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Figure 1: Overview of our approaches for detecting internal distraction.

ABSTRACT

Virtual reality (VR) makes learning more interesting for students
and could help them remember what they have learned better than
traditional methods. However, a student could get distracted in a
VR environment because of stress, wandering thoughts, unwanted
noise, outside sounds, etc. Distractions could be classified as ei-
ther external (due to the environment) or internal (due to internal
thoughts). To identify external distractions, previous researchers
have used eye-gaze data. Eye-gaze data cannot, however, detect
internal distractions because a user may be looking at the educa-
tional material in VR while also thinking about something else. We
explored the usage of electroencephalogram (EEG) data to detect
internal distractions. We designed an educational VR environment
and trained three machine learning models: Random Forest (RF),
Support Vector Machine (SVM), and k-nearest-neighbors (kNN),
to detect internal distractions of students. For data labeling, we
considered two window lengths (20 and 30 seconds) starting at
5 seconds after the distraction task started. We did cross-subject
and cross-session tests, and our results show that kNN provides a
better accuracy (64%) compared to RF and SVM. We also found that
the shorter window length of 20 seconds provided a slightly better
accuracy then the 30 second window. Our results are not far from
such random guessing. Therefore, our contribution lies more in the
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fostering of ideas for future work that must employ more advanced
and sophisticated techniques.

CCS CONCEPTS

« Human centered computing — Machine Learning; « Human
computer interaction (HCI) — Virtual Reality; « Education —
Internal Distraction.
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1 INTRODUCTION

Virtual reality (VR) technology and virtual environments, incorpo-
rating eye tracking with head-mounted displays (HMD) such as the
HTC Vive Pro Eye, Pico Neo 2 Eye, or FOVE, have gained consider-
able attention in recent years. These VR headsets can be utilized for
various applications, including but not limited to education [Pirker
et al. 2020], training [Mikropoulos and Natsis 2011; Sinnott et al.
2019], collaboration [Cavallo et al. 2019], and business [Kim et al.
2015] (e.g., analyzing shopping trends).

Virtual reality immersion can create experiences that are vividly
recalled and may enhance learning. It has also been demonstrated to
enhance instructors’ instructional abilities [Lamb and Etopio 2020].
However, virtual reality-based education has some challenges. In
a physical classroom setting, teachers can gauge student engage-
ment and behavior through multiple cues, including body language,
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eye contact, and facial expressions. However, in a VR environ-
ment, teachers lack direct visibility of their students, leading to
a reduced awareness of their activities. Moreover, students may
face distractions in VR due to stress, wandering thoughts, exter-
nal alerts, unwanted noise, and other factors, which could have a
detrimental effect on their learning. Therefore, to assist teachers
in conducting effective VR-based classes, an automated system for
detecting distractions is necessary.

According to real-world classroom distractions, there are two
types of distractions: external (due to the environmental factors)
or internal (due to internal thoughts in mind) [Tesch et al. 2011].
To identify external distractions like noise or sounds played in the
VR environment, eye tracking data has previously been employed
[Asish et al. 2021a]. Students may become distracted internally due
to anxiety, daydreaming, or other mental activities. Unfortunately,
eye-gaze data alone is incapable of gauging mental distractions
[Hutt et al. 2019]. It is quite possible that the user may be looking at
the educational content and may be thinking about something else.
In this paper, we explore the utility of EEG data to detect internal
distractions using machine learning approaches. We designed an
educational VR environment (see Figure 2) and collected EEG data
from 21 participants. Three machine learning models (RF, SVM,
and kNN) were trained on the data set to determine whether or not
there was internal distraction. Specifically, our work seeks to find
answers to the following research questions:

RQ1: To what extent can we detect internal distractions in VR
using EEG data?

RQ2: How long do the internal distractions stay in mind after
a distraction task?

2 RELATED WORK
2.1 Virtual Reality and Education

When online learning, physical limitations, and situational con-
straints are considered, a VR headset with an embedded eye tracker
is an excellent aid for the teaching and learning process. In the last
decade, VR has been studied in many educational contexts, such as
safety training [Buttussi and Chittaro 2017], medicine [Gallagher
and Cates 2004], and training public security personnel [Bertram
et al. 2015]. VR has been used for visualizing and interacting with
abstract learning content (e.g., molecular structures [Won et al.
2019]) as well as simulation applications that would be hazardous
to practice in real life (e.g., hazardous situation) [Mikropoulos and
Natsis 2011].

Recent research in the fields of psychology and human-computer
interaction shows that text and audio-based learning can be ef-
fective, depending on the task. According to Modality Principle,
on-screen speech is superior to on-screen text for learning [Butcher
2014] in terms of complex graphic representations that include
dual-channel processing in working memory. Specifically for infor-
mation retention, [Baceviciute et al. 2020] investigated that reading
text from a virtual book is better than listening for learning. Nev-
ertheless, he observed no appreciable differences for knowledge
transfer. [Han et al. 2022] proposed some intervention strategies
to improve students’ attention and their findings suggest that in-
structions from real world teachers can be transferred to virtual
classroom. In some cases, VR leads to a higher sense of presence
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and keeps users engaged with educational content [Makransky et al.
2019; Meyer et al. 2019; Rucinski et al. 2018]. However, text-based
presentation could lead to higher cognitive load and less learning
in VR [Makransky et al. 2019]. Teachers noticed benefits in integrat-
ing immersive technologies because students were more engaged
and immersed in the area of interest, according to research on VR
applications in education and training [Martin et al. 2022].

2.2 Distractions in VR

There are numerous activities that could potentially divert students
in an educational virtual reality environment. According to psycho-
logical research, many students use their cellphones during class
to browse the internet or purchase online [Mendoza et al. 2018].
Students may also use a cellphone for social media or other non-
academic activities while learning in the classroom, likely reducing
knowledge retention. Research suggests that due to multitasking,
attention can be diminished by shifting from one activity to another
[Dumoulin et al. 2020; Rodrigue et al. 2015; Szafir and Mutlu 2012].
Furthermore, given that a VR environment is completely accessible
to the viewer and may contain a variety of irrelevant attractive
objects that draw a student’s attention, distractions for students
are also a possibility [Gardony et al. 2013].

[Bozkir et al. 2021] investigated the seating arrangements of the
students in the VR classroom, he discovered that those who were
seated in the front paid more attention to the virtual teacher and
lecture material. One of the limitations of their study was that VR
lectures lasting longer than 45 minutes could cause extreme cyber-
sickness. Another study discussed the feasibility of transferring
teachers’ instructional techniques from the real-world to immersive
VR. They evaluated eye tracking based students’ visual attention
under different intervention strategies and found that participants
sitting at the back focused more on the objects irrelevant to the
learning contents [Han et al. 2022].

2.3 Detecting Distractions using Eye-Tracking
and EEG Data

[Bixler and D’Mello 2016] have applied machine learning employ-
ing eye gaze attributes to detect mind wandering in a computer
interface while reading text. Another study build a real-time mind-
wandering detection and intervention system using eye-gaze data
while reading comprehension [Mills et al. 2021]. [Vortmann et al.
2022] used feature by fusing of EEG and eye-tracking data to clas-
sify internal vs external directed attention in non-VR application.
[Apicella et al. 2021] detected distraction using EEG data from
a non-VR application in which participants were distracted by a
PC screen-based notification of a distractor task. [Kosmyna et al.
2021] used game applications in AR to detect internal and external
attention using EEG and eye tracking data.

[Rahman et al. 2020] proposed several different gaze visualiza-
tions as a method for monitoring students who were distracted.
However, the accuracy of detecting distracted students was signif-
icantly lower for multiple students compared to a single student.
[Asish et al. 2021a,b] used deep learning approach to detect the
level of distraction using eye gaze data. However, they detect only
external distractions. Although eye tracking in VR has been used
successfully to measure attention, most of the previous VR research
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did not examine the internal level of distraction during a class en-
vironment. Many educational VR studies fail to capture run-time
processes that occur during a VR educational session as they mainly
focus on evaluating post-immersion learning with few isolated mea-
sures [Antonenko et al. 2010; Ayres 2006; Baceviciute et al. 2020].
These studies supported the hypothesis of an existing relationship
between EEG or gaze features and distraction. However, the use of
EEG and gaze features and their relation to distraction are complex
due to individual variability.

In this work, we designed a system based on machine learning
that identifies the internal distraction of a student based on EEG data
in VR. We borrowed and modified an educational VR environment
with various components (avatar, audio, text slides, and animations)
to assist learning [Asish et al. 2021a]. We collected EEG data of
participants using this VR environment, to train three machine
learning models to detect internal distraction. The participants were
presented with a variety of internal distraction events during the VR
session to help with collecting data to train our machine learning
models. The models’ accuracy at classifying internal distraction
was evaluated. Our approach is a step toward creating a real-time
distraction detection system since it can gauge a student’s level of
distraction per session.

3 EDUCATIONAL VR ENVIRONMENT

We selected a Virtual Energy Center as our instructional VR setting
for virtual solar field visits in order to simulate internal distraction
(see Figure 2(b)) [Borst et al. 2016]. In order to describe how the
components required for power production work, we used this ap-
plication as our educational VR environment. The VR environment
presented several informational cues (avatar, animations, audio,
and slides) simultaneously that have been found to improve learn-
ing. Avatars have been shown to boost students’ learning [Liang-Yi
Chung 2011]. Our environment has a teacher avatar to point at
objects and animations that help students look at the component
being explained. Such animations have been used in the past to visu-
alize the internal components of an object [Radianti et al. 2020]. An
avatar explained the process and components using pre-recorded
audio instructions, slides, and animations. Similarly, animations
were used to visualize internal operations of solar devices. Audio
cues explained several aspects of the solar panel. [Baceviciute et al.
2020] found that audio is not superior to reading text in terms
of knowledge retention. Nevertheless, that study did not provide
the information by combining the audio with other teaching re-
sources like slides, avatars, or animations. In our study, key terms
of a certain component and mathematical ideas/equations were
presented on text slides. Our preliminary tests suggested that these
slides were helpful for knowledge retention since mathematical
concepts/equations are not easy to follow if just explained verbally.
[Makransky et al. 2019] found that multimedia slides increases
users’ interest but creates less learning. In our study, all these com-
ponents are executed synchronously to explain the subject matter.
Additionally, relevant solar field components were highlighted to
help students focus on the component being discussed and we
assume that combining all educational assets may increase the en-
gagement of students learning. Additionally, we designed another
educational VR environment (see Figure 2(a)) related to biology and
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it was used as a practice session by our participants before starting
the actual experimental tasks (described later).

4 METHODOLOGY

4.1 Overview

We collected EEG data from the participants while performing
internal distraction tasks during an educational VR presentation
(see Figure 1). We used this data to train and test three machine
learning models (RF, SVM, and kNN) to see which ones work best
for this type of data. The details are described in the following
subsections.

4.2 Experiment Design

In this experiment, we considered only internal tasks to create dis-
tractions since students are distracted due to external reasons or
internal thoughts according to real-world classroom distraction
studies. We divide our experiment into four sessions with educa-
tional sessions and each session ended with two educational quiz
questions directly based on the educational content presented.

4.2.1 Internal Distractions. Internal distractions can occur due to
many factors such as internal stress, mind-wandering, daydreaming,
illness, etc. It is very challenging to simulate internal distractions
in an experimental setup due to individual variability. Since we
are using an educational VR class to create internal distractions,
we mainly focused on relevant internal tasks for the participants.
These internal tasks were secondary tasks while their primary task
was to watch the educational VR class. We used four internal tasks
in four sessions (see Table 1) and they appear randomly once during
the educational sessions after 50 to 60 seconds from the start of
the session. A doorbell sound, an external distraction, was played
following the task description indicating the participants to start
the internal distraction task. In our pilot studies, we found that
participants in many cases missed the visual instructions to start
the internal distraction task. Thus, we decided to alert them using
a sound to start the internal distraction task. We made sure to clip
the EEG data for our training/testing dataset to avoid any error due
to this external distraction (the doorbell sound).

4.2.2  Experiment Questionnaires. Our experiment had three ques-
tionnaires: a pre-questionnaire, a post-session-questionnaire and a
post-questionnaire. The pre-questionnaire and post-questionnaire
were adapted from a related work by [Asish et al. 2021a]. The
pre-questionnaire consisted of demographic information and dis-
tractability questions from the cognitive failure questionnaire (Table
3) to assess general distraction level in the last six months [Wallace
et al. 2002], based on regular activities. Participants answered these
questions as 5-point Likert scale. The post-session-questionnaire
(Table 2) was filled out at the end of every session to assess if they
were distracted (Yes/No) during internal and external distraction
events. This helps with data labeling later for the machine learning
model. Upon completion of all the sessions, participants filled out a
post-questionnaire (Table 4), which was adapted from the work of
[Jennett et al. 2008], to gauge their overall VR experience.
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Figure 2: The content is presented by teacher avatars using a combination of text slides, audio, and animations. (a) An avatar
explains the nucleus cell during a practice session. (b) An avatar describing a solar panel for data collection.

Table 1: Internal distraction tasks appeared randomly in the
VR scene followed by a doorbell sound indicating them to
start the task.

Internal task to create distractions
Q1 | Count how many times the avatar moves his hand.
Q2 | Count the total number of words starting with ’S’.
Q3 | Think about the activities for the upcoming weekend.
Q4 | Think about the activities during the last weekend.

Table 2: Post-Session-Questionnaire. It was filled out at the
end of every session in each phase.

Post-Session-Questionnaire
Please summarize what you did after the doorbell | Text type answer
sound in this session.
Did you feel distracted during the task? yes/no

Table 3: Pre-Questionnaire borrowed from [Asish et al. 2022].
Participants answered Q1-Q7 as 5-point Likert-like items. Q8
and Q9 were short text type.

Pre-Questionnaire Questions
Q1 | Do you say something and realize afterwards that it might be
taken
as insulting?
Q2 | Do you fail to hear people speaking to you when you are doing
something else?

Q3 | Do you lose your temper and regret it?

Q4 | Do you leave important letters/emails unanswered for days?

Q5 | Do you find yourself suddenly wondering whether you’ve used a
word correctly?

Q6 | Do you daydream when you ought to be listening to something?
Q7 | Do you start doing one thing at home and get distracted into doing
something else (unintentionally)?

Q8 | Do you check your mobile in a regular classroom? If yes, how
often,

provide an approximate time interval like every 5 or 10 minutes?
Q9 | What are the common distractions for you in a regular classroom?

4.3 Participants and Apparatus

There were a total of 21 students (14 male and 7 female) who par-
ticipated in the study. They were between the ages of 18 and 28
(mean age was 21.2, SD 2.59), and 16 of them had used VR sys-
tem before. Their races include White American, Black or African

Table 4: Post-Questionnaire borrowed and modified from
[Asish et al. 2022]. Participants answered Q1-Q11 as 7-point
Likert-like items. Q12-Q15 were multiple choice questions.

Post-Questionnaire Questions
Q1 | To what extent did the VR class hold your attention?
Q2 | How much effort did you put into attending the VR class and
quiz?

Q3 | Did you feel you were trying your best?

Q4 | To what extent did you lose attention?

Q5 | Did you feel the urge to see what was happening around
you?

Q6 | To what extent you enjoyed the VR class and quiz exam,
rather than something you were just doing?

Q7 | To what extent did you find the VR class challenging?

Q8 | How much knowledge you could retain after VR class over
solar panels?

Q9 | To what extent did you enjoy the graphics and the animation?

Q10 | How much would you say you enjoyed the VR class?
Q11 | Which one helped you to understand the lessons?
a) audio b) slides c) avatar d) animations

Q12 | Which one helped you to recall information to answer
quizzes?

a) audio b) slides c) avatar d) animations

Q13 | Rank internal distraction events (Highest(4) to lowest

(1) distractors).

a) Counting words started with "S". b) Counting avatar had
movements. ¢) Think about last weekend activities. d) Think
about next weekend activities.

American, Asian, and Native Hawaiian or other Pacific Islander.
The eye-tracker calibration, consent process, and brief discussion of
the subjects’ VR experiences all took place during the experiment,
which lasted between 35 and 50 minutes.

When watching a VR session with the HTC Vive Pro Eye, we
recorded EEG data using the OpenBCI all-in-one electrode cap kit
at a sampling rate of 125 Hz. The Experiment (see Figure 3(a) for
user setup) was executed on a desktop computer (Core i9 11900F,
Microsoft Windows 10 Pro, NVIDIA GeForce RTX 3080 Ti, 64 GB
RAM) and Unity 3D v2018.2.21f1 software to implement the VR
tasks. We used scikit-learn, TensorFlow, keras libraries in Python
(version 3.8.8) for machine learning scripts.
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Figure 3: VR device and EEG equipment used in our study.
(a) User Setup for the experiment with the OpenBCI all-in-
one electrode cap and the HTC Vive Pro Eye headset. (b)
The positions of electrodes in the International 10-20 system
used for EEG recording. The red circles indicate the EEG
channels selected for our analysis. This image was taken
from Wikipedia and has a free image license [Wikipedia
2023].

4.4 Data Collection Process

Upon arrival, participants were provided with information regard-
ing the protocol of the study and informed that they would be
seeing educational virtual reality content that consisted of various
sessions that ranged in length from 1.5 to 4 minutes. After each
session, they were asked to report their distraction level. Subse-
quently, the participant provided signed consent and was seated
two meters away from the moderator. Participants then filled out
the pre-questionnaire. Following that, they were asked to wear EEG
cap and they put VR headset (HTC VIVE Pro Eye) on the top of the
EEG cap. Once the VR headset and EEG device were properly setup,
participants were also asked to avoid excessive hand/leg move-
ments as far as possible since the muscle activity in the leg/arms
could influence the EEG signal. Participants then went through two
practice sessions (using the biology environment shown in Figure
2(a)) to familiarize themselves with the internal distraction tasks.
In the first practice session, they just watched the educational VR
content. In the second practice session, they were instructed to
count how many times the avatar moves his hand after a doorbell
sound while watching the educational VR content related to biol-
ogy. No data was collected during the practice sessions. Following
the practice session, we calibrated the eye tracker and checked the
EEG cap’s functionality. Four sessions of the experiment were then
completed by the participants in a random order. After each session,
they answered quiz questions (related to the educational content
presented) and post-session questions (Table 2). After the comple-
tion of the four sessions, they filled out the post-questionnaire
(see Table 4) about their experience. Additionally, we asked our
participants if they have any feedback about our educational VR
experience and which components of the presentation distracted
them or helped them with learning the content. Our experimental
workflow is summarized in Fig 4.

We recorded EEG data during the four sessions of the experiment.
Raw EEG data was collected from the frontal, central, occipital and
parietal regions throughout the sessions using the OpenBCI all-
in-one electrode cap kit. It had 16 channels and we placed these
channels for each participant with electrode locations according
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to the international 10-20 system [Homan 1988]. The notch filter
was applied at the power frequency of 60 Hz, bandpass filter was
1 to 50 Hz and smoothing was turned on from the OpenBCI tool
settings while recording the EEG data. The sampling rate for EEG
data was 125 Hz. We down-sampled it to 120Hz to match with the
eye-tracker sampling rate of 120 Hz.

4.5 Data Pre-Processing

Simple pre-processing steps were applied to EEG data to remove
the noisy data/channels. We removed all the outliers by performing
a z-score analysis on the data that were three standard deviations
away from the mean value.

4.5.1 EEG Data Pre-Processing. In this study, we used 16 channels
of EEG cap but EEG data contains lots of artifacts which are hard
to process and many of these channels are not related to atten-
tion/distraction. Thus, we had just seven channels for recording
data for each participant with electrode locations (see Figure 3(b)
) of FP1, FP2, P3, P4, Pz, O1 and O2 according to 10-20 system
[Homan 1988]. We select these channels because the occipital lobe
(01, O2) is responsible for vision processing [Malach et al. 1995],
the parietal lobe (P3, P4, Pz) provides information about attentional
demands [Klimesch 1997], and the prefrontal cortex (FP1, FP2) is
in charge of decision making, cognitive state, and problem solving
[Miller and Cohen 2001]. We used a notch filter at the power fre-
quency of 60 Hz, a bandpass filter from 1 to 50 Hz, and smoothing
was turned on while recording EEG using the OpenBCI tool. Due to
the nature of the measurement technique, the EEG data contains a
significant amount of artifacts caused by eye movements, hand/leg
movements, and heart beats [Urigiien and Garcia-Zapirain 2015].
These artifacts are very challenging to remove from the EEG wave
analysis. We used the MNE-Python library’s independent compo-
nent analysis (ICA) to eliminate artifacts from the EEG data. In
addition, we focused on the experiment design to reduce the oc-
currence of these abnormalities (asking the user to reduce leg/arm
movements as much as feasible) rather than completely eliminating
artifacts using independent component analysis (ICA) [Jeong et al.
2019; Urigiien and Garcia-Zapirain 2015]. Since it is hard to con-
trol user’s unintentional movement, we noticed that 6 participants
did leg/arm movements most of the sessions, and hard to remove
all those movements. We used the least number of channels (only
seven channels) for our classification task so that artifacts can’t
significantly impact our results analysis. The raw EEG data has
been proven to be suitable for classification tasks [Schirrmeister
et al. 2017] in the past.

4.5.2 Data Standardization. Data normalization to scale the data
was the last step in the pre-processing phase because it is necessary
for the ML models [Goodfellow et al. 2016]. We standardized the
EEG data with the following equation: X; = (Xt — p)/o, where p
represents the mean value of the corresponding data, and ¢ repre-
sents the standard deviation.

4.6 Data Labeling

For the distraction classification task, we took into account two
classes: internally distracted (ID) and not distracted (ND). Since VR
helps a student to engage more with the contents and distraction
does not stay for a long time. Thus, our initial research query was
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how long the simulated distraction stays. After the distraction task
began, we might take into account a 10, 15, or 30-second distraction
window. Our aim is to inform the student in real-time while they
are being distracted, though. As a result, if we notify pupils more
frequently, the system would itself distract the students. To find
a more appropriate window length, we considered 20 second and
30 second window lengths for detecting internal distraction to
evaluate which window length provides better results for detecting
distraction in our experiment.

For the internal tasks, we sliced and labeled the data as Internally-
distracted (ID) for the next 20 second window starting at 5 seconds
after the doorbell sound if the participant reported that s/he was
distracted (through the post-session-questionnaire). The 20 sec-
ond window data was marked as Not-distracted prior to the door-
bell sound. Similarly, we sliced 30 second window length data for
both classes. The remaining data were discarded from the training
dataset.

We discovered that the number of data points associated with
each class of distraction (ID and ND labels) was significantly differ-
ent. The data was more skewed in favor of ND class. We used an
equal number of slices for the two classes to train the ML models
in order to prevent bias. To avoid bias and overfitting with the
training data, we applied a combination of under-sampling and
Synthetic Minority Over-sampling (SMOTE) [Chawla et al. 2002] so
that classifiers can learn from the dataset perturbed by "SMOTING"
the minority class and under-sampling the majority class.

Correlation Matrix

-1.0

-0.044| 0.27 0.18 0.14 0.26

-0.8

-0.6

Figure 5: Which features are most related to one another is
shown in the correlation matrix with heatmap.

4.7 Feature Selection

A correlation matrix for our features is shown in Figure 5. We ob-
served that most of the channels are positively correlated with other

channels except the FP1 and FP2. The FP1 and FP2 are negatively
correlated with each other but positively correlated with other
channels. Then, we applied a sliding window of 1 second without
overlapping to extract signal features. The features used in our ML
models include statistical features (mean, standard deviation, min,
max) for each feature/column of the current window. We used 7
channels/features and extracted 7"4 = 28 features for each window
and then appended all features into the dataset to feed into the ML
model.

4.8 Classification Models and Evaluation
Metrics

Based on previous research [Rodrigue et al. 2015; Vortmann and
Putze 2021; Zheng et al. 2020], Random Forest (RF), Support Vec-
tor Machine (SVM), and k-nearest-neighbors(kNN) have worked
well for classification tasks using the EEG data in non-VR and VR
applications. Thus, we chose to use these models for our person-
independent classification task.

Due to the EEG signal’s nonstationarity, there is more inter-
subject variation in the data. The literature has long acknowledged
this issue, which makes the cross-subject approach difficult [Api-
cella et al. 2022]. Since we had 21 participants, we performed 7-fold
cross-validation to evaluate our models where in each fold of our
7-fold cross-validation procedure, we used the data from 18 people
to train the model and the data from 3 participants (apart from
the training participants) to test the model. As recommended by
earlier studies for time series classification [Asish et al. 2022], we
employed accuracy, precision, recall, and F1-score to assess the
models’ performance on the task of identifying distractions. We
used default parameters to implement these ML classifiers using
Python (version 3.8.8) with sklearn library.

Random Forest (RF). : RF is an ensemble learning method which
construct multiple decision trees through different data subsets, and
voting on the results of multiple decision trees to get the prediction
as output of the model. We used "RandomizedSearchCV" library
from sklearn to optimize our hyperparameters for RF and we found
the optimized parameter where estimator=100, max depth = 150,
and max features = ’sqrt’. For two class classification, we changed
hyper-parameters to fit the model such as estimator=10 and max
depth = 30. We plugged these into the model and reported the
results.

Support Vector Machine (SVM). : SVMs are a popular machine
learning algorithm used for classification tasks. The basic idea be-
hind SVMs is to find the best hyperplane that separates the different
classes of data points in a high-dimensional space. The hyperplane
is chosen such that the distance between the hyperplane and the
closest data points from each class is maximized, and this distance
is called the margin. The SVM model hyperparameters such as
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Figure 6: Pre and post-questionnaire Mean ratings.

kernel function (kernel=rbf), regularization parameter (c=1), and
kernel coefficient (gamma=scale) are tuned using Grid Search to
optimize the model’s performance. These are similar to default
hyperparameters.

K-Nearest-Neighbors (kNN). : Utilizing the k nearest neighbors,
the kNN classifier executes learning. The data would determine the
value of k. Overfitting of the data variance occurs at low k values
(low training error and high test error). It works well for k=6 and
the parameter metric is "Minkowski" by default. We tested from 1
to 10 to determine the k value.

5 RESULTS

In Figure 6 (a), we have depicted the mean ratings for the pre-
questionnaire (Table 3). We observed that the majority of partic-
ipants reported being easily distracted in social situations. Simi-
larly, in Figure 6 (b), we have summarized the mean ratings for
the post-questionnaire (Table 4). Most participants mentioned that
they made an effort to remain attentive during the VR experience,
but they experienced some internal distractions. The majority of
participants expressed enjoyment with the VR content and the
graphics/animations presented to them. We asked participants for
comments or suggestions (see Table 4, Q12 to Q18) about the ed-
ucational VR content, and which component(s) distracted them,
and which component(s) helped them learn. Out of 21 participants,
16 indicated that audio helped them learn, 16 indicated slides as
helpful, 14 indicated animations as helpful, and only 7 indicated the
avatar was helpful. Surprisingly, 3 participants mentioned that the
avatar distracted them, even though most participants mentioned
that all these components work in sync and helped them to learn.
Participants also ranked the distractors based on their ability to
distract them. For internal distractions, Q2 (see Table 1) was ranked
as the highest, Q1 was the second highest, and Q3 and Q4 both as
the lowest.

Table 5: Precision, recall and F1-score of the models with 20
second window length.

Name Class precision % | recall % | Fl-score %
RF ND 0.66 0.49 0.58
ID 0.65 0.73 0.69
SVM ND 0.55 0.57 0.56
D 0.57 0.61 0.59
kNN ND 0.65 0.57 0.61
ID 0.61 0.73 0.67

Table 6: Precision, recall and F1-score of the models with 30
second window length.

Name Class precision % recall % F1-score %
RF ND 0.65 0.48 0.57
D 0.65 0.69 0.67
SVM ND 0.55 0.50 0.52
D 0.57 0.61 0.59
kNN ND 0.65 0.55 0.60
D 0.61 0.72 0.66
Classification Accuracies for each Session
X X X X
80.00% § 9 8 g &8 8
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> 60.00% cdl n
3
5 40.00%
s
< 20.00%
0.00%
20 sec window length 30 sec window length
HSVM kNN ®=RF

Figure 7: Mean accuracy (best = 64.11%) of the models.

To evaluate our models’ performance on the distraction detec-
tion task, we used accuracy for cross-subject and cross-session
test performance, and precision, recall, and F1-score for individual
class performance. Figure 7 reports the mean accuracy value and
Table 5 and 6 provide precision, recall and F1-score of 7-fold cross-
validations (data from 18 subjects’ for training and the data from
the remaining 3 subjects’ for testing) for our ML models for the
EEG features of 20 second and 30 second window length from cross-
subject test. Our cross-subject test results show that kNN provides
the best results compared to SVM and RF for both window lengths.
The shorter window length of 20 seconds provided a slightly bet-
ter accuracy. Thus, we believe that the distraction does not last
long (this answers our research questions). The accuracy for the
30-second window length dropped a little bit. However, this drop
was not significant. RF also provides similar results for 20-second
and 30-second window lengths. However, SVM performs worse
for both window lengths. Our results are very similar to previous
EEG-based classification task [Kosmyna et al. 2021; Vortmann et al.
2022], though our internal distractions tasks and VR environment
are different. Since EEG data contains artifacts and distractions
are complex due to individual variability, it is very challenging to
obtain high accuracy.
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Table 7: Precision, recall and F1-score for kNN model when
3 sessions are used for training and the remaining session
is used for testing. The session used for testing is shown in
column 1. The best accuracy achieved from session 4 (65%).

Session| Accuracy % | Class precision % recall % F1-score %
1 0.64 ND 0.64 0.58 0.61
D 0.63 0.71 0.67
2 0.59 ND 0.57 0.54 0.56
D 0.58 0.67 0.63
3 0.61 ND 0.64 0.53 0.58
D 0.60 0.71 0.65
4 0.65 ND 0.66 0.59 0.62
D 0.63 0.72 0.68

Since kNN provided the best results, we used this model for cross-
session testing to evaluate generalizability on new data. To test this,
we trained the kNN model using the data from three sessions and
then tested the model’s accuracy using the data from the fourth
session. Because each session had a different duration and contents,
the test set was different for each case. The accuracy, precision,
recall, and F1-scores for each session as test case, as provided by
kNN models, is shown in Table 7). We see that the best accuracy
was over 65% provided for session-I and sessions-IV, and the other
sessions have slightly lower results. According to our results (see
Table 7) and Figure 7, our ML models provided reasonably good
results, using EEG features, for classifying into two distraction
classes (ID and ND).

6 DISCUSSION

Our experiment investigated the accuracy of our ML models for
classifying the type of distraction (internal distraction and no dis-
traction) using statistical features from EEG data. According to our
results (see Table 7 and Figure 7) with two classes, we see that the
overall accuracy for kNN model was over 64%. However, when
we tested the models for generalizability (using three sessions for
training and using the remaining fourth session for testing), the ac-
curacy is similar to previous results [Kosmyna et al. 2021; Vortmann
et al. 2022]. This answers our first research question (RQ1) that
EEG data could potentially be used to detect internal distractions
with a reasonable accuracy. However, further research is required
to improve the accuracy of the detection system. Furthermore, our
results show that the internal distractions (using the tasks assigned
in this experiment) don’t last for a long time after they start. We
found that a 20 second window was sufficient to detect internal
distractions. The accuracy was not significantly better with a 30
second window indicating that the distractions didn’t last that long.
This answers our second research question (RQ2).

In an educational VR system, our goal is to detect when a student
is distracted and alert the students to remind him/her to focus back.
For a real VR-based class, we should be able to train the system once
and use it on multiple days (ideally, the whole semester) without
re-training. Our work is a step toward an educational virtual reality
system that detects distractions automatically and in real-time. We
believe that such a system could aid in the management of a large
guided class (30 to 40 students). Without manual intervention from
the teacher, the system could trigger an action (such as pointing
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towards the object of interest [Yoshimura et al. 2019]) to refocus the
attention of pupils who have become distracted. The duration of VR
class should not be longer to avoid cybersickness and distraction
due to long-time exposure.

Our experiment was not without its flaws. Our dataset and the
types of people who participated are both relatively small. Due to
the small sample size (n=21), our results may be skewed toward
either males or females (7 females vs. 14 males; [Peck et al. 2020]).
Simulating internal distractions and getting effective outcomes is
particularly difficult due to individual diversity and gender im-
balance. In addition, internal distractions may occur even when
participants are not instructed to and they are not fully controlled.
The test results of our classification models might also be affected
by the features we decide to include. Moreover, unintentional mus-
cle activity in legs/arms can affect EEG data and test results. The
alpha, beta, gamma, and theta bands of the collected EEG could be
taken into account in the future. EEG and eye-tracking data can
be combined to enhance internal distraction detection tasks since
eye-tracking data can identify attentional states with a respectable
degree of accuracy. This hypothesis needs to be tested in future
studies.

Maintaining student privacy is an important concern when shar-
ing physiological sensor data of students with the teacher. In our
study, EEG data was collected from the participants who gave per-
mission to use their data within a standard informed consent model.
The recorded data was anonymized. If such a VR-based system
is used for a real classroom, one must ensure that the students
understand how the EEG data would be used and get permission
from the students (and their parents, for minors) to track or record
their EEG data. Special care has to be taken for any longer-term
storage to provide security, address legal requirements, and avoid
any misuse of EEG data.

7 CONCLUSIONS AND FUTURE WORK

We designed an educational VR environment and created multiple
internal distractions for the participants during the educational pre-
sentation in VR. We collected EEG data and applied three ML models
(RF, SVM, and kNN). We considered two class (internally-distracted
and not-distracted) classifications, and two window lengths (20 and
30 seconds) beginning after the 5 seconds of distraction task were
taken into account for data labeling. Our findings demonstrate that
for both window lengths, kNN performs better than SVM and RF. A
little higher accuracy was offered by the 20-second window length.
So, we think the internal distraction don’t last long in the simulated
VR environment.

In the future, we would like to consider more metrics and sensor
data (EEG, heart rate, skin conductance, etc.) for detecting distrac-
tions (both internal and external). Additionally, we would like to
test our machine learning models by extracting the common EEG
features such as alpha, theta, delta, beta, and gamma wave. Fur-
thermore, we need to test our approach for real-time distraction
detection for a wider range of VR environments using a larger
participant pool.
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