Heat Metaphor for Attention Estimation for Educational VR
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Figure 1: Heat metaphor: The teacher transfers heat to a looked-at object and students heat or cool based on where they are
looking. Attentive students’ heat can also transfer to objects (not illustrated). Heat is not directly visualized to users.

ABSTRACT

We prototype a technique, for educational VR applications, to es-
timate each student’s level of attention in real time. Our system
attaches scores to both students and objects, which change in re-
sponse to eye-tracked gaze intersections. Compared to a simple
angle-based approach, our system provides a dynamic and granular
representation of object importance and frees the lesson designer
from having to fully define objects of interest and timings. Our sys-
tem takes into account simultaneous behaviors of multiple students
and filters out brief behavioral deviations of attentive students. The
results may help a teacher or a virtual agent better guide students.

Index Terms: Human-centered computing—Virtual reality; Ap-
plied computing—Education

1 INTRODUCTION

In educational VR, it can be challenging for a teacher to remain
aware of the condition of students [8]. In person, teachers observe
cues such as eye gaze, body movement, and facial expressions
to gauge audience awareness and understanding. However, most
VR environments provide coarse information. Increasingly, VR
devices include eye tracking and other sensors, supporting increased
cues. Automated and simplified ways of observing these inputs may
improve teacher guidance or automated aids for students.

Our approach manages a score or “temperature” for each object
and user to help estimate if a student is distracted. The student’s own
score is dynamically adjusted based on the target of their gaze. This
estimated attention score is combined with information about actions
the student is performing, and the aggregated information could be
used to control the display of visual indicators for a teacher [2],
the presentation of attention-restoring cues to students [9], or an
autonomous educational agent [6].

2 RELATED WORK

There is substantial research using eye-tracking to detect student
disengagement, distraction, and inattention. Much of it incorporates
desktop eye tracking into non-immersive tutoring and distance learn-
ing software. D’Mello et al. designed an intelligent tutoring system
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that attempts to detect boredom and disengagement using student
gaze tracking [3]. The authors note the impossibility of defining
a set of acceptable gaze behaviors for every possible state, so the
system separates the screen into several zones (one for the tutor,
one for an image, etc.) and triggers a gaze-reactive intervention
when the student looks away from the tutor or image for more than
5 seconds while the tutor is speaking. Wang et al. describe an “eye-
aware” educational agent using eye movements and pupil dilation
for broader inferences about the state of a student [7], which follows
from research suggesting that pupil dilation can occur in response to
increased attentional effort [4].

There are fewer prior approaches in the context of educational VR.
Gaze-reactive hotspots were generalized by Khokhar et al. to allow
a virtual agent to detect and respond to inattention based on gaze
angle [6]. Such hotspots must be set up and positioned at objects of
interest by a lesson designer in advance, although it is noted briefly
that they could be partially automated based on teacher actions like
pointing. We build on this observation by automatically deriving
gaze targets and heat from the behavior of the teacher (and in some
cases, sufficiently attentive students).

Deep learning approaches to detect distraction from eye tracking
in VR have suggested an accuracy of about 90% [1] [5]. Although
this produced promising results offline with individual student ses-
sions, it was not validated in real time for classes with multiple
students. Our system, in contrast, uses an intuitive rule-based al-
gorithm that is both computationally cheap and easily extended to
real-time data from many students. Our system takes into account
the current behavior of other attentive peers when scoring students.

3 SCORING

The key component of our system is a dynamic attention score,
estimating student attention level. The underlying technique is based
on what a student is looking at. For instance, looking at the teacher
or a whiteboard likely indicates attentiveness, while staring at walls
or outside a window could indicate distraction.

The system assigns to each object a dynamic relevance score,
which can be thought of like a temperature (Figure 1.). The teacher,
for instance, is always relevant, and thus an active source of “heat”.
The teacher can transfer relevance to an object by looking at or
pointing to it, causing it to quickly “heat up”. Otherwise, objects
will naturally “cool off” with a gradual exponential decay. Objects,
in turn, transfer this “heat” to students that are looking at them, thus
increasing their attention scores. Students, too, “cool off” when
looking at irrelevant objects. Students with a high attention “tem-
perature” are considered attentive, and below a certain temperature



threshold, students could be considered potentially distracted.

Note that the relevance information maintained by each object is
not intended to be directly visualized: It is maintained internally to
support the final per-student estimates, which may be visualized.

This transfer of relevance is a two-way process, but the influence
of a single student is generally not enough to significantly affect
an object’s relevance. An exception is that when multiple mostly-
attentive students look at the same object, the object’s relevance can
increase substantially. This behavior is intended to prevent a teacher
from having to stop to explicitly look at or point at objects to mark
them as relevant as long as most of the class is following along to
the teacher’s guidance. It is unlikely that a large number of students
will suddenly simultaneously look at an object that the teacher does
not intend as relevant. But, if multiple students become distracted
simultaneously by a single source, it becomes marked as relevant.
Thus, in general, the relevance and attention scoring system deals
with attentional anomalies (deviation from the norm), even if the
behavior of the class is not necessarily desired by the teacher.

Per-object relevance score alone results in some drawbacks; very
large objects must have a single relevance score corresponding to
the entirety of the object, even if only a part of it is relevant. For
instance, a whiteboard might potentially take up a large amount of
space, but only has a single currently important region edited or
referenced by a teacher. Older regions may no longer be relevant,
but under this system, students looking at these regions would still
be looking at an object which is, in total, “relevant”.

A more robust solution is to store heatmaps across all object
surfaces to track how relevance accumulates over individual regions
of each object’s surface. When relevance is transferred to an object,
instead of the entire object “heating up”, only a small region centered
on the gaze intersection position increases in relevance, and the
relevance of the rest of the object continues to decrease over time.
Using a heatmap-based system of object relevance generalizes fine-
grained relevance scoring to all sizes of objects, ensuring very large
objects never become fully relevant inadvertently without requiring
the environment designer to consider lesson specifics ahead of time.

As a simple approximation, our prototype does not maintain a
full heatmap for each surface; rather, each object is given a single
dynamic “hotspot” and a small radius of relevance around it. Only
when a student’s gaze vector is within a certain angle of the vector
to the hotspot are they considered to be looking at the object, and
the hotspot moves in response to sources of relevance.

4 EXTENSIONS TO SCORING

In addition to solely using each student’s estimated gaze target for the
purposes of attention scoring, the speed of saccades is detected and
used as an input to the attention scoring algorithm. Related literature
suggests that slower saccades may indicate distraction or mind-
wandering behavior, and thus faster saccades may indicate possible
higher attentiveness. Thus, saccade speed is used to modulate the
attention decay time of the student. Additionally, pupil dilation is
reported by the eye tracker, and dilation is known to sometimes
occur in response to attentional effort.

Attention scoring is further augmented with the addition of a per-
object relevance history. Each object keeps track of a list of the most
recent student gaze intersections, specifically recording the length
of each student’s continuous gaze and the attention score of each
student. With relevance history, objects start out losing relevance
quickly, but as more attentive students look at the object, the object
retains its relevance score for longer.

Further improvements can be made by leveraging an additional
per-student attention history, which records the gaze target and gaze
length for each recent gaze intersection. This could be used, for
instance, to decrease the influence that an object’s relevance has on
a single student’s attention score if the student has been staring at it
for too long. A student with a history of paying attention could even

be given more of an influence over object relevance.

5 CONCLUSIONS AND FUTURE WORK

Our gaze-based student scoring system uses a real-time, dynamic
model of object relevance to maintain an estimated attention score
for students, without the need of a teacher or lesson director to
plan in advance which objects are important at which times. The
response of our system to gaze deviations has only been informally
validated during development, using mostly single or simulated
students. Thus, there is still a need to evaluate the approaches with
real class-like deployments.

The use of tracking-based attention estimation raises ethical con-
cerns about data privacy and potential misuse. The former can be
mitigated by allowing students to control what types of sensor infor-
mation (if any) they share, and by ensuring they understand how it
can be used. The latter might be mitigated by careful design of any
monitoring or visual indicator system that recieves or presents stu-
dent scores, to encourage teachers to only use filtered or aggregated
information as an instructional aid rather than rating or punishing
“misbehaving” students. For autonomous educational agents, the
potential for such misuse can be reduced.

We are conducting research to quantify temperamental informa-
tion using additional sensing such as the physiological sensors and
EEG. We anticipate this information could be integrated into our
broader educational VR framework and scoring system, to enable a
more complete consideration of student conditions.
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