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Abstract— We analyze convergence of decentralized fictitious
play (DFP) in near-potential games, where agents participate
in a game in which the change in utility functions are closely
aligned with a potential function. In DFP, agents take actions
that maximize their expected utilities computed based on local
estimates of empirical frequencies of other agents. These local
estimates are updated by averaging estimates received from
neighbors in a time-varying communication network. Assuming
that a near-potential game has finitely many Nash equilibria
that are distant enough from each other, we show that the
empirical frequencies converge near a single Nash Equilibrium.
This result establishes that DFP maintains the properties of
standard fictitious play (FP) in near-potential games.

I. INTRODUCTION

In non-cooperative games, agents select among available
actions to maximize their individual utilities given the actions
of other agents. Potential games [1] assume the existence of
a potential function that captures the changes in individu-
als’ utilities due to unilateral changes in actions. Various
autonomous systems including transportation [2], robotic [3],
communication [4] and energy systems [5] can be modeled
with potential games. In potential games, convergence to
a Nash equilibrium (NE) is shown via different dynamics
such as best-response [1], fictitious play (FP) [3], and log-
linear learning [6]. The fact that NE are equal to the
optimal set of potential functions provides the justification
to use NE to optimize system-level performance. However,
assuming the existence of exact or ordinal potential games
may be unrealistic in such systems in which there often exist
unknown payoff relevant parameters.

Near-potential games allow a deviation between individ-
ual utilities and a potential function in terms of unilateral
changes. This deviation can stem from estimation error about
the environment, quantization, or the agents’ abilities to exe-
cute actions with precision. In more detail, unilateral change
is defined as the change in joint action profile where only
one agent changes its action and others continue to select
the same actions. Given the bounded deviation, canonical
decision-making protocols, e.g., best-response, fictitious play
(FP) and log-linear learning, converge to an approximate-
Nash Equilibrium (NE) [7].

FP is an iterative multi-agent decision-making mechanism
based on the premise that agents select actions that maximize
their expected utilities assuming other agents follow station-
ary strategies. The stationary strategy of an agent is given
by the empirical frequency of its past actions. Computation
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of this stationary strategy requires that agents have perfect
information about the entire history of the plays. For the
case of autonomous systems in real-life applications, this
may not be possible. More realistically, each agent may
only have limited access to past history of play via a
communication network. In such a scenario, agents need to
form estimates about the histogram of past actions of other
agents using their local information. Here, we consider one
such iterative learning mechanism, which can be interpreted
as a decentralized version of FP (DFP) for near-potential
games. FP is also a commonly employed iterative learning
mechanism in other games such as stochastic zero-sum [8],
[9] and mean-field games [10] in addition to near-potential
and potential games.

Specifically, we consider agents that employ DFP in time-
varying communication networks as in [11]. In [11], we
showed that DFP converges to a set of strategies having
better potential function values compared to the minimum
potential value of approximate Nash equilibria. In [12], we
characterized that empirical frequencies of agents converge
around a single NE under two additional assumptions: i)

finite number of Nash equilibria and ii) near-potential game
is close enough to a potential game. Here, we further extend
the results by deriving an upper bound on the distance
between empirical frequencies and a single NE (Theorem
1). This result shows that DFP maintains the convergence
properties of standard FP established in [7] for near-potential
games. Considering a target assignment game with unknown
target locations, we show that the action profiles can actually
converge to the exact NE of the potential game when the
uncertainty around the target locations is small. These results
demonstrate that DFP can be used to model and design
system behavior in large-scale autonomous teams in which
agents have imperfect information about the objective and
the actions of other agents.

II. NEAR-POTENTIAL GAMES

A game is defined by the tuple � := (N ,AN
, {ui}i2N },

where N = {1, · · · , N} is the set of agents (players), A is a
common action set, and ui : AN ! R is the utility function
of agent i that maps a joint action profile (ai, a�i) 2 AN

to a real value. We denote the set of agents excluding i by
�i := {j 2 N \ {i}}.

In a potential game �̂, there exists a potential function u

that captures the changes in individual utility functions given
unilateral deviations [1].

Definition 1 (Potential Games) A game �̂ is a potential

game, if there exists a potential function u : AN ! R such
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that the following relation holds for all agents i 2 N ,

u(a0i, a�i)� u(ai, a�i) = ui(a
0
i, a�i)� ui(ai, a�i) (1)

where a
0
i 2 A and ai 2 A and a�i 2 A�i.

We will use the maximum pairwise difference (MPD) as the
distance metric in defining the class of near-potential games
[7].

Definition 2 (Maximum Pairwise Difference) Let � =
(N ,AN

, {ui}i2N ) and �̂ = (N ,AN
, {ûi}i2N ) be two

games with the same set of agents and the joint action sets,

and utilities respectively given as {ui}i2N and {ûi}i2N .

Further, let d
�
(a0

i,a)
:= ui(a0i, a�i) � ui(ai, a�i) be the dif-

ference in utility of agent i if only agent i changes its action

to a
0
i 2 Ai from the joint action profile a = (ai, a�i) 2 AN

in the game �. Then, MPD between the games � and �̂ is

defined as,

d(�, �̂) := max
i2N , a0

i2A, a2AN
|d�(a0

i,a)
� d

�̂
(a0

i,a)
|. (2)

The maximum pairwise difference (MPD) defines the dis-
tance between two games based on the effects of unilateral
deviations on individual utility functions. We can now for-
mally state near-potential games as in [7].

Definition 3 (Near-Potential Games) A game � is a near-

potential game if there exists a potential game �̂ within a

maximum-pairwise distance (MPD), d(�, �̂)  � where � �
0.

Near potential games relax the definition of potential
games (Definition 1), similar to weakly acyclic [13], ordinal
[1], weighted [1], and best-response potential games [14].
Determining the potential function for a near-potential games
requires solving an optimization problem that finds the func-
tion minimizing (2). This optimization problem is shown to
be convex in [15]. In this paper, we focus on the convergence
properties of DFP in near-potential games.

III. DECENTRALIZED FICTITIOUS PLAY

Fictitious play is a game-theoretical learning algorithm
where agents assume that each agent selects its actions
according to a stationary distribution (strategy) �i 2 �A,
where �A denotes the set of probability distributions over
the action space A. Individual actions ai 2 A are represented
with unit vectors ek 2 {0, 1}K where |A| = K. In defining
each action as an unit vector, we can consider each action as
a degenerate distribution on �A. Then, the expected utility
of agent i can be defined as follows,

ui(�i,��i) =
X

a2AN

ui(ai, a�i)�(a), (3)

where �(a) = [�1(a1), . . . ,�N (aN )] is the joint strategy
profile, and ��i is strategy profile of all agents excluding
agent i.

The empirical frequency of past t 2 N actions of agent
i (ai,1, ai,2, . . . , ai,t), is denoted with fi,t 2 �A. We can
write fi,t using the following recursion,

fi,t =
t� 1

t
fi,t�1 +

1

t
ai,t, (4)

where we note that ai,t is a degenerate distribution in �A.
In networked interactions, agents may not have perfect

information on other agents’ empirical frequencies (fj,t). In
such a setting, agents may form beliefs about the empirical
distribution of other agents’ actions. Specifically, agents
communicate over a time-varying network Gt = (N , Et),
where neighbors of agent i, denoted with Ni,t := {j :
(i, j) 2 Et}, may change over each time step t. In this
setting, agent i keeps a local copy (belief) �ij,t 2 �Aj of
true empirical frequencies of agent j (fj,t 2 �A). Local
beliefs �ij,t are updated by weighted averaging of local copies
received from its neighbors,

�
i
j,t =

X

l2Ni,t[{i}

w
i
jl,t�

l
j,t, (5)

where w
i
jl,t � 0 is the weight of agent l’s estimate of agent

j to update the local belief of agent i.
In DFP, agent i assumes other agents’ strategies follow

stationary distributions given by its local beliefs �i�i,t�1 :=
{�ij,t�1}j2N\i, and takes action ai,t to maximize its utility,

ai,t 2 arg max
ai2Ai

ui(ai, �
i
�i,t�1). (6)

The decision-making and information exchange steps of
agent i are summarized in Algorithm 1.

Algorithm 1 DFP for Agent i
1: Input: Local estimates �i�i0 and time-varying networks

{Gt = (N , Et)}t�1.
2: for t = 1, 2, · · · do
3: Best respond with ait (6) and update fi,t (4).
4: Communicate with Ni,t and update beliefs �ij,t (5).
5: end for

IV. CONVERGENCE OF DFP IN NEAR-POTENTIAL
GAMES

A. Preliminaries

The joint strategy profile �⇤ is an approximate NE, if no
agent can benefit more than ✏ � 0 by switching to another
strategy.

Definition 4 (Approximate Nash Equilibrium) The joint

strategy profile �
⇤ = (�⇤

i ,�
⇤
�i) 2 �AN

is an ✏-Nash

equilibrium of the game � for ✏ � 0 if and only if for all

i 2 N ,

ui(�
⇤
i ,�

⇤
�i)� ui(�i,�

⇤
�i) � �✏, for all �i 2 �Ai. (7)

We use the notation ⌃✏ to denote the set of ✏-Nash equilibria
in game a �.
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B. Convergence Analysis

We state the assumption on the structure of the time-
varying communication network {Gt}t�1 in the following.

Assumption 1 Time-varying communication networks

{Gt}t�1 satisfy the properties below,

i) The network G = (N , E1) is connected, where E1 =
{(i, j)|(i, j) 2 Et, for infinitely many t 2 N}.

ii) There exists a time step TB > 0, such that for any edge

(i, j) 2 E1 and t � 1, it holds (i, j) 2
STB�1

⌧=0 Et+⌧ .

The properties i)�ii) are named as connectivity and bounded

communication interval such that any information between
agents i and j is sent in a bounded time interval. These as-
sumptions are standard in distributed optimization algorithms
for time-varying networks [16].

Assumption 2 There exists a scalar 0 < ⌘ < 1, such that

the followings hold for all i 2 N , j 2 N and t = 1, 2, . . . ,

(i) If l 2 Ni,t [ {i}, then w
i
jl,t � ⌘. Otherwise, w

i
jl,t = 0,

(ii) w
i
ii,t = 1,

(iii)
P

l2Ni,t[{i} w
i
jl,t = 1.

According to Assumption 2(i), agents put positive weights
on their current neighbors’ beliefs (5). Assumption 2(ii)

ensures that agents beliefs about their empirical frequencies
is correct, i.e., so that ⌫ii,t = fi,t for all t > 0. Assumption
2(iii) ensures that the weights sum to one. The following
lemma characterizes the convergence rate of local estimates
⌫
i
j,t to empirical frequencies fj,t—see [17] for proof.

Lemma 1 (Proposition 1, [17]) Suppose Assumptions 1-2

hold. If fj0 = �
i
j,0 holds for all pairs of agents j 2 N

and i 2 N , then the local copies {�it}i2N
t�0 converge to

the empirical frequencies {ft}t�0 with rate O(log t/t), i.e.,

||�ij,t � fj,t|| = O(log t/t) for all j 2 N and i 2 N .

The proof mainly relies on the properties of row-stochastic
weight matrices given by Assumption 2. Next result provides
a lower bound on the difference in potential value of empiri-
cal frequencies between consecutive time steps—see [11] for
the proof.

Lemma 2 (Lemma 2, [11]) Suppose Assumptions 1-2

hold. Let � be a � near-potential game for some � � 0. The

potential function is given by u(·). We denote the empirical

frequency sequence generated by the DFP algorithm as

{ft}t�1. If the empirical frequency ft is outside the ✏-NE

set for ✏ � 0, then given a long enough T > 0 we have

u(ft+1)�u(ft) �
✏�N�

t+ 1
�O

⇣ log t
t2

⌘
for all t � T. (8)

This results assures that when the empirical frequencies are
outside the approximate NE region N�, the potential value of
a close potential game increases as the second term O

⇣
log t
t2

⌘

goes to 0. In the following, we analyze the potential change
if empirical frequencies go through a path where they start
outside of approximate-NE regions N� + ✏1 and N� + ✏2

in order, and then go back firstly to N� + ✏2 and then to
N� + ✏1 given 0 < ✏1 < ✏2.

Lemma 3 (Lemma 3, [12]) Suppose Assumptions 1- 2 hold

Let {ft}t�1 be the sequence generated by Algorithm 1.

Further, let T1, T2, T
0
2, T

0
1 be time steps such that T < T1 

T2 < T
0
2  T

0
1, for large enough T > 0 defined as follows,

• T1 is a time step when the empirical frequencies leave

from (N� + ✏1)-NE region, i.e. fT1�1 2 ⌃N�+✏1 and

ft 62 ⌃N�+✏1 , for all T1  t < T
0
1,

• T2 is a time step when the empirical frequencies leave

from (N� + ✏2)-NE region, i.e. fT2�1 2 ⌃N�+✏2 and

ft 62 ⌃N�+✏2 , for all T2  t < T
0
2,

• T
0
2 is a time step when the empirical frequencies enters

again into (N� + ✏2)-NE region, i.e. fT 0
2�1 62 ⌃N�+✏2

and fT 0
2
2 ⌃N�+✏2 ,

• T
0
1 is a time step when the empirical frequencies enters

again into (N� + ✏1)-NE region, i.e. fT 0
1�1 62 ⌃N�+✏1

and fT 0
1
2 ⌃N�+✏1 ,

where ✏1 > 0, ✏2 > 0. Then, there exist 0 < ✏1 < ✏2 such

that the following holds,

u(fT 0
1
)� u(fT1) �

T 0
2�1X

t=T2

2✏2
3(t+ 1)

. (9)

The proof follows from the statement of Lemma 2 with the
fact that the potential increases when empirical frequencies
are outside the given approximate-NE regions. The result in
(9) is a lower bound on the excursion away from an approx-
imate NE. We make two additional assumptions identical to
those made in [7].

Assumption 3 The game � := (N ,AN
, {ui}i2N ) has only

a nonempty set of finitely many Nash equilibria, ⌃0 =
{�⇤(1)

,�
⇤(2)

, · · · ,�⇤(M)} where |⌃0| = M and M 2 Z+
.

Assumptions 3 states that the game � can only have a
finite number of Nash equilibria.

Assumption 4 Let q : R+ ! R+ be a function defined as

follows,

q(↵) = max
�2⌃↵

min
m2{1,··· ,M}

||� � �
⇤(m)||. (10)

where �
⇤(m)

is a NE of the game � as defined in Assumption

3. The MPD between two games d(�, �̂)  � < �̄ is small

enough such that there exists ↵̄ > 0 that satisfies N� <

N �̄ < ↵̄/2 and q(↵̄) < d
⇤
/4, where d

⇤
is the minimum

distance between any two equilibria the game �, i.e., d
⇤ =

min
m0 6=m00

||�⇤(m0) � �
⇤(m00)|| , where m

0
,m

00 2 {1, · · · ,M}.

Assumption 4 requires that the minimum distance between
any two different Nash equilibria of the near potential game
has to be large enough with respect to the MPD between the
near potential game and a given potential game. In particular,
the function q(↵̄) provides the largest distance within ↵̄-Nash
equilibrium strategies to a Nash equilibrium. The assumption
requires the existence of a constant ↵̄ > 0 such that MPD
distance between the two games is smaller than ↵̄/2N ,
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and the largest distance between approximate Nash and
Nash equilibrium strategies is bounded by a quarter of the
minimum distance between any two equilibrium strategies.
This assumption is critical for our main result provided
in Theorem 1. Next result states that agents stay in an
approximate NE region of a single NE after long enough
time steps.

Lemma 4 (Theorem 1, [12]) Suppose Assumptions 1- 4

hold. Let {ft}t�1 be the sequence generated by Algorithm 1.

The empirical frequencies {ft}t�1 converge to an approxi-

mate equilibrium set around a single equilibrium point, after

long enough time t > T .

The proof, provided in [12], is based on the idea that
the potential values around different NE points are strictly
ordered. Note that if the empirical frequencies moves away
from an approximate NE region, then agents increase their
utilities according to Lemma 2. These two observations are
used to show that the empirical frequencies stay around a
single NE–see [12] for proof. Now, we are ready to state
our main result.

Theorem 1 Suppose Assumptions 1- 4 hold. Let {ft}t�1 be

the sequence generated by Algorithm 1. Then, there exist

�̄ > � > 0 and ✏̄ > 0, such that the empirical frequencies ft

converge to the set around a single equilibrium point �
⇤(m)

for some m 2 {1, . . . ,M},

S⇤ =

(
� 2 �AN

���||���⇤(m)||  4q(N�)NL

✏
+q(N�+✏)

)

(11)
where q : R+ ! R+ is the function defined as in (10), ✏̄ is

defined in Lemma 7 such that it satisfies (24) and (25), and

✏ is a constant where ✏̄ � ✏ > 0.

Proof: Observe that the following relation is satisfied,

||ft+1�ft|| =
1

t+ 1
||ft�at|| 

1

t+ 1
(||ft||+||at||) 

2N

t+ 1
,

(12)
since it holds ||fi,t||  1 and ||ai,t||  1 for any i 2 N and
t 2 N.

Let T1, T2, T
0
2, T

0
1 be time steps defined as previously. The

lower and upper bounds are going to be derived for the
difference u(fT 0

1
) � u(fT1), in which ft traverses around

a single equilibrium point �⇤(m). By letting T2 � T1 >

T + 1, d̄f is defined as the maximum distance between ft

during time interval T = {T2, T2 + 1, · · · , T 0
2 � 1} and the

approximate equilibrium set ⌃N�+✏2 ,

d̄f = max
t2T

min
�2⌃N�+✏2

||ft � �||. (13)

Noting (fT2�1, fT 0
2
) 2 ⌃N�+✏2 ⇥ ⌃N�+✏2 , the following

bound holds for the sum of distances traversed between each
time step for the interval {T2 � 1} [ T ,

2d̄f 
T 0
2�1X

t=T2�1

||ft+1 � ft||. (14)

Using (12), the inequality (14) can be rewritten as,

2d̄f 
T 0
2�1X

t=T2�1

2N

t+ 1
=

T 0
2�1X

t=T2

2N

t+ 1
+

2N

T2
. (15)

Hence, we can obtain a lower bound for u(fT 0
1
)� u(fT1)

with (15) and Lemma 3,

u(fT 0
1
)� u(fT1) �

T 0
2�1X

t=T2

2✏2
3(t+ 1)

�
⇣
d̄f � N

T2

⌘2✏2
3N

. (16)

Similarly, we can also derive an upper bound again for
u(fT 0

1
) � u(fT1). We achieve the upper bound, by the

fact (fT2�1, fT 0
2
) 2 ⌃N�+✏1 ⇥ ⌃N�+✏1 , it holds, ||fT 0

1
�

�
⇤(m)||  q(N� + ✏1) and ||fT1�1 � �

⇤(m)||  q(N� + ✏1).
By Lipschitz continuity, it holds u(fT 0

1
) � u(fT1 � 1) 

2q(N�+ ✏1)L. Again with Lipschitz continuity, (12) assures
u(fT1) � u(fT1 � 1)  2NL

T1
. Using both of these bounds,

the following holds,

u(fT 0
1
)� u(fT1)  2q(N� + ✏1)L+

2NL

T1
. (17)

Then, using the lower and upper bounds, we have
⇣
d̄f � N

T2

⌘2✏2
3N

 2q(N� + ✏1)L+
2NL

T1
. (18)

After sufficiently long enough time T2 > T1 > T + 1 > T ,
(18) implies that

d̄f  3q(N� + ✏1)NL

✏2
+

3N2
L

✏2T1
+

N

T2
 4q(N� + ✏1)NL

✏2
.

(19)
As ✏1 > 0 is an arbitrary positive number such that 0 < ✏1 <

✏2, it consequently holds by upper semi-continuity (Lemma
6),

d̄f  lim sup
✏1!0

4q(N� + ✏1)NL

✏2
 4q(N�)NL

✏2
. (20)

Hence, since d̄f is the maximum distance between ft and
the set ⌃N�+✏2 , there exists a �̃ 2 ⌃N�+✏2 ✓ �AN such
that the upper bound on the given distance below holds,

||ft � �̃||  4q(N�)NL

✏2
. (21)

Thus, given �̃ 2 ⌃N�+✏2 and ||�̃ � �
⇤(m)||  q(N� + ✏1),

using triangle inequality together with (21) proves the theo-
rem’s statement that ft converges to the set S⇤ in (11) with
any arbitrary number ✏2 satisfying the condition 0 < ✏2  ✏̄

around a single NE �
⇤(m).

Theorem 1 characterizes the region around a NE strategy
that the empirical frequencies will stay in. The region grows
with MPD between the two games and as the distance
between ↵̄�N� shrinks. Note that ↵̄ comes from Assumption
4 making sure that the MPD between the two games is
relatively small compared to the distance between the Nash
equilibrium strategies. If the game � is a potential game, i.e.,
� = 0, Theorem 1 shows the convergence to a NE by fact that
q(N�) = 0 and, lim

✏!0
q(✏) = 0 with arbitrarily small chosen

✏. This result confirms that DFP obtains identical bounds for
convergence in near-potential games as the ones obtained by
the standard FP stated in [7].
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Fig. 1. FP and DFP in target assignment game with unknown
target locations over 20 runs. (Top) Average distance to Nash equi-
librium 1

N

P
i2N ||fit � �⇤

i || (Bottom) Average estimation error
1

N(N�1)

P
i2N

P
j2N\{i} ||fit � �j

it||.

V. NUMERICAL EXPERIMENTS

We consider a target assignment game with N = 20
autonomous agents and K = 20 targets. Agents select only
one target k 2 K := {1, · · · ,K} to maximize their utility
functions defined as below,

ui(ai, a�i) =
a
T
i 1a�ik=0

aTi di
, (22)

in which ai = ek 2 RK is an unit vector and 1a�ik=0 2
{0, 1}K is a binary vector whose k

th index is 1 if none
of the other agents j 2 N \ {i} select k, and otherwise
the k

th index is equal to 0. The distance vector di =
[di1, · · · , dik, · · · , diK ] 2 RK

+ gives the distance between
agent i and targets. The denominator term in (22) is equal
to the distance of the agent to its selected target. As per the
utility function in (22), agent i obtains a positive utility value
by selecting target k, when this target k is not selected by
any of the other agents. The exact utility value that agent i
receives is inversely proportional to the distance of the agent
between the target selected and the position of agent i. This
means that no agent can improve their utility by selecting
another target, if all other targets are selected by other agents.
Hence, this ensures that any joint action profile creating one-
to-one assignment between agents and targets is a NE of the
game.

The game with utility functions given in (22) is a potential
game when the distance to each target for each agent is
identical. Agents do not know target locations a priori.
Agents receive individual signals #

i
kt at each time step t

about the position of each target k. The private signal #it =
[#i1, · · · ,#iK ]T of each agent i follows a multivariate normal
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Fig. 2. DFP with ring network in target assignment game. Joint action
profile over time from a single run. Actions converge to an one-to-one
assignment between targets and agents.

distribution with mean values equal to the actual distance to
each target ✓ = [✓1, · · · , ✓K ]T and a covariance matrix �I ,
where � = 0.5 and I 2 RK⇥K is the identity matrix. At time
⌧ , the position of targets is estimated as ✓̂k = (1/⌧)

P⌧
t=1 #

i
t

by each agent i. We assume agents only receive signals in
the first ⌧ = 5 steps. Early stopping of signals and different
distances to targets implies that the game agents take actions
in is a near-potential game.

We consider ring, star, and fully-connected communica-
tion networks. Note that a fully-connected communication
network means that the DFP corresponds to the centralized
(standard) FP, in which agents have access to all available
information immediately. In this case, agents can keep track
of the empirical frequencies of all agents, i.e., there is no
need for averaging local estimates. In the ring and star
networks, we set self-weights are w

i
ji,t = 0.75 for the

estimates of others, as weights of neighbor agents are w
i
jl,t =

0.25/|Ni|, for all j 2 Ni and for all t 2 N.
We consider 20 runs for each network and provide average

estimation errors in Fig. 1 (Bottom). We observe that the
average estimation error between local (estimated) and actual
empirical frequencies aligns with the rate O(log t/t) given
in Lemma 2. The estimation error shrinks faster in the star
network compared to the ring network. For the centralized
FP with perfect information, this error is always zero and,
thus it does not appear in the figure.

Fig. 1 (Top) shows that empirical frequencies converge
toward a NE in similar rates for all networks. In all cases,
the action profile reaches a NE which is an one-to-one
assignment of agents to targets by the final time Tf = 1000.
Centralized FP is the fastest on average, while DFP on a
ring network has the most distant results to a NE by the
final time Tf . As shown by the action profile evolution on
a single run instance given a ring network (Fig. 2), the joint
action profile converges to a single NE (an one-to-one agent-
target assignment). This observation also holds for the other
runs and networks. Together with Fig. 1 (Top), this confirms
that empirical frequencies {ft} converge to a region around
a single NE and do not oscillate between different Nash
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equilibria after a long enough time.

VI. CONCLUSION

In this paper, we analyzed the convergence of DFP in
near-potential games. We derived the upper bound on the
distance between empirical frequencies and a NE of the
closest potential game. This result shows that DFP preserves
the convergence properties of the standard FP. It also implies
that a team of networked agents can learn to behave approxi-
mately rational despite lasting disagreements about the team
objective.

APPENDIX

Upper semi-continuous correspondences is an important
notion for the results throughout the analysis. We are going
to start with providing its definition.

Definition 5 (Upper Semi-Continuous Correspondence)
A correspondence h : X ) Y is upper semi-continuous, if

one of the following statements hold,

• For any x̄ 2 X and any open neighborhood V of h(x̄),
there exists a neighborhood U of x̄, such that h(x) ⇢ V ,

and h(x) is a compact set for all x 2 U .

• Y is compact, and the set, i.e. its graph, {(x, y)|x 2
X, y 2 h(x)} is closed.

Lemma 5 (Lemma 4, [11]) Let h : R ) �AN
be the

correspondence representing the set of ↵-NE strategies, i.e.,

h(↵) = ⌃↵ = {� 2 �AN | (�) � �↵} (23)

where  : �AN ! R is defined as  (�) =
� max

i2N , ai2Ai

(ui(ai,��i)�ui(�i,��i)). Then, the correspon-

dence h : R ) �AN
is upper semi-continuous.

Lemma 6 Suppose Assumption 3 holds. Let q : R+ ! R+

be a function defined as in (10). Then, the function q : R+ !
R+ is i) weakly increasing, ii) upper semi-continuous, iii)

satisfies q(0) = 0 and lim
↵!0

q(↵) = 0.

Proof: Before proving each statement, see that
minm2{1,··· ,M} ||� � �

⇤(m)|| is a continuous function in
�, since it is the minimum of finitely many continuous
functions. Further, by the definition of ✏-NE set, for any
value of ↵, the set ⌃↵ is compact. Thus, maximum over the
compact set ⌃↵ exists, and the function q is well defined.

i) For any (↵1,↵2) 2 R+ ⇥ R+ such that ↵1  ↵2, by
definition again, it holds ⌃↵1 ✓ ⌃↵2 . Then, the function
also satisfies the condition q(↵1)  q(↵2), for any ↵1 
↵2. Hence, q is weakly increasing.

ii) Since again, minm2{1,··· ,M} ||� � �
⇤(m)|| is a contin-

uous function in � 2 �AN , and from Lemma 5 the
correspondence h(↵) = ⌃↵ is upper semi-continuous.
This gives that q is upper semi-continuous by Berge’s
maximum theorem.

iii) Since, ⌃0 is the set of NE, it holds q(0) = 0. By
upper semi-continuity of q, for any ✏ > 0, there exists
a neighborhood V around 0, that holds q(↵)  ✏, for

all ↵ 2 V . Since it holds q(↵) � 0, for all ↵, the limit
exists, and it holds lim

↵!0
q(↵) = 0.

Lemma 7 Suppose Assumptions 3 and 4 hold. There exists

✏̄ > 0 and C > 0 such that the following inequalities are

satisfied,

N� + ✏̄ < ↵̄, and (24)

q(N� + ✏̄) <
(↵̄�N�)d⇤

CNL
. (25)

Proof: For sufficiently small enough � > 0 and C > 0
by Assumption 4, and ✏̄ > 0, it holds N� + ✏ < ↵ for any
✏  ✏̄. Using the fact lim

↵!0
q(↵) = 0 from Lemma 6, it gives

q(N �̄ + ✏) < ↵̄d⇤

2CNL <
(↵̄�N �̄)d⇤

CNL .
Note that C < 24 for Lemma 4 to hold. See [7], [12] for

the details.
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