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Prediction of thermally induced
postbuckling of clutch disks
using the finite element method

Zhuo Chen1,2 , Yun-Bo Yi2 and Ke Bao3

Abstract

Buckling and postbuckling of automotive clutch disks can be excited by the temperature fields caused by frictional heat

generation during engagement of clutch systems. Linear and nonlinear buckling finite element analyses are performed to

evaluate the thermal postbuckling of clutch metal disks. The dominant buckling modes are first obtained through

performing linear buckling finite element analysis (FEA) analyses. The scaled displacement fields obtained from the

linear buckling FEA analyses are added to the original geometries to generate the perturbed meshes. The postbuckling

is then investigated by performing nonlinear buckling FEA analyses. The commercial FEA software ABAQUS is used in

the current study. The effects of the temperature-dependent material properties are studied. It is concluded that the

temperature dependence of material properties affects the postbuckling behaviors significantly.
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Introduction

During engagement of automotive clutch systems, a
large amount of heat can be generated, and the tem-
perature of clutch systems can be raised significantly.
In the presence of excessive hoop stresses caused by
thermal expansion, the metal disks of multidisk clutch
systems can buckle laterally.1 Due to its importance in
industrial applications, a large amount of conven-
tional thermal buckling analyses (i.e. linear buckling
analyses) on clutch disks are reported in the literature.
Through applying Timoshenko’s beam theory,
Audebert et al.2 inspected the thermal buckling phe-
nomenon caused by residual stresses of disk plates.
The influences of geometric parameters and material
properties on this phenomenon were studied by Ma.3

Through conducting experiments, Xiong et al.4

proved that Timoshenko’s beam theory is applicable
to evaluate the thermal buckling of clutch disks. These
two groups of researchers found that the dominant
buckling modes of clutch disks can be either axisym-
metric or non-axisymmetric.3,4 Based on the first-
order and higher-order shear deformation theories,
Najafizadeh and Hedayati5 and Najafizadeh and
Heydari6 performed analyses on the thermal buckling
of circular disks. Zhao et al.7 assessed the effects of
multiple thermal loads with different profiles on the
thermal buckling of clutch disks. It was found that the

profiles of thermal loads impact the thermal buckling
deformation fields. Chen et al.8 revealed the existence
of the coupling between thermoelastic instability and
thermal buckling in multidisk clutch systems.

The behavior of a structure after it buckles is
named as ‘‘postbuckling.’’ The conventional buckling
finite element analysis or linear finite element buckling
analysis can merely estimate the buckling deformation
modes and the associated critical buckling loads. The
postbuckling or nonlinear buckling analysis is also
able to investigate the displacement field at a particu-
lar loading condition. Ma and Wang9 and Li et al.10

investigated thermal postbuckling of functionally
graded material circular plates by applying von
Karman’s plate theory. Sepahi et al.11 inspected the
axisymmetric postbuckling of an annular plate which
is fixed in both inner and outer radii by using the first-
order shear deformation theory.
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To the authors’ knowledge, the thermal postbuck-
ling of clutch disks has not been investigated system-
atically. One obvious defect of the existing models is
that the boundary conditions were not precisely rep-
resented. In real applications, only the inner or the
outer radius of a clutch disk is constrained, but not
both. Multiple researchers pointed out that the
boundary condition affects both the buckling modes
and the associated critical buckling temperatures.7,8

Thus, the first purpose to perform the current analysis
is to investigate the effects of the boundary
condition.The second motivation to perform the cur-
rent analysis is that the previous works focused on the
axisymmetric modes alone.9–11 However, the non-axi-
symmetric modes can be dominant in some situations,
and therefore evaluating the axisymmetric modes
alone could be inadequate.12

Method

Principle of nonlinear buckling analysis

As shown in Figure 1, the current study consists of
two consecutive steps. The first step contains linear
buckling analyses from which the dominant buckling
deformation modes and the corresponding critical
buckling temperatures are obtained. Moreover, the
scaled deformation fields of the dominant buckling
deformation modes extracted from the results of the
first step are then used as the initial perturbations in
the second step. In the second step, nonlinear buck-
ling analyses are subsequently conducted to investi-
gate the postbuckling behaviors of clutch disks.

The linear buckling analysis is performed by using
the commercial software ABAQUS. The geometric
representation, material properties, boundary condi-
tion, and reference load are defined in the graphic
interface of ABAQUS. The ‘‘BUCKLE’’ analysis
module that is capable of computing the critical buck-
ling eigenvalues and the corresponding buckling
deformation modes is applied. The governing equa-
tion for the buckling of a mechanical structure is

K½ � þ lcr K�½ �ref
� �

�Df g ¼ 0f g ð1Þ

where K�½ �ref represents the stress stiffness matrix
induced by the reference load, lcr is the critical buck-
ling eigenvalue, and the vector f�Dg contains the
buckling displacement field.13,14 In comparison with
the radial dimension, the thickness of a clutch disk is
negligible. Therefore, the eight-node shell elements
with reduced integration are used to develop the
FEA model. The finite element model and its corres-
ponding mesh are shown in Figure 2.

It is necessary to mention that the results of linear
buckling analyses in ABAQUS are critical buckling
eigenvalues. Moreover, the critical buckling loads
are the products of the critical buckling eigenvalues
and the reference loads. For an annular disk, all buck-
ling modes can be classified into two types: the coning
modes and the wavy modes.3 A coning mode is an
out-of-plane mode that is axisymmetric. However,
the wavy mode has multiple reversals in the circum-
ferential direction.3,15 To extract the displacement
field of the dominant buckling mode, the ABAQUS
keyword ‘‘NODE FILE’’ has been inserted to the
input script file manually.

The linear buckling analysis in ABAQUS is indeed
a type of eigenvalue algorithm. It is only capable of
determining the stability boundaries of mechanical
structures. If the load–displacement response is of
interest, a nonlinear buckling analysis must be per-
formed. The governing equation defining the non-
linear buckling problem of a structure is

K½ � þ K�½ � þ KL½ �ð Þd �Df g ¼ d Pf g ð2Þ

where the matrix KL½ � is caused by a large displace-
ment and is called as initial displacement matrix, and
d Pf g and d �Df g represent the incremental load and the
incremental displacement, respectively.16

The ‘‘RIKS’’ analysis step in ABAQUS is adopted
to simulate the postbuckling behaviors of a clutch
plate. This method has been widely used to analyze
postbuckling behaviors of various structures.17,18

The nonlinear buckling model can be modified from
the linear buckling FEA model by replacing the
‘‘BUCKLE’’ analysis step with a ‘‘RIKS’’ analysis

Figure 2. A clutch disk model and its corresponding mesh.Figure 1. The flowchart of a postbuckling analysis.
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step. It should be noticed that the load defined in a
nonlinear buckling model is the critical buckling load
which is equal to the product of the critical buckling
eigenvalue and the reference load defined in the linear
buckling analysis. To add the scaled deformation field
of the dominant buckling mode to the original geom-
etry of the clutch plate as an initial perturbation,
the keyword ‘‘IMPERFECTION’’ is manually
added to the ABAQUS input file. As the maximum
nodal values of the displacement fields obtained from
the linear buckling analyses are normalized to unit
values in the ABAQUS results, the displacement
fields should be multiplied by a scaling factor. The
effect of the scaling factor will be discussed in the
following section.

Method of verification

As the convergence study and verification of linear
buckling analyses have been elaborated in Zhao
et al.7 and Chen et al.,15 only the validation process
of the method is presented in this section. The numer-
ical results obtained by applying the method described
in the previous section are compared with the results
presented in Sepahi et al.11 In order to do so, the
geometric parameters used in Sepahi et al.11 are
chosen for the verifying purpose. The boundary con-
dition is specified in such a way that the inner and
outer radii are simply supported. The material proper-
ties are temperature-independent. The geometric
dimensions and material properties presented in
Sepahi et al.11 are listed in Table 1.

The temperature distribution in Sepahi et al.11 is
governed by the one-dimensional steady-state conduc-
tion equation

d

dr
r
dT

dr

� �
¼ 0 ð3Þ

As a result, the temperature distribution along the
radial direction is

T rð Þ ¼ Ta ��T
ln r

ra

� �
ln rb=rað Þ

�T ¼ Ta � Tb

(
ð4Þ

where Ta is the temperature at the inner radius and Tb

is the temperature at the outer radius.19 According to
Sepahi et al.,11 the annular disk buckles when Ta and
Tb are equal to 26.85 and 138.33 �C, respectively.
Therefore, the thermal load in the linear buckling

analysis is set as

T rð Þ ¼ 26:85� 26:85� 138:33ð Þ
ln r

25

ln 4
ð5Þ

The eigenvalue obtained from the model con-
structed by S8R elements is 0.9325, which implies
that the difference is around 6.75%. Considering
that the result in Sepahi et al.11 is obtained through
a two-dimensional analytical model, this difference is
acceptable. The dominant buckling mode is an axi-
symmetric mode which is shown in Figure 3. In
Figure 3, the nodal displacements in the axial direc-
tion are dimensionless. As shown in the colormap, the
maximum of the nodal displacements has been nor-
malized to a unit value and is represented by red.
Moreover, as the inner and outer radii are con-
strained, the nodal displacements are 0, and those
two regions are represented by blue.

As mentioned previously, the scaled displacement
field should be added to the original geometry as an
initial perturbation. A small scaling factor is pre-
ferred, as an excessive perturbation can change the
geometry visibly, leading to an inaccuracy in the
result. However, if the scaling factor is smaller than
a critical value, the numerical oscillations would cause
a divergence in the result. The postbuckling of a cer-
tain structure probably involves multiple critical
points where the structure cannot sustain any increase
of the applied load. Therefore, Newton’s method in
which either the load or the displacement is selected as
the independent variable is not appropriate for simu-
lating postbuckling problems. In ABAQUS, the arc
length method in which a third variable arc length is

Figure 3. The dominant mode of the postbuckling model.

Table 1. Geometric dimensions and material properties of verification model.

Inner radius

ra (mm)

Outer radius

rb (mm)

Thickness

(mm)

Young’s modulus

(GPa)

Poisson’s

ratio

Thermal expansion

coefficient (K�1)

25 100 2 348 0.24 5.8723� 10�6
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used to determine the load increment and displace-
ment increment simultaneously is applied to perform
postbuckling analyses. More comprehensive reviews
of arc length method can be found in Riks.20

ABAQUS is capable of plotting the load proportion-
ality factor (LPF) versus the arc length. In the rest of
the current study, we call this type of diagram as load
history diagram which represents how the load has
been applied to the structure incrementally.

Figure 4 shows a comparison between the load his-
tory diagrams of the model with 0.1% perturbation
(i.e. the largest value of the perturbation is equal to
0.1% of the thickness of the plate) added to the ori-
ginal configuration and that of the model with 1%
perturbation added to the original configuration.
The horizontal axis in the above figure is the arc
length, which represents the computational increment.
The vertical axis of Figure 4 is the LPF, which is a
normalized value. A unit value of LPF denotes that
100% of the defined load has been applied to the
structure. The threshold of the curve represents the
simulated critical buckling load. Through this figure,
it can be concluded that the calculated critical buckling
temperature obtained from the model with 0.1% per-
turbation is about 95% of the value obtained from the
linear buckling analysis. It also shows that an excessive
perturbation (1%) can reduce the simulated critical
buckling temperature significantly. Theoretically, as
the scaling factor decreases, the load history curve
will be finally with a ‘‘�’’ shape. However, it is found
that when the perturbation is less than 0.1%
(2� 10�3mm), the results started to diverge.

As shown in Figure 5 and Table 2, the dimensionless
displacements in the axial direction at the medium
radius (rm ¼ (raþ rb)/2) under multiple temperature

differences computed through the finite element
method have been compared to the results reported in
Sepahi et al.11 It shows that the average error is around
5.67%, which is acceptable for the current study.

Results

Linear buckling analysis

Multiple models with different geometric parameters
are developed in the current research. In each model,
either the outer radius or the inner radius is con-
strained. It is assumed that these two types of clutch
disks are made of the same kind of material. The
material properties and geometric dimensions are
listed in Table 3.

In the current study, the thermal loads are assumed
as linearly increasing from the inner radii to the outer
radii of the annular plates, which is based on the fact
that frictional heat generation is proportional to the
relative sliding speeds in automotive clutch systems.
The thermal loads can be represented by the following
equations

T rð Þ ¼ �T r�ra
rb�ra

�T ¼ Tb � Ta

�
ð6Þ

Figure 4. Load history diagrams obtained from models with

different perturbations.

Figure 5. Verification results.

Table 2. Comparison between simulation results and ana-

lytical solutions.

�T 150 200 250 300 350 400

Sepahi 0.370 0.520 0.710 0.820 0.921 1.020

Chen 0.379 0.540 0.660 0.773 0.860 0.935
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In the linear buckling analyses, i.e. the first step,�T
is set as 1 �C. Therefore, the critical buckling tempera-
tures are equal to the calculated critical buckling eigen-
values. It should be mentioned that in a linear buckling
FEA analysis the critical buckling load is the product
of the applied mechanical or thermal reference load
and the calculated critical buckling eigenvalue. The
calculated critical buckling temperatures are tabulated
in Table 4 in which the boundary conditions are pre-
sented in a simplified fashion. In Table 4, SF repre-
sents that the inner radius is simply supported and the
outer radius is free, whereas FS represents that the
inner radius is free and the outer radius is simply sup-
ported. In the FC boundary condition, the inner
radius is free and the outer radius is clamped.
Moreover, in the CF boundary condition, the inner
radius is clamped and the outer radius is free.

Through Table 4, it can be concluded that the
models of Disk 1 with the CF and FC boundary con-
ditions and the model of the Disk 2 with the FS con-
dition are of practical importance, as the operating
temperatures of clutch systems are usually well
below 1000 �C and positive. Hereafter, these three
models are named as models 1, 2, and 3, respectively.
The dominant buckling modes of model 1 and model
2 are wavy modes, and the dominant buckling mode
of model 3 is a coning mode. These models are
selected in the current research to investigate the post-
buckling behaviors. The dominant buckling modes
of these three models are shown in Figure 6,
in which the red zones represent larger nodal displace-
ments in the axial direction and the blue zones repre-
sent smaller nodal displacements in the axial
direction. It shows that the dominant mode of

model 1 is a sixth-order wavy mode (i.e. there are
six zones with large displacement), the dominant
mode of model 2 is a fourth-order wavy mode, and
the dominant mode of model 3 is a coning mode.

Postbuckling analysis

To perform a postbuckling analysis for a specific
structure, the scaled displacement field obtained
from a linear buckling analysis must be added to the
original geometry as an initial perturbation. The value
of the scaling factor should be tested carefully, as an
excessive perturbation can change the original geom-
etry and hence the simulated results. The scaling
factor can be determined through the load history
diagrams. The load history diagrams of model 1,
model 2, and model 3 with 0.1 and 1% initial perturb-
ations are shown in Figure 7.

If the material properties are temperature-indepen-
dent, the thresholds of the load history diagrams
should be close to the unit values on the vertical
axes which correspond to the critical buckling tem-
peratures obtained from the linear buckling analyses.
Through Figure 7, it can be found that the thresholds
of the load history diagrams of the models with 0.1%
perturbations are close to the unit values. The slight
differences are caused by the geometric nonlinearity
and numerical errors. However, there are no obvious
thresholds in the load history diagrams of the models
in which the perturbations are equal to 1% of the disk
thicknesses, which implies that the results are less
accurate. In the rest of the current study, the values
of the perturbations applied to the models are equal
to 0.1% of the disk thicknesses.

The displacement profile in the axial direction
along the outer radius of model 1 and the displace-
ment profile in the axial direction along the inner
radius of model 2 at the two different levels of tem-
perature: (1) the critical buckling temperatures and
(2) 100 �C above the critical buckling temperatures
are shown in Figure 8. In the figure, it shows that
at the critical buckling temperature the largest
displacement in the axial direction along the outer
radius of model 1 is around 0.3mm, and the largest

Table 3. Material properties and dimensions of the models.

Inner

radius

Outer

radius Thickness

Young’s

modulus

Poisson’s

ratio

Thermal

expansion

Disk 1

Symbol Ra1 Rb1 h1 E1 n1 a1
Unit mm mm mm GPa N/A 10�6/K

86 125 2.25 160 0.29 12.7

Disk 2

Symbol Ra2 Rb2 h2 E2 n2 a2
Unit mm mm mm GPa N/A 10�6/K

44.5 57 3.25 160 0.29 12.7

Table 4. The results of linear buckling analysis.

BC

Result

(�C) SF CF FS FC

Disk 1 �31.0 420.8 31.1 749.0

Disk 2 �381.3 6819.3 475.0 14,165

BC: boundary condition.
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displacement along the outer radius of model 1 at
521 �C (i.e. 100 �C above the critical buckling tem-
perature) is around 1.6mm. It also shows that
at the critical buckling temperature the largest dis-
placement in the axial direction along the inner
radius of model 2 is around 0.2mm, and the largest
displacement along the inner radius of model 2 at

850 �C (i.e. 100 �C above the critical buckling tem-
perature) is around 2mm. The largest displacement
in the axial direction of model 1 at 800�C is compared
to the result of model 2 at 800�C. It is found that at
800 �C, the largest displacement in the axial direction
of model 1 is around 2.4mm, and the largest displace-
ment in the axial direction of model 2 is around

Figure 7. Load history diagrams with different initial perturbations. (a) Model 1, (b) model 2, and (c) model 3.

LPF: load proportionality factor.

Figure 6. Dominant buckling modes. (a) Model 1, (b) model 2, and (c) model 3.
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1.8mm. Hence, fixing an annular disk at outer radius
is a preferred boundary condition in practical clutch
applications due to its higher critical temperature and
smaller deformation.

The displacement distributions in the axial dir-
ection along the radius of model 3 at the critical
buckling temperature and 100 �C above the critical
buckling temperature are shown in Figure 9.
The figure shows that the largest displacement in the
axial direction at the critical buckling temperature
is around 0.4mm, and the largest displacement in
the axial direction at 575 �C (i.e. 100 �C above the
critical temperature) is around 1.1mm. The relatively
small deformation is probably due to the large thick-
ness and small radial width. To verify this assump-
tion, the boundary condition of model 2 is changed
to FS and the nonlinear buckling analysis is per-
formed. It is found that at the temperature 100 �C
above the critical buckling temperature (i.e. 131 �C),
the largest displacement in the axial direction is
around 2.8mm. Therefore, it is concluded that the
FS boundary condition is less favorable, as it induces
a lower critical buckling temperature and a larger
deformation.

Effects of temperature-dependent material
properties

In this section, the effects of the temperature-
dependent material properties are studied. In general
engineering applications, the relationship between the
elastic modulus of a certain type of metal and tem-
perature can be estimated by the following equation21

E Tð Þ ¼ E0 1þ �E T� T0ð Þ½ � ð7Þ

where E(T) represents the elastic modulus at a spe-
cific temperature T, E0 is the elastic modulus at the

reference temperature T0, and �E is the temperature
coefficient of elastic modulus. Based on Liu and Liu,22

the value of �E can be selected as �0.35� 10�3/�C.
The Young’s moduli in the three models are set as
temperature-dependent, and the other properties
remain the same. The load history diagrams with
and without the temperature dependence are com-
pared in Figure 10. It is found that Young’s modulus
does not affect the critical buckling temperature sig-
nificantly in general. For model 1 specifically, the crit-
ical buckling temperature obtained from the FEA
model with temperature-dependent Young’s modulus
is slightly higher than the value obtained from the
FEA model with temperature-independent Young’s
modulus, as the threshold of the load history diagram

Figure 8. (a) The displacement in axial direction at the outer radius of model 1 and (b) the displacement in axial direction at the

inner radius of model 2.

Figure 9. The displacement in the axial direction along the

radius of model 3.
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of the model with temperature-dependent Young’s
modulus is slightly higher, whereas the critical buck-
ling temperature obtained from model 2 with tem-
perature-dependent Young’s modulus is slightly
lower than the value obtained from the FEA model
with temperature-independent Young’s modulus.
It also reveals that the critical buckling temperature
of model 3 does not change obviously, since the two
load history diagrams overlap with each other.

The relationship between the thermal expansion
coefficient of a particular type of metal and tempera-
ture can be described by the following equation22

� Tð Þ ¼ a 1þ b Tþ 273:15ð Þ½ � ð8Þ

where a and b are constants. The values of a and b are
selected as 9.567� 10�6 and 1.115� 10�6 based on
literature.22 Therefore, the relationship between the

expansion coefficient and temperature can be
described by the following equation

� Tð Þ ¼ 9:567� 10�6 1þ 1:115� 10�6 Tþ 273:15ð Þ
� �

ð9Þ

The thermal expansion coefficients in the models are
set as temperature-dependent, and the other properties
remain unchanged. The load history diagrams with and
without the temperature dependence are compared in
Figure 11. Through the figure, it shows that the critical
buckling temperatures represented by the thresholds of
the load history diagrams with temperature-dependent
thermal expansion coefficients are around 80% of the
values obtained from the linear model.

As shown in Figure 12, if both Young’s moduli
and expansion coefficients are set as temperature-
dependent, it is found that the critical buckling

Figure 10. The load history diagrams of models with temperature-dependent Young’s moduli. (a) Model 1, (b) model 2, and

(c) model 3.

LPF: load proportionality factor.
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temperatures of all three models are around 80% of
the values obtained from the linear models. It can be
concluded that the expansion coefficients affect the
critical buckling temperatures significantly rather
than the Young’s moduli. The comparisons between
the displacement profiles in the axial direction along
the outer radius of model 1 and along the inner radius
of model 2 at the critical buckling temperatures as
well as at the temperatures 100 �C above the critical
buckling temperatures are shown in Figure 13.

From Figure 13, it is found that at the critical
buckling temperature the maximum displacement
along the outer radius of model 1 increases from
0.3 to 1.6mm, and at 100 �C above the critical
buckling temperature the maximum displacement
along the outer radius of model 1 increases from
1.7 to 2.6mm. It is also shown that at the critical

buckling temperature the maximum displacement
along the inner radius of model 2 increases from
0.2 to 1.9mm, and at 100 �C above the critical buck-
ling temperature the maximum displacement along
the inner radius of model 2 increases from 2.1
to 2.5mm.

The displacement profiles in the axial direction
along the radius of model 3 with temperature-
dependent material properties at the critical buckling
temperature and 100 �C above the critical buck-
ling temperature are shown in Figure 14. It indicates
that at the critical buckling temperature the
largest displacement at the inner radius of model
3 increases from 0.4 to 1.1mm, and at 100 �C above
the critical buckling temperature the largest displace-
ment at the inner radius of model 3 increases from 1.1
to 1.6mm.

Figure 11. The load history diagrams of models with temperature-dependent coefficients of thermal expansion. (a) Model 1,

(b) model 2, and (c) model 3.

LPF: load proportionality factor.
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Figure 12. The load history diagrams of models with temperature-dependent elastic moduli and coefficients of thermal expansion.

(a) Model 1, (b) model 2, and (c) model 3.

LPF: load proportionality factor.

Figure 13. (a) The displacement profiles in the axial direction at the outer radius of model 1 and (b) the displacement profiles in axial

direction at the inner radius of model 2.
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Conclusions

Multiple finite element models have been developed
to evaluate the postbuckling characteristics of
clutch metal disks or any other ring-shaped mechan-
ical components subjected to elevated temperature.
There are two steps involved in the current study.
The first step is developing linear buckling models
to obtain the critical buckling temperatures and the
associated buckling deformation modes. The displace-
ment fields extracted from the deformed shapes
are imported to the original geometries to generate
the perturbed meshes used in the second step. The
second step is developing the nonlinear buckling
FEA models to investigate the postbuckling behav-
iors. In the current study, the linearly distributed tem-
perature fields are assumed as the reference loads for
the linear buckling analyses. The effects of the tem-
perature-dependent material properties are also inves-
tigated. It has been found that for temperature-
dependent elastic modulus and temperature-indepen-
dent coefficient of thermal expansion, the change in
the buckling temperature is insignificant. However,
the critical buckling temperature could decrease sig-
nificantly when the expansion coefficient is tempera-
ture-dependent. Therefore, a linear buckling analysis
assuming constant material properties is insufficient.
In addition, it is revealed that the maximum displace-
ments during postbuckling can be increased when the
material properties are temperature-dependent.
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