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Abstract— We consider a team of mobile autonomous robots
with the aim to cover a given set of targets. Each robot aims to
select a target to cover and physically reach it by the final time
in coordination with other robots given the locations of targets.
Robots are unaware of which targets other robots intend to cover.
Each robot can control its mobility and who to send information
to. We assume communication happens over a wireless channel
that is subject to fading and failures. Given the setup, we propose
a decentralized algorithm based on decentralized fictitious play
(DFP) in which robots reason about the selections and locations
of other robots to decide which target to select, whether to com-
municate or not, who to communicate with, and where to move.
Specifically, the communication actions of the robots are learning-
aware, and their mobility actions are sensitive to the success
probability of communication. We show that the decentralized
algorithm guarantees that robots will cover the targets in finite
time. Numerical simulations and experiments using a team of
mobile robots confirm the target coverage in finite time and show
that mobility control for communication and learning-aware
communication protocols reduce the number of communication
attempts in comparison to a benchmark distributed algorithm
that relies on communication at each decision epoch.

Index Terms— Autonomous robots, decentralized control, mul-
tiagent systems, networked control systems.

I. INTRODUCTION

ITH advances in robotics and wireless communication,

autonomous systems are deployed in many different
areas ranging from unmanned aerial vehicles (UAVs) [1] to
watercraft systems [2], [3] and self-driving cars [4]. In prac-
tice, typical goals of multiagent robot teams can be search,
rescue, and patrolling missions. Accomplishment of these
goals includes, but not limited to, scanning and covering
physical locations in hazardous environments, where commu-
nication abilities are limited—see [5], [6], [7] for more current
applications of autonomous systems. In such team missions,
autonomous robots are put together to collaboratively achieve a
common goal using wireless communication and their physical
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abilities. Collaboration entails each team member gathering
data and resolving differences with others efficiently via rapid
communication to produce a joint action profile. Here, we posit
that communication and mobility capabilities need to be man-
aged by the team members based on the occurrence of a need
for additional information to maximize team performance.
We specifically consider a team of robots tasked with
covering a given set of targets. Target assignment problems
are combinatorial optimization problems seeking assignments
between resources (robots) and tasks (targets) to maximize
utilities or minimize costs—see [8], [9] for detailed surveys
of centralized approaches on target assignment problems.
Among the multiagent approaches to solving the variants
of target assignment problem are the utility-based [10], [11]
and action-based game-theoretical learning algorithms [12],
[13], [14], [15], [16], auction-based algorithms [17], [18],
[19], [20], dynamic partitioning and coalition formation meth-
ods [21], [22], distributed Hungarian algorithm [23], and
maximal-matching algorithms [24]. While the mentioned stud-
ies so far provide (almost and near) optimal solutions to
variants of the target assignment problems, they do not
address communication failure under realistic conditions.
Some assume perfect information provided to agents or shared
between agents [10], [11], [12], [15], whereas others [13],
[14], [17], [18], [19], [21], [23] rely on (strongly) connected
network formed in a bounded time interval without a specific
communication model. The remaining ones specifically con-
sider limited-range communication [24], faulty communication
with packet loss [22], and communication failure [16], [20].
However, those operating without connectivity assumption
assume unrealistic coordination between agents, e.g., existence
of rendezvous points, determination of leader agents [24],
or assume unrealistic communication models [16], [20], [22].
In this article, robots have limited communication resources
per decision epoch, and communication is subject to failures
due to path loss and fading. Fig. 1 shows an example of a
team of three robots that wants to cover three targets. Here,
we model the target assignment problem as a game played
among team members [12]. The game appears in this setup
because the individual payoffs depend on other agents’ actions
(target selections) that are unknown and determined by their
individual payoffs. If agents are strategic and rational, then
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Fig. 1. Team of robots are tasked to solve a target assignment problem.
Each robot relies on the local estimates of the possible target selection of
other robots f(t) to select targets. The local estimates are updated based on
information received from other robots over a noisy wireless channel subject
to failures. The probability of a successful communication from robot i to j
[Bij(t)R;j(t)] depends on their locations [x;(¢), x;(¢)] and flow rate [B;; ()]
determined by robot i.

an optimal action profile is a Nash equilibrium (NE). In the
target assignment game, the (pure) Nash equilibria correspond
to robots covering all the targets. Given the setup, along the
lines of the aforementioned vision for team collaboration,
we propose a decentralized game-theoretic learning algorithm
in which agents learn to cover the targets as a team by
making learning-aware communication and communication-
aware mobility decisions.

In particular, we generalize a decentralized form of the
fictitious play (FP) algorithm, so that it is suitable for realistic
communication and mobility settings and is able to manage
limited communication resources (see Section III). The pro-
posed algorithm has three main parts that operate in tandem.

1) FP: Agents keep estimates of the intended target selec-
tions of other agents to select best available targets.

2) Intermittent and Voluntary Communication: Agents use
their current estimates to make voluntary communication
attempts with other agents.

3) Communication-Aware Mobility: Agents take movement
actions considering the tradeoff between covering their
selected targets in a given time and increasing the chance
of successful communication.

FP is a best-response-type distributed game-theoretic learn-
ing algorithm [25], [26], [27], [28]. In the standard FP
algorithm [29], each agent takes an action that maximizes
its expected utility assuming other agents select their actions
randomly from a stationary distribution. In FP, agents assume
that this stationary distribution is given by the past empir-
ical frequency of past actions. FP is not a decentralized
algorithm, since agents need to observe the past actions
of all the agents to be able to form these distributions
and compute their expected utilities. In the decentralized FP
(DFP) algorithm, agents form estimates on empirical fre-
quencies of other agents’ actions by averaging the estimates
of their neighbors received over a communication network.
The fast convergence rate of averaging updates guarantee
convergence of the DFP algorithm for potential games, i.e.,
games with payoffs that admit potential functions [13], [14],
[26]. Here, the generalization of the DFP algorithm allows for
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communication failures, and intermittent and voluntary com-
munication attempts.

Learning-aware communication refers to agents assessing
novelty of their information and the information need of other
agents who are potential receivers of information. Indeed,
if an agent has no new information to share, it can save
energy by abstaining from communication without hampering
team performance. Based on this premise, recent studies
in distributed optimization [30], [31], [32] propose local
threshold-based communication protocols that rely on the
novelty of information measured by, e.g., change in local
gradient. These communication protocols are also referred to
as censoring implying that a sender agent self-censors if it
deems its information as stale. Along the same lines, here we
consider a communication protocol that gives full autonomy
to agents in deciding whether to communicate or not based
on the changes in their estimates of empirical frequencies.
Our protocol departs from the past approaches by the feature
that agents also determine who to communicate with by
assessing information need of other agents, in addition to
the novelty of local information. Specifically, agents keep an
estimate of the similarity between others’ estimates of their
empirical frequencies. If agent i assesses that agent j has
a quality estimate of i’s empirical frequency, it may choose
to not transmit its updated empirical frequency to agent j.
Moreover, each agent allocates its communication resources
based on a statistic that measures the similarity of target
selections. That is, if an agent is more likely to select the
same target with another agent, then it is more urgent for these
two agents to coordinate their selections. These features in
which agents determine who to communicate with and allocate
communication resources based on the urgency of information
exchange make the communication protocol learning-aware.

Communication-aware mobility refers to agents determining
their heading directions not only based on the selected targets
and target locations but also based on their need to communi-
cate in the presence of fading. In the target assignment game,
if robots move toward their selected targets, they may quickly
lose connectivity due to fading, i.e., increasing interagent
distances. This may lead to certain robots committing early
to their target selections without spending the time needed
to coordinate their actions with all the other robots. Since the
team would need to resolve robot—target allocations eventually,
this mobility would be highly inefficient as some robots may
take many steps toward their selected targets only to change
their selections. In addressing some of these issues, recent
works in mobility and communication control in autonomous
teams propose mobility decisions that mind communication
failures [33], [34], [35], [36]—also see [37] for a survey on the
relationship of different communication setups and mobility.
However, in these studies network connectivity is treated as a
constraint to be satisfied by the team. Ensuring connectivity
as mobile robots move to reach their selected targets can
significantly hamper team performance and cause the target
assignment problem to be infeasible since some targets may
never be covered to remain connected. Recent studies on
mobile robotic teams account for intermittent communication
for distributed state estimation problems [38], [39]. Along
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similar lines, we incorporate information exchange needs of
agents and fading effects into their mobility decisions. Our
goal is to reduce the total effort spent by the team by increasing
the chances of successful communication attempts.

It is worth noting that we considered similar communication
schemes for the DFP algorithm in [16], [40], and [41].
In [40], we propose a self-censoring protocol based only on
the novelty of information for the target assignment game.
The communication protocol in this article extends it to con-
sider the value of local information for the receiving agents.
In addition, we propose a novel communication-aware mobil-
ity protocol where agents anticipate the role of their future
positions in the chance of communication. In [16] and [41],
we provide a theoretical framework for the convergence of the
communication-censored DFP algorithms in weakly acyclic
games by providing a sufficient learning condition that needs
to be satisfied by a communication protocol. In this article,
we propose communication protocols particular to the target
assignment game and rely on the theoretical framework devel-
oped in [16] to prove convergence. We detail the contributions
of this article next.

A. Contributions
The contributions of the article are threefold.

1) We formulate a novel target assignment game for which
we show that the pure Nash equilibria correspond to
target coverage solutions.

2) We design a decentralized inertial best-response
algorithm  enabling agents to select targets
autonomously, decide who they send information to,
and where they move without a centralized controller
or access to any global information. The algorithm
design entails novel learning-aware communication and
communication-aware mobility protocols considering a
faulty communication network.

3) We show that the decentralized algorithm will guar-
antee a physical coverage of targets in finite time,
ie., converge to a feasible local optimal solu-
tion of the centralized problem. The simulations
and experiments demonstrate the benefit of learning
aware-communication and mobility-aware communica-
tion protocols in reducing communication attempts and
improving the communication success rate.

B. Organization

In Section II, we first provide the centralized target assign-
ment model with mobility constraints. Second, we present
the target-assignment game stating individual payoffs and
actions. We also show that any pure Nash equilibria of the
target assignment game are a one-to-one assignment of the
robots to targets (see Lemma 1). In Section III, we pro-
pose the DFP with learning-aware voluntary communication
and communication-aware mobility protocols, denoted as
MC-DFP. In Section 1V, we show that MC-DFP converges to
a pure NE of the target assignment game given appropriate
choices of the threshold parameters in the learning-aware
communication protocol, which implies that all the targets are

covered by some finite time (see Theorem 2). In Section V,
numerical simulations demonstrate the reduction in the number
of communication attempts due to learning-aware communica-
tion and the increased likelihood of covering the targets by a
given final time. We demonstrate the practical applicability,
the effectiveness, and the scalability of the decentralized
decision-making scheme in experiments with a team of
mobile-wheeled robots. We conclude in Section VI.

II. TARGET ASSIGNMENT PROBLEM AND
A GAME FORMULATION

A. Target Assignment Model

We consider a team of N robots denoted with A/ =
{1,2,..., N} that move on a 2-D surface. There are N targets
denoted using K := {1, 2, ..., N}. The goal of the team is to
cover all the targets. For robot i € A/ to cover a target k € K,
it has to select that target. We define the selection variable
a;r € {0, 1} which is equal to 1 if robot i selects target k, and
it is equal to O, otherwise. Then the team goal to cover all the
targets is achieved, when the following equations are satisfied:

Dlax=1, ieN, Doan=1kek. (1)

kel ieN

and

If the conditions above are satisfied, there is a one-to-one
matching between the robot—target pairs.

1) Mobility Dynamics and Coverage Constraints: Each
robot starts at position x;(0) € R? and moves to x;(t) €
R? with a chosen velocity x;(t) € R> fort € T := {1, ..., Tr}
where T is some final time. Assuming uniform time intervals
At, we have the following mobility dynamics:

x,-(O)—}—Z)'c[(s)At:xi(t), (i, ) e N xT. )

s=1

Agent i’s velocity is bounded with V € R

%I <V, G1neNxT. 3)

Robots determine their velocities to reach their selected targets
by the final time, i.e.,

x(Ty) =a q := Zaiqu, ieN 4)

kelC

where g; € R? denotes the target k’s static location, the
selection vector of robot i is defined as a; := [a;1, ..., ain]",
and q is the target location matrix that is a concatenation of the
locations of all the targets. The equality in (4), when satisfied,
ensures that robots are at their selected targets by time 7.

Each robot i has to exert an effort to cover target k
physically. This effort may stem from distance traversed,
energy consumption, or existing preferences among targets.
We denote the effort/cost required for robot i to select target
k as dij; > 0. Then the team objective can be written as to
minimize total effort to cover all the targets while satisfying
the conditions above

min E Zdikaik
airXi )G ON ke

s.t. (1) — (4). 4)
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In the above formulation, the objective only depends on the
action selections a;;, not on the mobility dynamics. That is,
once the robots determine their action selections that optimize
the objective in (5), they can determine their velocities to
satisfy (2)—(4)—see Remark 1 for further discussion on the case
that the mobility dynamics are coupled with the objective.
Our approach here is to provide decentralized solutions to
the above problem when there is no centralized coordinator
and robots have partial access to other agents’ beliefs and
selections due to random communication.

Indeed, the problem in (5) is relatively easy to solve when
robots have complete information, i.e., all the robots know
the costs of other agents d;; for i € N and k € K. In such
a scenario, each robot can compute the optimal solution to
(5) and implement its portion of the optimal selection and
mobility dynamics. Robots cannot be sure of other robots’
costs to cover the targets, e.g., when it depends on local
energy consumption. This means robots need to solve (5) using
their local information. Because robots have different and
partial information, robots need to reason about each other’s
selections to make optimal selections. Here, we model the
reasoning and decision-making of robots via a decentralized
game-theoretic learning framework. We first define the target
assignment game and then present the decentralized algorithm.

Remark 1: The problem of finding optimal paths, e.g.,
shortest path, and the target assignment in (5) can be coupled
in the objective. For instance, the action selections could
be such that the total distance traversed by the agents is
minimized. This problem is a dynamic program where agents
traverse the shortest path (Euclidean distance from initial
locations) to their selected targets on the optimal path. That

is, the dynamic program could be simplified to (5) by defining

dix := x;(0)—a/ q. Accordingly, we define the cost parameters
(dit) as the Euclidean distance of initial agent positions to
target locations in the numerical simulations.

B. Target Assignment Game

In a game, robot i, who knows its cost associated with
covering each target {d;;}rcx, has to compare among its target
options /C without the knowledge of the selections of other
robots. Here, we use the selection vector ¢; € RV to denote
the action of robot i. The action of robot i belongs to the space
of canonical vectors e, € RV*! for k = 1, ..., N, which has
only a single element equal to 1 and the rest of the elements are
zero. That is, we define the action space as A := {ey, ..., ey},
meaning that only a single target can be selected. We denote
the kth element of the action by a; € {0,1} as per the
definition of the selection variable in (1). Given the action
space, we represent the utility function of robot i as follows:

Lr,nel}}\ wilai, a_) = Y dd_ixai (6)

kelkC
where —i := A\{i} denotes the set of agents other than agent
i,a_; =={aj}jei, and a_;j; := max{aj;}je—;. The definition
of a_;; implies that if there exists a robot j € —i that selects
target k, then a_;; = 1, and otherwise if none of the robots
selects k, then a_;; = 0. As per this definition and (6), robot
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i’s cost from selecting target k is d;; if there exists another
robot selecting the target. Accordingly, the cost of selecting a
target k is zero, if no other agent is selecting that target.

The utility of robot i depends on the actions of all the other
robots via the term a_;; in (6). This dependence sets up a target
assignment game among the robots defined by the tuple I' :=
(N, {A, u;}ien). In the target assignment game, the structure
of objective function u; (a;, a_;) together with the action space
A assume the role of the assignment constraints in (1). Once
robot i selects its target, it can determine its path toward the
chosen action as per (2)—(4) to satisfy the mobility constraints.

1) Game Theory Preliminaries: A mixed strategy of robot
i, denoted with o, is a probability distribution over the action
space, i.e., 0; € A(A). The set of joint mixed strategies
is given by AN(A) = H,N:1 A(A) where we assume the
individual strategies are independent. An NE of the game I'
is a strategy profile such that no individual has a unilateral
profitable deviation.

Definition 1 (NE): The joint strategy profile o* =
(of,0*) € AN(A) is an NE of the game I if and only if
foralli e N/

ui(ai*, afi) < u[(a,-, o ),

—i

for all o; € A(A). (7

An NE strategy profile o* is a pure NE if 0* = (0%, 0%,) €
AN(A) is a degenerate probability distribution, i.e., gives
weight 1 on a single action profile a = (a;, a_;) € AV.

A game T is a best-response potential game [42] if there
exists a best-response potential function u : [[;.ny A — R,
such that the following holds for any actions ¢; € A and
a_; € AN71 = Hie./\/\{i} A:

argmin u;(a;, a—;) = argmin u(a;, a_;). ()
a;eA aeA
A best-response potential game with a finite set of actions A
is weakly acyclic, i.e., a pure-strategy NE exists, and starting
from any a € A", there exists a finite best-response path to a
pure-strategy NE.

2) Properties of the Target Assignment Game: We show
that the target assignment game is a best-response potential
game with pure Nash equilibria corresponding to one-to-one
assignments between robots and targets.

Lemma 1: The target assignment game defined by the tuple
I' = (N, {A, u;}ien) with the utility function defined in (6)
is a best-response potential game, and an action profile a* is a
pure NE if and only if it is a one-to-one assignment between
robots and targets.

Proof:  Consider the best-response potential function
u(ai, a_;y) = D i —ikaik, Where a_j; and a;; are defined
as per (6). Since the cardinality of the set of targets and
robots is the same, |A| = |K| = N, there is always at least
one target k uncovered given a_; € AY~!. Suppose robot i
selects to cover one of the uncovered targets k € K, so that
a; = eg. Then, it holds that u(a;,a_;) = u;(a;,a_;) = 0 and
minge 4 u(a;, a—;) = ming e 4 u;(a;, a_;) = 0. Thus, it satisfies
the condition in (8).

Suppose @ = (a;,a_;) € A" is not an one-to-one assign-
ment. For the same reason, |[N'| = |K| = N, any agent can
unilaterally find a better solution and minimize its utility value
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by selecting an uncovered target. By contradiction, therefore
such an assignment is not a pure NE. When it is a one-to-one
assignment, no agent can unilaterally find a better solution.
It concludes that only one-to-one assignments are the pure
NE of this game. u

Lemma 1 implies that any pure NE solution is a feasible
solution to the target assignment problem satisfying constraints
(1). Next, we show that agents cannot be indifferent between
other targets at a pure NE.

Lemma 2: For any pure NE action profile a* € AY of the
target assignment game I', it holds that

{af} = argmin u;(a;, a*;) )
a; €

that is, the minimizer is a singleton.

Proof: The statement follows by the fact that the set
of pure NE action profiles of the target assignment game
constitutes of action profiles that covers all the targets. At a
pure NE in which all the agents cover a single target, agent
i does not have an action profile that it can deviate to which
will lead to an equivalent cost of zero given that d;; > 0 for
all k € K. ]

Remark 2: The utility function in (6) ensures that each
robot incurs a cost of zero for selecting a target when each
target is selected by only a single robot. Utility functions
with a similar rationale are considered in [12], [43], and [44].
In the utility functions considered in [12] and [44] for the
target assignment game, the payoff from selecting a target k
reduces proportional to the total number of players selecting
that target. [43] defines binary-valued agent utilities that are
equal to 1 if agents are away by a certain distance threshold
from each other considering the area coverage problem where
the goal is to cover the nodes of a graph.

III. DECENTRALIZED GAME-THEORETIC LEARNING IN
THE TARGET ASSIGNMENT GAME

We assume that robots do not have time to coordinate their
actions a priori. Thus, they learn to select the optimal (equi-
librium) actions in the target assignment game via repeated
interaction as they move to reach their current target selections.
Robots’ interactions are determined by the communication
model that is subject to fading and path loss. In such a
setting, if robots only move toward the actions they select, the
chance of successful information exchanges may significantly
diminish depending on the target locations. In the following,
we propose a decentralized game-theoretic learning algorithm
where robots determine who to talk to and their mobility
actions according to the tradeoff between the need to commu-
nicate and the goal to reach their selected targets as per (4).

DFP With Inertia: We denote the target selection of robot
i at time r € N by a;(¢) € A. In making its target selection,
robot i needs to form estimates on the current selection of
other robots to evaluate its utility in (6). Similar to standard FP,
robot i assumes that other robots act according to a stationary
distribution that is determined by their empirical frequency of
past actions. We define the empirical frequency of robot i as
follows:

fit)y =A = p) fit = 1) + p1a; (1) (10)

where p; € (0, 1) is a fading memory constant that measures
the importance of current actions. In the standard FP
algorithm, robots best respond, i.e., take the action that
minimizes their expected utilities computed with respect to
others’ empirical frequencies f_;() = {f;(t)};e—i. However,
in a random communication setting, it is not possible for the
robots to observe the past action of all the robots at every
time instant. Thus, robot i cannot correctly compute f;(f) at
every time instant.

Instead, robot i needs to form local estimates of the empiri-
cal frequencies based on the information received from others.
We define the estimate of robot i on robot j’s empirical
frequency in (10) as f; (1). The estimate f} (t) belongs to the
space of probability distributions on A denoted as A(A). Then
the expected utility of robot i with respect to its estimates

L@ = {f}(t)}je./\/\{i} is given by

ui(ai, f1,(0)) = D wila, a_) f1,(1)(a).

a;

(1)

In DFP with inertia, robots best respond to the estimated
empirical frequencies with some probability €jperia € (0, 1)
forall t > 2

argmin u; (a;, f;(1)), W.pr. 1 — €inertia
(),’EA

ai(t — 1),

a;(t) = 12)

W.PTI. €inertia-

In the following, we describe how robots update their estimates
about others’ empirical frequencies f';(¢) based on message
exchanges with other robots.

Information Exchange and Estimate Updates: At each time
step ¢, robots update their individual empirical frequency f;(¢)
according to (10) and let ﬁ (r) = f;(t). After updating its
individual empirical frequency, robots attempt to exchange
their empirical frequencies with each other. Robot i updates
its estimate about robot j’s empirical frequency as follows:

(L= p) f{ =D+ paff (0), if 1) =1
f} t—1), otherwise

where p, € (0, 1) is a learning rate, and cj;(¢) is a Bernoulli
random variable that indicates whether the communication
attempt by robot j at time t is successful or not. If the
communication is successful, then agent i takes a weighted
combination of its last belief [ f j’ (t — 1)], and the information

[ = 13)

received [ f j’ (t)]. Otherwise, agent i assigns its prior belief as
the current belief, i.e., f; (t) = fj’f (t — 1). The success proba-
bility of a communication attempt at time ¢, i.e., P(c;; (z) = 1),
depends on the channel model and the communication protocol
that we describe next.

Communication Model: We consider point-to-point com-
munication among robots i and j with a rate function
R;j(x;(t), x;(t)) that determines the amount of information
robot i can send to robot j at time f. Robot i can choose
the routing rate B;;(t) € [0, 1] that controls the fraction
of time robot i spends to send information to robot j at
communication epoch f. The probability of existence of a
communication link is given by a Bernoulli random vari-
able, which depends on the rate function and the routing
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rate
Pleij (1) = 1) = B (OR;; (1) = By (1) e MO0l

where r > 0 is the channel fading constant.

Remark 3: The communication model considered in (14)
is a probabilistic model similar to the models presented
in [33], [35], and [45]. For hazardous environments, in which
wireless communication between robots is challenging, prob-
abilistic models are better suited—see [46], [47] for general
surveys of probabilistic wireless communication models and
their usage areas.

Learning-Aware  Voluntary =~ Communication: ~ Robot
i decides on whether it wants to communicate with
robot j based on two metrics: novelty of its information
H;;(t) := ||ﬂ (1) — a;(#)|| and the error that robot j makes in
estimating i’s empirical frequency H;;(t) := || fii (1) — fi’ )]
In particular, robot i assigns a communication weight w;; ()
to robot j that is equal to zero if novelty and distance
conditions are, respectively, below certain threshold constants
n € (0,1) and n, € (0, 1); otherwise, the weight is equal to
the inverse of the empirical frequency overlap between the
two robots defined as A;;(r) := max(8y, | f (1) — fj (D),
where 8; € (0, 1) is a positive lower bound on A;; ()

(14)

0, if Hy;(t) <m and H;;(t) < m
w;; (1) = 1
A ()’

1
otherwise. (as)

We provide an intuition for the above threshold rule. The
novelty H;;(t) measures the change in the empirical frequency
of robot i. H;;(t) gets smaller when robot i repeatedly selects
the same target as per (10). Together with the condition that
H;;(t) needs to be smaller than 7n,, the above threshold rule
checks whether robot j needs further information from i in
predicting i’s target selection accurately. In the case that these
thresholds are not met, i.e., H;;(t) > n; or H;;(t) > mn,
then the communication weight depends on the overlap metric
A;;(t). The overlap metric is the estimated similarity between
the empirical frequencies of robots i and j. If A;;(¢) is small,
then two robots are likely to select the same targets according
to robot i. The smaller the A;;(¢), the more important it is for
robot i to coordinate the selection of the targets with robot j
so that robots i and j do not select to cover the same target.
The constant §; puts a cap on the communication weight that
a single robot j can have.

To compute the communication weight (15), robot i needs
access to its own empirical frequency f;(¢), its estimate of
Jj’s empirical frequency f; (t), and robot j’s estimate of i’s

empirical frequency f;/(z). Robot i can locally compute f;(t)
and f]’f (t) using (10) and (13), respectively. For computing
fl:i (), here we devise an acknowledgment protocol where we
assume the receiving robot (j) sends an “ACK” signal to the
sender (i) upon successful communication. Given this protocol
and the initial estimate of j on i’s empirical frequency f; (0),
robot i (sender) can keep track of the value of fij (t) using the
update rule in (13) with indices i and j exchanged.

At each step, robot i computes a communication weight
for all the robots as per (15). Together these weights
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{w;j(#)}jenyy determine the relative importance of commu-
nicating with other robots. Next we explain how these weights
are used in determining flow rates.

Robot i allocates its routing rate by solving the following
optimization problem:

max P(ci (1) = 1 y
Bij (1)€l0.1] H (cij () ) (16)
> Bin=1 JET

where the total flow rate is capped by 1, i.e., the sum of
routing rates cannot be infinite in a given communication
epoch. Given the structure of the communication channel in
(14), we incorporate the communication weights w;;(¢) into
(16). Then, the optimization problem can be reduced to the
following by taking the logarithm of the product term and
weighting each term by w;; (¢):

i (1) 10g(Bi; (1)) 17
/3,',{})12?%),1] ' Z w;; (1) log(Bi; (1)) (17
> Bij(=1 JeEN\(i}

Robot i solves the concave optimization problem in (17) at
each time step ¢ to determine the flow rates B;;(¢). Due to
the threshold condition in (15), the weights in (16) for some
of the robots can be zero, which means robot i eliminates a
subset of the robots from the communication all together.

In reducing problem (16) to (17), we observe that the
fading terms in communication r||x; (¢) — x; (t)||% disappeared.
This means the positions x;(t) and x;(t) do not play a
role in determining the flow rates; even though the chance
of successful communication between robot i and robot j
depends on the positions as per (14). Indeed, robots can adjust
their positions based on who they need to send information to.
In the following, we propose such a mobility decision-making
protocol that accounts for both the dependence of communi-
cation success on distances, and reaching the selected targets.

Communication-Aware Mobility: Each robot needs to cover
the target they selected by the final time 7. At the same time,
as per the communication model in (14), the distance between
robots is crucial to the success of a communication attempt.
Since the exact location of robot j [x;(¢)] is unknown to each
robot i, robot i can use its estimate of agent j’s empirical
frequency [ f]’ ()] and target locations g together with (4) to
estimate the current location of robot j as shown below

N T

X(Tp 1) = fi (1) q.
Given the estimates of the locations of other robots {)?;} JeN\is
robot i selects its next heading direction xid“(t) to jointly

optimize communication success and covering the selected
target by solving the following problem:

> w|x o - & a0
JeN\Li}

(18)

min
xdir (1) eR?

+ 5@ - w1 0] (9)

where x;(Ty,t) = a;(t)Tq denotes the location of the
target selected by robot i, and v;;(#) > O represents robot
i’s preference to be close to robot j. The weight v;;(f) is
computed using the same threshold condition as the com-
munication weight w;;(¢) in (15) but is computed using
updated empirical frequency estimates post communication

Authorized licensed use limited to: Texas A M University. Downloaded on September 26,2023 at 18:36:32 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AYDIN AND EKSIN: BEST-RESPONSE ALGORITHM WITH VOLUNTARY COMMUNICATION AND MOBILITY PROTOCOLS 7

Algorithm 1 MC-DFP for Robot i

1: Input: Physical locations z;,9 € R2 foralli €
N; ¢ € R? foralk € K; the parameters
Plap2>04(t)77717772a517Tf-

2: fort=1,2,--- ,T; do

3:  Select an action a;(t) using (12).

4. Update f(t) with the selected action via (10).

5.

6

Compute weights w;;(t) (15) for all j # i.
If w;;(t) # 0, each robot ¢ decides the routing variables
Bij(t) (17) and transmit its empirical frequency f;(t)
with probability of success 3;;(t)R;;(t).
7. Update {f}(t)}jen using (13).
8:  Compute the weights v;;(t) using (15).
9:  Determine direction (19) and move according to (20).
10: end for

phase. In other words, v;;(¢) is an updated version of w;;(#)
computed after the information exchange and belief updates.
After determining the direction xlfﬁr(t), robot i’s velocity is
given by

oe(t)(x;ﬁr(t) —x;i(t — 1))
At

where «(#) is the speed of robots at time ¢, respecting physical
constraints.

xi(1) = (20)

A. Algorithm

Algorithm 1 summarizes DFP proposed in Section III that
determines mobility (M) and communication (C) decisions of
robot i and thus is referred to as MC-DFP.

Robots start the updates at each time step with the selection
of a target in step 3. In steps 4 and 5, robots determine
their current empirical frequencies and their communication
weights, which they use to determine their flow rates. In step 6,
all the robots engage in a round of communication with the
determined flow rates. After robots receive new information,
they update their estimates about the empirical frequencies in
step 7. The updated frequencies are used to determine where
robots move next in steps 8 and 9.

MC-DFP has two mechanisms, namely, learning-aware
voluntary communication (steps 5 and 6) and communication-
aware mobility (steps 8 and 9), which makes it distinct from
prior decentralized approaches in team of mobile robots [33],
[34], [35]. In contrast to prior approaches that focus on
ensuring probabilistic connectivity for all the time steps,
the proposed communication and mobility protocols make
learning of others’ selections the goal. Moreover, the MC-DFP
algorithm considers realistic communication and mobility
models compared with prior decentralized game-theoretic
learning schemes, e.g., [13], [14], [20].

Remark 4: MC-DFP aims to reduce communication
attempts by having agents reason about the value of their
local information. In this aspect, the protocols are similar to
the voluntary communication protocols considered in [48§]
for DFP. The protocols in this article are tailored to the
target assignment problem solved by a team of mobile agents.

In particular, we use mobility protocols to aid communication,
and thus learning.

Remark 5: The iteration complexity of MC-DFP is poly-
nomial in N. Target selection has polynomial complexity
since the computation of probabilities of target selections is
polynomial and selecting an element among possible choices
can be completed in O (V). For learning-aware communication
and communication-aware mobility, again, the computation of
weights consists of simple array operations and is polynomial.
We solve the voluntary communication problem via a concave
maximization problem with linear constraints. The objective is
a sum of concave and separable functions and is shown to be
solvable in polynomial complexity in terms of problem size
and solution accuracy [49]. Communication-aware mobility is
an unconstrained and convex quadratic minimization problem.
It has a closed-form solution using the first-order condition
to find optimal solutions. This means that complexity per
iteration is polynomial.

IV. CONVERGENCE ANALYSIS

In the following, we show that MC-DFP (Algorithm 1) con-
verges to a rational action profile implying that the constraints
of the target assignment problem in (1) and (4) are satisfied.

We begin by stating prior conditions and results that will
be used in the convergence analysis.

A. Prior Results

We will use a result from [48] to show the convergence of
MC-DFP. The result in [48] hinges on the following condition
that an information exchange and belief update protocol needs
to satisfy.

Condition 1 (see [48]): There exists a positive probability
¢ > 0 and a finite time 7" such that if an agent j € N repeats
the same action for at least 7 > 7 times starting from time ¢ >
0,ie,aj(s) =e fors=t,t+1,...,t+T —1and e € A,
agent i € N\ learns agent j’s action with positive probability
€ >0, ie., P(lla;j(t+T)— f;(t—i— )| < &E|H(t)) > € for any
& > 0, where {H(t)};>0 is a sub-sigma algebra of the Borel
sigma algebra B created by the set (AY x G)' of actions and
the space of all possible networks G.

Condition 1, if satisfied by a communication and belief
update protocol, e.g., in MC-DFP, implies that robot i is able
to learn the action of another robot j with some positive
probability when robot j repeats the same action. Condition 1
requires a communication and belief update protocol to be able
to learn given an environment that is static for a finite time
horizon. The following result, given in [48], states that any
FP-type algorithm with inertia will converge to a pure NE of
any weakly acyclic game given that it satisfies this condition.

Theorem 1 (see [48]): Let {a(t) = (a(), (ax(t),...,
an(t))}>1 be a sequence of actions generated by an FP-type
algorithm with inertia where agents best respond as per (12)
and update local empirical frequencies as per (10). Suppose the
local empirical frequency estimates of agent i € N [ fi,» )]
satisfy Condition 1. If the game I' = (N, {A, u;}ien) is
weakly acyclic, and agents are not indifferent between any
two actions at a pure NE, i.e., the set of minimizers in (12)
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is a singleton {a;'} = argmin, _ 4 u;(a;, a*;), then the action
sequence {a(t)};>; converges to a pure NE a* of the game I',
almost surely.

B. Convergence

We establish the convergence of MC-DFP via Theorem 1
by showing that its conditions are satisfied.

We make the following two assumptions on bounded dis-
tance between robots and targets and on guaranteed success
of acknowledgment signals.

Assumption 1: There exists a positive real number D >
0 such that ||lx;(r) — x;(1)| < D, forall (i, j,1) € N x
M{j} x T, and ||x;(t) — qx|| < D, for all (i,k,t) € N x
Kx T.

Assumption 2: A receiving robot j € N\{i} can success-
fully acknowledge if they received the estimates f/(¢) from
the sender robot i given ¢;;(t) = 1.

Assumption 2 assures that acknowledgment signals are
always received without failures. Thus, the metric H;;(¢) used
in the voluntary communication protocol is accurate. From
a theoretical perspective, this assumption allows us to lower
bound the probability of successful communication as per (14).
The acknowledgment signal has complexity of O(1), so ensur-
ing its transmission is not costly for the receiving agent.

First, we show that the communication and belief update
protocol of MC-DFP in Algorithm 1 satisfies Condition 1.

Lemma 3: Suppose Assumptions 1 and 2 hold. Let {a(¢) =
(ai(t), (ax(t),...,an(t))}>1 be a sequence of actions gener-
ated by MC-DFP (Algorithm 1). Then, Condition 1 is satisfied
for any § > 0O given small enough 0 < 1, < §/2, and
0 < 1 < &/2 such that if an agent j € N repeats the same
action for at least T > 7' times starting from time ¢ > 0, i.e.,
aj(s) =e fors =t,t+1,...,t +T — 1 and ¢, € A, agent
i € N learns agent j’s action with positive probability € > 0,
e, P(lla;t +T) — fj(t + Dl <§IH®) = €.

Proof: See Appendix. [ |

Next, we state the main convergence result for MC-DFP.

Theorem 2: Suppose Assumptions 1 and 2 hold. Then,
at some finite time ¢, robots implementing MC-DFP
[Algorithm 1 achieve the team goal (1) and cover targets
physically (4)].

Proof: By Lemma 1, there exists a finite best-response
path to reach pure NE a = (af,a*;) € A" from any joint
action profile (a;,a_;) € AY in target assignment game
defined by the tuple I' = (N, {A, u;}ienr). Lemma 2 assures
that agents are not indifferent between any two actions at
a pure NE. Finally, Lemma 3 satisfies Condition 1. Thus,
by Theorem 1, the sequence of joint pure action profiles
{a; = (ais, a_it)}s>1 converges to a pure NE (a/, a*,) almost
surely in finite time.

At a pure NE, there is a one-to-one assignment of robots
to targets. Then, if robots converge to an NE a* in finite time
t, the mobility weights v;;(z) are zero, i.e., v;;(t) = 0 for all
j € N. Thus, each robot goes in the direction of their selected
target (gqr), without changing a’ = e,. By Assumption 1,
robots arrive at their selected target locations by following
the mobility dynamics in (2) and (3) satisfying (4) in some
finite time. ]
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The result above shows that MC-DFP is guaranteed to reach
a feasible solution of (5). Theorem 2 provides convergence
guarantees for MC-DFP despite the fact that robots can choose
to cutoff communication based on local statistics as per (15)
or move toward other robots to increase communication as per
(19) and (20).

In Section V, we assess the effects of voluntary commu-
nication and learning-aware mobility dynamics in MC-DFP
in terms of convergence time and number of communication
attempts using simulations and experiments.

V. SIMULATION AND EXPERIMENTS
In both the simulations and experiments, we assume that the
cost of robot i to cover target k is proportional to the distance
that it has to traverse, defined as d;; := ||x; (0) — g« ||%.

A. Simulation Setup

We consider N = 5 robots and targets, in which robots and
targets are positioned according to two different scenarios.
In Scenario 1, robots start at the origin (0,0) and targets
are located at (0, 1), (1,1,),(1,—-1),(—1,1), (=1, —1). For
Scenario 2, robots are positioned at different starting points
(=0.5,0,), (=0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.5, —0.5),
and also targets are given as (0, 0), (—0.5, 1.5), (—0.5, —1.5),
(0.5, 1.5), (0.5, —1.5).

The algorithmic parameters pi, p2, and €jperia are chosen as
0.4, 1, and 0.05, respectively. The initial empirical frequencies
and their estimates (f(t) and f} (0)for all (i, j) € N x
M\{j}) are assigned as uniformly distributed over five targets
so that f/ () =[0.2,...,0.2] and fj? (0) =10.2,...,0.2]. The
channel fading constant r is determined as 0.65. Moreover,
each scenario is experimented with different constant speed
values over time « (), which are, respectively, 0.1 and 0.05 for
Scenario 1 and 0.05 and 0.025 for Scenario 2. Communication
threshold constants (171, 172) are given as (0.1, 0.4). We explore
the MC-DFP performance with respect to parameters pi, s,
n1, and 7y in Section V-E. Finally, the upper bound for A;;
in (15) is selected as § = 10. Targets are assumed to be
covered if the Euclidean distance to final positions of robots is
within 0.1.

Given the setup, we compare the performance of MC-DFP
with respect to two decentralized benchmark learning schemes.
The first benchmark learning scheme only uses learning-aware
voluntary communication and does not use communication-
aware mobility, i.e., it only moves toward the selected
target. We denote this learning algorithm as the C-DFP
algorithm. The second benchmark algorithm only imple-
ments DFP without learning-aware voluntary communication
and communication-aware mobility. We denote this learning
algorithm as DFP. In DFP, we further replace the voluntary
communication protocol in C-DFP by a fixed communication
protocol where robot i attempts to communicate at all the time
steps with equal flow rates for all the robots, i.e., B;;j(t) =
(1/(N — 1)) =0.25.

B. Rate of Convergence to an NE and Estimation Errors

Fig. 2 (left) illustrates the convergence to equilibrium in
Scenario 1 with top and bottom figures corresponding to
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Fig. 2. Convergence results over 50 replications for Scenario 1 for speeds (top row) @ = 0.1 and (bottom row) « = 0.05. (Left) Convergence of

empirical frequencies to pure NE >,/ |l fii (t) — af||. (Middle) Convergence

of estimation errors )" r Zje./\/’\{j} ||fii t) — f,.j (1)|]. (Right) Success ratio of

communication attempts over time (3, N > JeN\( ”((ci ()] ; (>0)))- Robots play a pure NE action profile after t = 40 on average.

speeds 0.1 and 0.05, respectively. All the three algorithms
converge to a pure NE in all the 50 cases within the time
frame Ty. MC-DFP has a slightly faster average convergence
rate. We do not observe a significant effect of robot speed in
convergence to NE while it has some effect on communication
success as we discuss in Section V-D.

Note that only the benchmark DFP has positive communica-
tion weights at all times. This means the total estimation error
of robots estimating each other’s empirical will go to zero.
Bechmark DFP is the only algorithm among the three that
guarantees convergence to zero in estimation errors. However,
given the communication failures due to fading, diminishing
of estimation errors may take a long time to be practically
relevant as is evident from the similarity of the estimation
errors among the three algorithms in Fig. 2 (middle). Fig. 2
(middle) shows the total error robots make in estimating each
other’s empirical frequencies. Combined with the fact that all
the learning algorithms converge, i.e., the action profile is an
NE, before the final time Ty, we can conclude that robots
can converge to a pure NE even when there remain gaps
between actual and estimated empirical frequencies. That is,
the sustained communication attempts in DFP do not provide
an advantage over C-DFP or MC-DFP. In summary, DFP
comes with unnecessary communication attempts incurring
significant energy costs to robots as we explore next.

C. Effects of Learning-Aware Voluntary Communication

The total estimation errors with respect to time follow a
similar shape for all the algorithms—see Fig. 2 (middle).
There is an initial increase in the estimation error starting
from an uninformative common prior f j’ (0) as robots begin
to make target selections using best response with inertia.
After reaching a peak around ¢ = 8, the total estimation error
decreases implying that robots learn the empirical frequencies
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Fig. 3. Average communication attempts per link in Scenario 1 for speeds
(top) 0.1 and (bottom) 0.05. Average communication attempt per link is
obtained by dividing the total number of communication attempts at each
step by the total number of possible communication attempts, which is equal
to 20. The results show average over all 50 runs. MC-DFP reduces the total
communication attempts over the entire horizon by a factor of 3 on average
compared with sustained communication in DFP.

of others. In C-DFP and MC-DFP, as robots successfully
transmit their empirical frequencies, they begin to reduce
communication attempts as per (15). Indeed, after time r = 5,
robots begin to reduce communication attempts in both C-DFP
and MC-DFP. By time ¢ = 18, communication attempt per link
drops below 0.5 for both C-DFP and MC-DFP. That is, robots
attempt to use a link less than 50% of the time. The average
communication attempt per link shown in Fig. 3 highlights the
relative reduction in total cost of communication energy.
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The cease of communication attempts leads to a slow
down in descent of total estimation errors in C-DFP and
MC-DFP compared with DFP [see Fig. 2 (middle)]. Neverthe-
less, the slow down does not prohibit convergence to an NE as
discussed in Section V-B. Moreover, when robots are moving
faster, we observe that robots have higher total estimation
errors in DFP due to fading becoming an important factor
early on [compare top and bottom rows of Fig. 2 (middle)].
The intuition for this is as follows. In contrast to DFP,
robots allocate communication rates by prioritizing robots
based on their need for information in C-DFP and MC-DFP.
This helps in obtaining smaller estimation errors faster when
fading is important as in the case when robot speeds are
fast.

Fig. 2 (right) shows the average success ratio of commu-
nication attempts with respect to time in the three learning
schemes. All the learning models start with similar success
rates as neither prioritization nor mobility has any effect
on communication success. Over time, there is a gradual
decrease in chance of communication success for all the
models due to robots moving away from each other toward
their selected targets. However, this gradual decrease is faster
at the beginning (+ € (0,20]) for DFP as robots do not
allocate their communication rates by prioritization as they
do in C-DFP. After time ¢ = 30, communication success ratio
drops to zero for C-DFP and MC-DFP while DFP retains a
small chance of success around 0.05. This is because we let
communication success be equal to zero by convention if a
communication attempt between two robots is ceased. Overall,
the voluntary communication protocol in (15) saves energy
without hampering team performance with appropriately cho-
sen communication threshold constants.

D. Effects of Communication-Aware Mobility

Fig. 2 (right) also demonstrates the effect of mobility on
communication success ratio. Specifically, at the beginning ¢ €
(0, 20], robots’ attempts to overcome fading by moving toward
their intended communication targets (receiving robots) yield
higher success rate for communication in MC-DFP compared
with other algorithms. This high success rate results in lower
average communication attempt per link in Fig. 3.

Fig. 4 demonstrates the effects of communication-aware
mobility on the team movement for Scenarios 1 and 2.
In Scenario 1 [see Fig. 4 (top)], robots start from the same
location which means communication failure due to fading is
not likely. In Fig. 4 (top left), robots stay close due to the
communication-aware direction selections as per (19). In con-
trast, when robots move toward their selected targets in DFP,
we observe robots heading away from each other early on fol-
lowing their best target selections followed by sharp direction
changes in Fig. 4 (top right). In Scenario 2—Fig. 4 (bottom),
three robots on the left are close to each other but are
far from the two robots on the right who are also close
to each other. This implies that the robots on the left are
highly unlikely to communicate with the robots on the right
at the beginning. In MC-DFP (bottom left), all the robots
move toward the center target for some time increasing the
chance of successful communication between the initially
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X1 X1

Fig. 4. Positions of robots over time in (left) MC-DFP and (right) DFP in
(top) Scenarios 1 and (bottom) 2. In Scenarios 1 and 2, robots move at speeds
o = 0.1 and o = 0.05, respectively. (Left) All the robots arrive at targets by
time 7y in MC-DFP for both the scenarios. (Right) Targets remain uncovered
in DFP for both the scenarios. Mobility-aware communication allows quick
dissemination of information by evading failures due to path loss.

TABLE I
CHANCE OF SUCCESSFUL PHYSICAL COVERAGE BY FINAL TIME

Coverage
Speed MC-DFP C-DFP DFP
Scenario 1 0.1 1.00 0.96 0.86
0.05 0.98 0.92 0.90
Scenario 2 0.05 0.96 0.92 0.94
0.025 0.74 0.58 0.42

disconnected robots. This behavior that minds communication
highly increases the team’s chance to cover each target by the
final time. In contrast, robot movements are driven by target
selections in DFP (bottom right). This reduces the chance of
communication between robots on the left with robots on the
right, leading to some targets not being covered by the final
time.

We further analyze the effect of speed on team’s likeli-
hood of covering every target in different scenarios. Table I
shows that with decreasing speed, convergence is less likely.
In particular for Scenario 2 where subsets of robots start
distant from each other (high initial fading), the likelihood
of covering all the targets by final time drops for all the
algorithms. This drop is higher in C-DFP and DFP compared
with MC-DFP. Overall, MC-DFP obtains superior performance
in more challenging scenarios, e.g., when robot speeds are
slow, or robots start distant from each other. We also note
that MC-DFP does not incur additional computational burden
because the optimization problem in (19) that determines
direction admits a closed-form solution.

E. Parameter Sensitivity

We analyze the effects of fading memory constants p; and
02, and threshold constants 7, and 1, in MC-DFP for Scenario
1. We consider large (pi, p2) = (0.5, 1) and small (p;, p2) =
(0.1, 0.2) fading constant values along with large (11, ;) =
(0.2,1.5) and small (n1,72) = (0.1,0.4) communication
threshold constants. As fading memory constants take larger
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Fig. 5. Average communication attempts per link over time with different

parameters in MC-DFP. Selected values of parameters (p1, p2, 01, 12) are for:
1) top left: (0.5, 1, 0.1, 0.4); 2) top right: (0.1, 0.2, 0.1,0.4); 3) bottom left: (0.5,
1, 0.2,1.5); and 4) bottom right: (0.1, 0.2, 0.2,1.5). For each set of parameters,
we show average communication attempt per link over 20 runs of Scenario 1
with speed o = 0.1. Percentage values in red in each figure show the success
rate of NE convergence. The case with large fading constants combined with
small threshold constants (top left) is both effective and efficient.

values, robots dismiss past information faster. As threshold
constants take small values, robots are less likely to cut
communication as per (15). We observe that as threshold
constants increase, the likelihood of successful convergence
to NE drops significantly [compare percentage values in
Fig. 5 (top and bottom)]. Moreover, if threshold constants are
low enough, then it is better to have high fading constants
in terms of saving communication energy [compare Fig. 5
(top left and top right)]. However, if threshold constants are
high, then it is better to have small fading constants so that
communication is not cut very early to prohibit convergence
to NE [compare Fig. 5 (bottom left and bottom right)].
Overall, small communication threshold values combined with
high fading constants guarantee convergence while reducing
communication attempts by threefold compared with DFP.
An intuition for this is that agents can weigh most recent
information more heavily, if the communication attempts are
more likely to continue.

FE. Experiments

We use GRITSBot X model mobile-wheeled robots, each
11-cm wide, 10-cm long, and 7-cm tall, made available by
the Robotarium project [50]. The robots operate in a 3.2 x
2-m area with a maximum speed of 20 cm/s linearly and
a maximum rotational speed of about 3.6 rad/s. For more
technical details, see [50].

We coded the implementation in MATLAB and use the
same set of parameter values used in Fig. 5 (top left), i.e.,
(p1 = 0.5, 00 = 1, = 0.1, 9, = 0.4). Similarly, we select
the inertia probability €jneria and the channel fading constant
r as 0.1 and 0.60, respectively. We let A;; in (15) be equal to
10 as before. The random communication model is simulated
within MATLAB.

We consider randomly assigned initial robot and target
positions for a team of size N =5, N = 10, and N = 18

(maximum number allowed in Robotarium). The links for the
experiments for each case can be found as below:

1) https://youtu.be/wuJLI6CNGgU (five robots);

2) https://youtu.be/KyoPGINql2c (ten robots);

3) https://youtu.be/PSn_osWDGXA (18 robots).

We observe that robots are able to cover a sequence of
randomly assigned targets for all the scenarios. The average
time to cover targets is approximately 30, 39, and 49 s,
respectively, for N =5, 10, and 18.

There are several differences in the movements of robots
between the simulations and the experiments. Due to linear and
rotational speed limitations, robots are not always able to turn
and go through the directions assigned by the algorithm. More-
over, local collision avoidance protocols, which prohibit robots
getting too close, limit the mobility decisions. We observe
that these differences do not affect the overall performance of
MC-DFP. Robots successfully reach one-to-one assignment
with targets and cover targets physically.

VI. CONCLUSION

We proposed decentralized mobility and communication
protocols for a team of robots solving a target assignment
problem by best responding to the intended target selection
of other robots. Each robot learns about others’ intended
selections by keeping track of others’ frequency of past
actions. For keeping such estimates, robots need to be able
to transmit their empirical frequencies to each other over a
wireless network subject to path loss and fading. The proposed
communication protocol relies on metrics that measure novelty
of information and information need of the robots to decide
whether to transmit or not and how to allocate available
communication resources. Moreover, robots may alter their
mobility to overcome fading in communication depending on
their assessment of the need to communicate certain robots.
We stated sufficient conditions for convergence to an NE
and presented the numerical and experimental results that
demonstrated the benefits of the proposed learning-aware vol-
untary communication and the communication-aware mobility
protocols on reducing communication need while retaining
convergence guarantees.

APPENDIX
Proof of Lemma 3

Let us define the following events E; and E; to show
Condition 1 holds:

Ei(@) = {la;t +T) = f¢+T)| <&/2) (1)
Ex(t) = {Ilfic+T)— fia+ DI <&/2).  (22)
By the triangle inequality, we have
Pla;(t +T) — fi(t + Tl < §IH®)
> P(E\(1), E2(1))|H(1)). (23)

Hence, it is enough to show that the intersection of the events
E, and E; has positive probability to assure Condition 1.

Given the repetition of actions by an agent j, for any fading
rate p; € (0, 1], there exists a finitely long enough T as the
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lower bound on agent j repeating the same action a; € A
such that the following holds:

P(E((1)IH@)) = 1. (24)

Observe that the model (17) always admits optimal solutions
i*j(t) > b where b > 0, as long as the weights w;;(t) > 0.
Combined with Assumption 1, it holds

B (1) e OOk > e = peTPY >0 (25)

when w;;(t) > 0 with small enough 0 < n; < §/2, and
0 < 1 < &/2 by the definition (15). Further note that
Assumption 2 lets agent j to acknowledge its successful
communication so that agent j can also locally compute
agent i’s information on itself f; (t) for any time t. For any

02 € (0, 1], during consecutive repetition of the same action
a; = e from time f to t + T, starting at time ¢ + 7} where
T =T+ T, and T\ < T, agent j needs to send f; for

T, times ending at ¢t + 7. This provides that the event E,(t)
has a positive probability

P(E>(1))H(1)) = €22

com*

(26)

Thus, there exists a positive bound € on the probability of the
given event in Condition 1
P(|ajt +T) — fit + )| < E[H®))

> P(E1(1D), Ex(DIH() = €,

com

A

=e>0. (27
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