
Language Driven Analytics for Failure Pattern Feedforward and Feedback

Min Jian Yang, Yueling (Jenny) Zeng, Li-C. Wang
University of California, Santa Barbara

Santa Barbara, California 93106

Abstract—In the context of analyzing wafer maps, we present a
novel approach to enable analytics to be driven by user queries.
The analytic context includes two aspects: (1) grouping wafer
maps based on their failure patterns and (2) for a failure
pattern found at wafer probe, checking to see whether there is
a correlation to the result from the final test (feedforward) and
to the result from the E-test (feedback). We introduce language
driven analytics and show how a formal language model in the
backend can enable natural language queries in the frontend.
The approach is applied to analyze test data from a recent
product line, with interesting findings highlighted to explain
the approach and its use.

1. Introduction

Wafer Map Pattern Recognition (WMPR) is a problem
that has been studied in the field of semiconductor manufac-
turing for decades. A notable example is the dataset called
WM-811K reported in [1]. Many works were published
based on the dataset, including those employing a feature-
based learning approach [1][2][3][4] and those employing
a deep learning approach [5][6][7][8][9][10]. Wafer maps
in the WM-811K are classified based on nine pre-defined
pattern classes. Given such a dataset, it is intuitive to treat
WMPR as a multi-class classification problem.

One of the classes defined in WM-811K is called “Edge-
Local” indicating that the pattern is “local” (in contrast to
a full ring) and also along the wafer edge. Suppose we
follow this pre-defined class. Using three months of test
data (Period 1,2,3) collected from a product line, Figure 1
shows an application context considered in this work.

Figure 1. The feedforward context considered in this work

Suppose we have a way to extract a group of wafer
maps all containing an “Edge-Local” pattern. Figure 1 shows
that there are 179 such wafer maps found from the wafer

probe test data. In our application context, knowing this
information is not enough. In addition, we would like to see
if there is a “correlation” between the failure pattern and the
final test result. To do so, we generate two plots: a stacked
wafer map of the 179 wafers based on their fails from the
wafer probe, and a stacked wafer map based on their fails
from the final test. Figure 1 shows these two stacked wafer
maps. On each map, the color gradient is set from yellow
to red where yellow means 1 fail and red is set to the max
number of fails across all die locations.

From the wafer probe’s stacked wafer map, we see a
concentration of fails along the wafer edge from roughly
10 o’clock to 1 o’clock. Suppose we use the phrase “fails
spread from 10 o’clock to 1 o’clock along edge” to describe
it and give it a pattern name: “Edge-10-to-1”. On the final
test’s stacked wafer map, it seems that there are also more
fails in the proximity. The pattern is not apparent though.

The proximity relationship between the wafer probe fails
and the final test fails might be considered as a form of
correlation. Form the result presented in Figure 1, we would
like to conduct further analysis to see if we can find another
pair of stacked wafer maps where the correlation of the two
maps is more isolated (on fewer wafers).

1.1. Refined analysis
To refine the analytic result, we narrow down the selec-

tion of the wafer group for plotting the stacked wafer maps.
In Figure 1, the group has 179 wafers. By focusing on the
new pattern class “Edge-10-to-1”, we could narrow down
to 80 wafers maps exhibiting the pattern. Among these 80
maps, the pattern is more prominent on 59, while the rest
21 can be argued to contain another pattern. Figure 2 shows
the two cases, based on the 80 maps and the 59 maps.

Figure 2. Refined analyses by narrowing down the wafer group selection

As we narrow down the wafer group to 80 wafers and
then, to 59 wafers, the correlation is more isolated on fewer
wafers. Following this thinking, we further split the 59
wafers by their month labels. This results in two groups:
the Period-1 with 53 wafers and the Period-3 with 6 wafers.
Their stacked wafer maps are shown in Figure 3.

Regular Paper



Figure 3. Further refinement by splitting the samples by month

From Figure 3, we see that the correlation is clearer
on the six wafers from the Period-3 group. In addition, we
found these six wafers all from the same wafer lot.

1.2. A pattern hidden in the “Edge-Local” group
In the example discussed so far, we see that the pat-

tern class “Edge-Local” is not specific enough. The more
specific pattern class “Edge-10-to-1” is useful to isolate the
correlation to a few wafers. However, we knew to invoke
this new pattern class “Edge-10-to-1” after we have seen the
plot in Figure 1. The question is: Is there another pattern
class that can also show a correlation and we miss it?

Figure 4. A hidden pattern class showing a potential correlation

The answer is yes. Figure 4 shows such an example
where we might call this pattern “Edge-6-to-9”. These
wafers were all from the month of Period 2, and 10 of them
were from the same wafer lot.

1.3. The feedback application context
Similar to the example discussed above, Figure 5 shows

an example in the feedback application context. For a wafer
probe’s failure pattern class, we would like to see if there
is an E-test parameter correlating to the failure pattern.

Figure 5. The feedback context considered in this work

In this example, we focus on the wafers in Period 1. The
leftmost shows a plot based on 1448 wafers in the month.

Among them, 118 have an “Edge-Local” pattern. These 118
wafers are highlighted as the orange dots. The plot is based
on two test values of the E-test P1234 (an arbitrary name),
on site i and site j. This plot shows no obvious trend for
the 118 wafers (orange dots vs blue dots).

As we narrow down the wafer group selection to a new
pattern “cluster spread from 10 o’clock to 12 o’clock along
edge” (“ClusterEdge-10-to-12”), we found one lot (call it
Lot X) containing 8 wafer maps all having the pattern.
In the second E-test correlation plot, these 8 wafers are
highlighted as red dots. On this second plot, we then see
a clear bias of their E-test values toward the bottom-left
corner. This indicates that P1234 might be associated with
the “ClusterEdge-10-to-12” pattern, which is subjected to
further analysis to validate (or invalidate) the finding.

1.4. The “try-and-see” analytics process
The analytics demonstrated in the feedforward and feed-

back contexts above can be seen as following a “try-and-
see” process. The process is for searching an interesting
plot serving as evidence for a finding. Each “try-and-see”
analysis comprises three steps: (1) selecting a group of
wafers; (2) making some plots; (3) deciding if there is an
interesting finding from the plots. In each try, the extent
of the interest for a plot depends on the selected group of
wafers, and this extent is determined visually.

In such an analytic process, the selection of the wafer
group dictates how the plots look like and hence, the extent
of their interest. As a result, treating step 1 as solving a
multi-class classification problem with a pre-defined set of
pattern classes (as those in the prior works) is not effective.
From a software tool developer perspective, step 1 requires
two different kinds of capabilities: (1) When a user already
knows what pattern to inspect, help the user quickly get
to the desired plots. Figure 1 to Figure 3 show such an
example. (2) When a user does not know what pattern to
inspect, provide a good starting point. For example, getting
to Figure 4 would have required such capability.

1.5. Natural language driven analytics
In this work, we envision a virtual assistant software App

that supports the “try-and-see” analytics. Figure 6 depicts
this view. The App takes user queries as input and produces
plots as output. User queries are in natural language.

Figure 6. Virtual assistant App supporting language driven analytics

The App comprises two parts, a frontend that parses the
queries into some internal executable instructions for gen-
erating a plot, and a backend that implements the functions
for performing the analytics. The analytic results are stored
as tables in a database that can be queried by the frontend
when generating a plot. Note that implementation of the
frontend is discussed in a separate work in [11]. This work
focuses on the technologies in the backend analytics.

Regular Paper



In view of the two kinds of capabilities mentioned in
Section 1.4, this work discusses two analytics approaches,
integrated in our backend implementation. The first is ex-
tended from our Minions approach proposed in [12]. Sec-
tion 2 explains how it is used to provide a foundation for the
required capabilities, and how we add the second approach
called natural language interpreter (NLI) to enhance the
analytics. Section 3 discusses the core of the wafer map in-
terpretation problem. Then, detail for implementing the NLI
is presented in Section 4. Section 5 summarizes interesting
findings from test data collected on a recent product line.
Section 6 concludes and points to a future work.

2. The Minions Approach
The Minions (MINiture Interactive Offset Networks)

approach was developed through the works reported in
[12][13]. With the approach, one neural network (NN)
model is independently learned to recognize one single
wafer map. Each NN recognizer is called a Minion. The
wafer map used to train a Minion is called its anchor. For
every pair of wafer maps, we can therefore perform mutual
recognition, which results in a recognition graph. In this
graph, every node is a wafer map. Two nodes have an edge
connecting them if their recognizer recognizes each other.

Figure 7. An example of Minions’ recognition graph on wafer maps

Given a recognition graph, we can perform various anal-
yses based on well-known graph operations. For example,
starting from a node we can extract a Connected Component
(CC). Figure 7 shows a CC example. It is interesting to
notice that two wafer maps with a direct connection have
a similar pattern. However, we cannot say that all wafer
maps in the CC have a similar pattern. This is because
each Minion recognizes its anchor and some variation of it.
Hence, if two wafer maps are connected through multiple
nodes, one can vary significantly from the other.

Given a graph, we can find its maximal cliques. In
Figure 7, two maximal cliques are highlighted. In our work,
we call a maximal clique a cluster core. The two cliques
are shown as “Core A” and “Core B”. Notice that within
each clique, the wafer maps look very similar.

2.1. Suggesting a potential pattern class
As discussed in Section 1.4, the first step in the analytics

is selecting a wafer map group. In essence, this group

represents a pattern class of its own. A recognition graph
like Figure 7 provides a good starting point to suggest such a
pattern class. For example, we can say that a maximal clique
is a potential choice of pattern class. However, as seen in
Figure 7 using only the cliques would be too restricted and
does not cover many wafer maps in the CC.

On the other hand, we can say that each CC is a potential
choice of pattern class. However, we see that this would lead
to a pattern class that is “too loose”, i.e. likely two dissimilar
wafer maps are included in the same class.

Given a recognition graph, using maximal clique and
using CC represent two extreme cases to define pattern
classes. Both are not ideal. Consequently, we need another
way to choose pattern classes in between.

2.2. Primitive pattern and describable set
In our backend, a cluster core is treated as a primitive

pattern. A pattern class can be specified and extended from
a primitive pattern. Each extension is through a language
interpretation based on one primitive pattern, and the inter-
pretation result is captured in a describable set.

For example, given a description: “more fails spread
from 6 o’clock to 9 o’clock along edge”, suppose the NLI
finds Core A in Figure 7 satisfying this description, and then
extends from the core to find all other wafer maps also satis-
fying this description. The Describable Set is highlighted in
the figure, which includes Core B and 7 other wafer maps.
These 15 wafer maps are those shown in Figure 4 before.

2.3. Querying a describable set
In our analytics backend, a describable set corresponds

to a primitive pattern and satisfies three conditions: (1) It
includes the maximal clique of the primitive pattern; (2)
Within itself, all wafers are connected; (3) It is describable
through our natural language interpreter (NLI).

Figure 8. Attaining describable sets through NLI

Figure 8 illustrates the analytics performed in the back-
end. Given a set of wafer maps, first we obtain their
Minions’ recognition graph. From the graph, we extract
connected components, and each becomes a cluster. Then,
from each cluster we extract maximal cliques as the cluster
cores. Based on a core, the NLI interprets a wafer map by
assigning values to a set of wafer attributes. These wafer
attributes are to be selected by an utterance that describes
a group of wafer maps. For simplicity, in this work we
rely on utterance as input query to extract the wafer group
for a plotting request (detail of the frontend to use natural
language queries is discussed in [11]). Given an utterance
describing a pattern, the utterance is broken down into a list
of constraints on the attribute values. Then, a describable
set is the set of the wafers whose attribute values are based
on the same core and satisfy all the constraints.

Regular Paper



2.4. The search space
The search space comprises all describable sets which

are extended from the primitive patterns. In a try, one or
more describable sets can be selected based on the query.
Also, a selected group can be further refined with other
pattern-independent constraints, such as a yield constraint or
a selected period. For example, the user can request using
wafer maps only from July, with yield loss greater than 30%.

3. Explaining A Cluster Core
Figure 9 provides an example to explain more detail

of the flow shown in Figure 8. Figure 9 shows a cluster,
i.e. a connected component. One of the cluster cores (i.e.
the maximal clique) has four wafer maps. A salient region
analysis is applied to these four maps. This analysis can be
based on the techniques reported in [1]. The goal is to extract
an attention region on each map. Then, the four salient maps
are stacked to create an attention mask. This mask can be
obtained using a density estimation technique [14] and a
threshold to include, say 80% of the density mass.

Figure 9. An example of cluster and cluster core

3.1. Use of the attention mask
The attention mask enables NLI to focus its interpre-

tation on a region. This is important because it simplifies
our NLI implementation. For an interpretation request, the
NLI is given with a wafer map and an attention mask. For
example, using the mask the NLI can simply ignore all
failing dies outside. In contrast, if the NLI were given only
the wafer map without a mask, the NLI has to consider all
failing dies, which would be more complicated.

The attention mask has another use: It provides a way to
determine how many sub-regions the NLI should separately
focus on. This can be done with the gradient information
included in the attention mask. For example, for the mask
shown in the figure, two sub-regions are identified. NLI will
then provide wafer attribute values for each sub-region.

3.2. Wafer map interpretation
For a wafer map, values of its wafer attributes depend on

the attention mask in use. Since a CC can contain multiple
cluster cores, each with a different attention mask, a wafer
map in the CC can receive multiple interpretations from
the NLI. Note that wafers in one describable set are based
on one interpretation. For an input query, all satisfying
describable sets are included in the group of wafer maps.

Consider the four wafer maps in the cluster core shown
in Figure 9. Suppose the focus is on the top-left sub-region.
For the four wafer maps, the NLI may interpret them as
an “arc at x o’clock along edge” where x could be 11, 12,
10.5, and 12, respectively, depending on where the center
of the arc pattern is located. These four wafer maps can all
be captured in a less-constrained utterance like: “arc at 11
o’clock to 12 o’clock along edge”.

For the middle sub-region, the four descriptions may all
be: “big cluster at the center”. Then, the capturing utterance
would be the same. Furthermore, to describe the entire
wafer, the NLI needs to decide a phrase that connects these
two sub-regions. For example, the NLI can use a phrase like
“extend to”, i.e. the “arc” “extend to” the “big cluster”.

4. The Natural Language Interpreter (NLI)
In the example above, we see that the NLI needs to

support utterances using those descriptive terms such as
“arc”, “along edge”, “11 o’clock”, “cluster”, “big”, “at
the center” and “extend to”. Such vocabulary determines
the scope of possible utterances that can be interpreted by
the NLI. For building our NLI, we follow a grammatical
approach [15]: (1) We use a grammar to define the scope
of all possible utterances; (2) For each descriptive term, we
use a software script to check for its existence on a given
wafer map (i.e. setting the value of the wafer attribute).

The grammar includes the capability to support describ-
ing patterns at two levels, at individual wafer level and at
multi-wafer level. Earlier we see an example where different
numerical values for a descriptive term can be merged into
a value range to form a less-constrained utterance. When
combining two utterances that have different pattern descrip-
tions, we can use a high-level descriptive term. For exam-
ple, suppose one utterance describes an “arc at 11 o’clock
along edge” and another utterance describes a “cluster at
11 o’clock along edge”. In this case, we may use a high-
level term “something” to capture both “arc” and “cluster”.
Hence, both wafer maps can be described with the utterance
“something at 11 o’clock along edge”.

4.1. A parsing tree example
To illustrate how the NLI follows a grammar to interpret

a given wafer map, Figure 10 depicts the parsing tree for one
wafer map (the 2nd map in the cluster core in Figure 9). For
the core, there are two sub-regions. Therefore, in the parsing
tree the wafer map is first partitioned into two components:
Comp1 and Comp2. The detailed tree for the Comp1 is
shown in Figure 10 .

Below Comp1, there are two nodes: Comp and RE-
LATION. The Comp is for describing the component. The
RELATION is for describing the relationship to Comp2.

The Comp node has two child nodes: CheckArc and
DescrLocation. The CheckArc checks the type of the pattern
to determine if it is an “arc”. If it is, then DescrArc is
used to describe what kind of “arc”. The DescrLocation

describes the location of the pattern. Three attributes are
used: DIRECTION, SPREAD, REGION, and additional two
are for associated PREPOSITION (PP).

Regular Paper



Figure 10. The parsing tree for one wafer map in Figure 9. The wafer
map is described as: ”Null length thin thickness arc type at 12 o’clock
direction null spread along edge extend to ...”, and at high level (using
the high-level descriptor “something”), can be captured as: ”something
at 12 o’clock direction null spread along edge extend to ...”

The value of an attribute is determined by its corre-
sponding software script. For example, the value of the
LENGTH can be: short ∣ long ∣ null. The value of the
THICKNESS can be: thin ∣ thick ∣ null. The attributes
and their possible values are part of the lexicon in the
grammar, as that exemplified in Table 1.

Sub-tree below the CheckArc node is highlighted with a
shaded box. This is to indicate that the box can be replaced
by a high-level descriptor called “something”. With the
high-level descriptor, detail of the pattern shape is ignored
and the focus is on its other attributes.

In the parsing tree, the leaf nodes are values of the
attributes. A canonical utterance can be obtained by con-
catenating the leaf node values and for some, their attribute
names from left to right. The utterance is shown in the
caption of the figure. A high-level utterance can also be
constructed using the high-level descriptor “something”.

4.2. The grammar
Our NLI uses a context-free grammar (CFG) [15] to

define a formal language L0, which essentially models the
interpretation process. A CFG is formally specified by 4-
tuple (V,Σ,R,S) where V is a set of non-terminal symbols,
Σ is a set of terminal symbols, R = {V × (Σ∪V )∗} is a set
of rules, and S is the starting symbol. A CFG includes a list
of production rules that expand a non-terminal v ∈ V into a
string which can contain both non-terminals and terminals.
The subset of rules that turns non-terminals into terminals,
is called the lexicon of the grammar.

Table 1 shows our current lexicon for L0, which can be
extended as needed. Each rule is of the form: ATTRIBUTE
→ {value1 ∣ value2 ∣ . . .} (i.e. wafer attributes and values).
Note that a null value means that there is no description
for the attribute and thus can be omitted from the utterance.
To use this grammar as an interpreter, a software script is
implemented for each lexicon rule. The script determines
which value should be selected for the wafer attribute.

Table 2 shows our current grammar rules for L0. The
grammar rules can be used to generate various strings by
recursively expanding non-terminals starting from S until

TABLE 1. THE LEXICON FOR THE FORMAL LANGUAGE L0

TYPEARC → arc
TYPERING → ring
TYPELINE → line

TYPEDONUT → donut
TYPECLUSTER → cluster

TYPEMAJOR → something
TYPEMINOR → minor component

RELATION → and ∣ and extend to
DIRECTION → x o’clock ∣ left ∣ right ∣ upward ∣ downward

∣ lower left ∣ upper left ∣ lower right ∣ upper right
LENGTH → short ∣ long ∣ null

THICKNESS → thin ∣ thick ∣ null
WAVINESS → straight ∣ wavy ∣ null

SIZE → small ∣ big ∣ huge ∣ massive ∣ null
DENSITY → solid ∣ somewhat solid ∣ more fails ∣ some fails

PREPOSITION → at ∣ near ∣ from ∣ to ∣ along ∣ around ∣ touch ∣ on
REGION → center ∣ edge ∣ in-between
SPREAD → wide ∣ null

CONNECTIVITY → broken ∣ null
COMPLETENESS → half ∣ full ∣ null

SIGNIFICANCE → not obvious
SUBSET → only exhibit on some wafers

every non-terminal is rewritten into a terminal according to
the lexicon. All the non-terminals that trigger a rule in the
lexicon (Table 1) are presented in small capital font.

The grammar rules represent the working logic in the
interpretation workflow implemented in our NLI. For exam-
ple, the first rule (G0) expresses the fact that a wafer map
can consist of up to two major components (C1 for one and
C2 for two components) and some minor components (C∗).
(G5) to (G7) are for a minor component without detailed
description of its shape. (P0) captures the generic procedure
for describing a major component. A major component can
be described in terms of its shape and location descriptors
along with other optional descriptions. Specifically, each
type of shape is associated with a dedicated “check” function
for its determination, and every shape is associated with its
unique attributes, as stated in (A), (R), (L), (D) and (C),
respectively.

In addition, the internal logic of NLI ensures that pat-
terns like an arc or line will be checked first before proceed-
ing to a more general shape like a cluster. (P1) indicates the
rule for describing the location. (P2) provides other options
for describing the component such as its pattern significance
relative to the rest of the wafer, and if it only exhibits on a
subset of wafer maps in the group.

4.3. The software script
If we view the grammar as an interpretation workflow, it

is not hard to see that we need two sets of software scripts to
enable the interpretation. One is already mentioned above
that we need a script for every lexicon rule. Another set
of scripts are needed to implement other grammar rules in
Table 2. For example, earlier in Section 3.1 we discuss how
to use the attention mask to decide how many sub-regions
to focus on. This determination can be based on finding
density peaks in the attention mask (which can be made as
a contour plot). This can be a way to implement the (G0)
rule in grammar, i.e. to decide whether we should follow
C1 or C2 and whether C∗ should be activated.

Regular Paper



TABLE 2. THE GRAMMAR FOR L0 .
Grammar Rules Description

(G0) S → {C1∣C2}C
∗ A pattern can have one or two major components and some minor ones

(G1) C1 → Comp The case where there is a single major component
(G2) C2 → Comp1 Comp2 The case where there are two major components
(G3) Comp1 → Comp RELATION The first major component and its relationship to the second one
(G4) Comp2 → Comp The second major component

(G5) C∗ → null The case where there is no other minor component
∣ RELATION C The case where there are other minor components and their relationship

(G6) C →MinorComp C∗ Minor components can be one or many
(G7) MinorComp→ TYPEMINOR DescrLocation ⟨opt⟩ A minor component is described only by its location

(P0) Comp→ {CheckArc∣CheckRing ∣CheckLine∣CheckDonut∣... The component is described by its shape and location with other options
...∣CheckCluster}DescrLocation ⟨opt⟩
∣ TYPEMAJOR DescrLocation ⟨opt⟩ From high level, the component is described only by its location

(P1) DescrLocation → SPREAD {PREPOSITION DIRECTION}... Location is defined by the component’s spread, direction and region,
...{PREPOSITION REGION} with additional prepositions

(P2) < option >→ SIGNIFICANCE How obvious the component is compared to the original wafer map
∣ SUBSET The component only exhibits on a subset of wafer maps

(A0) CheckArc →DescrArc TYPEARC
(A1) DescrArc → LENGTH THICKNESS An arc is defined by its length and thickness
(R0) CheckRing →DescrRing TYPELINE
(R1) DescrRing → THICKNESS CONNECTIVITY COMPLETENESS A ring is defined by its thickness, connectivity, and completeness
(L0) CheckLine →DescrLine TYPELINE
(L1) DescrLine →WAVINESS LENGTH THICKNESS A line is defined by its waviness, length, and thickness
(D0) CheckDonut →DescrDonut TYPEDONUT
(D1) DescrDonut → SIZE THICKNESS DENSITY COMPLETENESS A donut is defined by its size, thickness, density, and completeness
(C0) CheckCluster →DescrCluster TYPECLUSTER
(C1) DescrCluster → SIZE DENSITY A cluster can be defined by its size and density

Figure 11. The definition of REGION on the wafer map

To simplify presentation, in this section we use two
examples to illustrate how the scripts can be implemented.
Recall in Figure 9, two sub-regions (i.e. two density peaks)
are identified from the attention mask. To determine the
location name of a sub-region, a wafer is divided into three
areas: “edge”, “in-between”, and “center”. An area checker
finds which area the sub-region is in. This determination is
by transforming a map into polar coordinates and dividing
its radius into three areas as shown in Figure 11. The area
from the wafer map center to R1, i.e, (ρ, θ) = (R1,2π)
is called the ”center”, the next (R2 − R1,2π) is the ”in-
between”, and the last (R3 −R2,2π) is the ”edge”.

Suppose the density peak falls in the “edge” sub-region,
then the component might be an “arc”. To check if it
is actually an “arc”, we implement an arc type checker
depicted in Algorithm 1. The input includes a threshold T1 to
determine if the component is an “arc”. First, a component
must have its density peak fall inside the edge region in
order to be called an “arc”. Then, we calculate two density
estimates r, x within the component’s angular spread in the
edge region. The ratio (x

r
) of these density estimates is

compared to the threshold T1 to determine if it is an “arc”.
Notice that the arc type checker relies on a fixed threshold.

One may raise the concern regarding the robustness of
using a specific threshold, i.e. a person may see a pattern as
an “arc” but the NLI fails to interpret it as an “arc”. Note that
our NLI does not aim to optimize with respective to such
an accuracy objective. Instead, it aims to find a describable
set, and as stated in Section 2.3 this set has to satisfy two
conditions on the Minions’ recognition graph. In this sense,
the two conditions provide a check for the NLI’s result.

Algorithm 1: An arc type checker
Input: Threshold: T1, R2, R3

Output: Is it an Arc: True/False
Data: Wafer Map Matrix of the Component

1 edge region ← (ρ, θ) = (R3 −R2,2π) ; // Global
2 T1 = 66% ; // Default
3 Assert the density peak is in edge region
4 Find the angular spread
5 r ← the density sum within the angular spread in

edge region
6 R∗ ← the region (ρ, θ) = (R3,2π) − (R2 +

R3−R2
2

,2π)
7 x ← the density sum within the angular spread in R∗

8 if x
r
< T1 then

9 return False ; // It is not an arc

10 return True ; // It is an arc

4.4. Canonical utterance examples
Using wafer attributes based on a given core, the NLI

can interpret wafer maps with canonical utterances. As an
example, Table 3 shows the salient wafer maps from two
cores and their attention masks. The utterances interpreted

Regular Paper



TABLE 3. SALIENT WAFER MAPS FROM A CLUSTER CORE AND THEIR CANONICAL UTTERANCES

Salient Wafer
Maps (Core)

Attention
Mask

Canonical Utterance
(1: top-left, 2: top-right, 3: bottom-left, 4: bottom-right map)

1. null size more fails density cluster type wide spread from 9 o’clock direction to 1 o’clock direction along edge and
extend to big size somewhat solid density cluster type upward direction at center.
2. null length thin thickness arc type at 12 o’clock direction null spread along edge and extend to big size somewhat
solid density cluster type upper right direction at center.
3. null length thin thickness arc type at 11 o’clock direction null spread along edge and extend to huge size more fails
density cluster type upper left direction at center.
4. null length thin thickness arc type at 12 o’clock direction null spread along edge and extend to big size somewhat
solid density cluster type upward direction at center.
1. null size more fails density cluster type wide spread from 9 o’clock direction to 12 o’clock direction along edge and
small size cluster type upward direction at center not obvious.
2. null size some fails density cluster type wide spread from 9 o’clock direction to 1 o’clock direction on edge and
small size cluster type left direction at center region not obvious.
3. null size more fails density cluster type wide spread from 9 o’clock to 1 o’clock touch edge.
4. null size more fails density cluster type wide spread from 9 o’clock direction to 2 o’clock direction on edge.

TABLE 4. EXAMPLES OF WAFER GROUPING
Cluster

Core
Stacked

Subgroup
Stacked Canonical Utterance

Something at 11 to 12 o’clock direction along
edge extend to something around center.

Something at 11 o’clock direction wide spread
along edge and something around center
only exhibit on some wafers.

by the NLI are listed (1: top-left, 2: top-right, 3: bottom-left,
4: bottom-right map). Notice that wafer maps in the same
cluster core can have slightly different utterances.

The high-level utterances for the two cluster cores are
shown in Table 4. The table shows two stacked heatmaps for
each core. The first is by stacking the four maps in the core.
The second is by stacking the four maps and all the neigh-
boring wafer maps in the describable set. A neighboring
wafer map is directly connected to at least one wafer map in
the core. This is one way we can use the recognition graph
to further select a subgroup of wafers from a describable
set. We will come back to this subgroup selection when
discussing the analytic findings in Section 5.1.

The high-level descriptor “something” can be used to
capture a set without detailed description of the pattern
shape. For location, wafer maps in Table 3 include a variety
of descriptions all related to the center region. Hence, they
can be captured with another high-level descriptor “around”.

For the first core, the first component can be at either
11 or 12 o’clock directions. To capture all four wafer maps,
the high-level description can become “11 to 12” o’clock.
Note that a ”wide spread” range of two clock values can be
converted into a single clock value by taking their average.
In this way, the first wafer map is included in the describable
set (which is a requirement).

Another consideration for a high-level utterance is that,
not all wafer maps in a set have the same number of
components (This is captured in (P2) grammar rule). The
second cluster core in Table 3 exhibits this situation. In
this case, an optional phrase “only exhibit on some wafers”
is appended to the utterance to indicate the fact that the
utterance of the second component only applies to some but
not all wafers in the given set. In general, after individual
canonical utterances are interpreted for wafer maps, incom-

patible phrases from individual wafers can be abstracted out
to satisfy a given high-level utterance (e.g. “something” at
the CheckArc and CheckCluster nodes to replace an “arc”
phrase and a “cluster” phrase.). Note that while a high-level
utterance can be used to describe a set of wafers, we make
sure that a describable set always includes all wafers from
the corresponding cluster core.

4.5. Paraphrasing with GPT-3
In this section, we consider converting a canonical utter-

ance into a natural language description. This is in contrast
to the work presented in [11] where the goal is to translate
a natural language query into an internal representation.

To output a description more like a naturally spoken
language, we can leverage the capability provided by a state-
of-the-art language model to paraphrase canonical utterances
into natural sentences. In our current implementation, the
GPT-3 model [16] is used. GPT-3 is a large pre-trained neu-
ral network with 175 billion parameters. We take advantage
of the in-context learning capability provided by GPT-3 to
achieve few-shot learning. In other words, we teach the GPT-
3 by providing a few demonstrating paraphrasing examples
in a prompt window. Then, the GPT-3 will be able to convert
an utterance interpreted by the NLI into a natural sentence.

In the teaching, we guided the GPT-3 by designing the
input and output to follow two prefix words: “Sentence:”
and “Paraphrase:”, respectively. The stop word is the same
as the output prefix, so that the model will stop generating
once it completes one paraphrase. The GPT-3’s temperature
parameter controls the level of probability used to select the
next word. The higher the temperature is, the more variety
the chosen words will be. Since the utterances generally
follow a well-defined structure according to the grammar,
the temperature parameter is set to be 0.9 which allows more
flexibility to paraphrase a given utterance.

To demonstrate the paraphrasing capability, Table 5
shows some examples. For each example, two maps are
shown: the original wafer map and its salient region map.
In each case, a canonical utterance from the NLI is shown,
followed by one paraphrase given by GPT-3. Note that the
GPT-3 output is obtained by giving the input “Sentence: <the
utterance>” followed by the prompt “Paraphrase:”. Then, the
GPT-3 generates the sentence as shown.

Regular Paper



TABLE 5. EXAMPLES OF WAFER PATTERN INTERPRETATION
Original
/ Salient

Canonical Utterance Interpreted by the Grammar /
GPT-3 Paraphrasing Output

Utterance: null length thin thickness arc type at 12 o’clock
direction null spread along edge and extend to big size some-
what solid density cluster type upper right direction at center.
GPT-3: There is a thin arc at 12 o’clock along the edge
and extended to a somewhat solid big cluster located upper right
at the center.

Utterance: thick thickness broken connectivity half complete-
ness ring type wide spread from 3 o’clock direction to 12 o’
clock direction on edge.
GPT-3: There shows a thick half-ring, which is not fully
connected, widespread from 3 o’clock to 12 o’clock
on the edge.

Utterance: null size more fails density cluster type wide
spread from 9 o’clock direction to 12 o’clock direction along
edge and small size cluster type upward direction at center
not obvious.
GPT-3: There exists a cluster with more fails
wide spread from 9 o’clock to 12 o’clock along the edge
and a small cluster located upward at the center,
which is not an obvious pattern.

Utterance: small size cluster type at 10 o’clock direction
along edge and extend to small size cluster type upper left
direction near center.
GPT-3: There exists a small cluster at 10 o’clock along the
edge, which extends into a small cluster located upper left
near the center.

Utterance: small size cluster type at 10 o’clock direction
on edge and extend to small size cluster type upper left
direction near center, and minor component at 6 o’clock
direction along edge.
GPT-3: There is a small cluster at 10 o’clock along the edge
which extends into a small cluster located upper left near
the center, and there is also a minor component located
at 6 o’clock along the edge.

Utterance: long length thin thickness arc type wide spread
from 2 o’clock direction to 7 o’clock direction along edge.
GPT-3: There shows a long thin arc widespread from 2 to 7
o’clock along the edge.

Utterance: null thickness broken connectivity half complete-
ness ring type wide spread from 11 o’clock direction to 7
o’clock direction on edge and extend to null size more fails
density cluster type lower right direction near center.
GPT-3: There shows a broken half ring, widespread from 11
o’clock to 7 o’clock along the edge, which extends into a
cluster with more fails located lower right near the center.
Utterance: null size more fails density cluster type wide
spread from 10 o’clock to 2 o’clock along the edge and
extend to big size more fails density cluster type
upward direction near center.
GPT-3: There exists a cluster with more fails widespread
from 10 o’clock to 2 o’clock along the edge, which extended
from a big cluster with more fails upward near the center.

Utterance: straight short length thick thickness line type
at 8.0 o’clock direction from edge to center.
GPT-3: There shows a short thick line which is straight,
appearing at 8 o’clock pointing from the edge to the center.

Utterance: big size thin thickness somewhat solid density
full completeness donut type at center.
GPT-3: There is a big yet thin donut at the center, which is
somewhat solid and is fully connected

5. Application Results
Our NLI was applied to help analyze test data collected

from a recent product line. The wafers were stamped with
days in three months (call them Period 1,2,3). The three
periods have 1448, 1383, and 74 wafers, respectively.

5.1. The feedforward application context
Figure 12 illustrates our investigation flow in the feed-

forward context. From the Minions’ recognition graphs, we
obtain a set of cluster cores. Based on each core, results
from the NLI are stored in a database table. Each row in
the table corresponds to a wafer map containing the wafer
attribute values determined by the NLI.

Figure 12. Flow to investigate a correlation between Wafer Probe and Final
Test based on attention mask and final test failing heatmap; Each try starts
with a simple query to find a group of wafers.

In a try, a query is specified to extract a group of wafers.
It is important to note that, the list of primitive patterns
provide a good guide for us to start a query. This was how
we knew to try on the hidden pattern seen in Figure 4 before.

With a query, the describable sets are extracted as the
group of wafers for plotting. In plotting, we consider ar-
ranging the wafers in subgroups based on primitive patterns
in the group (see discussion of Table 4 before). For each
subgroup, two maps are shown. The first is the attention
mask from the primitive pattern. The second is the heatmap
from final test fails based on all wafers in the subgroup.
Similar to those examples shown in Figure 1 to Figure 4
before, the proximity of the patterns exhibited on these two
maps is used to determine our interest to the plot.

Figure 13. # of wafer maps (y-axis) in subgroups (x-axis) over three
periods, which all have “something” at 10 to 2 o’clock. For each subgroup,
two images are shown: (1) the left is the attention mask and (2) the right
is the heatmap from final test based on all wafers in that subgroup.

Figure 13 shows a summary result arranged by sub-
groups along the x-axis. Each bar shows the number of

Regular Paper



wafers in the subgroup (corresponding to a primitive pat-
tern). Through the attention masks, we can see a pattern
trend evolving over the three periods. Then, the correlation
to the final test can be seen by comparing each attention
mask to the corresponding final test failing heatmap.

Figure 14. For the same set of wafers shown in Figure 13, this figure
arrange to show day-by-day # of wafer maps over the three periods. If one
day has multiple attention masks, they are stacked to show one mask.

Figure 14 shows a different summary result arranged
by days along the x-axis. Each bar shows the number of
wafers in that day. The plot is based on the same set of
wafers used to plot Figure 13. Once we re-organize those
wafers by days, both the attention mask and the heatmap
for a given day need to be re-generated. As seen, in this
presentation the correlation to the final test is still there for
some days, but is not as apparent as that in Figure 13.

Figure 15. # of wafer maps over two periods arranged by subgroups along
the x-axis, which all have “something” at 6 to 8 o’clock.

Figure 15 shows another interesting finding based on a
second group and its selected subgroups of wafer maps. In
this case, a yield loss threshold is used to show only those
wafers with a yield loss above the threshold.

TABLE 6. SOME OTHER QUERY EXAMPLES AND RESULTS
Attention Heatmap Query and # of wafers found

Query: “something around center”
(found 8 subgroups with a total of 51 wafer maps)
(The heatmap is from a subgroup with 7 wafers)

Query: “something widespread from
2 to 7 o’clock along edge”

(found only 1 subgroup that has 7 wafer maps)
Query: “something along edge at 8 to 10 o’clock ”
(found 5 subgroups with a total of 23 wafer maps)
(The heatmap is from a subgroup with 4 wafers)

Table 6 shows three more examples where the correla-
tion results are not as significant as the two examples before.

Other queries like “something along edge at 4 to 6 o’clock”
or “something in-between” (Center and Edge, see Figure 11)
were also tried but did not find more interesting result. Note
that more specific queries like “arc at 10 to 12 o’clock” or
“something along edge at 11 o’clock” were also tried, but
they usually found much less number of wafers, making a
correlation trend over time less obvious to observe.

Overall, out of the 2905 wafers from the three periods,
2109 wafer maps were interpreted by the NLI (each belongs
to some cluster). For the rest of the wafer maps, most do not
have an obvious pattern and only few might be considered
as having a unique pattern. If desired, they can be ranked
by their yield loss to facilitate a quick manual inspection.

Example results in this section demonstrate the benefits
of our analytics backend: It enables generation of various
summary plots where pattern trend over time as well as
correlation between two testing stages can be visualized.
More importantly, the set of wafers used to generate a sum-
mary plot can be driven by a query, which in the application
context provides the needed flexibility to investigate wafer
map patterns from the user’s own perspective.

5.2. The feedback application context

Similar to the feedforward context, in this section we use
several example findings to illustrate the feedback applica-
tion context. In each case, the result is reached by searching
for a correlation between the described pattern class and an
E-Test parameter. To refine a finding, we may use wafer lots
to select a subset of wafers from the given group. In a try,
we follow the same plot type as shown in Figure 5 before.

Each plot is based on two sites of an E-test parameter.
Suppose there are in total N E-test parameters and k site
combinations. Then, one search space contains N ×k plots.
To facilitate visualization, the plots are ranked according
to their “bias” value, calculated as the distance between
the average position of the selected wafers and the average
position of the rest of the wafers. Note that in each case,
we show one of the top-ranked plots.

Figure 16. E-test correlation plot based on wafer maps describable by
“cluster fails at direction from 11 o’clock to 12 o’clock along edge”

Figure 16 shows one finding. The 1st and 2nd sites are
at the two closest locations to the pattern. Figure 17 shows
another finding, based on the same E-test E1 and the same
two sites in Figure 16. The descriptions between the two
groups only differ by the pattern shape: one as “cluster fails”
and the other as “a thin arc”. Also, the 3rd lot in Figure 17
and the 3rd lot in Figure 16 are the same lot.

Regular Paper



Figure 17. E-test correlation plot based on wafer maps describable by “a
thin arc at direction from 11 o’clock to 12 o’clock along edge”

Figure 18 shows a finding based on a different E-test
parameter E2. Again, the two sites are from the locations
closest to the described pattern.

Figure 18. E-test correlation plot based on wafer maps describable by “a
thin arc at direction from 5 o’clock to 7 o’clock along edge”

Figure 19 shows a finding based on E-test E3. The first
site is at the center and the 2nd site is at the top. Note that
this group contains two describable sets: a “big cluster” set
containing wafers from the 1st and 5th lots and a “small
cluster” set containing wafers from the remaining three lots.

Figure 19. E-test correlation plot based on wafer maps describable by
“cluster fails at or near the center”

Results shown in this section are among many interesting
findings we attained for the dataset. Note that such findings
provide starting points to guide further investigation. Their
interpretation in view of the manufacturing process is be-
yond what the current analytics can provide.

6. Conclusion
In this work, we present a novel language driven ap-

proach for analyzing wafer maps. The foundation is built
upon the Minions approach developed before. A natural
language interpreter (NLI) is added on top of the Minions
foundation. The NLI provides two major benefits: (1) It

provides a flexible and yet interpretable way to group wafer
maps. (2) It enables realization of a virtual assistant for
analyzing wafer maps in the feedforward and feedback
application contexts. The interpretation scope of the current
NLI is limited by the grammar defined within. How to
address the scalability issue and mitigate this limitation can
be an interesting research direction in the future.

Acknowledgment This work is supported in part by Na-
tional Science Foundation Grant No. 2006739 and by Semi-
conductor Research Corporation project No. 2020-CT-2933.
The authors are thankful to Sergio Mier and Leon Wang of
Qualcomm for their valuable inputs to our research.

References
[1] M.-J. Wu, J.-S. R. Jang, and J.-L. Chen, “Wafer map failure pattern

recognition and similarity ranking for large-scale data sets,” IEEE
Tran. on Semi. Manufacturing, vol. 28, no. 1, pp. 1–12, 2015.

[2] M. Fan, Q. Wang, and B. van der Waal, “Wafer defect patterns
recognition based on optics and multi-label classification,” IEEE
Advanced Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC), 2016.

[3] J. Yu and X. Lu, “Wafer map defect detection and recognition using
joint local and nonlocal linear discriminant analysis,” IEEE Tran. on
Semi. Manufacturing, vol. 29, no. 1, pp. 33–43, 2016.

[4] a. a. Minghao Piao, “Decision tree ensemble-based wafer map failure
pattern recognition based on radon transform-based features,” IEEE
Tran. on Semi. Manufacturing, vol. 31, no. 2, pp. 250–257, 2018.

[5] J. Yu, “Enhanced stacked denoising autoencoder-based feature learn-
ing for recognition of wafer map defects,” IEEE Transactions on
Semiconductor Manufacturing, vol. 32, no. 4, pp. 613–624, 2019.

[6] N. Yu, Q. Xu, and H. Wang, “Wafer defect pattern recognition and
analysis based on convolutional neural network,” IEEE Transactions
on Semiconductor Manufacturing, vol. 32, no. 4, pp. 566–573, 2019.

[7] J. Wang, Z. Yang, J. Zhang, Q. Zhang, and W.-T. K. Chien, “Ada-
balgan: An improved generative adversarial network with imbalanced
learning for wafer defective pattern recognition,” IEEE Transactions
on Semiconductor Manufacturing, vol. 32, no. 3, pp. 310–319, 2019.

[8] T.-H. Tsai and Y.-C. Lee, “A light-weight neural network for wafer
map classification based on data augmentation,” IEEE Transactions
on Semiconductor Manufacturing, vol. 33, no. 4, pp. 663–672, 2020.

[9] M. Saqlain, Q. Abbas, and J. Y. Lee, “A deep convolutional neural
network for wafer defect identification on an imbalanced dataset
in semiconductor manufacturing processes,” IEEE Transactions on
Semiconductor Manufacturing, vol. 33, no. 3, pp. 436–444, 2020.

[10] M. B. Alawieh, D. Boning, and D. Z. Pan, “Wafer map defect pat-
terns classification using deep selective learning,” ACM/IEEE Design
Automation Conference, 2020.

[11] Y. J. Zeng, M. J. Yang, and L.-C. Wang, “Wafer map pattern analyt-
ics driven by natural language queries,” in IEEE International Test
Conferencel in Asia, 2022.

[12] Y. J. Zeng, L.-C. Wang, and C. J. Shan, “Miniature interactive
offset networks (minions) for wafer map classification,” in IEEE
International Test Conferencel. IEEE, 2021, pp. 190–199.

[13] Y. J. Zeng, L.-C. Wang, C. J. Shan, and N. Sumikawa, “Learning a
wafer feature with one training sample,” in IEEE International Test
Conferencel. IEEE, 2020, pp. 1–10.

[14] N. Sumikawa, M. Nero, and L.-C. Wang, “Kernel based clustering
for quality improvement and excursion detection,” IEEE International
Test Conference, 2017.

[15] D. Jurafsky and J. H. Martin, Speech and Language Processing:
An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition, 3rd ed., 2022.

[16] e. a. Tom Brown, “Language models are few-shot learners,” CoRR,
vol. abs/2005.14165, 2020.

Regular Paper


