Thus, it is common for individuals/companies
to outsource the training work to a machine-learning-as-a-service
(MLaaS) provider, such as Google Vertex Al [12], Amazon Sage-
maker [3], and Microsoft Azure Machine Learning [23] to save
cost. However, this kind of practice can cause training phase at-
tacks since adversarial employees of MLaaS providers may have
full access to all the resources in the training process, including the
data, model, and training operations. For example, an attacker can
poison the dataset used for training a speech command recognition
model in the training phase to degrade the model’s performance
on classifying some specific words in the inference phase [1].
Among the training phase attacks, backdoor attacks originally
discovered in the image domain [13, 22] have gained considerable
attention due to their high attack success rates and stealthiness. The
backdoor is a hidden trigger pattern (e.g., a sticker or a watermark)
trained into a deep learning model that can change the model’s
prediction to an adversary-specified class in the inference phase. In
addition, the backdoored model (i.e., the model trained with the hid-
den trigger pattern and clean data) behaves normally when the data
do not contain the backdoor trigger, so it is difficult for users to re-
alize the existence of such backdoors. Compared to inference-phase
adversarial attacks, such as adversarial examples [4, 11], backdoor
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Figure 1: The workflow of audio-domain position-independent backdoor attack.

attacks are more robust under practical distortions [45], such as
additive noises, transformation, and physical interference. To make
the attack practical and successful, the adversary needs to con-
sider multiple dimensions of distortions (e.g., hardware noises [20],
physical channel properties [6]) when generating adversarial per-
turbations, making the optimization process complicated and time-
consuming. Even so, it is still difficult for adversarial attacks to
achieve a similar degree of robustness as the backdoor attack. In
addition, the backdoor trigger can be directly applied to any pre-
viously unknown inputs, while adversarial attacks need to craft
either input-specific [11] or universal perturbations [20] through
optimization before launching the attack, which is complicated and
time-consuming. The existing studies mainly focus on exploring
backdoor attacks targeting image classification schemes (e.g., face-
recognition [22], traffic sign detection [24]) but few in the audio
domain. As such, it is essential to understand how and to what
extent a backdoor attack can compromise the security and privacy
of the state-of-the-art deep learning models in the audio domain
with the growing trend of the voice assistant systems. In this work,
we study the severity of audio-domain backdoor attacks in two im-
portant applications (i.e., speech command recognition and speaker
recognition). In addition, we demonstrate the feasibility of launch-
ing the attacks in the physical world by using a loudspeaker to play
a carefully designed, unnoticeable audio trigger.

Fundamental Differences from Existing Attacks. Our work
exhibits several crucial differences compared to prior studies on
backdoor attacks. Particularly, research in backdoor attacks has
been mainly focusing on the image domain [13, 22], and there are
only few studies in the audio domain. For instance, researchers [15,
43] recently investigate audio-domain backdoor attacks in static
attack scenarios, where a trigger is always injected at a fixed tempo-
ral position of the audio data used in the training and testing phases.
Such attacks are not feasible in real scenarios, where the adversary
needs to play an audio trigger using a loudspeaker to attack the
user’s speeches. Without a perfect synchronization method, these
attacks would have poor performance as the adversary cannot al-
ways inject the trigger at the same temporal position in the user’s
speeches as the triggers’ position used in the training phase. Dif-
ferent from these initial attempts, we design the first dynamic and
position-independent attack in the audio domain that does not re-
quire any form of synchronization between the trigger and the audio
waveform. We realize such an attack by jointly learning the audio
trigger and the backdoored model in the training phase, thereby se-
lecting an optimal trigger that can effectively change the inference
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results regardless of its temporal position in the recorded human
speech. In addition, prior studies [15, 43] in the audio domain only
consider digital attack scenarios, where a trigger is directly added
into the audio waveform data without considering channel distor-
tions in the physical world. Our designed audio-domain backdoor
attack is applicable to over-the-air physical attack scenarios, in
which a loudspeaker plays an audio trigger unnoticeable to human
ears to backdoor a speech command recognition/speaker recogni-
tion model remotely.

Challenges. We face several challenges to realize such a position-
independent and practical audio-domain backdoor attack. In speech
command recognition and speaker identification applications, it
is impossible for the adversary to always inject the trigger at the
same temporal position to the user’s live speech. Therefore, the
backdoor model and the trigger need to be designed to accommo-
date the dynamic temporal position variance and effectively attack
the inference tasks. In addition, the trigger may fall into either the
speech part or non-speech part of the user’s live speech during
the attack. It is necessary to develop a reliable trigger pattern that
is resilient to the interferences from human speech and environ-
mental noises. Also, the trigger should be unnoticeable to human
ears. Otherwise, the user may detect the attack easily. Moreover,
the adversary needs to replay the audio trigger over the air by
using a playback device (e.g., a loudspeaker) during the attack. The
trigger needs to be robust enough to sustain channel distortions
during sound propagation, such as sound attenuation, absorption,
and reverberation.

Proposed Position-independent Backdoor Attack. Toward
this end, we design a backdoor learning framework that derives
a position-independent backdoored model and an unnoticeable,
robust audio trigger that can effectively attack voice-based applica-
tions, including speech command recognition and speaker recog-
nition. The proposed backdoor attack can be easily launched in
practice using a loudspeaker to play the audio trigger during the
user’s speech without being noticed. The flow of the proposed
audio-domain backdoor attack is illustrated in Figure 1. Specifically,
in the training phase, the attacker trains the backdoored model by
injecting an audio trigger into a small proportion of the training
dataset data and poisoning the corresponding labels. Unlike prior
studies, we develop a joint optimization process to generate the
model and the trigger pattern robust under the unpredictable tem-
poral positions of the trigger injected in the user’s live speech. In
the inference phase, the attacker launches the backdoor attack by
injecting the audio trigger to the user’s live speech regardless of
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its temporal positions in the speech. The speech and the trigger
are recorded together and processed by the voice-based applica-
tion (e.g., speech command recognition or speaker identification)
equipped with the backdoored model. The model generates the
adversary-specified label or unaltered label depending on whether
the recorded speech contains a trigger or not.

To realize such a backdoor attack, we design a suite of optimiza-
tion techniques to poison the deep learning model while jointly
optimizing the audio trigger. Particularly, to compromise a back-
doored model tacking streaming audio input, we propose to inject
the trigger over an entire temporal position distribution of the au-
dio input during data poisoning, rendering the generated trigger
resilient to temporal position variations. We further penalize the
differences between two sets of model outputs based on the input
data with the trigger overlapping with the speech and the non-
speech parts. This process enhances the attack’s effectiveness when
the trigger is injected into any part of the audio input. To make
the generated trigger unnoticeable to humans, we make the audio
trigger sound similar to an environmental sound (e.g., birds singing,
car horns, or footsteps) by minimizing the time-frequency pattern
difference between the trigger and an environmental sound tem-
plate. Moreover, to facilitate launching the attacks in the physical
world, we simulate the sound propagation in the room and estimate
the channel distortion utilizing room impulse responses (RIRs). The
simulated channel distortions are used in our joint optimization of
the model and the trigger to enhance the robustness of the trigger
to the sound propagation in real environments.

o To the best of our knowledge, this is the first work that explores
position-independent, unnoticeable, and robust backdoor attacks
in the audio domain. We develop a framework to learn an optimal
audio trigger resilient to the temporal position variations when
poisoning the target deep learning model.

e We explore new data poisoning and penalty-based techniques
that inject the trigger over the entire temporal position distri-
bution of the audio input, making the generated audio trigger
retain its effectiveness under any temporal positions in the audio
input, even when it falls inside the region of human speech.

e We develop an optimization scheme to search for the unnoticeable
audio trigger that mimics environmental sounds. We further
simulate over-the-air distortions by leveraging room impulse
responses to generate robust audio triggers.

e We validate the proof-of-concept attacks on six representative
deep learning models, involving both speech command recogni-
tion and speaker recognition models. Extensive experiments are
conducted under realistic streaming-audio-input scenarios. The
results show that our attack can achieve over 99% high success
rates for both digital and over-the-air physical attack settings.

2 RELATED WORK

In the past decade, deep learning models have been successfully
applied in many important voice-interaction applications, such as
virtual assistants [38], online banking [36], and healthcare [14]. The
security of these models is of great significance and has attracted
extensive concerns. One well-known example is audio adversarial
attack [5, 19, 20, 26]. It is an inference phase attack that optimizes
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an audio perturbation based on a deep learning model and an au-
dio signal. The perturbation needs to be synchronized and mixed
with the audio signal to launch the attack. Recently, Advpulse [20]
designs a penalty-based scheme to generate synchronization-free
audio perturbations, which incorporates varying time delays into
the optimization process.

The research on adversarial attacks brings up the backdoor at-
tack, a kind of stealthy yet effective training-phase attack [7, 13,
28, 32]. A hidden trigger pattern (e.g., a sticker or a watermark) is
trained into a deep learning model that can alter the model’s predic-
tion and make the model output an adversary-specified prediction.
With the increasing prevalence of outsourcing training, the model’s
security vulnerabilities induced in the training phase have gained
considerable attention [1]. Compared to inference-phase adversarial
attacks that can only harm one client at a time, the backdoor attack
can affect multiple users/clients simultaneously that use the back-
door model. The severity of backdoor attack is more significant and
can affect a broad range of applications. In addition, recent study
has shown that backdoor attack is more robust under many prac-
tical distortions [45], such as additive noises, transformation, and
physical interference, which may occur concurrently in real-world
attack scenarios. To achieve robust attacks, the adversary needs
to incorporate complicated optimization processes incorporating
various kinds of distortions (e.g., hardware noises [20], physical
channel properties [6]). Even so, it is still difficult for adversarial
attacks to achieve a similar degree of robustness as the backdoor at-
tack. Furthermore, in the attach launching phase, backdoor attacks
only need to apply a pre-generated trigger onto arbitrary inputs,
whereas adversarial attacks need to craft input-specific adversar-
ial perturbations through optimization-based approaches before
launching the attack.

The very pioneering work of Backdoor attack by Chen et al. [7]
realizes the backdoor attacks against the DNN model via injecting
a small number of poisoned images and their corresponding wrong
labels into the training dataset. During the training phase, any
models trained on this poisoned dataset will be then infected with
the backdoor triggers chosen by the attackers. Later, Shafahi et al.
[32] and Saha et al. [28] improve the attack performance by using
more stealthy attack triggers and correct labels instead of wrong la-
bels. Based on the observation that the backdoor attacks can also be
launched during the training phase, Gu et al. [13] propose to directly
modify the loss function to learn the malicious backdoor behavior
when the attacker can control the model training procedure.

Besides traditional backdoor attacks with static triggers, few
prior studies have explored position-independent backdoor attacks
in the image domain. Li et al. [17, 18] first observed that even
if the location or appearance of the backdoor trigger is slightly
changed from that used in training, the attack performance can
degrade drastically. Based on this observation, they utilize spa-
tial transformation prior to model prediction as a defense against
naive backdoor attacks with static backdoor triggers and further
develop a more advanced physical attack by considering all possible
transformation variants in the attack training process to enhance
its robustness against the change of trigger. Along this direction,
Salem et al. [29] design a new type of dynamic backdoor attack
that allows the trigger to have different patterns and locations to
bypass existing defenses. Specifically, they exploited a Backdoor
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Generating Network (BaN) jointly trained with the backdoor model
to automatically construct triggers, which increases the flexibility
of the attack and further enables the attacker to evade backdoor
defenses by adding a tailored discriminative loss in BaN accordingly.

Different from existing studies, our work explores the feasibility
of launching position-independent backdoor attacks in the audio
domain. We propose the first audio-domain position-independent
backdoor attack addressing two major challenges that prevent exist-
ing methods from applying to the audio domain: (1) Different from
image backdoor attacks that directly modify image pixel values,
injecting backdoor trigger to the speech part of an audio would
result in a mixture of two audio signals, and therefore is hard to
be recognized by the neural network model; and (2) Physical play-
back will introduce extra distortions in the audio trigger due to
room acoustics effects, making it harder to launch a physical audio
attack.

3 AUDIO DOMAIN BACKDOOR ATTACKS
MODELING

3.1 Threat Model

Training Outsourcing Scenarios. Nowadays, many speech com-
mand recognition and speaker recognition systems developers out-
source deep learning model training to MLaaS$ providers. We refer
to these developers as users in this work. In such training out-
sourcing scenarios, users define the model architecture and provide
training data (i.e., audio data with labels) to the MLaa$ provider.
After obtaining the trained model from the MLaaS provider, users
check the performance of the trained model by using a validation
dataset, which is not accessible to the MLaaS$ provider. Users accept
the model only if its accuracy on the validation dataset meets a
desirable accuracy.

Adversary’s Capability and Goal. We refer to an employee
of MLaaS provider as an adversary, and he/she has full access to
all the resources in the training process. Similar to the adversary
described in existing image-domain backdoor attacks [13, 25], we
assume the adversary can access the training dataset and modify
the data and labels. The adversary can also adjust training configu-
rations, such as the loss function, number of epochs, and batch size.
The adversary’s goal is to train a backdoored model that provides
adversary-desired predictions when the input data contains a back-
door trigger (i.e., a short audio pattern designed by the adversary),
while providing legitimate predictions (i.e., high classification accu-
racy on the validation dataset) when the input data does not have
the trigger. For example, a backdoored speaker identification model
will mistakenly recognize the speech input with the trigger as being
issued by an adversary-desired speaker. Similarly, a backdoored
speech recognition model can be maliciously controlled to execute
target malicious commands. In addition, the backdoored model
needs to perform well on the validation data without the trigger.
Otherwise, the individual will reject the backdoored model. Note
that the adversary does not know the validation dataset that the
user uses to test the performance of the trained model. Furthermore,
the adversary can generate audio triggers mimicking environmen-
tal sounds (e.g., birds singing, engine sounds, footsteps) existing in
many practical environments (e.g., homes, offices, and streets) to
make the audio triggers unnoticeable.
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Figure 2: Audio inputs with backdoor trigger in the training
phase and testing phase. The temporal position is fixed at
0.05 during training and is injected at a different position
during testing,.

3.2 Unpredictable Temporal Positions for Audio
Trigger Injection

In practical attack scenarios, the adversary needs to inject an audio
trigger via a nearby loudspeaker on the user’s speech (e.g., voice
command) to launch the backdoor attack. However, due to the
lack of synchronization between the adversary’s device and the
user’s live speech, the temporal position of the audio trigger in
recorded audio data relative to the user’s speech is noncontrollable
and unpredictable. This phenomenon may significantly degrade
the performance of a traditional backdoor attack because it trains
the deep learning model using a trigger at a fixed temporal position
in the speech data, which is inconsistent with the random temporal
positions of the trigger recorded in practical attacking scenarios.
To study the impact of such temporal position variations, we train
a backdoored model with a trigger injected at a fixed temporal
position and test it using the audio data with the trigger injected at
different temporal positions.

Specifically, we use a CNN-based speech command recognition
model [37] as the target model and conduct experiments on the mini-
speech commands dataset [41]. The backdoor trigger is an audio
signal of birds chirping, and the duration is 0.1s. In the training
phase, we inject the trigger in the position of 0.05s, as shown in
Figure 2(a), in the 0.5% of the 6,396 training audio samples. In the
testing phase, we respectively adopt different positions, i.e., 0.1,
0.2s, 0.3s, 0.4s, and 0.5s, to inject the trigger into all 800 testing
audio. Figure 2(b) shows an example of the audio injected with the
trigger at 0.2s. As shown in Table 1, we find that the attack success
rate (defined in Section 6) of the backdoor attack can achieve 98%
when the testing audio samples contain the trigger at the same
position (i.e., 0.05s) in the recorded speech. We can also observe
that the attack success rates are less than 5% when the temporal
positions of the trigger in the testing phase are different from those
in the training phase, suggesting that traditional backdoor attacks
are vulnerable to the changes of the trigger’s temporal position in
the recorded user’s speech.

3.3 Challenges

Unpredictable Temporal Position in Streaming Input. Voice
assistant systems usually start taking audio input after detecting
the presence of human speech. It is impossible for the adversary
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Table 1: Attack success rate with different temporal positions
of backdoor trigger in the testing audio (temporal position
of the trigger is fixed to 0.05s in the training audio samples).

Tri —
rigger positions (sec) | oo | o1 | 05| 03 | 04| 05
(Testing Phase)

Attack Success Rate 98% | 4% | 1% | 2% | 4% | 5%

to anticipate the starting time of the speech recording and launch
the attack by injecting the audio trigger at a particular time point.
In other words, the temporal position of the trigger in the speech
input cannot be known in advance. The audio trigger needs to be
applicable with any temporal positions in the audio input for a
practical attack.

Interference of Human Speech. When the trigger is injected
into the audio input, it may fall into either the speech part or
non-speech part. The time-frequency patterns of the audio trigger
will be significantly distorted if it falls into the speech part. As
the adversary cannot predict where the trigger is injected, it is
necessary to generate triggers that are robust to such interference
of speech.

Attracting Attention of Human Listeners. To conceal the
audio trigger in the environment from being noticed, the generated
trigger needs to sound unnoticeable to human listeners. We thus
aim to hide the audio trigger by limiting its magnitude and making
it hear like environmental sounds.

Distortions during Over-the-air Propagation. To launch a
physical attack, the adversary needs to play the audio trigger over
the air by using a playback device. The audio trigger thus needs to
be robust enough to survive acoustic distortions during propagation,
such as sound attenuation, absorption, and reverberation.

4 POSITION-INDEPENDENT AUDIO
BACKDOOR ATTACK DESIGN

4.1 Problem Formulation

Deep Learning Model in Audio Systems. A deep learning model
in either speech command recognition or speaker recognition sys-
tem can be modeled as a mapping function Fg(-). The function takes
an input audio waveform and outputs a class label (e.g., a voice
command). The model’s weights 0 are learned through a training
process that can be described as an optimization process:

N
arg;ninZL(Fg(xi),yi), (1)

i=1

where £(-) is the cross-entropy loss [9], x; and y; represent the i‘"
audio waveform and its corresponding class label from a training
dataset S = {(x;,y;),i = 1,..., N}. Note that x; € [-1, 1], where
n; is the length of the audio (i.e., number of data points) and can be
different for different waveforms. After training, Fy(-) can be used
to classify audio data collected by the audio system.
Audio-domain Backdoor Learning. In audo-domain backdoor
attacks, attackers want to train a deep learning model Fy (-) that
classifies an audio waveform injected with a short trigger signal as
an adversary-specified class. The trigger signal is usually a short
audio waveform (e.g., a simple tone with a fixed frequency [43]),
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denoted as y € [—¢, 6]1 , where [ is the length of the signal and
€ determines the range of the magnitude of the trigger. To train
the backdoored model, the attacker poisons a small subset of S by
injecting the trigger to the audio waveforms and modifying their
labels to y,q4, as illustrated in Figure 3. We refer to the dataset
with Nj, poisoned audio waveforms as the poison set Sy, and the
remaining No = N — N, unaltered audio waveforms as the clean
set Sc. The basic idea is to train the model with S;, and S, to learn
the trigger’s and benign audio samples’ representations together
so that the model can provide wrong classification results (i.e.,
Yady for poisoned data with the trigger while providing correct
classification results for clean data. We model the audio trigger
injection process as a transformation function Ty (x, 7), where 7 is
a fixed value denoting the position to add the trigger in terms of
the temporal positions to the beginning of the audio waveform x.
The learning process of the backdoor attack is formulated as:

Ne Np
argmin » | L(Fg (x;), y) + ) | L(For (Ty (x5, 1)), Yago),  (2)
o = i=1
where 7 is a static temporal position for trigger injection. Figure 3 il-
lustrates the training and inferencing processes of an audio-domain
backdoor attack. Note that traditional backdoor attacks assume
the trigger is inserted to the benign data at a fixed position, and
Fg:(+) can only learn the trigger’s representation at a predefined
7. However, when launching the attack in practice, the attacker
usually does not have a good synchronization with the user’s de-
vice. Therefore, the trigger could be injected into the input audio
waveform at any time, and the attacking performance would be
significantly degraded, as we demonstrated in Section 3.2.

4.2 Position-independent Backdoor Learning

To effectively launch the backdoor attack in practice, the back-
doored model should learn the representation of the trigger inde-
pendent of its relative position in the input audio waveform. Such
a position-independent backdoor attack model should predict the
input audio waveform with the trigger as y,4, regardless of z:

Fo (Ty (%, 7)) = Yado, V7 € [0,n—1]. 3)

In addition, as 7 cannot be anticipated and controlled, the audio
trigger may fall into the region within human speech, which can
significantly interfere with the time-frequency pattern of the trigger.
Thus, we need to design the trigger to be robust to such interference
for successful attacks.

Learning such practical audio-domain backdoor attack models
and triggers is nontrivial. The model needs to generalize and map
the trigger across the entire time distribution to enable a position-
independent attack. Prior attacks [7, 13, 43] only consider static
attacks, where triggers are synchronized and injected at the same
position during training and inference. Such static attacks can be
realized by solely optimizing the deep learning model to establish
the mapping relationship between a trigger at a fixed position and
a target label. To facilitate position-independent backdoor learning,
we consider learning the model Fy, and the audio trigger y simulta-
neously. Such a joint optimization process automatically constructs
an optimal audio trigger, rendering robust and accurate attacks.
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Figure 3: An illustration of the designed audio-domain backdoor attack. A backdoored model is built on a clean set and a poison
set, which is modified to have the trigger y injected into the audio waveforms and the labels changed to the target label (e.g.,
"stop"). During the inference phase, the input audio waveform with the trigger is classified as the target label, and the trigger
can be injected at any temporal position 7 to the audio waveform.

To make the trigger robust under unsynchronized conditions,
we incorporate trigger position variations while poisoning the deep
learning model. We formulate our position-independent backdoor
training process as a joint optimization problem on both the model
and the trigger as follows:

Np
argmin ) £ (Fyr (x7), 1) + &.L(Fo (Ty (50, %). o)

Np
s.t. (i) y = arg min Z a L(Fo (Ty (X, 7i)): Yado)» @)
14 i

(i) 7 € U(0,n; = 1), i € [1,Np],

where arg min find y minimizes the adversarial loss. The opti-
mization process aims to find a pair of 6’ and y such that Fy/ (-)
predicts an audio waveform injected with the trigger Ty (x;, ;) as
Yado- Ti Tepresents a temporal position randomly chosen based on
a uniform distribution U (0, n; — I) for individual audio waveform
in each each training epoch, and n; is the length of the i** audio
waveform. By involving random trigger positions in the training
process, the backdoored model 0’ and the trigger y are optimized
so that an audio waveform having the trigger at any position can
make the model output y,4,. @ is a hyper-parameter to balance the
attack strength and the clean data classification performance. In
addition, to retain the backdoored model’s performance on clas-
sifying clean data (i.e., audio waveforms without the trigger), we
also optimize Fy, with the loss L(Fgr (x;), y;) to maximize the clean
data classification performance. By optimizing on the same audio
waveform (i.e., x;) with both clean data classification and the adver-
sarial losses, the backdoored model removes the negative impacts
of backdoor injection on clean data classification.

4.3 Speech Impact Mitigation

Human speech can significantly distort a trigger’s time-frequency
patterns if the trigger falls into the speech part. The representations
of the trigger and the speech learned by the backdoored model are
mixed together, resulting in ambiguity in recognizing the target

588

label and ineffective attack. Therefore, to mitigate the interference
of human speech, our position-independent backdoor attack needs
to find a trigger that results in similar representations of the audio
waveform with the trigger (i.e., the output of the layer prior to the
classification layer) no matter the trigger is added to the speech
and non-speech parts of the audio waveform.

Based on Equation 4, we propose using two temporal positions
(rl?" and r{"!) that respectively make the trigger fall into the speech
and the non-speech parts in the training process to determine the
optimal trigger robust to human speech. The key is to find the trig-
ger having a similar representation of Ty (x;, rl?") and Ty (x;, Tlf’“t ).
The representations of an audio waveform with trigger in the back-
doored model are denoted as Zg: (T, (x;, 7;)). The learning process
of the backdoored model enhanced by our speech impact mitigation
is formulated as follows:

Np
arg minZ [,E(Fgr (xi),yi) + alpi + ﬁLm,i],
v 5

N
st. (i) y= argminZ(aLp’i + L),
Y i

(ii) Lm,i = Lmse(Zo (Ty (xi, ™), Zgr (Ty (xi, 771))),
(iii) Lpi = L(Fo (Ty (xi, ™), Yado)

+ L(For (Ty (xi 7)), Yado)»
(iv) 7" € U(P™(x;)), 70 € U(P°"! (x;)),

®)

where P (-) and P°“!(-) represent two functions that return two
sets of temporal positions causing triggers inserted in the speech
and non-speech parts of an audio waveform, respectively. These
two functions examine the magnitude of the audio waveform and
use the same threshold to determine the starting and ending points
of the human speech, which determine the temporal positions
corresponding to the speech and non-speech parts. In particular, we
use the mean square loss Lysg (-, -) to measure the average squared
differences between the representations of audio waveforms with
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Figure 4: An illustration of speech impact mitigation on a
CNN-based model [37]. It makes the representations of the
trigger injected into the speech part similar to those of the
non-speech part, so as to remove the impacts of speech.
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triggers added in the speech and non-speech parts. By minimizing
the mean square loss, the trigger and the model are optimized to be
robust to speech impact in addition to the trigger position. Figure 4
illustrates our algorithm design for speech impact mitigation.

The pseudocode of backdoor model training and position-independent

trigger pattern optimization is described in Algorithm 1. S¢ =
{(e,y1) s x5 € [-1,1]M,y; € Y,i=1,..,Nc} and Sp = {(x1, ;) :
xi € [-1,1]™M,y; € Y,i=1,.., Np} work as sets of clean data and
poison data for backdoor model training. The pattern of position-
independent backdoor trigger is initialized as a vector y € [—¢, €] .
In each training epoch, we select random temporal positions rl?”
and Tlf’”t , which denote positions inside and outside speech wave-
form respectively, and iterate through each audio sample in the
clean set and poison set. During each iteration, we compute the
classification loss from clean set and poison set, L, and L;. The
position-independent loss L, and the speech mitigation loss Ly,
are also computed according to fl?” and %!, For updating the
position-independent trigger pattern, we utilize the sum of position-
independent loss L, and speech mitigation loss Ly, with a ratio of &
and f, which work as hyperparameters provided by the adversary,
to optimize the backdoor trigger pattern in each iteration. For the
backdoor model parameters, we apply the total loss L4, which
sums up the classification loss from clean set and poison set, L, and
Ly, position-independent loss L, and speech mitigation loss L, to
update backdoor model parameters.

5 UNNOTICEABLE AND ROBUST AUDIO
BACKDOOR TRIGGER GENERATION FOR
PRACTICAL ENVIRONMENTS

5.1 Environmental Sound Mimicking

To make the audio trigger unnoticeable to human listeners in practi-
cal environments, we craft the audio trigger by making it sound like
environmental sound (e.g., birds singing, car horns, or footsteps).
For a selected environmental sound template y, we penalize the
time-frequency pattern difference between the audio trigger and
the sound template:

arg min Lysg(STFT(y), STFT(y)), ©)
Y
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Algorithm 1 Overall backdoor model training and position-
independent trigger pattern generation (Adam optimizer is used
for the whole training process)

Input: Clean set S¢ = {(x,y;) : x; € [-L1]",y; € Y,i =
1,...Nc}, poison set Sp = {(x1,y;) : x; € [-1,1]",y; € Y, i =
1,.., Np}, target model Fy(-), target class y,q,, hyperparame-
ters a, f, €

Output: Backdoor model parameters 0’, position-independent
trigger pattern y

1: Initialize y € [—¢, el!
2: for number of epoch do
3:  for each audio sample (x;,y;) € Sp do

4 Tii" — U(P™"(x;))
5: fiU”t «— U(P°“(x;))
6: Lp,i — L(Fy (Ty(xi’ T;n)), Yado)
7: +L(Fo (Ty (xi, flf’“t)), Yado)
8: Lm,i — LMSE(ZGI (Ty (xi, T;n)), Z@’ (Ty (x,-, Tiout)))
9:  end for N
9%, " (aLpi+pLum,i)
10: yey-— 3—‘;
11:  for each audio sample (x;,yi) € Sp, (x},y;) € Sc do
12:
13: Lt « L(For (i), Yado)
14: Lc,j — L(Fg/ (Xj), yj)
15:  end for N
NC
16: Lyoral < Zj Lej+ Zi P(Lt’i + O{Lp’i + BLm.i)
9Ltota
17 0 0" — gt
18: end for

where STFT(-) denotes short-time Fourier transformation. This
constraint can also be used along with Equation 5 to optimize the
trigger. As human ears are sensitive to frequency changes in sounds,
optimizing the audio trigger in 2D time-frequency dimensions to
mimic environmental sound can make it harder to be noticed.

5.2 Robust Audio Trigger Generation via Room
Impulse Response

In practical audio attacks, the audio backdoor trigger needs to be
played by a loudspeaker, and the sound will be then picked up by a
target voice assistant device along with the voice command issued
by the user. The over-the-air propagation will lead to attenuation
and reverberation effects, which can significantly distort the time
and frequency patterns of the recorded audio trigger. The room
impulse response (RIR) characterizes the transfer function between
the played and the recorded acoustic signals, and it can be leveraged
to model the over-the-air distortions upon the trigger. To enhance
the robustness of the trigger, we take a group of RIRs H gener-
ated by an acoustic room simulator into our backdoor learning
process. We improve the trigger’s robustness by replacing Ty, (x;, 7;)
in Equation 5 with the following term:

Ty(xi, 7)) ®h, i€[1,Npl, h€H, (7)

where ® denotes the convolution operation, and H is a group of
RIRs. Grounded on the image-based method [2] for RIR computing,
our simulator generates an RIR by considering the size of a 3D
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shoe-box room, the positions of the loudspeaker and the micro-
phone, and the reverberation time. As the parameters of a target
room environment can be difficult to obtain in practice, we sample
RIRs by randomly choosing room sizes and reverberation times
from a uniform distribution based on common rooms [30]. The
positions of the loudspeaker and the microphone are drawn from
a uniform distribution constrained by the room size. By incorpo-
rating such RIRs during backdoor learning, the generated audio
trigger can be robust to over-the-air distortions in any common
room environments.

6 EVALUATION OF DIGITAL ATTACK

6.1 Target Deep Learning Models

While the backdoor attack should work for all deep learning models,
we particularly focus on the following audio models in this work
for evaluation.

Speech Command Recognition Models: 1) CNN-based model [37]:

a CNN-based model used in the official TensorFlow Tutorial [37] for
keyword recognition. The model operates on the extracted MFCC
features and consists of two 2D convolutional layers, a 2D max-
pooling layer, and 2 fully connected layers. One fully-collected
layer with SoftMax activation function is used for speech command
recognition. 2) RNN with Attention [8]: An RNN model proposed
by Andrade et al. [8] with embedded attention mechanism, which
uses bidirectional long short-term memory (LSTM) units for captur-
ing long-term dependencies in Mel-scale spectrogram of the input
audio. Two fully-collected layers with SoftMax activation func-
tion in the last layer is used for speech command recognition. 3)
ResNet8 [39]: A novel keyword spotting model proposed by Vygon
et al. [39] that uses a ResNet-based structure [35] as an encoder to
derive speech embeddings, and it has achieved the state-of-the-art
speech command recognition performance.

Speaker Recognition Models: 1) X-vector [33]: A widely-used
speaker recognition model proposed by Snyder et al. [33] which
first extracts MFCC features from speech signals and then uses a
time-delay neural network (TDNN) to extract speaker embeddings.
2) Deep Speaker [16]: An effective end-to-end speaker recognition
model proposed by Baidu [16] that have been widely used in re-
search on adversarial machine learning attacks [6, 44]. The model
first extracts acoustic features from raw audio waveform and then
utilizes a feed-forward neural network to produce utterance-level
speaker representations, which are later projected by an affine layer
to generate a speaker embedding. 3) SincNet [27]: A novel CNN ar-
chitecture with modified first convolutional layer to discover more
meaningful filters and extract speaker information from raw wave-
form more efficiently. The network is built based on parameterized
sinc functions that implement band-pass filters.

For all the aforementioned models, we train a classifier (i.e., a
fully-connected layer with SoftMax activation function) based on
the speaker embeddings for speaker recognition.

6.2 Experimental Setup

Datasets. For speech command recognition, we use the Google
speech command dataset [41], which contains 65,000 audio seg-
ments of 30 speech commands. Besides training models to rec-
ognize all 30 commands, we also follow the official TensorFlow
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Tutorial [37] to train models with a subset of 23,601 audio seg-
ments and test the attack performance with a subset of 2,348 audio
samples, both of which including 10 commands. For speaker recog-
nition, we use the VCTK corpus dataset [42]. We evaluate our attack
on speaker identification models trained using two subsets involv-
ing 50 and 100 speakers. For training, these two subsets contain
7,673 and 14, 477 audio segments respectively. We use another two
subsets, including 853 and 1, 609 audio samples to test our attack
performance on speaker recognition.

Position-independent Trigger Generation. We implement
our attack framework presented in Section 4 on the TensorFlow
platform and train the backdoored model and the trigger using an
NVIDIA Quadro GV100 GPU. For the attack hyper-parameters, we
set both a and f to 0.3. The duration of the backdoor trigger is
set to be 0.1s. The impact of different parameter settings is stud-
ied in Section 6.5. We poison 10% of the training data based on
the attack scheme presented in Section 4.1. For the environmental
sound mimicking implementation, we use an audio segment of birds
singing as the sound template. We also evaluate our attack with two
other sound templates (i.e., engine sounds, footsteps) in Section 6.5.
To test the performance of our position-independent attack, we
randomly generate 100 different positions based on a uniform dis-
tribution for each audio sample to inject our position-independent
backdoor trigger, record the overall attack success rates from all
audio-position combinations and compute the standard deviation
of the results.

Evaluation Metrics. We use the following three metrics to eval-
uate our attack. 1) Clean Data Classification Accuracy (CA): This
metric presents the percentage of audio segments being correctly
classified. A successful backdoor attack should retain the model’s
performance on the classification of clean audio data. We thus show
the normal classification of the backdoored model without inject-
ing the trigger into input audio segments. Note that the threshold
of CA for a user to accept the model is determined by the model
architecture, classification task, and dataset, and it is infeasible to
use one general CA threshold for all settings. To demonstrate the
effectiveness of our backdoor attack, we train a clean model without
applying the proposed backdoor attack as a baseline to evaluate the
performance of the proposed backdoor attacks. 2) Attack Success
Rate (ASR): It represents the percentage of audio segments injected
with the trigger being classified as a target label. Specifically, we
take turns to set each command/speaker as the target label and
average the attack success rates for all attack attempts. As we aim to
evaluate the attack under streaming-audio-input scenarios, for each
testing audio segment, we randomly select 100 different temporal
positions for trigger injection. 3) Standard Deviation (STD): For each
audio segment, we randomly generate 100 different positions to
inject the trigger. To examine the robustness of our attack under
temporal position variations, we also compute the standard devi-
ation across all the attack success rate of different audio-position
combinations for each audio segment. Lower standard deviation
means better attack robustness.

6.3 Attack Performance

Speech Command Recognition. Table 2 presents the results of
the proposed attack on speech command recognition models with
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Table 2: Clean data classification accuracy (CA), attack success rate (ASR) and standard deviation (STD) for speech command

recognition on different victim models.

Target speech CNN [37] RNN With Attention [8] ResNet8 [39]
command recognition CA CA CA
model (without/with attack) ASR (STD) (without/with attack) ASR (STD) (without/with attack) ASR (STD)

10-command 88.0%/88.0% 99.99% (0.00%)

92.7%/92.1%

99.99% (0.01%) 91.7%/92.0% 99.82% (0.04%)

30-command 81.3%/80.8% 99.40% (0.32%)

94.4%/94.0%

99.58% (0.26%) 91.6%/91.2% 98.96% (0.52%)

Table 3: Clean data classification accuracy (CA), attack success rate (ASR) and standard deviation (STD) for speaker recognition

on different victim models.

Target speaker X-vector [33]

Deep Speaker [16]

SincNet [27]

recognition CA CA CA

model (without/with attack) ASR (STD) (without/with attack) ASR (STD) (without/with attack) ASR (STD)
50-speaker 94.9%/95.2% 99.96% (0.01%) 95.8%/95.6% 99.98% (0.01%) 93.4%/93.2% 99.93% (0.01%)
100-speaker 91.6%/92.4% 99.92% (0.09%) 90.3%/90.5% 99.78% (0.22%) 91.2%/90.5% 99.62% (0.31%)
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(Average) (Inside) (Outside) (Average) (Inside) (Outside)

(a) Speech command recognition (b) Speaker recognition

Figure 5: Overall average attack success rate (ASR Average),
attack success rate of injecting trigger inside audio sample
(ASR Inside) and attack success rate of injecting trigger out-
side audio (ASR Outside) for speech command recognition
and speaker recognition.

different architectures. For each attack setting, we evaluate the at-
tack by taking random injection positions and reporting the average
attack success rates and standard deviations. We observe that with-
out the attack, the RNN model with attention can achieve the best
performance on both 10-command and 30-command classification
tasks with over 92% accuracy, while the simple CNN model only
achieves 81.3% accuracy on the 30-command classification task.
Despite such performance differences between models with differ-
ent architectures, our attack can consistently achieve a high attack
performance on all 3 models, typically with over 99% attack success
rate and low standard deviation (less than 0.50%). This shows that
the proposed attack method is resilient to different model architec-
tures. Compared to the performance of static trigger as we shown
in Table 1 (i.e., less than 5% success rate under trigger position vari-
ations), our position-independent attack can achieve high attack
success rates when the trigger is injected at any positions of the
audio input. Moreover, we observe that impact of the attack on
the clean data classification accuracy is very small. In some cases,
launching the attack even improves the clean data classification
accuracy (e.g., attacking the 10-command ResNet8 improves its CA
from 91.7% to 92.0%.) It means that the user will not notice the
attack by simply comparing the validation accuracy of the model
with a pre-defined threshold for CA.
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Figure 6: Attack success rate (ASR) and clean data classifi-
cation accuracy (CA) for speech command recognition and
speaker recognition with different time durations of back-
door trigger.

Speaker Recognition. Table 3 presents the results of the pro-
posed attack on speaker recognition models with different archi-
tectures. Similar to the speech command recognition models, we
observe that the proposed attack can maintain a very high attack
success rate (> 99%) with low standard deviation (< 0.50%) across
different speaker recognition model architectures, which again
demonstrates the effectiveness of the position-independent back-
door trigger. In addition, the backdoored model has less than 1%
CA degradation compared to the clean model, which shows that
our attack is difficult to be detected.

6.4 Impacts of Human Speech

Speech Command Recognition. We use the CNN-based speech
command recognition model [37] with the speech command dataset
to test the impact of human speech on the proposed attack. For
speaker recognition task, we adopt the X-vector [33] with CSTR
VCTK Corpus dataset. The results are shown in Figure 5(a). Our
attack achieves over 98% and less than 0.56% and 0.72% standard
deviation for both models of 10-command and 30-command across
random trigger positions. We further separate the attack attempts
with the trigger fall into the speech part and non-speech part,
respectively, and average the attack success rates. We can also
observe that even when we insert the trigger inside speech, our
attack can still maintain high attack success rates, more than 92.9%
and 92.6% for 10-command and 30-command recognition.
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Figure 8: Attack success rate (ASR) and clean data classifi-
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ronmental sound mimicking,.

Speaker Recognition. We show the attack performance for
speaker recognition models in Figure 5(b). Our attack has success
rates of over 97.9% and less than 0.28% (10-speaker recognition) and
1.21% (30-speaker recognition) standard deviation with the trigger
injected across random positions. In addition, with our speech
impact mitigation, our attack maintains high success rates when
the trigger is injected into the speech part. The results demonstrate
that our attack can be highly effective in terms of high attack success
rate even if the trigger is injected into unpredictable part of audio
samples.

6.5 Ablation Study

In this section, we vary several design knobs such as trigger dura-
tion, environmental sound template, and poison rate to study their
impact on clean accuracy and attack success rate.

Trigger Duration. The duration of the backdoor triggers is es-
sential to the performance of the backdoor attack because a shorter
trigger duration can be stealthier but challenging for the model to
recognize. In contrast, a longer trigger duration can be too obvious
and compromise the attack’s stealthiness. Figure 6 presents the per-
formance of our backdoor attack in speech command recognition
and speaker recognition when we change the trigger duration from
0.04s to 0.2s. As shown in Figure 6(a), regarding the speech recogni-
tion task, using triggers with a duration of 0.04s can already result
in a high attack success rate of 98.51%. As we increase in trigger
duration, both clean accuracy and attack success rate also increase.
We achieve the optimal performance of 85.12% for clean accuracy
and 99.12% for attack success rate with low STD (0.64%) when using
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(a) Office 1 (b) Office 2 and apartment
Figure 9: Experimental setup for physical attack on recorded
speech.

triggers with a duration of 0.14s. In the speaker recognition task,
we can observe from Figure 6(b) that both the clean accuracy and
attack success rate are very high and robust against changes in the
trigger duration, with the attack success rate performance slightly
improving as the duration increases.

Poison Rate. We study the effect of varying the amount of
training data poisoned to perform the backdoor attack. As shown
in Figure 7, our attack can already achieve very high performance
by poisoning only 2% of the training data. We further increase the
poison rate up to 10% but cannot observe further improvement. It
shows that our method is very efficient regarding the training data
for the malicious task because using only a small amount of data
for the backdoor training already achieves a high attack success
rate and clean accuracy.

Environmental Sound Template. Figure 8 presents the per-
formance of our attack when using three different environmental
sounds as templates, including birds chirp, engine sound, and foot-
steps. Our attack can achieve more than 99.14% and 99.96% attack
success rates on speech command recognition and speaker recog-
nition with birds chirp as sound template for mimicking. For the
engine sound template, which performs the worst among the three
templates, the attack success rate still reach more than 97.11% and
97.51% on speech command and speaker recognition, respectively.
In all tested scenarios, the performance in terms of attack success
rate and clean accuracy is consistently high, proving our method
has high adaptability to many different environmental sounds.

7 EVALUATION OF OVER-THE-AIR PHYSICAL
ATTACK

7.1 Experimental Setup

RIR Simulation. We validate our physical attacks on speech com-
mand recognition of 10 commands as we introduced in Section 6.
To generate robust audio triggers, we employ an RIR simulator [2],
which takes the room dimensions, microphone position, and sound
source position as inputs. We interpret these parameters as random
variables and randomly choose room sizes and reverberation times
from a uniform distribution based on common room sizes [30]. We
sample a set H with 10,000 RIRs as we introduced in Section 5.
By incorporating H into the backdoor learning process, the audio
trigger becomes robust to over-the-air physical distortions. Under
the physical attack settings, our backdoor model has 89.4% accu-
racy on classifying speech commands when the audio triggers are
not injected. We also validate the backdoor model’s robustness for
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Table 4: Attack success rates with backdoor trigger replayed
at different temporal positions regarding the beginning of
live human speech (i.e., from User 1).

Trigger positions (sec)
(Testing Phase) 0.1 0.2 0.3 0.4 0.5
Attack Success Rate 100% | 100% | 100% | 100% | 100%

non-trigger environmental noises, and we find that environmental
sound templates (e.g., bird chirps, foot steps) without applying our
backdoor learning techniques cannot alter the model’s predictions.

Attacking Recorded Speech. We consider attack scenarios that
an adversary plays the audio trigger over the air to compromise
the backdoored speech command recognition model. We inject
the audio trigger into 500 recorded speech commands randomly
chosen from Google Speech Command Dataset [41] to generate
attacking samples, with temporal positions for trigger injection
randomly chosen also. The attacking samples are then played by a
Logitech Z623 loudspeaker and recorded by an iTalk-02 360-degree
omnidirectional microphone. The sound pressure level (SPL) of the
attacking samples is around 55dB (measured with a sound meter
placed 1.5m away from the loudspeaker), which is close to the SPL of
normal conversations. We validate this over-the-air physical attack
in three different rooms, including two offices and one apartment
as shown in 9. The first office is a large room (28t X 25ft) with
desks, chairs, and many lab devices (e.g., desktops, 3D printers).
The two smaller rooms (i.e., the second office and apartment) have
sizes of 18ft X 12ft and 21ft x 14ft with office (e.g., tables, chairs)
and home objects (e.g., sofas, floor lamps). The sizes of the three
rooms are 6m X 5m, 4m X 2.5m, and 4.5m X 4.5m, and the SPL of
ambient noises are around 43dB.

Attacking Live Speech. We recruit four participants (i.e., three
males and one female) to validate our attack against live speech.
Each participant is asked to speak speech commands while a nearby
loudspeaker is playing the audio trigger. The audio trigger is played
using three different SPLs, including 55dB, 65dB, and 75dB. At each
volume, the backdoor trigger is played 100 times and recorded
along with the live human speech. We ask the participant to speak
each of the commands 10 times per SPL, and we collect 1, 200 audio
segments in total. The size of the office for this experiment is around
6m X 5m. The data collection procedures were approved by our
university’s IRB.
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Figure 11: Experimental setup and attack success rate of our
physical attack on live speech.

7.2 Over-the-Air Attack Evaluation

Performance of Attacking Recorded Speech. We first evaluate
the effectiveness of using RIR to enhance the robustness of our
backdoor attack by attacking with different distances between the
loudspeaker and microphone (i.e., 0.5m, 1.0m, 1.5m, and 2.0m) in
an office as shown in Figure 9(a). Figure 10(a) shows that the attack
success rates of our attack without using the simulated RIR for
speech command recognition task can only achieve 82.0%, 85.0%,
67.5%, and 72.5% with 0.5m, 1.0m, 1.5m, and 2.0m between the
loudspeaker and microphone, respectively. When we use the simu-
lated RIR in training our backdoor model, the attack success rates
increase to 93.0%, 94.0%, 98.5%, and 99.5%, respectively. Next, we
evaluate the effectiveness of using RIR in three different rooms
environments (i.e., office 1, office 2, and apartment) with a fixed
distance (i.e., 1.5m) between the loudspeaker and microphone as
shown in Figure 9. Figure 10(b) shows that the attack success rates
of our attack without using the simulated RIR are 67.5%, 66.5%, and
67.0% in these three rooms, respectively. For the backdoor model
trained by the simulated RIR, the attack success rates of our attack
in three rooms increase to 98.5%, 96.0%, and 99.0%, respectively.
The results show that using simulated RIR in training our back-
door model can significantly boost the robustness of over-the-air
physical attacks in various environments.

Performance of Attacking Live Speech. We also recruit 4
participants to conduct experiments for validating the effectiveness
of the proposed position-independent audio backdoor trigger on
live human speech. As shown in Figure 11(a), we ask each partici-
pant to sit at a desk in the office setting with a microphone placed
in front of him/her. A loudspeaker that is used to play the audio
backdoor trigger is placed at 1m distance to the microphone. The
audio backdoor trigger is played at 3 volumes: 55dB, 65dB, and
75dB. Figure 11(b) presents the attack success rate of our over-the-
air backdoor attack on the speech command recognition model.
We observe that the proposed attack can consistently achieve over
96.0% attack success rate on live human speech, indicating that the
attacks are feasible under practical usage scenarios of voice user in-
terfaces. Even with a low sound volume of 55dB to replay the audio
trigger, our attack can still achieve over 94% success rates across
all users. Such a sound volume is lower than normal conversations
(around 60dB), which exist in many practical environments, such
as homes and offices. The user is not likely to be alerted by such
low-volume audio triggers similar to the environmental sounds. In
Table 4, we show the attack success rates on the live speeches of
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Figure 12: Attack success rate (ASR) and clean data classifica-
tion accuracy (CA) with different pruning ratios.

a user (i.e., User 1) when the audio trigger is replayed with differ-
ent time delays. We can find that our attack consistently achieves
high attack success rates for different temporal positions. We also
observe that the triggers higher volumes can result in better attack
performance. In particular, when the trigger is played at 75dB, the
proposed attack can achieve a 100% attack success rate on 3 partic-
ipants. These results demonstrate that our attack is applicable to
backdoor practical usage scenarios of voice user interfaces taking
live speeches and backdoor the embedded deep learning model.

8 DISCUSSION

Attack Performance Under Defense. Most of the earlier de-
fense methods (e.g., [10, 31, 40]) rely on specific image domain
techniques. Hence, they are only suitable in the image domain and
cannot be easily adapted to the audio domain without heavy modi-
fications. We find that Fine-pruning [21] is developed to remove
backdoor neurons of image-domain models, but it is applicable to
audio-domain attacks due to its out-of-the-box cross-domain gen-
erality. Thus, we implement the Fine-pruning method as a defense
to evaluate the performance of our audio-domain backdoor attack
with this defense method. Figure 12 shows the performance of our
models after applying Fine-pruning to remove backdoor neurons in
the affected CNN-based speech command recognition model (i.e.,
introduced in Section 6.1). We can observe that regardless of the
pruning ratios, Fine-pruning cannot reduce our backdoor attack
success rate to a minimum level without significantly decreasing
the prediction accuracy with clean data. Hence, our attack can by-
pass the Fine-pruning backdoor defense as it fails to separate the
backdoor neurons from the uninfected neurons in our model.
Enhancing Robustness and Imperceptibility of Audio Trig-
ger. Our evaluation has demonstrated the feasibility of our over-
the-air physical attacks in indoor scenarios with relatively less
significant background noises. We believe that we can extend our
backdoor attack to the scenarios with more significant background
noises, such as train/bus stations, streets, and coffee stores. Gen-
erating triggers resilient to such background noises can make our
attack applicable to more practical attack scenarios. A potential
improvement is to add white noises or pre-recorded ambient noises
(e.g., wind sounds, chats) to the training audio segments to simulate
ambient noise interference during backdoor learning. By penalizing
the impacts of such noises during training, the robustness of the
trigger can be improved to make it survive under ambient noise in-
terference. We notice that some voice interfaces employ noise/echo
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cancellation techniques based on adaptive linear filters in either
time or frequency domain. Such filters may attenuate our backdoor
trigger mimicking environment noises and enhance human speech.
As these filters are normally built to enhance human speech, we
plan to investigate mixing the audio trigger with short segments of
human speech (e.g., phonemes) to bypass the noise/echo cancella-
tion scheme. The audio trigger optimized with our speech impact
mitigation scheme is resilient to the interference of human speech,
making it possible to retain the attack effectiveness. In addition, we
may generate audio trigger encoding with human speech charac-
teristics in hidden space while mimicking environment noises to
make the trigger remain unnoticeable.

We are aware that the stealthiness of the audio trigger in this
work can be further improved. The trigger mimicking environmen-
tal sounds is unnoticeable to users in many scenarios (e.g., homes,
offices), but repeatably using the same audio trigger across multi-
ple attack attempts may still raise the alarm of users. To improve
the imperceptibility of our attacks, we plan to design audio trig-
gers that are robust to sound modifications (e.g., volume, speaking
rate, and pitch tuning). In this way, the adversary may modify
the sound patterns of the audio trigger without retraining and
make the trigger perceived slightly different across attack attempts.
We may also design triggers that only affect audio inputs of one
or a few adversary-specified classes (e.g., a specific user or voice
command), so as to avoid classifying all inputs as one single label,
which may alert the user. Furthermore, to realize backdoor attack
in quiet environments (e.g., confidential offices), we could design
completely inaudible audio triggers, such as producing triggers
in ultrasound frequency ranges. Such attacks can be realized by
penalizing the frequency responses of the trigger based on human
hearing curves [34].

9 CONCLUSION

In this work, we propose the first practical audio-domain backdoor
attack that targets deep-learning-enabled voice applications taking
streaming audio input. Different from prior studies that require the
backdoor trigger to be mixed with pre-recorded audio and be added
to a static temporal position, we generate position-independent
audio triggers that can be injected at any position regarding the
streaming audio input to compromise the backdoored model. A
joint optimization process is designed to simultaneously train a
model and a trigger, so as to derive a trigger that leads to optimal
attack perform at the backdoored model while being resilient to
temporal position variations. To minimize suspicion, we optimize
the audio trigger by penalizing its difference with environmental
sounds. We also consider incorporating physical distortions during
over-the-air propagation to enhance the robustness of the trigger.
Extensive evaluations on both speech command recognition and
speaker recognition models demonstrate the effectiveness of our
attack under both digital and physical attack settings.
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