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ABSTRACT
We propose a networked policy gradient play algorithm for
solving Markov potential games. In a Markov game, each
agent has a reward function that depends on the actions of
all the agents and a common dynamic state. A differentiable
Markov potential game admits a potential value function that
has local gradients equal to the gradients of agents’ local
value functions. In the proposed algorithm, agents use pa-
rameterized policies that depend on the state and other agents’
policies. Agents use stochastic gradients and local parameter
values received from their neighbors to update their poli-
cies. We show that the joint policy parameters converge to
a first-order stationary point of a Markov potential game in
expectation for general action and state spaces. Numerical
results on the lake game exemplify the convergence of the
proposed method.

Index Terms— Game theory, reinforcement learning,
distributed algorithms

1. INTRODUCTION

In multi-agent reinforcement learning (MARL) settings, mul-
tiple agents learn and optimize their actions in dynamic en-
vironments without the knowledge of the structure of their
rewards and the state transition dynamics [1]. Many real-life
applications in the scope of MARL, e.g., autonomous driv-
ing [2], electric vehicles [3], and power grids [4], entail com-
petition among agents where agents’ rewards and state tran-
sition dynamics depend on the joint actions of agents in the
system. Markov (stochastic) games model such competitive
MARL settings, where agents take actions to maximize indi-
vidual rewards that depend on other agents’ actions and a dy-
namic state that evolves according to joint actions taken [5].
Here, we focus on solving an important subclass of Markov
games known as Markov potential games that admit potential
value functions that capture the change in agent’s discounted
sum of rewards resulting from unilateral policy changes.

The proposed solution algorithm is based on episodic
policy gradient methods [6, 7]. In episodic policy gradient,
parametrized policies are updated using stochastic gradients
that are computed based on rewards collected over roll-out
horizons, i.e., episodes. Here, we introduce a new class of
policy gradient play algorithms, in which agents include oth-
ers’ policy parameters in their own parametrized policy func-
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tions in addition to the state. Given such parametrized poli-
cies, agents play against each other in two different episodes
with randomly generated lengths to estimate their rewards
and gradients induced by the parameterized policies. Agents
update their parameters using estimated gradients. In or-
der to be able to execute their policies, agents need access
to the policy parameters of other agents which may not be
readily available unlike the state. Instead, agents keep and
update estimates about others’ policy parameters based on
information exchanges with their neighbors. We show that
agents’ policies converge to a stationary point of the potential
value function (Theorem 1). This result leverages the facts
that random horizon sampling gives unbiased policy gradi-
ent estimates (Lemma 2), and individual beliefs on others’
parameters converge to true parameter values (Lemma 3).

Initial approaches that use episodic policy gradient play
for solving Markov games consider open/closed loop poli-
cies for continuous state and action spaces assuming reward
functions and state transitions are known [8, 9]. More recent
approaches focus only on the direct or softmax parameteriza-
tion where state and action spaces are finite, and adapt differ-
ent variations of gradient updates, e.g., projected, natural, for
solving Markov potential or general-sum games [10–17]. Our
analysis generalizes the setting of these recent studies to con-
tinuous state and action pairs given unknown reward and state
transition dynamics. Policies that incorporate other agents’
policy parameters and local exchange information are addi-
tional features of the proposed algorithm that distinguish it
from existing MARL algorithms. Numerical experiments on
the lake game (a Markov potential game [18]) demonstrate
the efficacy of networked policy gradient play.

2. MARKOV POTENTIAL GAMES

A Markov [5] game is played by N agents belonging to the
set N :“ t1, . . . , Nu. Agent i P N can choose its action
ai P Ai Ñ RK at a common state s P S , where the sets Ai and
S are not necessarily finite. The joint action profile is accord-
ingly defined as a “ pa1, a2, ¨ ¨ ¨ , aN q P AN :“ ë

iPN Ai.
The joint action profile and the prior state determine the tran-
sition probability Pa

s2,s1 “ Pps2|s1
, aq, and an initial state

s0 is distributed with ⇢ : S Ñ r0, 1s. Agent i receives re-
ward ri : S ˆ AN Ñ R determined by the action profile and
the state. Future rewards are discounted by a discount factor
� P p0, 1q to obtain the cumulative reward. We define theIC
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game by the tuple � :“ pN ,AN
,S, triuiPN ,P, �, ⇢q.

Each agent utilizes a policy function ⇡i : S ˆ ⇡´i Ñ
�pAiq to sample an action given a state and others agents’
policies, where �p.q denotes all probability distributions over
the given set, and ´i :“ N ztiu refers to the set of all agents
except agent i. When agents follow the joint policy ⇧ “ë

iPN ⇡i, each agent has a value function V
⇧
i : S Ñ R for

each state, over an infinite horizon as a discounted sum of
rewards,

V
⇧
i psq “ Eps,aq„P

” 8ÿ

t“0

�
t
ri,tpst, atq|s0 “ s

ı
, (1)

where P is the distribution of the sequence of states and ac-
tions induced by the joint policy1. Note here we include
time sub-index t P N` in ri,t, at, and st, to indicate agent
i’s reward, and joint action and common state at decision
epoch t. Similarly, we define the Q-function of agent i (Qi :
S ˆ AN Ñ R) for each state s P S , and joint action pair
a P AN given the joint policy ⇧ as below,

Q
⇧
i ps, aq “ E

” 8ÿ

t“0

�
t
ri,tpst, atq|s0 “ s, a0 “ a

ı
. (2)

Potential games in static games are an important class of
games that assume the existence of a potential function cap-
turing the change in individual utility function values based
on unilateral action changes [19]. We define Markov poten-
tial games similarly by assuming the existence of a poten-
tial value function that mirrors changes in every agent’s local
value function due to unilateral policy deviations.

Definition 1 (Markov Potential Games) A game � is a
Markov potential game, if there exists a potential value
function V

⇧psq : ⇧ ˆ S Ñ R that is equal to the dis-
counted sum of potential rewards rt P R, i.e., V

⇧psq “
E

” ∞8
t“0 �

t
rtpst, atq|s0 “ s,⇧

ı
, such that for all i P N

V
⇧̂
i psq ´ V

⇧
i psq “ V

⇧̂psq ´ V
⇧psq for all s P S, (3)

where ⇧̂ and ⇧ are two joint policies differing in the policy of
agent i P N only, i.e., ⇧̂ “ p⇡̂i,⇡´iq and ⇧ “ p⇡i,⇡´iq.

We assume that agents’ joint policies are parametrized by
unconstrained and continuous variables ✓ “ p✓i, ✓´iq P R

M

where individual policy parameters ✓i P R
Ki are such that

the following holds
∞

iPN Ki “ M . Given the parameterized
policies ⇧✓ : RM ˆS Ñ �pAiq, we have differentiable value
functions ui : RM Ñ R defined as follows as per (1),

uip✓i, ✓´iq “ V
⇧✓
i psq “ E⇧✓

” 8ÿ

t“0

�
t
ri,tpst, atq|s0 “ s

ı
.

(4)
We further define differentiable Markov potential games

as follows.
1For brevity, we remove subscript from the expectation in the rest of the

paper, unless clarity necessitates it.

Definition 2 (Differentiable Markov Potential Games) A
game � is a Markov potential game with differentiable in-
dividual value functions ui, if there exists a potential value
function u : RM Ñ R such the following holds,

riuip✓i, ✓´iq “ riup✓q for all ✓ P RM (5)

where rip.q “ Bp.q
B✓i denotes the partial derivative of a given

function with respect to the agent i1s parameters ✓i.

3. POLICY GRADIENT PLAY WITH NETWORKED
AGENTS

Given the joint parameterized policy, ⇧✓ : RM ˆ S Ñ
�pAN q, agent i’s policy ⇡i,✓ :“ ⇡ipai|s, ✓q is conditionally
independent given the state and joint policy parameters, i.e.,

⇧✓pa P AN
q |sq “

π

iPN
⇡i,✓pai P Ai,q|sq (6)

where AN
q “ ë

iPN Ai,q and Ai,q are countable measurable
partitions over the joint and individual set of actions respec-
tively over which we can define probability distributions such
that it holds Ai “ î8

q“1 Ai,q . Note that each agent would
like to maximize its cumulative rewards against other agents’
policies given the joint action dependent state dynamics.

Next, we provide an expression of the gradient of agent
i’s value function in terms of the Q-function and sum of log-
policies—see Section 7 for proof.

Lemma 1 Given the parameterized value functions ui :
RM Ñ R, the gradient of each value function ui with respect
to agent i’s parameters ✓i is equal to,

riuip✓i, ✓´iq“ 1

p1 ´ �qE
“
Q

⇧✓
i ps, aq

ÿ

nPN
ri log ⇡n,✓pan|sq

‰
.

(7)

In policy gradient play, each agent uses stochastic gradi-
ents to update its policy parameters,

✓i,t “ ✓i,t´1 ` ↵tr̂iuip✓i,t´1, ✓´i,t´1q, (8)

where ↵t is a common step size (for the sake of simplicity),
and r̂iuip✓i,t´1, ✓´i,t´1q is the stochastic gradient computed
based on rewards collected on a roll-out horizon (episode).

We note that the local policies ⇡i and the stochastic gradi-
ents r̂iui depend on other agents’ policy parameters. Other
agents’ parameters ✓´i may not be readily available to agent
i. Here we assume agent i keeps an estimate of other agents’
policy parameters based on information received from its
neighbors Ni :“ tj : pi, jq P Eu in the communication net-
work G “ pN , Eq. Agent i updates its estimate about agent
j’s policy parameters ✓̂ij,t locally as follows,

✓̂
i
j,t “

ÿ

lPNi
îtiu

w
i
j,l✓̂

l
j,t, (9)
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where w
i
j,l • 0 is the weight that agent i has on agent l’s

estimate of agent j’s parameters.

Assumption 1 The network G is strongly connected with
weights satisfying a) wi

j,l • ⌘ for ⌘ ° 0 only if l P Ni Y tiu,
otherwise w

i
j,l “ 0, b) wi

i,i “ 1, and c)
∞

lPNi
îtiu w

i
j,l “ 1

for all i, j.

The stochastic gradient r̂iui in (8) is computed by esti-
mating the Q-values Q̂i and gradient of log-policy ri log ⇡✓,
and by substituting these estimates in (7) along with param-
eter estimates ✓̂

i
´i,t. Here, we employ and adapt the ran-

dom horizon sampling method to devise two episodes over
which r̂i log ⇡✓ and Q̂i are computed. As noted in [20], the
sequential decision-making structure of the RL setting cre-
ates a bias in the gradient estimates in multi-agent settings.
The two episodes with random horizons T1 and T2 gener-
ated from a geometric distribution Geomp1 ´ �

0.5q such that
PpTk “ ⌧q “ p1 ´ �

0.5q�0.5ˆ⌧ with k P t1, 2u ensure unbi-
ased estimates—see Lemma 2. The steps of the episodes and
updates are detailed in Algorithm 1.

Algorithm 1 Networked Policy Gradient

1: Input: Local estimates ✓̂
i
´i,0 and G “ pN , Eq, initial

state s0 and initial policy ⇧✓,0, and discount factor �.
2: for t “ 1, 2, ¨ ¨ ¨ do
3: Draw T1 „ Geomp1 ´ �

0.5q and reset s0.
4: Sample actions ai,0 „ ⇡i,✓̂t´1

p.|s0q for all i P N
5: for ⌧ “ 1, 2 ¨ ¨ ¨ , T1 do
6: Reach state s⌧ „ Pai,⌧

s⌧ ,s⌧´1

7: Sample and take actions, ai,⌧`1 „ ⇡i,✓̂t´1
p.|s⌧`1q

for all i P N
8: end for
9: Compute ri log ⇡✓paT1`1|sT1`1q for all i P N

10: Draw T2 „ Geomp1 ´ �
0.5q and set Q̂i “ 0.

11: for ⌧ “ 1, 2, ¨ ¨ ¨ , T2 do
12: Receive rewards ri,⌧`T1 for all i P N .
13: Collect rewards Q̂i “ Q̂i ` �

⌧{2
ri,⌧`T1 for i P N .

14: Reach state s⌧`T1`1 „ Pai,⌧
s⌧`T1`1,s⌧`T1

.
15: Sample and take actions ai,⌧`T1`1 „

⇡i,✓̂t´1
p.|s⌧`T1q for all i P N .

16: end for
17: Compute Q̂i “ Q̂i ` �

⌧{2
ri,T1`T2`1 for i P N

18: Estimate stochastic gradients by substituting Q̂i and
ri log ⇡✓ for the corresponding terms in (7).

19: Update parameters (8) with ✓´i,t´1 replaced by
✓̂´i,t´1.

20: Update local copies ✓̂ij,t using (9) for j P ´i and i P N .
21: end for

4. CONVERGENCE OF NETWORKED POLICY
GRADIENT PLAY IN MARKOV POTENTIAL GAMES

We make the following assumption on the gradient step size.

Assumption 2 The step size ↵t is in the order of ↵ “ Op1{tq.

This assumption is equivalent to the standard assumption of
square summable but not summable step-sizes commonly
used in convergence of gradient algorithms. The local
stochastic gradient obtained by Algorithm 1 is an unbiased
estimate of the local gradient in (7).

Lemma 2 The stochastic estimate r̂iuip✓i, ✓´iq of the policy
gradient in (7) is unbiased and bounded for all i P N .

Similar to [20], the result follows from the fact that we col-
lect rewards using special discount rates �⌧{2 during the two
episodes with independent and identically sampled random
horizon lengths T1 and T2—see steps 13 and 17 in the Algo-
rithm. Next, we state the convergence of beliefs to true policy
parameter values.

Lemma 3 If ✓̂ij0 “ ✓j0 is satisfied for any pair of agents
pi, jq P N ˆ N ztiu, then local copies ✓̂

i
j,t converges to ✓j,t

with the rate Oplog t{tq in expectation, i.e. Ep||✓̂ij,t ´ ✓j,t|| “
Op log t

t q.

The result can be proven using the facts that change in param-
eters is bounded, the step size are such that ↵t “ Op1{tq, and
the weights create a row stochastic matrix. Using the unbi-
ased stochastic gradients (Lemma 2) and fast-tracking of the
parameter values (Lemma 3), we have the following result,
thanks to diminishing stepsizes.

Theorem 1 Suppose potential game property holds (5) for
the agents with networked policies defined in (6). Let t✓tut•1

be the sequence of policy parameters generated by Algorithm
1. Then, the policy parameters t✓tut•1 converge to a first-
order stationary point of the potential function in expectation,

lim
tÑ8

Ep||r✓tup✓tq||2q “ 0. (10)

This result implies that agents reach a Nash equilibrium (NE),
i.e., optimal behavior, of networked policies for convex poten-
tial value functions. For non-convex value functions, a sta-
tionary point is not necessarily a NE, implying that the con-
vergence is to an approximate NE.

5. NUMERICAL EXPERIMENTS

Each agent determines its rate of phosphorus usage ai,t

around a lake. The state st P R, representing the level of
phosphorus in the lake, has the following dynamics

st “ bst´1 ` s
c
t´1

sct´1 ` 1
`

ÿ

iPN
ai,t´1 (11)

where b and c are positive constants. Agent i’s reward in-
creases logarithmically with its phosphorus usage, while, at
the same time, it prefers to keep the lake phosphorus free,

ri,t “ logpdai,tq ´ s
2
t , (12)
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Fig. 1. Networked policy gradient in lake
game. (Top) Average norm of gradients of agents
1
N

∞
iPN ||riuip✓i, ✓̂q|| (Bottom) Average estimation er-

ror 1
NpN´1q

∞
iPN

∞
jPN ztiu ||✓i,t ´ ✓̂

i
j,t||.

where d ° 0. The lake game is a Markov potential game [18].
We consider N “ 5 agents with discount rate � “ 0.9,

and game parameters b “ 0.45, c “ 2, and d “ 100. Agents
use a policy with Ki “ 2 real-valued parameters:

⇡i,✓ “ sigmoid p✓i,ss ` ✓i,´ip
1

pN ´ 1q
ÿ

jPN ztiu
p✓j,sqq. (13)

We use sigmoid transformation to map unconstrained vari-
ables to the range r0, 1s. We set s0 “ 0 in all episodes and
↵t “ 0.005{t. We use a ring communication network with
weights wi

i,l “ 0.30 and w
i
j,l “ 0.70{|Ni| for all j P Ni.

Fig. 1 (Top) shows the average of individual gradients
over 20 runs with randomly initialized policy parameters con-
verges around a stationary point of the value functions. Fig. 1
(Bottom) indicates that the beliefs on other agents’ param-
eters converge to the actual parameter values. The two ob-
servations confirm the convergence of the joint policies to a
stationary point of a potential value function.

Remark 1 Note that the policy defined in (13) is a deter-
ministic policy, and the analytical definition of determinis-
tic policy gradient is different from the stochastic version. A
stochastic policy is equivalent to a deterministic policy when
its variance goes to zero [21].

6. CONCLUSION

We devised a novel class of networked policy gradient play al-
gorithms for solving Markov potential games. The algorithm
has two distinct features from existing MARL algorithms: lo-
cal policies that depend on others’ policies (not just the state),
and agents exchanging policy parameters over a communi-
cation network. We showed that agents beliefs on others’
policy parameters convergence to true values. The algorithm
includes random roll-out horizons that achieves unbiased es-
timates of the policy gradients. Given the unbiased gradients
and convergence of beliefs on others’ policy parameters, we
showed convergence of the algorithm to a stationary point.
We validated our results with numerical experiments.

7. APPENDIX

7.1. Proof of Lemma 1

By Policy Gradient Theorem [7], we define the gradient in the
following,

riuip✓i, ✓´iq “
ª

aPA,
sPS

Q
⇧✓
i ps, aqd⇧✓ri⇡✓pa|sq da ds,

(14)

where d⇧✓ “ ∞8
t“0 �

t
⇢
a
s0,s,t is the discounted sum of density

functions ⇢as0,s,t of the transition probability function Pa
s0,s,t

from the initial state s0 to the state s given the joint action a

at t steps ahead, and similarly ⇡✓pa|sq stands for the density
function of the joint policy ⇧✓.

Then, applying the log-likelihood trick by dividing and
multiplying the gradient of ri⇡✓pa|sq by the density ⇡✓pa|sq,
it becomes as follows,

riuip✓i, ✓´iq“
ª

aPA,
sPS

Q
⇧✓
i ps, aqd⇧✓⇡✓pa|sqri⇡✓pa|sq

⇡✓pa|sq da ds

(15)

“
ª

aPA,
sPS

Q
⇧✓
i ps, aqd⇧✓⇡✓pa|sqri log ⇡✓pa|sq da ds.

(16)

We divide the integral by p1´�q to have a proper expectation,
and using the definition of networked policies (6), the policy
gradient becomes,

“
ª

aPA,
sPS

Q
⇧✓
i ps, aqd⇧✓⇡

✓pa|sq
ÿ

nPN
ri log ⇡

✓
npan|sq da ds

(17)

“ 1

p1 ´ �q Eps,aq„P
“
Q

⇧✓
i ps, aq

ÿ

nPN
ri log ⇡n,✓pan|sq

‰
.

(18)
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