
Wafer Map Pattern Analytics Driven By Natural Language Queries

Yueling (Jenny) Zeng, Min Jian Yang, Li-C. Wang
University of California, Santa Barbara

Santa Barbara, California 93106

Abstract—We present a novel approach where wafer map
pattern analytics are driven by natural language queries. At
the core is a semantic parser that translates a user query into a
meaning representation comprising instructions to generate a
summary plot. The allowable plot types are pre-defined which
serve as an interface that communicates user intents to the
analytics software backend. Application results on wafer maps
from a recent production line are presented to explain the
capabilities and benefits of the proposed approach.

1. Introduction
Wafer Map Pattern Recognition (WMPR) is a problem

that has been studied for decades in the field of semiconduc-
tor manufacturing. A notable dataset was developed in
[1], called WM-811K. This dataset includes 811,457 wafer
maps where 172,950 are with labels and the rest without.
The work [1] presented a comprehensive learning approach
based on engineering a set of features to encode each wafer
map into a vector of values, to be learned by a learning tool
such as SVM [2]. Many works were published later based on
the dataset [1][3][4][5], including those more recent works
involving deep learning techniques [6][7][8][9][10].

The WM-811K dataset pre-defines a number of classes
to differentiate wafer maps [1]. In addition to eight classes
to differentiate wafer maps having a “pattern”, a “None”
class is used to indicate “no pattern”. Given such a dataset,
it is natural to treat WMPR as a multi-class classification
problem, where the focus is on optimizing the accuracy of
a classifier (a SVM model or a neural network model).

While optimizing model accuracy might be a common
practice from the perspective of a ML (machine learning)
technology developer, it is not always intuitive from a test
practitioner’s point of view. For example, in addition to
knowing that a set of wafer maps all exhibiting the “same”
pattern, a practitioner might also desire to know if some
action can be taken based on the pattern.

Figure 1 depicts a context of feedforward from wafer
probe to final test. Suppose three wafer maps are deemed to
show a systematic pattern. For the practitioner, knowing this
is not enough. Further, the practitioner would like to know if
there is some correlation to the final test result. An intuitive
way is to plot a stacked wafer map based on all failing parts
from final test. Then, between the three wafer maps and
the stacked wafer map, the practitioner can observe that the
final test fails tend to form an “inner ring” next to the “outer
ring” shown on the wafer maps. This proximity relationship

can be considered as a form of correlation where its final
interpretation and utilization can then be subjected to further
investigation and discussion from a team.

Figure 1. A feedforward context from wafer probe to final test

In the context of Figure 1, getting to an analytic result
involves three steps: (1) obtain a set of wafer maps showing
some systematic pattern; (2) plot the stacked wafer map;
(3) decide if a correlation exists. Step 1 is key to the
process. Once the wafer maps and the stacked wafer map
are displayed, a person can judge if a correlation exists.

In this context, treating step 1 as solving a multi-class
classification problem might not be effective [11]. This is
because the wafer maps selected in the set affect how the
stacked wafer map looks like and consequently, can dictate
if a correlation shows up. Automating step 3 might not be
necessary, nor effective either. Once the plots are displayed,
a person can see a correlation visually. If there is non-
visualizable correlation the person would like to check, the
person can always write a separate software script to do it.

Because searching for the right set of wafer maps is the
essence of the problem, one can think of a software App that
helps a practitioner to search for a result like that shown in
Figure 1. The search essentially follows a repeated process
of “try-and-see”. In each try, a set of wafer maps is selected
based on a user intent and the correlation is decided by the
user from visualizing the output plots.

The work presented in this paper is for implementing
such a software App. We envision that the user interacts
with the App through a natural language interface (much
like how they would interact with a virtual assistance). This
work focuses on building the interface to drive the analytics
backend presented in [11]. At the core of the work is a novel
semantic parser that translates user queries into instructions
to the analytics backend.

The rest of the paper is organized as the following.
Section 2 provides a high-level picture for realizing the App.
Section 3 presents the key ideas of the approach. Section 4
describes details of our semantic parser implementation.
Section 5 discusses interesting findings based on test data
from a recent production line. Section 6 concludes.

2. Natural Language Driven Analytics
Figure 2 depicts the major components in our approach.

It comprises a natural language frontend and an analytics
backend, connected through a plot-based worldview. The
worldview defines what types of plot can be produced as
well as for each plot, what plot attributes can be controlled.

Figure 2. Major components in our approach

The worldview essentially defines an actionable space
for the frontend. The core of the frontend is a semantic
parser. The parser translates a user’s input in natural lan-
guage into a sequence of instructions which perform two
tasks: (1) Data Collection: determine the set of wafer maps
that is used for generating a plot; (2) Plotting: select a type
of plot and set the values of the plot attributes.

The backend supports two types of analytics: Min-
ions’ analytics and NLI’s analytics (NLI stands for Natural
Language Interpreter). The two analytics components are
based on the techniques reported in two of our prior works
[11][12]. While they provide two different perspectives to
analyze the wafer maps, the NLI’s analytics is carried out
on top of the Minions’ analytics [11].

From the high-level view, each perspective provides a set
of wafer attributes. For each wafer map, the two analytics
components determine the values of those attributes. In a
sense, one can think that analytics results are stored as a
database table where each row corresponds to a wafer map
and each column corresponds to a wafer attribute.

TABLE 1. A SNAPSHOT OF THE WAFER MAP DATABASE TABLE
Wafer Meta Attr. NLI Attribites Minions Attr.

stage ... id shape region direction ... group id ...

wafer
probe ...

1 arc edge 12 ...
1 ...2 cluster center lower right ...

...

wafer
probe ...

1 arc edge 12 ...
1 ...2 cluster center upper left ...

...

wafer
probe ...

1 arc edge 2–7 ...
2

...

Table 1 shows a snapshot of such a table. For example,
a query might request to retrieve all wafer maps from wafer
probe that have “arc along edge at 12 o’clock”. The first two
wafer maps will be included in the return. The “group id”
attribute is provided by the Minions component [12]. The
wafer maps annotated by the same group id generally exhibit
a very similar pattern [11]. If the query requests “group 1”,
the result will also include the first two wafer maps.

In summary, our semantic parser should support two cat-
egories of queries, one to control the plotting and the other
to control the wafer map set retrieved from the database.

3. Implementation Of A Semantic Parser
Semantic parsing is the process to assign real-world

meanings to linguistic inputs [13] (e.g. words). Specifi-

cally, in computational semantics, formal structures called
meaning representations are used to link the non-linguistic
knowledge (e.g. data stored in database, API function calls,
etc.) to linguistic elements such as English words. Seman-
tic parsing is a wide field of study. In machine learning,
most works to achieve semantic parsing centered on using
supervised learning with large amounts of human-created
semantic parses [13][14]. Such an approach is hard to be
duplicated in a specialized domain like ours, because we
lack the resources to create large amounts of training data.

Consequently, we do not take a supervised learning
approach to implement our parser. Instead, we adopt the
approach called semantic parsing as paraphrasing [15]. The
approach makes use of triples (natural query q, canonical
utterance c, meaning representation m), where the parser
maps q → c → m. It was observed in [15] that mapping
c → m and vice-versa could be achieved by fixed rules,
which make it more feasible in our application context.

Figure 3. A semantic parser interfacing with natural language queries

Figure 3 depicts the idea in our context. As mentioned
above, two types of queries are supported: wafer set query
and plotting query. Then, the semantic parser translates
queries into canonical utterances which are based on a
restricted language whose lexicon is custom-defined by us.
These utterances are interpreted with a meaning represen-
tation which defines the corresponding actions to be per-
formed by the backend analytics component. In this flow,
the “c → m” mapping are implemented with fixed rules.
The “q → c” mapping are handled by the parser.

Realizing Figure 3 requires us to define a feasible mean-
ing representation as the target for the parser. We can start
by developing a grammar that defines the lexicon of the
canonical utterances. After the lexicon and the meaning rep-
resentation are defined, we can choose a way to implement
the parser. In our work, the parser is implemented with
constrained semantic parsing powered by a pretrained lan-
guage model [16]. Below, we will first discuss the meaning
representation and the grammar. The constrained semantic
parsing will be discussed in Section 4.

3.1. Plot-based worldview

Our plot-based worldview defines a collection of plot
types each with some plot attributes. Below, we use a
particular plot example to illustrate this idea.

3.1.1. A summary plot example. Recall the feedforward
context discussed in Figure 1. Considering what type of
summary plot might be useful in the context, Figure 4 shows
an example plot type. The wafer maps used in the plot were
from a recent production line. The wafers were stamped with
days in four months (from October to January). The four
months had 211, 1501, 1337, and 3251 wafers, respectively.

Figure 4. An example plot type in the feedforward context

The plot shows that in January, the analytics found four
groups of wafers (based on “group id” attribute shown in
Table 1). The bar height shows the number of wafers in
each group. For each group, two wafer images are shown.
The left image is obtained by stacking wafer maps in the
group where those wafer maps are from the wafer probe
stage. The right image is by stacking wafer maps where
they are based on the final test. Each stacked image shows
the smallest region including 60% of the density, i.e. the
region including roughly 60% of the fails in the group. In
the rest of this paper, we refer to the two stacked images as
wafer probe heatmap and final test heatmap, respectively.

The correlation between wafer probe and final test can
be inspected in this summary plot. It can be observed that
the failing pattern forms a “thick ring”. Fails from wafer
probe concentrate on the left-side of the ring. Then, fails
from final test tends to “complete” the ring.

It is important to note that Figure 4 is generated based
on user queries. Hence, user needs to specify what set of
wafer maps they want to inspect in a plot. In the following,
we will use the example in Figure 4 to illustrate how our
frontend can take user queries and generate such a plot.

Figure 5. The workflow from queries to a summary plot

3.1.2. From queries to summary plot. Figure 5 shows
the workflow from queries to a summary plot. The mean-
ing representation contains instructions in the backend for
retrieving a set of wafers from the wafermap database.
The software scripts executing these instructions are im-
plemented in the search engine module. In addition, there
are instructions for generating a certain type of plot and
assigning plot attributes based on the retrieved data. The
corresponding software scripts are implemented in the plot-
ting engine module. In view of our prior work [11], the
frontend and the two engines in the backend are new.

3.1.3. Grammar and lexicon. To define the meaning rep-
resentation, we define the following: (1) A grammar that
captures the data gathering and plotting operations in the
backend. (2) From the grammar, we obtain the lexicon for
defining the meaning representation.

TABLE 2. A SNIPPET OF THE GRAMMAR AND LEXICON

Grammar Rules
(i) S → Plot
(ii) Plot→ Bar ∣ Scatter

∣ Wafermap ∣ ...
(iii) Bar →DescrBar TYPEBAR
(iv) DescrBar → AXIS1 AXIS2 TITLE

...

Lexicon
TYPEBAR → bar chart

TITLE → title ∣ null
AXIS1 → x-axis
AXIS2 → y-axis

...

For defining the grammar, we follow an approach similar
to that used in [11]. We define a context-free grammar that
describes the process for generating a plot. For example, the
left-hand side of Table 2 shows a snippet of the grammar,
which consists of a set of production rules. Rule (i) starts the
process to get a plot. Rule (ii) provides several plot options
including Bar, Scatter, or Wafermap etc. In Rule (iii), each
plot option defines the plot type and a descriptor for the
specific type. For bar chart, the descriptor specifies three
attributes: AXIS1, AXIS2, and TITLE.

Production rules which derive words as the terminal
values are called the lexicon. A snippet of the lexicon is
shown on the right-hand side of Table 2. The left part of a
lexicon rule has a type or attribute that can be processed in-
ternally by the backend. For example, TypeBar corresponds
to a script in the plotting engine to define a bar plot object.
The lexicon rules provide the words that can be used in the
utterances and in the meaning representation. For example,
the plotting query in Figure 5 uses words “bar chart”, “x-
axis”, and “y-axis”. Note that the lexicon related to wafer
set queries is developed in the work [11].

TABLE 3. A SNIPPET OF OPERATORS AND THEIR EXPRESSIONS

Operator Template Meaning Representation
Select Return [TypeData] 1. Return wafer maps

Filter Return [ref] from [condition] 1. Return wafer maps
2. Return #1 from Jul to Sep

Aggregate Return [aggregate] of [ref] 1. Return wafer maps
2. Return the number of #1

Show Return [TypePlot] 1. Return bar chart

Group Return [aggregate] [ref1]
for each [ref2]

1. Return wafer maps
2. Return group ids of #1
3. Return the number of #1 for
each #2

Specify Return [ref1] where
[plot attribute] is [ref2]

1. Return bar chart
2. Return wafer maps.
3. Return group ids of #2
4. Return #1 where x-axis is #3

...

3.1.4. Meaning representation and its operators. The
meaning representation uses words provided by the lexicon
rules. In addition, it has words that express operations. For
example, to generate the plot in Figure 5, the query can
use the word “select” to request a set of wafer maps from
the database. Then, a separate query uses the word “show”
to request a plot object. Table 3 shows a snippet of these
so-called operators. For each operator, the natural language

template used to express the operator is shown. The parame-
ters denoted by “[]” are from the lexicon. The words outside
are called functional words which indicate what functions to
be performed on the parameters. The corresponding meaning
representation exemplifies these functions.

This meaning representation is called Question Decom-
position Meaning Representation (QDMR) [17], chosen for
our current implementation. QDMR contains natural utter-
ances, which is easier to understand than complex logic
forms used in [14]. Using QDMR facilitates data preparation
for us to bootstrap a semantic parser.

In general, QDMR constitutes an ordered list of steps,
each corresponds to an operator. In our case, each operator
can be executed by some backend scripts. The steps all
together accomplish the task specified in the user query.
The lexicon defined by our grammar restricts the scope of
meaning representations to those supported by the backend.
A valid meaning representation should contain words only
from the pre-defined lexicon, the functional words used in
the operator template such as “for each”, and possibly a
reference token that refers to the result of a previous step.
In this way, we make sure that any step in the meaning
representation can be mapped into a valid execution flow
with the backend scripts. Moreover, some operators can
be merged to a high level QDMR [17] to reduce the total
number of steps involved. The detailed definition of QDMR
and more types of operators can be found in [17].

4. Constrained Semantic Parsing
For semantic parsing, we adopt the method proposed

in [16], illustrated in Figure 6. The method leverages a
pretrained language model (LM) for parsing input queries
into canonical utterances. With a LM, we can use few-shot
learning to teach the LM about our specific utterances.

Figure 6. Constrained parsing flow

Following [16], we use the state-of-the-art language
model GPT-3 [18] that has 175 billion parameters as the
natural language interface. The GPT-3 handles the variation
of wordings in the spoken language. Moreover, by utilizing
GPT-3’s powerful in-context learning, we finetune the GPT-
3 to learn the translation from the input natural query to
its corresponding canonical utterance with only 20 demon-
strating examples (i.e. few-shot learning). The translation is
essentially a many-to-one mapping function that generates
a single unique interpretation of various sayings.

As shown in Figure 6, the constrained parsing restricts
the output space of GPT-3 by a set of allowed tokens, i.e.
words that should be generated by GPT-3 based on the
input query. The allowed tokens include: (i) words or their

inflections that appear in the query (words from the lexicon),
(ii) a pre-defined set of functional words (words used in
operator’s template), (iii) opening and closing parentheses.

Given a natural query as input, GPT-3 will search
through all valid tokens that belong to one of these three cat-
egories and output the token that has the highest probability
conditioned on the tokens already generated. In addition, the
parser will ensure any parentheses used in the output string
are balanced. The generated string by GPT-3 becomes our
canonical utterance for the query.

Then, it is straightforward to convert a canonical utter-
ance into a meaning representation in QDMR format. For
example, a converting function f(c) → m can be imple-
mented by: for each utterance in the parentheses, replacing
the return in inner parentheses with reference token, remov-
ing all the parentheses, and adding the word “return” to the
front and new line to the end. Each meaning representation
entails an executable flow in our backend to generate a plot.

4.1. Parsing examples
To illustrate how the parsing works, Table 4 shows

two example queries. The GPT-3 parses the query into a
canonical utterance which is then converted into the meaning
representation. In the utterance for Query 1, the words
“wafer maps”, “wafer probe”, “bin”, “component yield loss”
are tokens from the lexicon. The words “from”, “with”,
“greater than” are functional words from the template.

TABLE 4. PARSING EXAMPLES INTO C ANDM

Query 1 Give me wafer maps from wafer probe from bin Z with
component yield loss greater than 10 percent

(((wafer maps) from wafer probe) from bin Z)
with component yield loss greater than 10 percent
1. Return wafer maps
2. Return #1 from wafer probe
3. Return #2 from bin Z
4. Return #3 with component yield loss greater than 10 percent

Query 2 Show a bar chart where x-axis is group ids, y-axis is the
number of wafers in each group

((bar chart) where x-axis is group ids) where y-axis is
number of wafers for each group
1. Return bar chart
2. Return #1 where x-axis is group ids
3. Return #2 where y-axis is number of wafers maps for each group id

As discussed before, these tokens restrict the scope
of GPT-3’s output. Since the utterance is well-structured,
converting it to the list of operations in the meaning repre-
sentation is straightforward. While Query 1 defines a set of
wafer maps that can be used in a plot, Query 2 defines the
plot type and attributes for generating a plot.

4.2. Generating Figure 4
Table 5 below shows the two queries, their parsed canon-

ical utterances, and the mean representations, specifically
used for generating the plot shown in Figure 4 before.

It should be noted that the utterance “something left
along edge” describes a certain type of wafer map pattern
the query is looking for. The set of wafer maps with such a
pattern will be retrieved from the database. This part of the
functionality is developed in our work [11]. The returned

TABLE 5. QUERIES THAT GENERATE FIGURE 4 SHOWN BEFORE

Wafer Set Query
Select wafer maps from wafer probe from bin Z with component yield
loss greater than or equal to 5% from Oct to Jan, where all wafer maps
exhibit something left along the edge
(((((wafer maps) from wafer probe) from bin Z) with component
yield loss greater than or equal to 5%) from Oct to Jan)
which have something left along edge
A.1. Return wafer maps
A.2. Return A.1 from wafer probe
A.3. Return A.2 from bin Z
A.4. Return A.3 with component yield loss greater than or equal to 5%
A.5. Return A.4 from Oct to Jan
A.6. Return A.5 which have something left along edge

Plotting Query
Show a bar chart where x-axis is group ids, y-axis is the number of
wafers in each group. For each bar, also show a sub plot of two wafer
maps where the left is wafer probe heatmap, the right is final test heatmap
(((bar chart) where x-axis is (group id of wafer maps)) where y-axis
is (the number of wafer maps for each (group id of wafer maps)))
with (((wafermap subplot for each bar) where left figure is
wafer probe heatmap) right figure is final test heatmap)
B.1. Return bar chart
B.2. Return group id of A.1
B.3. Return the number of A.1 for each B.2
B.4. Return B.1 where x-axis is B.2
B.5. Return B.4 where y-axis is B.3
B.6. Return B.5 with wafer map subplot for each bar
B.7. Return B.6 where left is wafer probe heatmap
B.8. Return B.7 where right is final test heatmap

Generated Plot
See Figure 4 shown before

set will be organized in groups by default and the grouping
is based on the Minions’ analytics mentioned earlier [11].

In this example, the plotting query specifies the plot type
as a bar chart, where each bar is associated with two wafer
maps, the wafer probe heatmap and the final test heatmap.
The plot attributes are also given as x-axis is the group ids,
and the y-axis is the number of wafer maps in each group.

Note that our approach enforces the ordering that wafer
set query (A) must be made before plotting query (B).
Because some attributes from B needs to be determined
based on the results returned by A. For example in Table 5,
to accomplish the step B.2 in meaning representation of B
requires the return from step A.1 of A.

5. Key Findings In Application
As mentioned in Section 3.1.1, we applied our approach

to analyze four months of wafer maps from a recent pro-
duction line. This “analysis” was essentially a query-driven
“try-and-see” search process. In each try, we query for a
plot and inspect the result. In the process, we collected the
plots that to us, represent a potentially interesting finding.

It should be noted that in our search for the interesting
plots, a set of wafer maps is primarily defined by the
“pattern” we are looking for. Usually, a wafer map is based
on all fails on the wafer. For this dataset, though, we found
that only using all-fail to draw wafer maps is not sufficient.
In addition to using all-fail, we also had to search on wafer
maps based on fails from individual test bins. Figure 7 uses
two examples to illustrate the need to search on individual
test bins. On each example, the left plot shows the wafer

map based on all fails. The right shows two wafer maps,
each based on a particular test bin. As seen, wafer maps
based on a test bin can more clearly exhibit a pattern.

Figure 7. Examples of wafer map decomposition based on test bins

In our analytics backend, each wafer has multiple wafer
maps defined, based on total fails and based on a set of
defined test bins. In a try, if no test bin is specified, all
these wafer maps are considered. For example, the two wafer
maps with a “grid pattern” shown in Figure 7 could be from
two different test bins, and when a query simply requests a
“grid pattern”, they both could be put into a single set.

5.1. Finding #1
Continuing the result shown in Figure 4, Table 6 shows a

result that also indicates a “thick ring” fail pattern. For those
wafer probe heatmaps, the patterns are on the right side (in
contrast to left side in Figure 4). However, when we look
at both wafer probe heatmaps and final test heatmaps, we
can see, together all pairs also tend to form a “thick ring”
pattern (like that shown before in Figure 4).

TABLE 6. SECOND RESULT

Wafer Set Query
Get wafer maps from bin Z of wafer probe with yield greater than or
equal to 5% from Oct to Jan, which all have something right along the edge
(((((wafer maps) from wafer probe) from bin Z) with component
yield loss greater than or equal to 5%) from Oct to Jan)
which have something right along edge

Plotting Query
Plot a bar chart such that x-axis is group ids, y-axis is the number of
wafers in each group. Also show a sub plot of two wafer maps for each
bar, where the left is wafer probe heatmap, the right is final test heatmap
(((bar chart) where x-axis is (group id of wafer maps)) where y-axis
is (the number of wafer maps for each (group id of wafer maps)))
with (((wafermap subplot for each bar) where left figure
is wafer probe heatmap) right figure is final test heatmap)

Generated Plot

Then, we combine the two plots with another plot (not
shown) which has only 1 wafer group, to produce a final
summary plot shown in Figure 8. This plot facilitates one
to visualize that the “thick ring” fail pattern trend appeared
on many wafers and lasted from November to Janurary.

5.2. Finding #2
Table 7 shows another interesting finding we discovered

on the dataset, by searching for a “grid pattern”. The plot

Figure 8. Merged summary plot of Table 5 and Table 6

shows that many wafers were affected (with this pattern)
at wafer probe stage, lasting from October to Janurary.
However, there is no apparent correlation to the final test.
The underlying cause requires further investigation beyond
the scope of the analytics provided by the App.

TABLE 7. THIRD RESULT

Wafer Set Query
Fetch wafer maps from wafer probe with component yield loss greater than
or equal to 5% from Oct to Jan, which all demonstrate a grid pattern
((((wafer maps) from wafer probe) with component
yield loss greater than or equal to 5%) from Oct to Jan) which have grid

Plotting Query
Generate a bar chart where y-axis is the number of wafers in each group,
x-axis is group ids. And near each bar, also draw a sub plot of two wafer
maps the right is final test heatmap, the left is wafer probe heatmap.
(((bar chart) where x-axis is (group id of wafer maps)) where y-axis
is (the number of wafer maps for each (group id of wafer maps)))
with (((wafermap subplot for each bar) where left figure
is wafer probe heatmap) right figure is final test heatmap)

Generated Plot

6. Conclusion
In this work, we present a novel approach where an-

alytics of wafer map patterns are driven by natural lan-
guage queries. The proposed approach enables a user to
conduct a search of interesting analytic results at natural
language level, which is more intuitive and more efficient.
The analytic results are shown as plots to facilitate a user to
decide if they are interesting or not. The core of this work is
implementing a semantic parser. Our current implementation
is based on the meaning representation QDMR [17]. There
are other choices for this meaning representation, which
can be explored further to provide more capabilities to our
frontend. Our current parser relies on GPT-3. There are

other language models which can be experimented with.
This aspect will be studied in future work.

Acknowledgment This work is supported in part by Na-
tional Science Foundation Grant No. 2006739 and by Semi-
conductor Research Corporation project No. 2020-CT-2933.
The authors are thankful to Sergio Mier and Leon Wang of
Qualcomm for their valuable inputs to our research.

References
[1] M.-J. Wu, J.-S. R. Jang, and J.-L. Chen, “Wafer map failure pattern

recognition and similarity ranking for large-scale data sets,” IEEE
Tran. on Semi. Manufacturing, vol. 28, no. 1, pp. 1–12, 2015.

[2] B. Schölkopf and et al., Learning with Kernels:Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[3] M. Fan, Q. Wang, and B. van der Waal, “Wafer defect patterns
recognition based on optics and multi-label classification,” IEEE
Advanced Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC), 2016.

[4] J. Yu and X. Lu, “Wafer map defect detection and recognition using
joint local and nonlocal linear discriminant analysis,” IEEE Tran. on
Semi. Manufacturing, vol. 29, no. 1, pp. 33–43, 2016.

[5] a. a. Minghao Piao, “Decision tree ensemble-based wafer map failure
pattern recognition based on radon transform-based features,” IEEE
Tran. on Semi. Manufacturing, vol. 31, no. 2, pp. 250–257, 2018.

[6] J. Yu, “Enhanced stacked denoising autoencoder-based feature learn-
ing for recognition of wafer map defects,” IEEE Transactions on
Semiconductor Manufacturing, vol. 32, no. 4, pp. 613–624, 2019.

[7] N. Yu, Q. Xu, and H. Wang, “Wafer defect pattern recognition and
analysis based on convolutional neural network,” IEEE Transactions
on Semiconductor Manufacturing, vol. 32, no. 4, pp. 566–573, 2019.

[8] J. Wang, Z. Yang, J. Zhang, Q. Zhang, and W.-T. K. Chien, “Ada-
balgan: An improved generative adversarial network with imbalanced
learning for wafer defective pattern recognition,” IEEE Transactions
on Semiconductor Manufacturing, vol. 32, no. 3, pp. 310–319, 2019.

[9] T.-H. Tsai and Y.-C. Lee, “A light-weight neural network for wafer
map classification based on data augmentation,” IEEE Transactions
on Semiconductor Manufacturing, vol. 33, no. 4, pp. 663–672, 2020.

[10] M. Saqlain, Q. Abbas, and J. Y. Lee, “A deep convolutional neural
network for wafer defect identification on an imbalanced dataset
in semiconductor manufacturing processes,” IEEE Transactions on
Semiconductor Manufacturing, vol. 33, no. 3, pp. 436–444, 2020.

[11] M. J. Yang, Y. J. Zeng, and L.-C. Wang, “Language driven analytics
for failure pattern feedforward and feedback,” in IEEE International
Test Conference, 2022.

[12] Y. J. Zeng, L.-C. Wang, and C. J. Shan, “Miniature interactive
offset networks (minions) for wafer map classification,” in IEEE
International Test Conference, 2021, pp. 190–199.

[13] D. Jurafsky and J. H. Martin, Speech and Language Processing:
An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition, 3rd ed., 2022.

[14] Y. Wang and et al., “Building a semantic parser overnight,” in
Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers). Association
for Computational Linguistics, 2015.

[15] J. Berant and P. Liang, “Semantic parsing via paraphrasing,” in
Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, 2014.

[16] R. Shin and et al., “Constrained language models yield few-shot
semantic parsers,” CoRR, vol. abs/2104.08768, 2021.

[17] T. Wolfson and et al., “Break it down: A question understanding
benchmark,” CoRR, vol. abs/2001.11770, 2020.

[18] T. Brown and et al., “Language models are few-shot learners,” CoRR,
vol. abs/2005.14165, 2020.

