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Abstract

The marine trace gas dimethylsulfide (DMS) supplies sulfur to the
atmosphere at arate of 15-40 Tg S per year, contributing to the
production of atmospheric sulfate aerosols that influence cloud
radiative properties and thereby climate. The resulting climate cooling
effect of DMSis an estimated —1.7 to —2.3 W m™, whichis similarin
magnitude to the warming effect of anthropogenic CO, emissions
(1.83 + 0.2 W m™). In this Review, we describe the production and
cycling of marine DMS and its fate in the atmosphere. Advancesin
molecular genetics and large-scale biogeochemical measurements have
revealed the global prevalence of DMS-related processes, including in
previously overlooked environments and organisms, such as sediment-
dwelling bacteria. Most marine DMS (>90%) is degraded or consumed
inthe water column, but the remainderis emitted to the atmosphere,
whereit contributes to the formation of cloud condensation nuclei.
Large uncertainties (up to +10 W m2) associated with the global impact
of DMS emissions arise from the use of crudely defined biological
parameters, such as total chlorophyll, in models. Constraining and
modelling the biogeochemical processes that control DMS production
are key to better estimating the influence of DMS on climate.
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Introduction

The surface oceans are amajor source of the marine trace gas dimethyl-
sulfide (DMS), a volatile organic compound that can influence the for-
mation of marine aerosols and impact cloud albedo and global radiative
forcing'~. Early DMS-related research was motivated by interestin the
distinctive smell of the sea (which is mainly attributable to DMS), but
the CLAW hypothesis'* proposed in the 1980s attracted broader sci-
entific attention to the role of DMS (Fig. 1). This hypothesis describes
thetheoretical biological regulation of climate via DMS emissions from
marine phytoplankton, as DMS leads to the formation of cloud con-
densation nuclei (CCN), thereby influencing cloud albedo. The CLAW
ideaalsospeculated on the existence of a negative climatic feedback,
whereby the rate of DMS emission from the ocean is affected by the
climate, whichin turn alters the biological production of DMS.

The proposal of CLAW drove more than 30 years of research
motivated by the prospect of finding evidence of a biologically driven
climate thermostat (reviewed elsewhere®). Some satellite-based evi-
dence emerged of new particle formation from biological sources,
with enhanced cloud droplet number over productive oceanregions®.
However, overall the observational evidence was scant™ and model
results suggested low sensitivity of DMS-climate feedbacks®". As a
result, a callwas madeto retire the CLAW hypothesis — and the idea that
DMS functions as abiological climate feedback loop —in 2011 (ref. 11).

Nevertheless, interdisciplinary field research (Mace Head, Ireland,
2015 (ref.12); Southern Ocean Clouds Radiation and Aerosol Transport
Experimental Study (SOCRATES)"; Western Atlantic Climate Study 2
(WACS2) and the NASA North Atlantic Aerosols and Marine Ecosystems
Study (NAAMES)"*~*) has since demonstrated that aerosol distributions
and CCN formation are tightly driven by biological production of DMS
over some regions of the surface ocean. Furthermore, marine DMS emis-
sions have a substantialimpact on aerosol-cloud processes and global
climate regulation'™". The rapid oxidation of DMS in the atmosphere
(the atmospheric lifetime of DMS is -1.2 days'**°) leads to the formation
of aerosols thatinfluence the radiative balance of the Earth by scatter-
ing solar radiation and acting as CCN. The aerosol radiative forcing
effect of these aerosols is estimated to be between-1.7and -2.3Wm™
(refs.2,3,18,21), asimilar magnitude to the positive forcing effect from
anthropogenic CO, emissions (1.83 + 0.2 W m%)*, However, the DMS
forcing estimate isassociated withamuch higher degree of uncertainty
(up to 10 W m™), partly driven by highly heterogeneous seasonal
and spatial variability in DMS fluxes. This level of uncertainty high-
lightsthe need to better constrain surface ocean DMS concentrations,
cycling and fluxes on regional scales™* %,

In this Review, we describe the microbial pathways controlling
dimethylsulfoniopropionate (DMSP) and DMS production and deg-
radation. We discuss the role of DMS in atmospheric chemistry and
global radiative forcing. Finally, we end with an assessment of future
research priorities, including the need to unravel the key biological
processes controlling DMS production to improve the accuracy of
global DMS flux estimates and climate models. We provide recom-
mendations for observational, experimental and modelling work on
the effects of climate change stressors on DMS production and flux
that are required to facilitate improved understanding of the role of
DMS in the future climate.

Marine DMS production and cycling

DMS occurs in the nanomolar concentration range in seawater
(generally 1-7 nM globally*®). Most of this DMS is broken down through
bacterialandlight-drivenprocesses”*”, buttherest (<10%ofthetotalloss)

transfersacross the sea-airinterface. This flux represents the greatest
natural source of sulfur from the oceans tothe atmosphere (15-40 Tg S
per year)”** and is the main pathway from the marine to the terrestrial
realm”. Thissection describes the biogeochemical pathways and mole-
cular machinery driving net DMS production and discusses how omics
data sets can be used to infer potential DMSP and DMS production,
identify the key protagonists and predict hotspots of production.

DMSP sources

DMS production is ultimately driven by the availability of DMSP and
its breakdown by bacterial and algal lyase enzymes®° (Fig. 2). The
dominant source of DMSP is direct biosynthesis, largely by autotrophic
plankton in the marine photic zone, estimated to comprise >3.8 Pg C
per year (perhapsupto 7.0 Pg C peryear) and around 5-9% of the total
carbon produced by marine primary production®. Notably, the hapto-
phyte Phaeocystis sp. adopts growth strategies that lead to bloom
formation, resulting in DMSP concentrations in seawater that can
exceed 1 uM***, Unprecedented concentrationsin excessof 4 uMwere
reported within amassive dinoflagellate bloom (Akashiwo sanguinea)
at Monterey Bay, CA, USA**. However, such concentrations are con-
sidered rare or transient, with only 3 out of 4,600 data points from
the global DMSP database (https://saga.pmel.noaa.gov/dms/) at or
abovel M. The photiclayers are key in marine DMSP production, but
the potential for marine sediment-dwelling organisms to synthesize
substantial quantities of DMSP is becoming increasingly clear. For
example, coastal surface sediments from saltmarsh ponds and estuar-
ies contain abundant DMSP-producing organisms, including micro-
phytobenthic diatoms and bacteria*~*, Aphotic and anoxic marine
sediments, including those in the deep ocean”, also can possess high
levels of DMSP and bacteria with the potential to generate DMS (Fig. 3).
DMSP is also produced profusely by ice algae, enabling them to toler-
ate hypersaline and low-temperature environments*, and by coral
symbionts”*’, macroalgae*** and saltmarsh plants such as Spartina
spp.****. The global distribution of such organisms and environments
is limited relative to phytoplanktonic DMSP sources in the Earth’s
ocean, so they are less important for global sulfur cycling and climate
regulation® (Fig. 3).

DMSP productionis thought to be driven by a metabolicincentive
to protect the cell or organism from environmental fluctuations in
salinity, temperature, nutrients, light, oxidants and hydrostatic pres-
sure**>**=3 The ability to synthesize DMSP is highly variable within
and between phytoplankton taxa, and intracellular concentrations
can range from undetectable levels to as high as1 M**. Genes encod-
ing the S-methyltransferase enzyme of the transamination pathway
for DMSP synthesis, believed to be the major synthetic pathway, have
beenidentified inmost dinoflagellates, haptophytes, coralsand some
diatoms (DSYB) and bacteria (dsyB)***” (Box 1). The presence of dsyB or
DSYBinan organismisarobustindicator of its ability to produce DMSP,
and dsyB or DSYBtranscriptand/or their protein abundance can be used
to gauge the contribution to environmental DMSP®5,

Despite the correlation between the presence of DSYB and the
host algae producing DMSP to high intracellular levels, there are many
instancesinwhich, for example, low DMSP producers contain DSYB****.
Conversely, in some algae that generally produce low intracellular
DMSP levels (diatoms and potentially the chlorophyte Pycnococcus pro-
vasolii), the §-methyltransferase step is instead catalysed by TpMMT,
the product of a different gene®’. TpMMT has been ratified only in
Thalassiosira pseudonana®®, and further work is required to establish
its validity as a reporter of DMSP synthesis. There are also two other
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pathways for DMSP synthesis: the methylation pathway in plants® and
bacteria, for which the methionine S-methyltransferase is encoded
by mmtN***, and the decarboxylation pathway in the dinoflagellate
Crypthecodinium cohnii®’, with no identified gene.

DMSP conversion to DMS

Alarge proportion of marine DMS production arises from the bacterial
catabolism of dissolved DMSP (DMSPd). DMSP is released from algal
andbacterial cells into the dissolved phase following grazing®*®, viral
lysis®““’, autolysis or senescence of stressed cells***® or active exudation
by healthy cells**“°. This highly labile DMSPd isimported and catabo-
lized via two dominant microbial degradation pathways: bacterial dem-
ethylation (responsible for ~75% of the dissolved DMSP degradation),
which potentially generates methanethiol*®, and cleavage (-10% of the
DMSPd degradation), which produces DMS****7*"' In the Mediterra-
nean Sea, for example, 6-20% of the available DMSP was converted to
DMS over an annual cycle™.

Algal DMSP lysis occurs indirectly during senescence and when
cells are grazed by zooplankton or virally lysed, allowing intracellular
stores of DMSPto comeinto contact withintracellular and extracellular
lyases® ™, Microzooplankton grazing can dominate overall phyto-
plankton mortality, thus exerting animportant control on the produc-
tion of DMS from DMSPin certain environments. In the Mediterranean
example, grazing-mediated DMS production explained 73% of the
variance in DMS concentrations’. Nevertheless, many phototrophic
and heterotrophic DMSP producers contain DMSP lyase enzymes and
can therefore generate DMS without exogenous sources of dissolved
DMSP™ 78 potentially asa carbonand sulfur overflow mechanismto con-
trolintracellular DMSP concentrations®® or liberate DMSand acrylate as
signalling molecules, with roles in grazing deterrence” or prey detec-
tion”* (Box 1). There are eight known DMSP lyase enzymes (DddD®,
DddL*, DddQ®, DddW**, DddY®, DddK*, DddP* and DddX**) found
insome bacteria, fungi and viruses, and as yet only one (Almal (ref. 75))
identified in algae. Many organisms have DMSP lyase activity but lack
these known enzymes, so there are more novel enzymes to discover®.
As much as 20% of sea surface bacteria contain DMSP lyase enzymes,
includingimportantRoseobacters, SAR11and Oceanispiralles bacteria™.

There are other, probably minor, pathways for DMS production
from, for example, the reduction of the dimethylsulfoxide (DMSO)
through a DMSO dimethylsulfoxonium propionate (DMSOP) inter-
mediate. In this pathway, DMSOP is synthesized by algae alongside
DMSP, then transferred to the dissolved phase by permeative diffu-
sion or directly via cellular degradation”®” and readily metabolized
by marine bacteria to produce DMSO°>* (Fig. 2). Both various phyto-
plankton® and marine Proteobacteria and Archaea® can reduce DMSO
to DMS using DMSO reductases. Although DMSO is often detected in
marine samples atlevels comparable (up to hundreds of nanomolar) to
DMSP*#37¢% thisis unlikely to be amajor DMS sourceinoxicand photic
environments, with evidence that >94% of DMSO in temperate coastal
waters is dissimilated to CO,, with the remainder potentially further
oxidized to dimethylsulfone®. A further source of DMSis the methyla-
tion of methanethiol (MeSH) produced via DMSP demethylation (Fig. 4),

which s catalysed by diverse bacteria viaan MddA enzyme®*'*°.

Pathways competing for DMSP limit DMS production

The major catabolic pathway diverting exogenous DMSP away from
DMS generation is the demethylation pathway, thought to account
for up to 75% of catabolic breakdown of DMSP”*'%1° (Fig. 4). In almost
all surveyed marine environments, DMSP demethylation potential

outweighs that for any individual DMSP lyase pathway, with 220% of bac-
teriain surface waters generally predicted to contain dmdA (a marker
for DMSP demethylation potential)'®’. In some bacteria, DMSP dem-
ethylation is upregulated by the presence of acrylate, the product of
DMSP cleavage, potentially diverting further from DMS production'™.

Various DMSP-producing phytoplankton, particularly dinoflagel-
lates, and the bacterium Pelagibaca bermudensis (the only bacterium
tested) produce other sulfonium compounds from DMSP, including
gonyol'”, gonylauline'®, dimethylsulfonioacetate'”” and DMSOP®.
Many of these DMSP analogues can be catabolized by bacteriatogen-
erate DMS or DMSO and/or methanethiol, but in certain cases they
can inhibit volatile production®*'°*'%, Thus, microbial modification
of DMSP can limit the flux to DMS production by inhibiting DMSP
lyase enzymes or by reducing the amount of DMSP available for DMS
generation.

Some marine organisms are able toimportand accumulate DMSP
intracellularly as an osmoprotectant (for example, in Vibrio species of
marine bacteria’) and antioxidant (for example, the marine diatom
Thalassiosira weissflogii''). This import can divert DMSP away from
DMS production pathways, highlighting the diversity of roles that
DMSP has in marine microbial ecology. Phagotrophic protists, which
dominate the microzooplankton and ingest between 40% and 100%
of available phytoplankton DMSP per day’>"?, could assimilate up to
30% of DMSP as structural sulfur, with the remainder accumulatingin
cells as undigested DMSP until release or transformation to DMS via

13

algal prey DMSP lyases'”.

DMS consumption processes
The flux of DMS to the atmosphere is substantially modulated by acom-
bination of biological and photochemical degradation processesinthe
surface ocean', keeping DMS concentrations at low nanomolar levels™.
DMS s subject to rapid photochemical oxidation in the upper ocean
layers™ ', with notable regional and seasonal variability"*. Loss of
DMS viaphotochemical oxidationis estimated at 17-20 Tg S per year'®.
The remaining DMS produced in the upper layers of the oceanis
microbially degraded"’'%, as many microorganisms catabolize DMS
toyield electrons for carbon fixation and/or energy (Fig. 4). These
include some anoxygenic phototrophic purple sulfur bacteria'® and
phototrophicgreen sulfur bacteria’”, which use a DMS dehydrogenase
enzyme (DdhABC)'*. Furthermore, some bacteria can use DMS as a
source of sulfur, such as Marinobacter” ina process requiring light, and
Rhodococcus viaa monooxygenase enzyme'?*. Some methanotrophic
and ammonia-oxidizing bacteria degrade DMS using methane and
ammonia monooxygenase enzymes'”, Similarly, methylotrophic bac-
teriasuch as Hyphomicrobium' use flavin-dependent DMS monooxy-
genase (DmoAB)™” to generate methanethiol and formaldehyde from
DMS (Fig. 4). DMS monooxygenase is present in 0.5-3.4% of bacteria
in seawater and marine sediment samples”’. Microbial methanethiol
oxidases (MtoX) further degrade methanethiol toformaldehydeasacar-
bon or energy source™ ", Some Gammaproteobacterial Methylophaga
spp. areknown to contain MtoX"*?and areimportant DMS consumersin
coastal waters"*, but their key enzyme demethylating DMS is unknown.
Analysis of DMS-related gene abundance and expression profiles
in omics data sets, such as those collected as part of the Tara Oceans
expeditions™, caninfer potential environmental DMSP and DMS pro-
duction,imply the key protagonists and predict DMS hotspots™*7 As
heterotrophs can make DMSP, environments with high DMSP produc-
tion do not need to be oxic and/or photic, and novel hotspots for DMSP
and DMS production might be uncovered as molecular tools become
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| Algal-coral processes || Marine ecological processes

. Atmospheric and Response to future climate change
climate-related processes [l OMS climatologies

First global DMS climatology™®

Experimental evidence of DMS sensitivity to ocean acidification®®

Updated global DMS climatology®*

Experimental evidence of DMS sensitivity to ocean acidification in the
arctic™

Model estimate of positive climate feedback as a result of ocean
acidification-driven reduction in DMS flux*"®

Fully coupled model estimate of climate sensitivity to ocean acidification-
driven reduction in DMS flux®”

Nature Reviews Earth & Environment | Volume 4 | June 2023 | 361-376 364




Review article

Fig.1|History of dimethylsulfide biogeochemistry research. Current
understanding of global dimethylsulfide (DMS) biogeochemistry can be
attributed to nearly 100 years of research, represented by key publications
colour coded by research focus. Early research highlighted the ubiquitous
occurrence of DMS in marine waters, eventually leading to the seminal paper
by Lovelock et al.in 1972 (ref. 225), which concluded that DMS was the missing
link in the global biogeochemical sulfur cycle acting as the main vector of sulfur
fromthe ocean through the atmosphere to the land. By the 1980s, the role of

DMS as a climate-cooling gas was becoming clear, culminatingin the thesis
of Charlson et al.in 1987 (ref. 1) — the CLAW hypothesis. This early research
inspired a colourful field of research into the climate role of marine DMS
emissions that continues to be pursued to this day. CCN, cloud condensation
nuclei; DMSO, dimethylsulfoxide; DMSP, dimethylsulfoniopropionate;
DMSPd, dissolved DMSP; HPMTF, hydroperoxyl methylthioformate;

MSA, m E(hal’lES u I fOﬂ ate],-}, 11,14,17,23,35,39,48,56,73,81,87,119,140,143,156,166,178,179,210,216,217,225-251 .

more widely used”’***. However, there are still many organisms that
produce DMSP but lack known DMSP synthesis genes and/or path-
ways™. Thus, current analyses of omics data probably underestimate
the potential for DMSP synthesis and subsequent DMS production™"?,
Moreover, without complementary biogeochemical work such as DMS
productionand consumptionrates, inferences from omics are limited.
Robust community segregation techniques (for example, based on
size and pigmentation) and measurements of key DMS biogeochemi-
cal rates with such molecular work are necessary to better inform on
the environmental and biological drivers of the variability in net DMS
productionrates.

Sea-to-air fluxes and atmospheric fates

The influence of aerosols on the climate of the Earth remains one
of thelargest uncertainties in global climate models, limiting our ability
to quantify their rolein the past climate of the Earth and to accurately
forecast the climate into the future”. The ocean-atmosphere flux of
DMS and itsrapid atmospheric oxidation contribute to the formation
and growth of aerosols and particles (Fig. 5), which have the second
greatestinfluence on natural aerosol indirect forcing after volcanic
sources”. However, the estimated climate-cooling effect of DMS is asso-
ciated with a high degree of uncertainty, and improving the accuracy of
the ocean-atmosphere flux will be a major step towards constraining
itsrole in climate processes™’. The following section describes global
seawater DMS climatologies that have improved DMS flux estimates,
atmospheric DMS oxidation processes and the resultant impacts on
global radiative forcing.

Sea-to-air fluxes

Accurate calculation of global DMS sea-to-air fluxes requires a reli-
able representation of surface ocean DMS concentrations. Using a
bottom-up approach, global DMS climatologies have been generated
fromthenear-surface observations collated in the Global Surface Sea-
water DMS database (GSSD; https://saga.pmel.noaa.gov/dms/). These
observations are smoothed and interpolated to produce a gridded
seawater DMS climatology®"*°. DMS flux can then be calculated using
Flux = KAC, where ACis the concentration difference between the ocean
and atmosphere (atmospheric DMS levels are typically two orders of
magnitude lower thaninseawater, so ocean concentrations determine
the flux magnitude).

Kis thegas transfer velocity (cm h™), primarily afunction of wind
speed, but implicitly representing the complex physical processes
involvedin air-sea gas transfer, including diffusion, surface renewal,
bubble-mediated transfer and turbulence (wind stress, waves and
currents)'*. Multipleapproachesare used to investigate the processes
that control K, (and for other trace gases), including deliberate
dual-tracer release techniques that estimate gas transfer by measur-
ing the evasion of sparingly soluble gases with different diffusivities
(*He/SF,)'** and direct, shipboard measurements of waterside gas

transfer using eddy covariance methods'*™'¥. Yet, there remains some

lack of agreement between parameterizations of Kand eddy covariance
measurements and somewhat limited understanding of the importance
ofthe processes controlling Kunder various atmospheric and oceanic
conditions"""*%*"_There are anumber of commonly used parameteri-
zations"**'*%'* the choice of which when applied to models can have
importantimpacts on calculated marine DMS emissions™****°

When the first global DMS climatology was produced in 1999
by Kettle et al."*’ (hence called the K99 climatology), the DMS data-
base contained -15,000 data points. The next iteration in 2011 (L11)*
used an updated DMS database, increasing to -47,000 data points
and including changes to the computational algorithm, resulting in
al7%increasein the estimate of global DMS emissions. To date, most
atmospheric investigations used the L11 climatology** as a primary
reference product for global seawater DMS, which predicts a global
DMS flux of -28 Tg S per year when using the parameterization of gas
transfer velocity of Nightingale et al.”*. This flux estimate suggests
that emission to the atmosphere turns over the seawater DMS pool
(-1 Tg S) every-13days.In 2022, the climatology (H22) was updated'”,
with theinclusion of >870,000 data points, areductionin biases related
to different observational frequencies, the incorporation of seasonal
dynamics and arefinedinterpolation algorithm. Resultingly, H22 pro-
vides more realistic monthly DMS estimates and regional variability
than the previousiterations.

Empirical DMS climatologies have also been developed using
relationships with phytoplankton chlorophyll and parameters that
describe light penetration into the surface ocean*******, Further-
more, machine learning has been used to develop climatological DMS
fields, with the aim of capturing nonlinear relationships between
environmental variables and DMS concentrations™"*. Anadvantage
ofthe empirical and neural network approaches is that they capture
regionally specific interannual variability in the magnitude and tim-
ing of seasonal variations in seawater DMS. Over a 14-year period of
satellite observations in the North Atlantic, for instance, estimated
DMS concentrations during the productive season appear to vary
threefold and the annual peak in DMS concentrations ranged over
2-3months*.

Atmospheric fate of DMS emissions

The atmospheric DMS burden isestimated at 9.6-140 Gg S'*'*"5, most
of which exists in the lower troposphere below ~2 km. Combining the
atmospheric burden with the sea-to-air emission fluximplies a global
mean lifetime of DMS in the atmosphere of 1.2-2.1days"*°. The atmos-
pheric mixing ratio of DMS in marine environments is typically a few
hundred parts per trillion (ppt)*. Atmospheric DMS levels and lifetime
also vary owing to complex physical and chemical interactions over
different timescale and spacescale. Large-scale meteorological factors
(such as atmospheric boundary layer height, stability and variations
inwind speed) influence sea-to-air flux strength and marineboundary
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Fig.2 | The marine biogeochemical dimethylsulfoniopropionate and
dimethylsulfide cycle. Dimethylsulfoniopropionate (DMSP) is produced

by algae (through pathways marked by green boxes and arrows) and bacteria
(orange boxes and arrows), with seawater sulfate (SO,*) serving as the sulfur
source for DMSP synthesis. Some algal and bacterial DMSP producers release
DMSP and/or derived metabolites (dimethylsulfoxonium propionate (DMSOP),
dimethylsulfoxide (DMSO) and dimethylsulfide (DMS)) into seawater. Dissolved
DMSP or DMSOP can be imported for stress protection or catabolism by bacteria
to produce other sulfur compounds (DMS, methanethiol (MeSH) and DMSO),

DMS (g)

which can also be consumed by bacteria. The majority of dissolved DMSP is
used as an energy, carbon and/or sulfur source by the bacterial demethylation
pathway, potentially generating MeSH and not DMS. By comparison, much
less dissolved DMSP is enzymatically cleaved by bacterial and algal DMSP
lyases to produce DMS than via the demethylation pathway. Any DMS that
survives bacterial consumption and/or oxidation and photo-oxidation

(<10% of the total production) drives the ocean-atmosphere concentration
difference and sea-to-air flux. Dissolved and aqueous components indicated
throughblue boxes.

layer (MBL) concentrations, and photochemical cycles produce diel
variations in primary oxidants“***, DMS can also dissolve in cloud
droplets or aerosols, where rapid reactions lead primarily to the pro-
duction of DMSO, methanesulfonate (MSA) and non-seasalt sulfate
(n.s.5.-S0,7)"*'°, Aqueous-phase reactions with ozone contribute up
to 78%tothe in-cloud DMS sink, although thisis <10% of the total MBL
DMS sink'*%,

The oxidation of DMS is key to its fate in the marine atmosphere
and its role in new particle formation and cloud-related processes
(Fig. 5), and the balance between different multiphase reactions
determines the influence of DMS'*'**, There are two interconnected

pathways for DMS oxidation (abstraction and addition), determined
inlarge part by the nature of the oxidantsinvolved'* (Fig. 5). Inbroad
terms, atmospheric DMS reacts with hydroxyl radicals (+OH) during
the day and with nitrate radicals (*NO,) at night. In reality, the oxida-
tion reaction chemistry involves complexand multiple gas-phase and
particle-phase intermediates'®. For example, BrO and 10 have key roles
in atmospheric sulfur chemistry by enhancing DMS oxidation rates
and reducing the SO, yield**'”, Modelled estimates approximate a
3:1 addition:abstraction ratio, but the relative proportions depend
on which oxidation reactions are included and whether gas-only or
multiphase processes are considered?*'**,
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The products of the abstraction and addition pathways (n.s.s.-
SO, and MSA) are closely associated withsmall, recently formed parti-
cles'*'**. The abstraction pathway can promote new particle formation
and ultimately generate SO, and H,SO,. The addition pathway typically
leads to the generation of DMSO and contributes to the growth of
existing particles. Gas-phase reaction of MSIA with OH generates SO,
and subsequently H,SO,, thus promoting new particle formation'¢*"°,
Thereisincreasing evidence of the important role that MSA has in new
particle formation'" ™, which might involve bimolecular interactions
between MSA and H,SO,. There is also some evidence that new particle
formationisenhanced when MSA or MSIA combines with water vapour,
amines or ammonia to form molecular clusters™""’,

Anadditional branch of the abstraction pathway was described in
2019 that leads to a previously unidentified DMS oxidation product,
hydroperoxyl methylthioformate (HPMTF7*""?), altering current under-
standing of DMS oxidation of the MBL (Fig. 5). Up to -50 ppt HPMTF
was observed in the lower 2 km of the marine atmosphere'”, andinitial
findings suggest that approximately one third of atmospheric DMS
could be converted to HPMTF via an isomerization pathway.

Nevertheless, an explicit description of the exact mechanism by
which DMS oxidation products contribute to new particle and CCN
formation and/or growth has proved elusive. There are multiple DMS
oxidation products and pathways that occur in various phases (gas,
aerosol and cloud), which areinfluenced by the ambient atmospheric
conditions (including oxidants, humidity and particle surface area).
New particle formation in the MBL is uncommon'®, but the conditions
do encourage the growth of existing particles. Conditions in the free
troposphere are much more conducive to new particle formation but
tend to limit particle growth.

Observational and modelling advances on particle formation
and CCN processes in the MBL have revealed strong evidence of alink
between DMS emissions from ocean biology and aerosol or cloud
properties. Primarily focused on the Southern Ocean, this evidence
demonstrates that synoptic-scale uplift events mix DMS-rich air up
out of the MBL into the free troposphere where conditions favour

particle formation®. They highlight theimportance of seaice regions
asasource of biogenic CCN in the summer months, wherein high DMS
flux, low sea-spray surface area and cold temperatures can stimulate
new particle formation and growth, sometimes even within the MBL'*..
Furthermore, the long-range transport of DMS-rich air parcels, com-
bined with precipitation scavenging and cloud processing (which leads
tothe substantial growth of biogenically formed particles), explains the
observed variability in Southern Ocean MBL CCN concentrations™!52,

In the past, global climate models have often ignored key DMS
oxidation intermediates to minimize computational costs'**'®7%,
Progress to increase the complexity of the atmospheric sulfate
chemistry schemes includes the inclusion of DMS oxidation by halo-
gens™’, theimpact of MSA on size distributions' and the inclusion of
OH-addition, H-abstraction and the associated isomerisation path-
way'“. As aresult, there is improved agreement between modelled and
observed concentrations of DMS and other key components of the
atmospheric sulfur cycle'.

Uncertainties in DMS flux estimates and climate effects

There is currently weak evidence for a biologically controlled DMS-
climate feedback (CLAW) on both regional and global scales®'*%"!55,
Field observations from key DMS emission regions do, however, dem-
onstrate a direct link between DMS from phytoplankton blooms and
cloud radiative properties ™, implying that DMS is important for
longer term climate. The ability of models to accurately estimate the
present-day ocean flux of DMS and its subsequent climate effects is still
greatly limited by anumber of crucial uncertainties, resultinginalack
of agreement between models (reviewed elsewhere“’) and between
models and observations (reviewed elsewhere'®). The ability of models
to predict seawater DMS and estimate current and future DMS fluxes
and climatic impacts remains poor“®*%,

Estimates of the contribution of DMS emissions to radiative forc-
ing combine climatological seawater DMS concentration estimates
with aerosol-chemistry-climate general circulation models to derive
a top of the atmosphere global cooling effect of -1.7 to 2.3 W m?

Troposphere
< 0.01-0140
06 03 15-40 11 0.005-0.013
Terrestrial T
ecosystermns
Coral reefs Surface ocean Austral Arctic

Fluxes in Tg S per year
Burdenin Tg S

Fig.3 | DMS fluxes and burdens. Fluxes from global marine and terrestrial
environments (TgS per year, green) and dimethylsulfide (DMS) burden for
surface ocean and troposphere (Tg S, orange). Most DMS emissions are from
the ocean. Tropical coral reefs are also hotspots for atmospheric DMS flux*-,
as dimethylsulfoniopropionate biosynthesis is upregulated by stressors,

Marginal ice zones

resultingin extreme spikes in atmospheric DMS concentration observed above

reefs during stress events®*. Estimates are included for the troposphere!***,

terrestrial ecosystems™", coastal wetlands**, marine sediments™-", coral reefs",

the surface ocean”*****, austral marginal ice zones*’ and Arctic marginalice

zones™",
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Box 1

Biochemistry of dimethylsulfoniopropionate production

Three dimethylsulfoniopropionate (DMSP) synthesis pathways
have been identified: transamination”, methylation“**“ and
decarboxylation®**',

Transamination

The committed step of this pathway is catalysed by a methyl-
thiohydroxybutyrate S-methyltransferase enzyme™*, encoded by the
bacterial dsyB gene that occurs in up to 0.6% of the surface seawater
bacteria. This pathway is proposed to have originated in bacteria,
and functional DsyB-like enzymes (with ~30% amino acid similarity
to DsyB), termed DSYB, exist in most dinoflagellates, haptophytes
and corals and ~20% of diatoms™.

Methylation
DMSP production in plants occurs through two distinct methylation
reactions. Methionine (Met) is first S-methylated via the S-methyl-
transferase enzyme, MMT, to generate S-methyl methionine
(SMM)***%, The plant MMT enzyme, which is involved in an SMM cycle
that modulates free methionine and S-adenosyl methionine levels®™®,
has not formally been shown to be involved in DMSP production in
any plant, and none of the downstream plant DMSP synthesis genes
has been identified for either pathway.

Various Alphaproteobacteria, Gammaproteobacteria and
Gram-positive Actinobacteria also produce DMSP via a methylation

(refs.2,3,18,21). Radiative effect estimates are highly sensitive to the
sea-to-air DMS flux and are thus determined by variations in surface
ocean DMSand the choice of DMS gas transfer velocity parameteriza-
tion. There is still considerable uncertainty with and between different
flux estimates (anywhere between 9 and 40 Tg S per year)"”"'*?, and
the knock-on effect is an associated uncertainty in radiative forcing
of + 0.7 W m(refs. 2,193). Global DMS climatologies derived from the
GSSD are used in many climate models to provide arepresentation of
surface ocean DMS concentrations that can be used to estimate sea-to-
air fluxes. Though continually growing in complexity"’, the available
climatologies are still limited by relatively sparse observationsin space
and time, resulting in only limited understanding of global and regional
DMS distribution. Although cloud processesin someregions can thus
showlarge responses to DMS perturbations in models, DMS observa-
tions can be completely absent inthese key regions’. At globalscales,
aswitch from the K99 tothe L11 climatology adds a further -0.3 Wm™
tothe overall DMS-derived cooling, a result of amuch larger database of
observations thatleads to greater production of H,SO, and associated
particle formation

L11 (ref. 23) assessed the flux uncertainty inherent in the choice
of gas transfer velocity parameterization (-37% to +15%) and the
uncertainty associated with variability in seawater DMS observations
(-14 to +44%). The uncertainties are comparable, which highlights the
need to better constrain the DMS gas transfer velocity and the primary
mechanisms that control seawater DMS variability. For example, direct
observations of DMS gas transfer velocity suggest that the relationship

pathway %, The bacterial methionine S-methyltransferase, MmtN,
shares only 30% amino acid identity to the N-terminal domain of
the plant MMT and is approximately three times smaller®. The
bacterial mmtN gene is often adjacent to genes encoding enzymes
that function downstream of SMM in DMSP production via their
methylation pathways™**. Much like DSYB/dsyB, the presence

of mmtN is a robust indicator of DMSP production, but bacteria
with this gene are very rare (-0.03% of bacteria) in seawater™.
Additionally, a methionine S-methyltransferase isoform enzyme
(BurB) exists in Betaproteobacterial Burkholderia spp. that produce
DMSP as an intermediate in the production of a cyclopropanol
virulence factor®™®’, but this system is extremely rare in marine
metagenomes.

Decarboxylation

The dinoflagellate Crypthecodinium cohnii is proposed to make
DMSP via a decarboxylation pathway. Met is first decarboxylated to
produce methylthiopropanamine, which is deaminated and oxidized
to form methylpropionate. Then, methylpropionate is methylated to
form DMSP®. A methionine decarboxylase enzyme has been
characterized but not identified. However, C. cohnii also contains five
DSYB homologues®, thus its method of DMSP synthesis needs to be
revisited.

with wind speed is not as strong as suggested by many parameteriza-
tions'>*814 ysed in quantifying global climatological DMS fluxes.
The weaker relationship between wind speed and DMS gas transfer
velocity'*®is likely to be because DMS is relatively soluble (compared
with CO,) and its gas transfer velocity is much less sensitive to the
bubbled-mediated component of the flux'*.

Further uncertainty is introduced depending on whether a bot-
tom-up (observation-based climatology) or top-down (empirically
derived climatology) approachis used to generate climatological sea-
water DMS fields. For example, different estimates of the regional North
Atlantic flux in May vary between 1.6 and 2.9 Gg S per day (ref. 189).
Global DMS derived from satellite observations combined with an
empirical relationship”* and an artificial neural network approach®
both suggest lower DMS fluxes (-18-20 Tg S per year) than L11 using
the same gas transfer velocity parameterization”. By contrast, the H22
DMS climatology takes advantage of a substantial (-18-fold) increase
in DMS data''. Using the same wind field and gas transfer velocity
parameterization, H22 reveals large regional variations compared
with L11, but the global DMS flux is <5% different. More workis needed
to identify the relative merits and/or inaccuracies of the different
approaches for estimating surface seawater DMS concentration'.

To predict DMS flux, Earth System Models (ESMs) use either
empirical parameterizations to compute DMS from chlorophyll and
other key oceanographic variables (for example, mixed layer depth,
MLD) or prognostic models that include representations of marine
biota and simple parameterizations of key processes that control
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DMS release (for example, grazing, cellular exudation and cellular
lysis)®“’. Uncertainty isintroduced by the simplistic representation of
marine ecosystem structure within global prognostic DMS models,
limiting their capability to constrain DMS production and flux in the
present day and their ability to predict DMSinto the future. Increased
complexity has been integrated into biogeochemical models within
some ESMs, with up tofive explicit functional groups of phytoplankton
(2 x Phaeocystis, diatoms, diazotrophs and smaller phytoplankton)
and two implicit groups (coccolithophore and cyanobacteria), as

well asimproved representation of marine sulfur cycling'®. However,

Methanethiol oxidation

existing global DMS prognostic models do notaccount for the specific
contributions from different phytoplankton species to the overall net
productionof DMSP and DMS"™ and completely neglect theimportant
bacterially driven processes that predominantly drive DMS produc-
tion™. The ability of models to simulate observations are therefore
limited'® and have large uncertainties in predicting future DMS flux.
The current challenge is illustrated when predicting trends in
surface ocean DMS concentrations and fluxes using four current-
generation ESMs"° (Fig. 6). The modelled changes in DMS concentra-
tions are predominantly correlated with marine productivity, butthe

DMS oxidation
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Fig.4|Dimethylsulfoniopropionate biosynthesis and degradation.
Where known, the genes encoding key enzymatic steps are indicated in italics:
orange for bacterial or green for algal. Grey boxes indicate dimethylsulfide
(DMS), dimethylsulfoniopropionate (DMSP) DMS and methanethiol (MeSH)
dissolved in seawater, and circles encompass intracellular processes.
Dashed lines represent proposed pathways that require ratification. Three
pathways for DMSP biosynthesis that lead to the formation of intracellular
DMSP have been identified (circle on right): the transamination pathway, the
methylation pathway and the decarboxylation pathway. The transamination
pathway dominates in marine systems (key enzymes DSYB, TopMMT inalgae,
dsyBin bacteria), and the methylation pathway is mainly seenin plants
(MMT) and some bacteria (mmtN). The decarboxylation pathway requires

further ratification. DMSF can be degraded via DMSP cleavage pathways

to produce DMS (ddd in bacteria and Almal in algae) and via demethylation
(dmdA, dmdB, dmdC, dmdD, acuH and mtoX), resulting in the formation of MeSH
and formaldehyde (left circle). Seawater DMS is oxidized to dimethylsulfoxide
(DMSO) (tmm and ddh), which can then be reduced back to DMS (dms and
dor),or to MeSH (dmoA), which can also be oxidized back to DMS (mmdA).
DMSHB, methylthiohydroxybutyrate; DMSOP, dimethylsulfoxonium
propionate; MMPA, methyl-3-mercaptopropionate; MMPA-CoA, methyl-3-
mercaptopropionate coenzyme A; MTA-CoA, 3-methylthioacryloyl coenzyme A;
MTHB, methylthiohydroxybutyrate; MTOB, methylthiooxobutyrate;

MTPA, methylthiopropanamine; SMM, S-methyl methionine.
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Fig. 5| Atmospheric dimethylsulfide-related processes. The atmospheric
oxidation pathways of dimethylsulfide (DMS) and effects on particle formation
and growth, and cloud radiative properties. The abstraction pathway promotes
new particle formation and generates SO, and H,50,, whereas the addition
pathway contributes to the growth of existing particles and the formation of
dimethylsulfoxide (OMSO) and methanesulfonate (MSA)'“****. The isomerization
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pathway (firstdescribed in 2019)"*'"* could account for around one third of DMS
oxidation to form hydroperoxyl methylthioformate (HPMTF), altering current
understanding of marine boundary layer (MBL) DMS oxidation. Climate effects
arise from both direct and indirect aerosol effects*'*. CCN, cloud condensation
nuclei; MSIA, methanesulfinic acid.

model simulations provide no consensus inlong-term trends (Fig. 6).
This lack of consensus is driven by an absence of realistic representa-
tion of biological processes in existing empirical parameterizations
and large uncertainty in the future evolution of marine primary pro-
duction and variations in species composition. Future work requires
modelsand parameterizations to better represent process understand-
ing, by increasing the complexity of lower trophic ecosystem dynamics
in DMS parameterizations and models.

Summary and future perspectives

The evidence for biological climate control through DMS s stillunclear,
but marine DMS clearly has a profound influence on atmospheric and cli-
mate-related processes”**>. DMS emissions influence biogenic particle
formation, whichimpacts new particle formation and cloud albedo >,
affecting global radiative forcing™*"**'. However, there are fundamen-
tal uncertainties about the spatial and temporal variations in surface
ocean DMS concentrations and the modelling of sea-to-air fluxes. These
uncertainties prevent accurate simulation of DMS in ESMs and hinder
the prediction of DMS influence on future climate of the Earth.

Inthis final section, we explore areas that require future research
efforts, including the potential for molecular genetics tools to further
our understanding of the biological drivers of DMS production. We also
recommendwaystoexplorethe influenceofachanging climate on DMS
biogeochemistry and to improve predictions by ESMs.

Advancing molecular understanding and modelling capability
Genetics and molecular biology-based techniques have revealed that
an array of microorganisms across marine environments are capable
of influencing global DMS production from equally diverse marine
environments. However, there are limitations and challenges in using
these methods. Molecular genetics only report the potential for DMS
and DMSP cycling. Analysis of global omics data sets such as Tara
Oceans™™, although informative, is not backed up by DMSP and/or
DMS process measurements, and smaller-scale molecular research
generally lacks measurements of DMSP and DMS synthesis and turnover
rates. Future research mustlink knowledge of the functional enzymes
and pathways, molecular microbial ecology and robust DMSP and DMS
production and cycling measurements'**'*5,
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In particular, the processes that drive net DMS productionin the
surface ocean — the net outcome of the associations and interactions
within the microbial community — are difficult to model and predict,
particularly in highly productive bloom environments'®. To address
this bottleneck, trait-based community model approaches' should
combine with omics to define specific microbial communities. This
approach could provide information on how shifts in trait values
under different environmental conditions impact the production of
DMSP and DMS by influencing the gene expression of key enzymatic
pathways. It would also improve the ability of mechanistic models to
predict the influence of climate change-driven microbial community
composition shifts on net DMS production. Investigation of variations
in synthesis, accumulation and metabolism of DMSP between organ-
isms with nutritional strategies could provide a basis for modelling
DMS production that contrasts with the approach of assigning DMSP
cell quotas to different phytoplankton groups®’ %,

Giventhekeyrole DMS playsin climate regulation, itis vital to have
anaccurate understanding of global DMS surface ocean concentrations
and fluxes, to improve model estimates of the influence of DMS on
climate now and into the future. However, there is a large disconnect
between the current level of biogeochemical and molecular under-
standing and present-day modelling capability. ESMs currently rely on
DMS parameterizations thatuse physical parameters plus poorly con-
strained relationships with phytoplankton biomass to estimate global
DMS concentrations and fluxes". Increasing the accuracy of models
requiresimproved representation of the controls on DMS production,
which can only be achieved through multidisciplinary, co-designed
research. Since the mid-2000s, advances in analytical techniques led
to automated DMS measurement systems capable of high-resolution
spatialand temporal data coverage'*?°°2_ Future investment should
focus on the technological development of low-cost, low-energy DMS
sensors that can be deployed autonomously, for example, on Argo
floats or unmanned vehicles™*?*“tocollect data from under-sampled
regions or during transient events such as dust-stimulated blooms*"".
The ability to collect data in this way, combined with existing ship-
deployed automated systems, would present further opportunities to
exploreregional and global patterns in oceanic DMS distributions®*°®,
Todevelop accurate, global-scale models of surface ocean DMS, future
work should use machine-learning methods to interrogate high spatial
andtemporal frequency oceanographic datasets (with dataincluding
standing stocks of DMS and DMSP, process rates of DMSP synthe-
sis, DMSP turnover, biological DMS consumption/production and
high-frequency microbial community composition).

Impact of acidification

The impacts of ocean acidification on DMS production primarily are
investigated with in situ mesocosm experiments that target whole
surface ocean communities from various geographical locations, often
under highly productive bloom conditions””. DMS concentrations tend
todecline under future ocean acidification conditions (in seven out of
nine published mesocosm experiments), suggesting that net DMS pro-
ductionisinfluenced by ocean acidification. However, unravelling the
complex processes that could be driving this responseis challenging
and could include changes to plankton community structure, graz-
ing rates on phytoplankton, the activity of DMSP lyase enzymes and
bacterial metabolism of DMSP to DMS. As modelling projects the DMS
fluxinto the future under different climate change scenarios?°" by
applying and upscaling the results of these mesocosm experiments 27,
longer scale and more sophisticated experiments are needed.

Ocean acidification is not occurring in isolation, so a future pri-
ority should be the manipulation of multiple forcing factors, such as
oceanacidification, deoxygenation, nutrient availability, temperature
and light over evolutionary timescales (tens to hundreds of genera-
tions)™®. The use of single-species algal cultures is needed to under-
stand the physiology of individual species in multispecies models, with
the caveat thatimportant ecological and biogeochemical interactions
are excluded. Previous mesocosm experiments have been limited to
predominantly coastal environments and experimental durations of
<4 weeks and often considered the response of DMS to ocean acid-
ification as a single stressor. Although technically and logistically
challenging, longer-term multistressor ecological-level experiments
are required to fill key knowledge gaps. These experiments should
be paired with omics analysis and in situ rate measurements of key
processes (such as size-fractionated DMSP and DMS consumption and
production) to determine the processes most sensitive to future
change. Information from such experiments would provide an indi-
cation of physiological plasticity and could be used to improve the
mechanistic representation of DMS-related processes in ESMs*””.

Potential impact of climate mitigation strategies

Focused geoengineering measures including carbon capture and stor-
age, artificial upwelling of nutrients, alkalinity enhancement, albedo
enhancement and iron fertilization* have been proposed to help miti-
gatethe climate crisis. Any geoengineering activity has potential con-
sequences for the marine sulfur cycle, but these responses are poorly
quantified. The DMS response is comparatively most understoodin
oceaniciron fertilization and has responded in various ways: increased
DMS production was observed in the Equatorial Pacific and Southern
Ocean experiments, whereas little change or a decline was observed
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Fig. 6 | Future projections of global dimethylsulfide flux. Time series of annual
global dimethylsulfide (DMS) flux (Tg S per year) from 1850 to 2100, showing
ensemble mean (thick line) + 2 standard deviations (shaded envelopes), from
four different CMIP6 models (CNRM-ESM2-1, MIROC-ES2L, NorESM2-LM and
UKESM1-0-LL). The Earth System Models (ESMs) here use either empirical
parameterizations to compute DMS from chlorophyll and other key variables
such as mixed layer depth (MIROC-ES2L and UKESM1-0-LL) or prognostic DMS
models that include marine biota and parameterizations of key processes that
control DMS release (CNRM-ESM2-1and NorESM2-LM). The Pearson correlation
coefficient indicates the agreement between the modelled DMS fluxes (shown)
and model DMS surface seawater concentrations (not shown) for each ESM run.
High correlation valuesindicate that DMS concentrations are the primary
determinant of DMS fluxes in comparison to other drivers. Figure adapted from
ref. 150, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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in the sub-Arctic North Pacific***. There is debate as to whether DMS
emission changes arising duringiron fertilization would be sufficient
toimpact the regional radiative balance~**. For the Southern Ocean,
an assumed average 10% increase in DMS concentrations over the
course of a month-long iron addition experiment in the austral sum-
mer would resultinasmall (0.005 °C) decrease inglobal average annual
temperature’”. The large uncertainties and limited understanding of
DMS biogeochemistry’”, emissions and climate effects’and the risks
of unexpected perturbations and imbalance in the regional energy
budget®” add to the uncertainties associated with geoengineering
strategies such asiron addition.

Published online: 7 June 2023
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