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Abstract— Information design in an incomplete informa-
tion game involves a designer that aims to influence play-
ers’ actions through signals generated from a designed
probability distribution to optimize its objective function.
For quadratic design objective functions, if the players
have quadratic payoffs that depend on the players’ actions
and an unknown payoff-relevant state, and signals on the
state that follow a Gaussian distribution conditional on
the state realization, the information design problem is a
semidefinite program (SDP) [1]. In this note, we seek to
characterize the optimal information design analytically by
leveraging the SDP formulation, when the design objective
is to maximize social welfare or the agreement among
players’ action. We show that full information disclosure
maximizes social welfare when there is a common payoff
state, the payoff dependencies among players’ actions are
homogeneous, or when the signals are public. When the
objective is to maximize the agreement among players’
actions, not revealing any information is optimal. When the
objective is a weighted combination of social welfare and
agreement terms, we establish a threshold weight below
which full information disclosure is optimal under public
signals for games with homogeneous payoffs. Numerical
results corroborate the analytical results, and identify par-
tial information disclosure structures that are optimal.

Index Terms— Information design, game theory, semidef-
inite programming.

I. INTRODUCTION

Information design refers to the determination of the in-
formation fidelity of the signals given to the players in an
incomplete information game, so that the induced actions
of players maximize a system level objective [2]. In an
incomplete information game, players compete to maximize
their individual payoffs that depend on the action of the player,
other players’ actions and an unknown state. Incomplete infor-
mation games are used to model power allocation of users in
wireless networks with unknown channel gains [3], traffic flow
in communication or transportation networks [4], consumer
behavior in smart grids [5], coordination of autonomous teams
[6], and currency attacks of investors [7]. In such scenarios,
we envision the existence of an information designer that
can provide the “best” information about the payoff-relevant
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states to the players according to its objective (see Fig. 1).
As per the above examples, the information designer can
represent an entity such as a system designer overseeing the
spectrum allocation/traffic, a market-maker, an independent
system operator in the power grid, or the federal reserve [4],
[8], [9]. Recently, information design is used in robust sensor
design [10], and modeling deception/privacy [11]. In addition,
information design framework is used to identify key/central
players in social networks with respect to the goals of the
system designer [12], to maximize the utility of the insured
agents in a competitive insurance market [13], and to design
public health warning policies against recurrent risks [14]. In
an effort to obtain analytical solutions, and thus insights about
the effects of the information design on the system, current
approaches make structural assumptions about the state/action
space, the system designer’s objective, and the game payoffs—
see [15] for a detailed discussion.

In this note, we study information design linear-quadratic-
Gaussian (LQG) games. In an LQG game, players have
quadratic payoff functions, and the state and the signals come
from a Gaussian distribution1. Under certain assumptions, the
optimal strategy in LQG games defined by the Bayesian Nash
equilibrium (BNE) is unique and linear in the signals received
[16]. The linearity of BNE strategies allow the information
design problem to be a semidefinite program (SDP) when the
information designer’s objective is a quadratic function of the
players’ actions and the payoff-relevant states [1] (Section II).
Building on the SDP formulation of the information design
problem, we analyze optimal information structures when the
system level objective is to maximize social welfare (Section
III), maximize agreement among players’ actions (Section IV),
or a weighted combination of these two objectives (Section V).

An information structure comprises signal transmission
rules and the probability distribution from which signals are
generated. Signals transmitted to players convey information
about payoff relevant states. The information structure is
public when all players receive a common signal. Otherwise,
when the players receive individual signals, the signal structure
is private. Another distinction is based on the fidelity of
information carried by the signals. A signal can carry no,
partial, or full information. No information disclosure does
not improve the prior information of the players about the
payoff relevant state, while signals reveal the payoff relevant

1We note that information design in LQG games is categorically different
than the well-known LQG control which considers control of linear dynamical
systems with Gaussian noise given quadratic control objectives.
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state under full information disclosure. A partial information
disclosure is when the signals carry some information, but do
not fully reveal the payoff relevant state to the players.
Contributions: In this paper, we provide analytical and com-
putational insights about the value of information and optimal
information structures by focusing on particular objectives
for the designer (social welfare and agreement). 1) Given
the social welfare design objective, we show that full infor-
mation disclosure is optimal if there is a common payoff
state (Proposition 4), when the dependency of payoffs on
others’ actions is homogeneous (Theorem 3), or if we only
consider the set of public signals (Proposition 5). These results
follow the intuition that the designer would like to reveal as
much information as possible when the payoffs of players
are aligned with the system-level objective [2]. 2) When
the objective is to maximize the agreement between players’
actions, we show that no information disclosure is optimal
for any LQG game (Proposition 6). That is, players’ actions
are closer to each other when information is hidden. 3) If
the information designer aims to maximize social welfare and
agreement, we identify a critical weight on the agreement
term of the objective based on game payoffs below which
full information disclosure is preferred to no information
disclosure (Propositions 7 and 8). That is, the benefit of
revealing information outweighs the increase in disagreement.
4) Numerical solutions to the SDP formulation reveal optimal
private signal distributions that outperform both full and no in-
formation disclosure schemes. These contributions mentioned
above build on the SDP formulation of the information design
problem that considers generic quadratic design objectives
in LQG games [1], but are distinct in that they provide
specific insights about the practically-relevant social welfare
and agreement design objectives.
Other related literature: Other intervention mechanisms,
besides information design, include providing financial incen-
tives in the form of taxes and rewards [17], system utility
design [18], and nudging or player control during learning
dynamics [19]–[22]. In contrast to these approaches, the infor-
mation design framework aims to manage the uncertainties of
players so that their expected payoffs align with the objective
of a system designer. That is, the system designer does not
control agents directly, rather it determines the information
revealed to the players, so that players’ evaluation of their
payoffs lead to better outcomes from the system designer’s
perspective. In this sense, there is a limit to the system
designer’s capability to achieve its goal. This limit determines
the value of information.

A. Notation
The ith row and jth column of matrix A is denoted with

Ai,j . We use brackets [A]i,j to indicate the i, jth submatrix
of A. For matrices A 2 Rm⇥m and B 2 Rm⇥m, we use � to
represent the Hadamard product, e.g., (A � B)i,j = Ai,jBi,j .
We use • to represent the Frobenius product, e.g., A • B =P

m

i=1

P
m

j=1 Ai,jBi,j . We use P
m and P

m

+ to represent the
set of m⇥m symmetric and symmetric positive semidefinite
matrices, respectively. Trace of a matrix is denoted with tr(·).
I indicates an identity matrix. 1 is a column vector of all ones.

Information Designer (⇣)

Player 1 (a1, �1)

!1

. . . Player n (an, �n)

!n

Fig. 1. An information designer sends a signal !i drawn from informa-
tion structure ⇣(!|�) to each player i who takes action ai in a game
with other players under payoff state �i.

II. INFORMATION DESIGN IN
LINEAR-QUADRATIC-GAUSSIAN (LQG) GAMES

A non-cooperative incomplete information game involves
a set of n players belonging to the set N , each of which
selects actions ai 2 Ai to maximize the expectation of its
payoff function ui(a, �) where a ⌘ (ai)i2N 2 A and � ⌘
(�i)i2N 2 � correspond to an action profile and an unknown
payoff state, respectively. Players form expectations about their
payoffs based on their signals/types !i about the state given
a common prior  . We represent the incomplete information
game by the tuple G := {N,A, {ui}i2N , {!i}i2N}.

A strategy of player i maps each possible value of the
private signal !i 2 ⌦i to an action si(!i) 2 Ai, i.e.,
si : ⌦i ! Ai. A strategy profile s = (si)i2N is a BNE
with information structure ⇣, if it satisfies

E⇣ [ui(si(!i), s�i, �)|!i] � E⇣ [ui(a
0
i
, s�i, �)|!i], (1)

for all a0
i
2 Ai,!i 2 ⌦i, i 2 N where s�i = (sj(!j))j 6=i is

the equilibrium strategy of all the players except i, and E⇣ is
the expectation operator with respect to the signal distribution
⇣ and the prior on the payoff state  . The above definition
ensures that no player has a unilateral profitable deviation from
a BNE strategy to another action at any signal realization given
the information structure ⇣.

An information designer aims to optimize the expected
value of a design objective f(a, �), e.g., social welfare, by
deciding on an information structure ⇣ from a set of signal
generating distributions Z, i.e.,

max
⇣2Z

E⇣ [f(s, �)] (2)

where s is a BNE strategy profile for the game G under
the information structure of the game ⇣. The information
structure of the game ⇣(!|�) is the conditional distribution of
! ⌘ (!i)i2N given �. Next, we introduce the two information
design objectives that we focus on.

Example 1 (Social Welfare): Social welfare is the sum of
individual utility functions,

f(a, �) =
nX

i=1

ui(a, �). (3)

Social welfare is a common design objective used in conges-
tion [4], [17], global [7] or public goods games [14].

Example 2 (Agreement): The information designer would
like players to agree by minimizing the deviation of players’
actions from the mean action, i.e., by maximizing

f(a, �) = �
nX

i=1

(ai � ā)2, where ā =
1

n

nX

i=1

ai, (4)
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where we assume ai 2 Ai ⌘ R. The objective is suitable in
settings where consensus is desirable but not exactly attain-
able. For instance, this objective can be used in reducing con-
sumption variability in demand response [5], or coordinated
autonomous movement [6].

Information design follows the given timeline (Fig. 1).
1) Designer selects ⇣ 2 Z and notifies all players.
2) Payoff state � is realized.
3) Players observe signals {!i}i2N drawn from ⇣(!|�).
4) Players act according to BNE under ⇣.
The information designer’s problem in (2) is intractable for

general incomplete information games with continuous actions
because it is a linear program with an infinite number of
variables [1]. In this paper, we focus on LQG games that admit
a tractable SDP formulation for (2) when f(·) is quadratic and
signals come from a Gaussian distribution.

A. Linear-Quadratic-Gaussian Games
In a LQG game, player i’s payoff function is quadratic,

ui(a, �) = �Hi,ia
2
i
�2

X

j 6=i

Hi,jaiaj+2�iai+di(a�i, �), (5)

where Hi,j for i 2 N , j 2 N are real-valued coefficients with
Hi,i > 0, di(a�i, �) is an arbitrary function of the opponents’
actions a�i ⌘ {aj}j 6=i and state �, and we have a 2 A ⌘ Rn,
and � 2 � ⌘ Rn. We collect the payoff function coefficients
in a matrix H = [Hi,j ] 2 Rn⇥n. We note that the function
is quadratic in player i’s action but it need not be quadratic
in others’ actions and payoff state as per the term di(a�i, �).
Indeed, this term cannot be controlled by player i, i.e., it does
not affect its strategy. Here, we focus on scalar actions, i.e.,
ai 2 R.

Remark 1: The results in the paper can be extended to cover
the case where ai 2 Rmi for mi 2 N, as long as ui(a, �)
remains quadratic in actions.

Payoff state � follows a normal distribution  (µ,⌃) with
mean µ 2 Rn and covariance matrix ⌃. Player i receives a
private signal !i 2 R. We assume the joint distribution over
the random variables (!, �) is normal; thus, ⇣ is assumed to be
a normal distribution. Next, we provide two canonical games
with quadratic payoffs.

1) Cournot competition: Firms determine the production
quantities for their goods (ai) facing a marginal cost of
production (�i) [23]. The price is a function of the production
quantities, pi(a) = #�$ai�%

P
j 6=i

aj with positive constants
#, $ and %. The payoff function of the firm i is its profit given
by its revenue aipi(a) minus the cost of production �iai,

ui(a, �) = aipi(a)� �iai. (6)

2) Beauty Contest Game: Payoff function of player i is
given by

ui(a, �) = �(1� �)(ai � �)2 � �(ai � ā�i)
2
, (7)

where � 2 [0, 1] and ā�i =
P

j 6=i
aj/(n � 1) represents the

average action of other players. The first term in (7) denotes
the players’ urge for taking actions close to the payoff state �.
The second term accounts for players’ tendency towards taking
actions in compliance with the rest of the population. The

constant � gauges the importance between the two terms. The
payoff captures settings where the valuation of a good, e.g.,
stock, depends not just on the performance of the company
but also on what other players think about its value [7].

B. Preliminaries: A SDP Formulation of Information
Design Problem given Quadratic Design Objectives

In this section, we provide preliminary results on the
information design problem in LQG games. The first result
represents the problem in (2) as a SDP with the decision

variable X :=


var(a) cov(a, �)
cov(�, a) var(�)

�
.

Proposition 1 ( [1]): If the objective function f(a, �) is
quadratic in its arguments, and the payoff matrix H is such
that H +H

T is positive definite, then the information design
problem in (2) can be restated as the following SDP,

max
X2P

2n
+

F •X= max
X2P

2n
+


[F ]1,1 [F ]1,2
[F ]1,2 [F ]2,2

�
•X (8)

s.t. Rk •X = 0, for all k 2 N, (9)
Mk,l •X = cov(�k, �l), for all k, l 2 N with k  l

(10)

where [F ]i,j indicates the n⇥n block matrix for i, j 2 {1, 2},
Rk 2 P

2n and Mk,l 2 P
2n are defined as

[Rk]i,j =

8
>>>>>>>><

>>>>>>>>:

Hk,k if i = j = k,

Hk,j/2 if i = k, 1  j  n, j 6= k,

�1/2 if i = k, j = n+ k,

Hk,i/2 if j = k, 1  i  n, i 6= k

�1/2 if j = k, i = n+ k,

0 otherwise,

and

[Mk,l]i,j =

8
>>><

>>>:

1/2 if k < l, i = n+ k, j = n+ l

1/2 if k < l, i = n+ l, j = n+ k

1 if k = l, i = n+ k, j = n+ l

0 otherwise.
This result, due to [1], represents the original information
design problem (2) as the maximization of a linear function of
a positive semidefinite matrix X subject to linear constraints.
The result leverages the fact there is a unique BNE that is a lin-
ear function of the signals whose coefficients can be obtained
by solving a set of linear equations in a LQG game with payoff
matrix H where H + H

T 2 P
n

+ [16]. The linear strategies
allow a mapping from strategies to signals, which then means
selecting the best distribution over the signals is equivalent to
selecting the best distribution over the actions subject to the
BNE constraints. Accordingly, the selection of the information
structure in (2) reduces to determining the covariance between
the realized actions and payoff states in (8). Note that we can
assume [F ]2,2 is a zero matrix On⇥n, because var(�) is given
by nature, and cannot be altered by choosing an information
structure. Again by leveraging the linear mapping of strategies
from signal space to action space, one can express the BNE
equations with the set of linear constraints in (9). The set of
constraints in (10) assigns the given covariance matrix of the
payoff states to the corresponding sub-matrix in X , i.e., it is
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equivalent to [X]2,2 = var(�). We assume the conditions in
Proposition 1 hold throughout the paper.

Next, we consider an important special case.
Definition 1 (Public Information Structure): A public in-

formation structure has !1 = .... = !n with probability one.
The set of public information structures is a subset of the
general information structures.
In the public information design problem, all players receive
the same signal, and it is common knowledge that they will
receive the same signal. We define two important feasible
solutions to (8) - (10) (no and full information disclosure).

Definition 2 (No information disclosure): No information
disclosure refers to the case when there is no informative signal
sent to the players. In this case, the equilibrium action profile
is given by a = H

�1
µ. The induced decision variable and the

objective value is respectively given by

X =


O O

O var(�)

�
and F •X = 0. (11)

Definition 3 (Full information disclosure): The signals
sent to the players reveal the elements of the payoff state �
under full information disclosure. Equilibrium action profile
is given by a = H

�1
�. The induced decision variable

X =


H

�1var(�)(H�1)T H
�1var(�)

var(�)(H�1)T var(�)

�
(12)

and the objective value is F •X = FH • var(�) where FH =
(H�1)T ([F ]1,1 + [F ]1,2H +H

T [F ]2,1)H�1.
Next result states the conditions for the optimality of full

information disclosure solution when we consider the set of
public information structures.

Proposition 2 (Proposition 7, [1]): Let var(�) = DD
T

such that D is an n ⇥ k matrix of rank k where k is the
rank of var(�). Assume D

T
FHD 6= O is positive semidefinite.

Then, full information disclosure is optimal in the set of public
information structures, and no information disclosure is not
optimal in the set of general information structures.

Remark 2: The SDP formulation of the information design
problem in (2) poses the problem as the determination of a
distribution over actions not signals. A natural question is:
how can the designer use the solution X and � instead of
the distribution over signals ⇣? As per the information design
timeline, when X is decided and � is realized, the designer
can draw the suggested actions from �(a|�) which has a
Gaussian distribution. These suggested actions can be used
as coordinating signals instead of the private signals !i.

C. Design objectives
In this paper, we focus on two specific quadratic design

objectives: social welfare (3) and agreement (4). According to
Proposition 1, we can express the information design problem
in (2) for these objectives as in (8). The following are the
objective coefficients matrices

F
W =


�H I

I O

�
, and F

C =


1
n
11T � I O

O O

�
, (13)

corresponding to (3) and (4), respectively. We obtain F
W by

substituting the quadratic payoffs (5) in (3), and taking the
expectation. See Lemma 1 in the appendix for the derivation
of FC .

III. SOCIAL WELFARE MAXIMIZATION

Our first result shows that full information disclosure will
be preferred to no information disclosure in social welfare
maximization.

Proposition 3: Assume H is symmetric. Then, full infor-
mation disclosure never performs worse than no information
disclosure for maximizing social welfare objective.

Proof: No information disclosure has the objective value
F •X = 0 regardless of F as per Definition 2. Objective value
of full information disclosure is F

W • X = F
W

H
• var(�)

as per Definition 3. Given (13), F
W

H
= H

�1. We have
F

W

H
= H

�1 � 0 because eigenvalues of H
�1 is equal to

reciprocals of eigenvalues of H which are positive because
H is positive definite by the assumption that H + H

T � 0
and H is symmetric. The result follows from the fact that
F

W

H
• var(�) � 0 given var(�) ⌫ 0.

The result implies that no information disclosure cannot be an
optimal information structure for social welfare maximization
given symmetric payoff coefficients, since it cannot do better
than full information disclosure. Next, we show that full
information disclosure maximizes social welfare for certain
important special cases.

A. Common Payoff State
We consider a scenario in which the payoff states are

identical for all the players.
Proposition 4: Assume H is symmetric and �i =

�j , for all i, j 2 N . Then, full information disclosure (X in
(12)) is optimal for social welfare maximization.

Proof: The objective function f(·) with coefficients
matrix F

W in (13) is such that FW

i,n+j
= 0 for all i, j 2 N

with i 6= j. Moreover, we have FW

n+i,n+j
= 0, for all i, j 2 N .

Therefore,

F
W •X =

nX

i=1

nX

j=1

F
W

i,j
cov(ai, aj) + 2

nX

i=1

F
W

i,n+i
cov(ai, �i).

(14)
Using the BNE condition in (9), which is equivalent to

X

j2N

Hi,jcov(ai, aj) = cov(ai, �i), for all i, j 2 N, (15)

for the corresponding terms in (14), we obtain

F
W •X =

nX

i=1

nX

j=1

(FW

i,j
+ 2FW

i,n+i
Hi,j)cov(ai, aj). (16)

We can express F
W •X = E • var(a) where we define E :=

[FW ]1,1+[FW ]2,1�H+[FW ]1,2�HT using (16). Substituting
F

W (13) in E, we get E = H
T . Since H is symmetric, we

have E = H . We have that if E = H for some constant  >

0, then full information disclosure is optimal under common
payoff states (Proposition 9 in [1]). In our setting, the condition
holds with  = 1.

Proposition 4 establishes that full information disclosure is
the optimal information structure among all possible infor-
mation structures if the payoff state is common and H is
symmetric. In the following example, we analyze the discrep-
ancy between the optimal objective value obtained by solving
the SDP in (8)-(10) and full information disclosure, as we
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gradually relax the assumptions of Proposition 4. In particular,
we allow partially correlated payoff states, and asymmetric
game coefficients H .

Example (Asymmetric payoffs and correlated payoff

states): Figure 2 shows that full information disclosure be-
comes increasingly suboptimal as asymmetry grows and cor-
relation between payoff states decreases. Note that when
Corr(�i, �j) = 1, there is a common payoff state and full
information disclosure is optimal for symmetric H . If we
consider the beauty contest game with symmetric H and a
single stock, full information disclosure on the stock price,
i.e, payoff state, is optimal for maximizing social welfare
by Proposition 4. If we deviate from common payoff state
assumption, this means that stock price is not the same for
players when they buy the stock. If we deviate from the
symmetry assumption, it means the effect of a player i’s action
on j’s payoff is different than the effect of player j’s action
on i’s payoff. In these scenarios, full information disclosure
is no longer optimal.

0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

8

Fig. 2. Percentage difference between optimal objective value
(8) and objective value of full information disclosure versus
correlation between payoff states. We consider a game with
asymmetric payoffs given by Hi,i = 4 for i 2 N , and Hi,j =
1+ cUi,j for i 2 N , and j 2 N \ {i} where Ui,j 2 [�1, 1] is
a uniformly distributed random variable‘ for i, j 2 N , and c 2
[0, 1] is a constant determining the magnitude of the asymmetry.
The suboptimality of full information disclosure increases with
growing asymmetry and decreasing correlation.

B. Homogeneous LQG games
We consider the following payoff matrix H:

Hi,j =

(
1 if i = j; for all i, j 2 N

h if i 6= j; for all i, j 2 N
(17)

in which the off-diagonal terms are identical. For the Cournot
competition (6), we have a homogeneous payoff matrix with
h = %

2$ when cost is common, i.e., when �i = �j for all i, j 2
N . For the beauty contest game (7), we have an homogeneous
payoff matrix with h = � �

n�1 .
Theorem 3: Assume H is given by (17), and tr(var(�)) �

2
P

n

i=1

P
j2N\{i} cov(�i, �j). If � 1

n�1 < h < 1, then
full information disclosure is optimal for the social welfare
maximization objective under general information structures.

Proof: See Appendix B for the proof.

Fig. 3. Comparison of the social welfare values under full
information and no information disclosure. We consider homo-
geneous games with �1

n�1 < h < 1. We let var(�)i,j = 0.2 for
i 2 N and j 2 N \ {i} as we vary var(�i) for all i 2 N .
As var(�i) increases, the value of full information disclosure
increases compared to no information disclosure.

Theorem 3 shows that full information disclosure is optimal
when the effects of others’ actions on payoffs are homoge-
neous and belong to the given region. We note that the LQG
game is submodular if h > 0, and it is supermodular if h < 0.
In a submodular game, an increase in a player’s action reduces
the incentive for other players to increase their actions. In
a supermodular game, the effect is reversed, i.e., increasing
a player’s action increases the incentive for other players
to increase their actions—see [24] for formal definitions.
Accordingly, social welfare maximization objective is aligned
with the incentives of players, when the game is submodular.
In contrast, when we have a supermodular game, the optimality
of full information disclosure is optimal as long as the effect
of another players’ actions on a player’s action is small, i.e.,
h >

�1
n�1 . We note that the condition h >

�1
n�1 stems from the

requirement that H needs to be positive definite. Considering
the beauty contest game in stock markets with h = ��

n�1 < 0,
the information disclosure is always optimal because � < 1.
In Cournot competition, full information disclosure is optimal
as long as %

2$ < 1 according to Theorem 3.
A sufficient condition for optimality of full information

disclosure in Theorem 3 is the diagonal dominance of the co-
variance matrix of the payoff state. In the following numerical
example, we identify that the full information disclosure re-
mains optimal even when the diagonal dominance assumption
does not hold in homogeneous LQG games.

Example (Relaxing the diagonal dominance of var(�)):
We consider a submodular game among n = 4 players with
homogeneous payoff coefficients with h ranging from �0.3
to 0.8 (see Fig. 3). When we compare the social welfare
value under full information disclosure solution (12) with the
optimal solution to the information design problem in (8)-
(10), we find that they are identical for all values of var(�i) 2
[0.4, 0.48]. In this interval of var(�i), the diagonal dominance
assumption is not satisfied. This suggests that full information
disclosure remains optimal even when the diagonal assumption
is not satisfied. Fig. 3 also shows that as the dependence of the
payoffs on other players’ actions, i.e., |h|, increases, objective
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value for full information disclosure increases. This means
the value of revealing information increases as competition
increases.

C. Public information structures

Next, we show that full information disclosure maximizes
social welfare under public signals.

Proposition 5: Assume H is symmetric and consider the
set of public information structures as the feasible set. Then,
full information disclosure maximizes social welfare (3).

Proof: From Definition 3 and F
W in (13), we have

F
W

H
= (H�1)T (�H + IH +H

T
I)H�1 = H

�1
.

H
�1 is positive definite because eigenvalues of H

�1 are
equal to reciprocals of eigenvalues of H which are positive.
Therefore, KT

F
W

H
K 6= 0 is positive definite for any matrix

K. The result follows from Proposition 2.
Together with the previous results in this section, Propo-

sition 5 implies that for full information disclosure to be
suboptimal in welfare maximization, the payoff has to include
individual payoff states or asymmetric payoff matrix, and the
designer has to consider sending private signals.

IV. MAXIMIZING AGREEMENT

We show that no information disclosure is an optimal
information structure that maximizes agreement objective (4).

Proposition 6: No information disclosure is a maximizer
of the objective function in (4) under general information
structures.

Proof: The objective coefficients matrix F
C has n � 1

eigenvalues with value �1 and n + 1 eigenvalues with value
of 0. Thus, FC is negative semidefinite. The decision matrix
X is positive semidefinite. We deduce that F

C • X  0.
Objective value of no information disclosure is 0 by (11);
thus, no information disclosure is optimal.

Proposition 6 implies that the information designer achieves
the maximum similarity between players’ actions by revealing
uninformative signals to the players. Broadly, hiding infor-
mation from players is optimal when there is a conflict
between the utility functions of the players and the information
designer’s objective. We compare this with the objective value
attained by full information disclosure to provide further
intuition for this result. Given F

C , we have that FC • X =
F

C

H
• var(�) where F

C

H
= (H�1)T [FC

1,1]H
�1. We know that

var(�) is positive definite, and F
C

H
is negative semidefinite

because [FC ]1,1 is negative semidefinite as per the proof of
Proposition 6. Thus, we have that full information disclosure
can never be better than no information disclosure for the
agreement objective.

In the context of Cournot competition, we can envision
a market regulator that wants to reduce the variability in
quantities produced by each firm. The result above states that
the designer can achieve minimum variability by not revealing
information about the marginal cost of production.

V. MAXIMIZING WELFARE VS. AGREEMENT

We consider an information design problem in which the
designer aims to maximize social welfare and agreement at
the same time by considering a weighted combination of (3)
and (4). The objective coefficients matrix is given by

F :=((1��)FW+�FC)=


�[FC ]1,1 � (1� �)H (1� �)I

(1� �)I O

�
,

(18)
for weight � 2 [0, 1]. The constant � quantifies the importance
of agreement. On one hand full information disclosure is opti-
mal when the design objective is social welfare under common
payoff state, homogeneous games, or public signals. On the
other hand, no information disclosure is optimal when the
objective is to maximize agreement. In the following results
we show that full information disclosure remains preferred
under public information structures and common payoff states
given homogeneous games, if social welfare term gets a large
enough weight relative to the agreement term.

Proposition 7: Assume H has the form in (17) with h 2
(0, 1), and common payoff states �i = �j , for all i, j 2 N .
If � <

1�h

2�h
for � 2 (0, 1), full information never performs

worse than no information for information design problem
with objective coefficients in (18).

Proof: Following identical steps to Proposition 4, we
obtain the matrix E = [F ]1,1 + [F ]2,1 �H + [F ]1,2 �HT that
provides F •X = E • var(a). Substituting in the coefficients
from (18), we simplify E = �[FC ]1,1 + (1 � �)H . First
eigenvalue of E is equal to [(n�1)h+1](1��). The rest of the
eigenvalues of E are equal to ��+(1��)(1�h). E is positive
definite because both eigenvalues are greater than zero when
� <

1�h

2�h
. If E is positive definite, then the objective value

E • X11 = E • var(a) � 0. Thus, full information performs
better or the same compared to no information disclosure.

Proposition 8: Assume H has the form in (17) with h 2
(0, 1). If � <

1�h

2�h
for � 2 (0, 1), then full information

disclosure is optimal for the information design problem with
objective coefficients given in (18) under the feasible set of
public information structures.

Proof: We know F •X = FH •var(�) where FH is given
in Definition 3. Substituting in for the sub-matrices in (18), we
have FH = (H�1)TEH

�1, where E = �[FC ]1,1+(1��)H is
as in Proposition 7. We know from the proof of Proposition 7
that E is positive definite for � <

1�h

2�h
. Thus, full information

disclosure is optimal for public information structures by the
fact that FH is positive semidefinite and by Proposition 2.

Propositions 7 and 8 specify the threshold for � below
which social welfare dominates the agreement term so that
no information disclosure can no longer be optimal. It is
worth noting that the � threshold for the superiority of full
information disclosure are identical in both results because
we can reduce the objective function evaluation in Prop. 7
and the optimality condition in Prop. 8 to positive definiteness
evaluation of the same matrix E. According to the threshold
� <

1�h

2�h
, the region in which no information disclosure is

not optimal increases to � 2 (0, 0.5) as h ! 0+. The region
in which no information disclosure is not optimal shrinks to
� = 0 as h ! 1. That is, as the dependence of players’ payoffs
on others’ actions increases, no information disclosure can
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(a) h = 0.25 (b) h = 0.75

Fig. 4. Objective values for optimal, full, no information disclo-
sure under varying weights � 2 [0, 1]. Optimal information dis-
closure is obtained by solving (8)-(10) under general information
structures. The game payoff coefficients H is as in (17) with h 2
{0.25, 0.75}. Let var(�) be such that var(�)i,i = 4 for i 2 N

and var(�)i,j = 1 for i 2 N and j 2 N \ {i}. Full information
disclosure is preferred over no information disclosure for larger
weight values � than the � threshold given in Proposition 8
(dashed line).

no longer be ruled out as sub-optimal, unless social welfare
maximization is the objective of the designer, i.e., � = 0.

Next, we assess the tightness of the threshold for �, and the
optimality of no and full information disclosures for the class
of general information structures in a numerical example.
Numerical example: Fig. 4 shows that the region for the
weight � where full information information disclosure is
preferable by the information designer over no information dis-
closure under public information structures is larger than the
region given by the condition � <

1�h

2�h
. The gap between the

analytical threshold (dashed line) and the numerical threshold
(shown by ⇤) for � decreases as h increases. Fig. 4 also shows
the optimal value achieved by solving the information design
problem under general information structures. We observe
that general information structures that send partial signals to
players perform better than no and full information disclosure
for � 2 (0, 1).

As mentioned in Section III-B, Cournot competition is
submodular. Fig. 4 indicates that as h = %

2$ decreases, i.e.,
the value of information disclosure increases. In other words,
in settings where competition is fierce, hiding information is
preferred when agreement is a design factor.

VI. CONCLUSIONS

We analyzed information design problem in LQG games
given social welfare and agreement as design objectives.
We showed that full information disclosure is an optimal
solution for welfare maximization when there are common
payoff states, competition among players is homogeneous, or
the information designer commits to releasing public signals.
When the objective is to induce agreement between players’
actions, we showed that hiding information is optimal among
general information structures. If the design objective is a
weighted combination of social welfare and agreement, there
exists a critical weight on agreement term below which full
information disclosure is preferred. These results follow the
intuition that if the objectives of the information designer and
the payoffs of players are in conflict, information designer

should blur or hide the information. If the objectives align,
the information designer should reveal information.

REFERENCES

[1] T. Ui, “LQG Information Design,” Working Papers on Central Bank
Communication 018, University of Tokyo, Graduate School of Eco-
nomics, Mar. 2020.

[2] D. Bergemann and S. Morris, “Information design: A unified perspec-
tive,” Journal of Economic Literature, vol. 57, pp. 44–95, March 2019.

[3] G. Bacci, S. Lasaulce, W. Saad, and L. Sanguinetti, “Game theory
for networks: A tutorial on game-theoretic tools for emerging signal
processing applications,” IEEE Signal Processing Magazine, vol. 33,
no. 1, pp. 94–119, 2015.

[4] M. Wu, S. Amin, and A. E. Ozdaglar, “Value of information in bayesian
routing games,” Operations Research, vol. 69, no. 1, pp. 148–163, 2021.
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APPENDIX

A. Coefficients matrix of the agreement objective
Lemma 1 (Agreement Objective): The expected value of

f(a, �) for (8) can be written as F
C •X where F

C is given
in (13).
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Proof: Via expanding and regrouping the terms in (4),

E[�
nX

i=1

(ai � ā)2] =
nX

i=1

1� n

n
E[a2

i
] +

2

n

nX

i=1

nX

j=1

E[aiaj ].

(19)

Because E[ai] is constant for all i 2 N , we can write (19) as
F

C •X using the definition of var(a).

B. Proof of Theorem 3
We verify that the full information disclosure solution

satisfies the KKT conditions. We denote the dual variables
associated with constraints (9), (10) and X 2 P

2n
+ by ⌫ 2 Rn,

µ 2 Rn(n+1)/2 and �, respectively. Primal feasibility condi-
tions in (9)-(10) are satisfied by full information disclosure.
Next we respectively state the rest of the KKT conditions,
i.e., dual feasibility, first order optimality and complementary
slackness condition,

� 2 P
2n
+ , (20)

F
W +

nX

k=1

⌫kRk +
nX

k=1

kX

l=1

µ(n�1)k+l
Mk,l + � = 0, (21)

X • � = 0. (22)

Let X 2 P
2n
+ denote the full information disclosure solution

as given in (12) to the social welfare maximization problem
(3) with coefficients F

W . We check whether the above KKT
conditions are satisfied by X . We look for a uniform dual
variable ⌫, i.e., ⌫k = ⌫, for all k 2 N where ⌫ 2 R, that
satisfies (21). We define ⌅ = �

P
n

k=1

P
k

l=1 µ(n�1)k+l
Mk,l

in matrix form and assume ⌅ = µI, µ > 0. We can express
the dual variable � using (21) and substituting in (13) for FW ,

� =


(1� ⌫)H ( ⌫2 � 1)I
( ⌫2 � 1)I ⌅.

�
(23)

We use Schur complement to analyze the positive definite-
ness of � in (23). A strict version of dual feasibility condition
� � 0 is satisfied if and only if ⌅ is positive definite and
Schur complement

�/⌅ = (1� �)H �
( ⌫2 � 1)2I

µ
. (24)

of block matrix ⌅ of matrix � is positive definite. Sum of each
row of �/⌅ is equal to (1�⌫)�( ⌫2 �1)2/µ+(n�1)(1�⌫)h.
This is the first eigenvalue of �/⌅. Rest of the eigenvalues of
�/⌅ are equal to (1 � ⌫)(1 + h) � (⌫/2�1)2

µ
. We have all of

the eigenvalues of �/⌅ positive and ⌅ � 0, when

µ > max{
( ⌫2 � 1)2

(1� ⌫)(1 + h)
, 0}. (25)

Hence, if µ satisfies (25), then � is positive definite.
Next, we show that there exists ⌫ 2 R and µ as in (25)

satisfying (22). We can express the inverse of H in (17) as
follows for n � 3

H
�1
i,j

=

(
(n�2)h+1

�(n�1)h2+(n�2)h+1 if i = j; i, j 2 N

�h

�(n�1)h2+(n�2)h+1 if i 6= j; i, j 2 N

(26)

When X = X is given by (12) and � is as in (23), we
obtain the following equation by computing the Frobenius
product terms within (22) corresponding to each of the four
sub-matrices,

X•� = n
2(1� ⌫)2 ⇤ (⌧ + h�)

+ 2
(⌫ � 2)[((2� n)h� 1)⌧ + h�]

(n� 1)h2 � (n� 2)h� 1
+ µ⌧ = 0, (27)

where we let ⌧ = tr(var(�)) and � =
2
P

n

i=1

P
j2N\{i} cov(�i, �j) to simplify the exposition.

Next we show that there exists at least one real root of (27)
⌫ 2 R and µ as in (25). If there is a real root, there exists a
⌫ 2 R satisfying the KKT conditions.

First, we consider the case µ =
( ⌫
2�1)2

(1�⌫)(1+h) + ✏, ✏ > 0. In
this case, (27) becomes

X • � = n
2(1� ⌫)2(⌧ + h�) + (

( ⌫2 � 1)2

(1� ⌫)(1 + h)
+ ✏)⌧

+
2(⌫ � 2)[((2� n)h� 1)⌧ + h�]

(n� 1)h2 � (n� 2)h� 1
+ = 0. (28)

When we equalize the denominators, (28) becomes a cubic
equation in ⌫. The cubic equation with real coefficients always
has at least one real root.

Secondly, we consider the case µ = ✏, ✏ > 0. In this case,
(27) is a quadratic function of ⌫

a⌫
2 + b⌫ + c = 0, (29)

where we define the constants a , b and c as

a = n
2(⌧ + h�) (30)

b = �2n2(⌧ + h�) + 2
((2� n)h� 1)⌧ + h�

(n� 1)h2 + (2� n)h� 1
(31)

c = n
2(⌧ + h�) +

�4((2� n)h� 1)⌧ � 4h�

(n� 1)h2 + (2� n)h� 1
+ ✏⌧ (32)

We want to show b
2�4ac > 0, so that there exists a real root.

Note that (n � 1)h2 � (n � 2)h � 1 < 0 for �1
n�1 < h < 1.

Also, by our assumption ⌧ � h�. We can deduce that the
discriminant (b2 � 4ac) is positive, i.e.,

b
2 � 4ac =

8n2(⌧ + h�)[((2� n)h� 1)⌧ + h�]

(n� 1)h2 + (2� n)h� 1

+ 4

✓
((2� n)h� 1)⌧ + h�

(n� 1)h2 + (2� n)h� 1

◆2

+ n
2(⌧ + h�)✏⌧ > 0.

(33)

Therefore the roots of (29) are real. We also need to show at
least one of the roots of (29) (⌫r) is such that ⌫r > 1 so that
µ = ✏ as per (25). We consider the larger root,

⌫r = 1� ((2� n)h� 1)⌧ + h�

n2(⌧ + h�)[(n� 1)h2 + (2� n)h� 1]

+

p
b2 � 4ac

2a
> 1. (34)

We know a > 0. Also, it can be deduced that the third term
in (34) is greater than the absolute value of the second term
in (34). Thus, ⌫r > 1.
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