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Abstract—Information design involves a designer with
the goal of influencing players’ actions in an incom-
plete information game through signals generated from
a designed probability distribution so that its objective
function is optimized. We consider a setting in which the
designer has partial knowledge on players’ payoffs, and
wants to maximize social welfare. We address the uncer-
tainty about players’ preferences by formulating a robust
information design problem against the worst-case payoffs.
When the players have quadratic payoffs that depend on
the actions and an unknown payoff-relevant state, and sig-
nals on the state that follow a Gaussian distribution, the
information design problem under quadratic design objec-
tives can be stated as a semidefinite program (SDP) (Ui,
2020). Given this fact, we consider ellipsoid perturbations
over payoff coefficients in linear-quadratic-Gaussian (LQG)
games. We show that we can obtain a similar SDP formu-
lation that approximates the social welfare maximization
via robust information design. Numerical experiments iden-
tify the relation between the uncertainty level on players’
payoffs and the optimal information structures.

Index Terms—Information design, robust optimization,
game theory.

[. INTRODUCTION

N INCOMPLETE information game is comprised of

multiple players who take actions to maximize their util-
ities which depend on actions of other players and unknown
states. Incomplete information games are used to model
federated edge learning [2], electricity spot market [3], cyber-
defense in EV charging [4] and traffic flow in communication
or transportation networks [5], [6].

Information design problem entails decision over infor-
mativeness of signals given to players regarding the payoff
state so that induced actions maximize a system level objec-
tive. Information designer as an entity commits to an optimal
probability distribution of signals conditional on the payoff
states before state realization (for an example in pandemic
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Fig. 1. Information designer sends (dashed arrows) optimally designed
signals on the risks of infection from an emerging infectious disease to
the players who can be susceptible (blue), infected (red) or recovered
(green), so that they follow the recommended health measures, e.g.,
social distancing or masking that reduce the risk of an outbreak. An
individual’s infection or disease transmission risk is determined by its
contacts (shown by solid edges)-see Example 2. For instance, player 1
(susceptible) has one infected neighbor (player 5) that it can contract the
disease from.

control see Fig. 1). The selected distribution maximizes the
designer’s objective and adheres to equilibrium constraints.
Various entities such as social media companies [7], adver-
tisements platforms [8] and public health agencies [9] could
be considered as information designers. In control systems,
information design is employed for routing games [10],
vehicle-to-vehicle communication [11], and queue manage-
ment under heterogeneous users [12].

In this letter, we propose a robust optimization approach to
the information design problem considering the fact that the
designer cannot know the players’ payoffs exactly. Indeed,
while the designer may be knowledgeable about the payoff
relevant random state, it may have uncertainty about the pay-
off coefficients of the players. For instance, in the pandemic
control example in Fig. 1, while the public health department
may have near-certain information about the potential risks of
a disease or intervention, it may not know how the society
weights the risks and benefits in their decision-making. Here,
we assume the designer has partial knowledge about the play-
ers’ payoffs, and wants to perform information design over the
payoff relevant states.

When the payoffs of the players are unknown, the designer
cannot be sure of the rational behavior under a chosen
information structure. We formulate this problem as a robust
optimization problem where the designer chooses the “best”
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optimal information structure for the worst possible realization
of the payoffs. That is, we do not make any assumptions on
the distribution of the players’ payoff coefficients. Specifically,
we assume the players have linear-quadratic payoffs with
coefficients unknown by the designer. We further assume that
the payoff relevant states and signals generated by the designer
come from a Gaussian distribution. In this setting, we show
that the robust information design with the goal to maximize
social welfare can be approximated with a SDP given ellipsoid
perturbations on the payoff coefficients (Theorem 2). The SDP
formulation provides a distribution over the actions that the
designer can send as signals. The approximation stems from
the loss of the obedience condition (incentive compatibility)
on the actions suggested by the designer for the realizations
of the payoffs other than the worst-case.

In Bayesian persuasion, in which there is a single
player [13], robustness is explored in the worst-case, online
and various other settings [14], [15], [16], [17], [18]. For
instance, [19] considers information design where the designer
learns unknown payoffs via auctions. Instead, here we con-
sider the multi-player setting, i.e., information design, and
assume the game is unknown. In our setting, the designer
maximizes the worst-case objective given rational behavior.

Notation: We use A;; to denote the element in the ith
row and jth column of matrix A. We use e to represent
the Frobenius product, e.g., A e B = }7i'| > 7" A;;B;; for
A € R™ and B € R™. We represent the set of m x m sym-
metric and symmetric positive semi-definite matrices using P
and P, respectively. tr(-) denotes the trace of a matrix. / and
O indicate the identity and zero matrices, respectively. 1 is a
column vector of all ones.

IIl. GENERIC ROBUST INFORMATION DESIGN PROBLEM
FOR WELFARE MAXIMIZATION

An incomplete information game involves a set of n € N*
players belonging to the set N/ := {1, ..., n}, each of which
selects actions a; € A; to maximize the expectation of its
payoff function uf (a, y) where a = (a;);jen € A is the action
profile, y = (yi)ien € T is the payoff state vector, and 0 € ®
is a payoff parameter. Players know the payoff parameter 6, but
they do not know the payoff state y. Player i forms expectation
about the payoff state y based on the prior on the state ¥ and
its signal/type w; € ;.

The information designer does not know the payoff param-
eter 6, but is more informed about the payoff state y than
the players. Specifically, an information designer aims to
maximize a system level objective function f? : A x I' — R,
e.g., social welfare, that depends on the actions of the players
(a), and the state realization (y) by deciding on an information
structure ¢ belonging to the set of probability distributions over
the signals Z. That is, ¢ is a conditional probability on the
signals {w;};cAr given the payoff state vector y, i.e., (P(w | ¥))
belonging to the space of all such conditional probability dis-
tributions Z. The information structure determines the fidelity
of signals {w;};cas that will be revealed to the players given a
realization of the payoff state vector y.

We introduce social welfare as a design objective.

Definition 1 (Social Welfare): Social welfare design objec-
tive is the sum of individual utility functions,

ffay) = z%uf(a, ). (1)

Social welfare is a common design objective used in
congestion [6], global [20] or public goods games [9].

We represent the incomplete information game given 6 €
® and a prior ¥ on the state y by the tuple Gy =
N, AT, (i Yien {oidienss ¢, ¥} We use Go = {Gy : 0 €
®} to refer to the set of possible games.

A strategy of player i maps each possible value of the private
signal w; € ©; to an action s;(w;) € A;, i.e., s;i : Q; — A;.
A strategy profile s = (s;);en 1s a Bayesian Nash equilib-
rium (BNE) with information structure ¢{ of the game Gy, if
it satisfies the following inequality

Ec [ (si(p), s—is Y)|wil = Ec[dl (s s—i, Y)|wil, ()

for all a; € Aj, w; € Qi € N, and s_; = (sj(wj))ji is the
equilibrium strategy of all the players except player 7, and E,
is the expectation operator with respect to the distribution ¢
and the prior . We denote the set of BNE strategies in a
game Gy with BNE(Gy).

In this letter, the designer does not make any distributional
assumptions on the payoff parameter 6, and aims to select the
best signal distribution for the worst case scenario, i.e.,

. 0

min I{nea%(E([f (s,¥)] s.t. s € BNE(Gy). 3)
The outer optimization problem in (3) evaluates to the
designer’s objective under the worst possible payoff parame-
ter realization, and BNE actions given a signal distribution ¢.
The designer wants to do the best it can to maximize the
system objective assuming the realization of the worst-case
scenario. We note that the information design problem is not
a Stackelberg (leader-follower) game, since the players are not
strategic against the designer’s strategy and objective [13].

We denote the optimal solution to (3) by ¢*. Given the
robust optimal information structure ¢*, the information design
timeline is given in the following:

1) Designer notifies players about ¢*

2) Realization of the payoff parameter 6 and payoff state

v, and subsequent draw of signals w;, Vi € N from
" (@, y)
3) Players take action according to BNE strategies under
information structure ¢* in game Gg.
The generic robust information design problem in (3) is not
tractable in general. In the following we make assumptions
on the payoff structure and the signal distribution to attain a
tractable formulation.

A. Linear-Quadratic-Gaussian (LQG) Games

An LQG game corresponds to an incomplete information
game with quadratic payoff functions and Gaussian
information structures. Specifically, each player i € N
decides on its action @; € A; = R according to a payoff
function

Wl (a,y) = —H;al —2 ZHi,jaiaj + 2y,a; 4
J#

where A = R” and I' = R” that is a quadratic function of
player i’s action, and is bilinear with respect to a; and a;, and
a; and y. We collect the coefficients of the quadratic payoff
function in a matrix H = [H; jlnxn. The payoff parameter 0,
unknown to the designer in (4), is the coefficients matrix H,
i.e., 8 = H. We note that the utility in (4) can have other terms
that depend on a_; or y, but not on player i’s action a;.
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Payoff state y follows a Gaussian distribution, i.e., y ~
¥(u, ¥) where ¥ is a multivariate normal probability dis-
tribution with mean p© € R” and covariance matrix X. Each
player i € N receives a private signal w; € ©; = R. We define
the information structure of the game ¢ (w|y) as the conditional
distribution of w = (w;);ey given y. We assume the joint dis-
tribution over the random variables (w, y) is Gaussian; thus,
¢ is a Gaussian distribution.

Next, we provide two examples of LQG games.

Example 1 (Beauty Contest Game): Payoff function of
player i is given by

(&)

where 0 € [0,1] and a_; = a]/ (n — 1) represents the
average action of other players TJhe first term in (5) represents
the players’ urge to take actions close to the payoff state y.
The second term accounts for players’ tendency towards tak-
ing actions in compliance with others. The constant 6 gauges
the importance between the two terms. The payoff captures
settings where the valuation of a good depends on both the
performance of the company and what others think about its
value [20].

Example 2 (Social Distancing Game): Player i’s action
a; € RT U {0} is its social distancing effort to avoid the
infectious disease contraction/transmission (see also Fig. 1).
The risk of infection depends on unknown disease specific
parameters, e.g., severity, infection rate, and the social
distancing actions individuals in contact with player i. We
define the payoff function of player i as follows,

wl(a,y) =~ —0)(a;—y)* —0(a; —a_p)?

— Siapri(a, y) (6)

where the risk of infection is r; ==y =23, H;jaj, 0 < §; <
1 is the risk reduction coefficient. In the ({ finition of risk
ri, ¥ denotes the risk rate of the disease such as infection rate
or severity, and H;; determines the contacts of player i and
the intensity of the contacts. The first term in (6) represents the
cost of social distancing. The second term in (6) denotes the
overall risk of infection that scales with the player’s social
distancing efforts.

In the examples above, there is a common payoff state, i.e.,
yi=y forieN.

Next we state the main structural assumption on the
unknown payoff parameter H of the LQG game.

Assumption 1: We assume the following affine perturbation
structure on the payoff matrix H,

Wl (a,y) = —H; a7 — (1

Hij=[Holij+vijeij, Yi,jeN (7
where Hj is the nominal payoff matrix, v;; € R, is an element
of the unknown perturbation matrix v € R"™" which covers a
given closed and convex perturbation set )V such that 0 € V
and ¢;; is the constant shift.

We note that while the actual payoff parameters H are
unknown to the designer, they are known by the players. The
designer only knows the nominal payoff matrix Hp, potentially

obtained from past data.

B. From Signal to Action Distributions

We define the distribution of actions induced by the
information structure under a given strategy profile as follows.
Definition 2 (Action Distribution): An action distribution is
the probability of observing an action profile ¢ € A when

players follow a strategy profile s under ¢, which can be

computed as
D tly).

w:s(w)=a

p(aly) = ®)

According to the definition, the probability of observing the
action profile a is the sum of the conditional probabilities of
all signal profiles w under ¢ that induce action profile a given
the strategy profile s.

Definition 3 (Equilibrium Action Distribution Set): The set
of equilibrium action distributions induced by BNE strategies
under an information structure ¢ € Z for game Gy is

Bg(¢) = {¢ : ¢ satisfies (8) for s € BNE(Gy) given ¢ € Z}.
)

We begin by stating the BNE condition in (2) by a set of
linear constraints for LQG games given the payoff matrix H.
Lemma I: Define the covariance matrix X € P%_" as

_ [ var(a) cov(a, y)]

cov(y, a) var(y) (10)

For a given payoff matrix H where H+H' is positive definite,
the BNE condition in (2) can be written as the following set
of equality constraints,

Z H;jX;ij— X

in+i — 0»
jeN

where X;; = cov(a;,aj) fori < n, and j < n, and X; ,y; =
cov(ai, i).

Proof: See the Appendix. |

The condition in (11) ensures that X is a Bayesian cor-
related equilibrium (BCE)—see [21] for a definition. When
6 is known, we can state the designer’s maximization
problem in (3) as the determination of an action distribu-
tion subject to the constraint that actions belong to By (¢),
i.e., maxgep,(¢) Eglf(a, y)]. Indeed, we can state the design
problem as a SDP using X in (10) as the decision variable,
subject to the BCE constraints in (11)—see [1]. In such a case,
the players would not benefit from deviating from the recom-
mended actions because they would satisfy the obedience con-
dition as per the revelation principle, see [21, Proposition 1].
However, this principle does not apply in the setting where
0 is chosen adversarially. Next, we address this issue in the
finite scenario and ellipsoid perturbation settings.

ieN an

I1l. ROBUST INFORMATION DESIGN
UNDER FINITE SCENARIOS

In the following, we express the robust information design
problem under a finite set of scenarios as a mixed integer SDP
using action distributions.

Theorem 1 (Finite-Case): Suppose Assumption 1 holds.
Let the design objective f?(a, y) be quadratic in its argu-
ments with the coefficients stored in matrix F € R2*2"_je.,
f%a,y) = [a y1TFla y). Assume the design objective
coefficients do not depend on H. Consider a finite pertur-
bation vector with C scenarios, and let v, € R"™" refer to
perturbation vectors corresponding to one of the scenarios
ceC=/{1,...,C}. The following mixed-integer SDP formu-
lation relaxes the BCE conditions in the robust information
design problem (3):

min max FeX

12
ye€f0, l},CEC XGP?& ( )
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c
st Y ye=1, (13)
c=1
Ye(Ro 0 X + Z velijeijXij) =0,Vle N,ceC
ENEV
(14)

M o X =cov(vi, 1), Vk,leN withk<I, (15)

where X is defined in (10), Ry, € P*",1 € N is given as:

[Hols, if i=j=1,
[Holij/2 if i=L1<j<n,j#l
=12 i i=Lj=n+1,
[Ro,ilij = [Holii/2 if j=L1<i<n,i#l (16)
—1/2 if j=Li=n+l,
0 otherwise,
and My € P?" is given as:
172 ifk<lii=n+kj=n+I,
172 k<l i= l,j= k,
My =1 shi=ntlbj=ntk g

1 ifk=Li=n+kj=n+1,
0 otherwise,
and ) refer to the elements of the perturbation vector with
Vi={i,jl:i=j=Ilvi=L1<j<n,j#I
vi=L1<i<n,i#l}. (18)

Proof: We can express the expected quadratic objective
using the Frobenius product as follows,

%mmm=%WﬁyWﬁﬂ (19)
=FeX (20)
where F = {gi; {g;i € P?, and note that [F1;;

denotes the i, jth n x n submatrix.

Let ¢* be the worst-case scenario from the perspective of the
designer. The designer chooses X* that maximizes its objective
F e X subject to rational behavior of players in the worst case
scenario. As per Lemma 1, we have

Y Hi X=X, =0, VieN 1)
JjeN
Z([Ho]i,j + erlijei)Xi; — Xipi = 0, Vie N (22)
JjeN

We rewrite (22) in terms of matrices Ry, VI € N as
in (16) and X as in (10) to obtain (14). Minimization over
ve, {1, 2, .., C} enforces the constraint ¢* among the set of
constraints in (14) to be selected. Constraint (15) corresponds
to the assignment of var(y) to [X]p2. Constraint (15) is
not affected by perturbations to H. While X* satisfies the
BCE condition in (11) for c¢*, it does not satisfy it for
celC\c*. |
According to the formulation in (12)-(15), the solution
entails finding the covariance matrix X that maximizes F e X
for the worst possible scenario. We note that an alternative
equivalent formulation can entail C covariance matrices, i.e.,
X1, ..., Xc, and leave out the integer variables {y¢}¢=1,...c.
The formulation in (12)-(15) relaxes the BCE condition for
scenarios that are not the worst-case. For illustration purposes,
consider C = 2 scenarios. Assume ¢ = 1 is the worst case

scenario, i.e., y; = 1 and y; = 0. In such a case, X* will be a
BCE for ¢ = 1 exactly, while the BCE condition in (11) will
be approximately satisfied for ¢ = 2. Specifically, we have

Z([HO]‘J + [VZ]ZJEIJ)X[/
jeN

= Z([Ho]i,j + alijeij + ilijeiy — lijei)Xi; — Xi oy
jeN

l n—H

(23)

= Z([Vz]i,jéi,j — lijei)Xi; >0, VieN. (24)
jeN

We can interpret this relation as the optimal solution X* being

an approximate BNE for the good scenario ¢ = 2.

Remark 1: The standard robust optimization problem in (3)
requires that X* is feasible for every 6 € ©. The formula-
tion for this problem would entail getting rid of the integer
variables from the formulation in (12)-(195), i.e., yo = 1 for
each (14) and removing (13). This formulation may restrict the
feasibility region drastically, as is often the issue with robust

optimization problems with equality constraints [22].

IV. RoBUST WELFARE MAXIMIZING INFORMATION
DESIGN UNDER ELLIPSOID UNCERTAINTY

We assume the following ellipsoidal structural form for the
perturbation vectors in (7) for [ € N,

Vi=Ball, = {v: [lvilla < p,vi = {vilijlijey}, (25)

where p > 0 and )/ is given in (18). Under convex continuous
uncertainty sets as the one above, the number of scenarios
C is infinite. Thus, the formulation in Theorem 1 where we
enforce BCE constraints in (11) exactly for the worst-case
scenario, and annul the other cases using integer variables is
not viable. Moreover, enforcing the BCE constraints in (11) for
all perturbations v € V; may limit the solution space drastically
as per Remark 1. Instead, here we relax the BCE constraint
in (11) as follows

| ZHi,in,j — Xintil < a,
jeN

ieN (26)

where o > 0 is a finite constant. This relaxation guarantees
an approximate tractable solution to the information design
problem in which the designer aims to maximize social welfare
under ellipsoidal perturbations.

Theorem 2: Consider the social welfare in (1) as the
designer’s objective f?(a,y). Assume H is given by (7)
and perturbation vectors v;, VI € N exhibit ellipsoid uncer-
tainty (25). Consider the following SDP for o > 0:

max ¢ (27)
XeP2 ¢t
n2p n n
st FoeX ———— DO (eiXip? =, (28)

i=1 j=1

RojeX+p Z (€ Xi)?<a, VieN (29
(()INY:
—Rp e X+ p Z (Ei,in’j)z <a, VieN (30
(()INY]
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Vk,le N with k <1, (31)
where the matrices Ro; and Mj; are as defined in (16)
—Hy [ 2nx2n

I ol€ R . If the
worst-case scenario is realized and o = 0O, then the designer’s
objective value F e X*, where X* is an optimal solution
to (27)-(31), attains the optimal objective value for (3).

Proof: We can express the social welfare objective in (1)
in the form F e X with F = _IH é —see [23]. We start by
writing the social welfare objective as a constraint ¥ e X > ¢
under ellipsoid uncertainty:

My ¢ X = cov(yk, V1),

and (17), respectively, and Fy =

n n
FeX=F) .X+szi’j6i’jxi’j >t (32)
i=1 j=1
where t represents the designer’s objective value. In the
above summation, all elements of the perturbation matrix v

are involved. Given the assumption of ellipsoid perturbations

in (25), it is guaranteed that v is within a ball of radius 52,
i.e., v €Ball 2, . We can write (32) as a minimization problem

. 2n—1 .
that aims to find the worst case scenario:
n

n
min vi,je,-,le-,j <FpeX—t

2
V<32 i=1 j=1

(33)

Solution to (33) is the tractable robust constraint given
in (28) [22, Sec. 1.3]. Next, we substitute H in (7) into (26),

<a VieN,veV. (34

Z([Ho]ij + vijeipXij — Xinti
jeN

We can rewrite (34) in terms of matrices Ry, VI € A and X
as in (10):

R()’l o X + Z vi,je,»,in,j <a, Ve N. 35)
(MINY]
We split the absolute value into two linear constraints (positive
and negative sides). When we write the maximization problem

over the uncertain constraint (35) for the positive side, we have

Z vij€ijXij <a—RojeX, Vle N (36)
(NINY]
where ) is given in (18). Solution to (36) gives the tractable
constraint (29) [22, Sec. 1.3]. Repeating the same steps for the
negative side yields (30). Constraint (31) enforces assignment
of known covariance matrix of payoff states, cov(y) to the
corresponding parts of X.

max
[vill<p

2
When o = 0 and H is such that ||[v]|; = %, the designer’s
objective is equal to the solution to (3) with H in (7). [ |
It is easy to check that no information disclosure X, =

[0 0 is a feasible solution even when o = O—see [1]
0 var(y)
for the derivation of X,,,. As noted in Remark 1, formulation
with o = 0 may be too restrictive. When « > 0, the incentive
compatibility of the solution X* is compromised, but the set
of feasible solutions increases. We also note that the BCE
conditions in (11) for the scenarios that are not the worst case
are not satisfied, as was the case in the finite scenarios setting.
Given an optimal solution X*, the designer can draw actions
from a Gaussian distribution with mean 0 and covariance
matrix X*, and send these values to the players as signals.
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Fig. 2. Contour plots of (a) normalized Frobenius matrix norm dis-
tance || X* — Xnol| F between the optimal covariance matrix (X*) and no
information disclosure covariance matrix (Xno), and (b) optimal objective
value with respect to uncertainty ball radius p and diagonal shift €1 to
coefficient matrix H under a symmetric supermodular game with social
welfare objective. Optimal solution X* approaches to no information
disclosure as p and ¢4 increase.

V. NUMERICAL EXPERIMENTS

We consider a designer that wants to maximize the social
welfare of n = 5 players. The designer knows the nominal
payoff matrix given as follows: [Hpl;; =5 fori e {1,...,5},
and [Hol;j = —1 for i # j, i,j € {1,2,..,5}. The vari-
ance of the unknown payoff state y is given as follows:
var(y)i; = 5 for i = {1,...,5}, and var(y);; = 0.5 for
i #j, i,j €{1,2,.,5}. We consider ellipsoid perturbations
with p € {0.7, 1, 1.3, .., 3.4} and let ¢ = 0.1. Given the setup,
we solve (27)-(31) in order to obtain the optimal information
design X*.

We analyze the effects of shifts ¢; ; defined in (7) by assum-
ing the diagonal elements and off-diagonal elements of shift
matrix are homogeneous, i.e., €; = €1 and ¢;; = € for all
i,j=1,...,n for constants €| and €.

In order to systematically analyze the effects of the
shifts, we fix the off-diagonal shifts to a small value
eo = 0.001, and vary the diagonal shift € €
{0.03,0.04, 0.05, .., 0.12}. Fig. 2(a) shows that as the uncer-
tainty ball radius p and diagonal shift €; increases, the
optimal information structure remains a partial information
disclosure but gets closer to the no information disclosure.
Fig. 2(b) shows that social welfare decreases under increasing
uncertainty.

We can discuss Fig. 2 in terms of the beauty contest game,
which is a supermodular game. If we consider the common
goods in the beauty contest game as a stock, we see that
a social welfare maximizing information designer, i.e., the
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company whose stock is traded releases less information about
the stock value y, when the uncertainty about its shareholders’
payoffs H increase.

VI. CONCLUSION

This letter considered the problem of designing information
structures in incomplete information games when the designer
does not know the game payoffs exactly. This is a common
situation in many real-world settings, where the game payofts
are often uncertain due to various factors such as imperfect
modeling, or unknown parameters. Specifically, we consid-
ered the information design for the setting when the unknown
payoff parameters are adversarially chosen. For the robust
information design problem, we developed a SDP formula-
tion given quadratic payoffs, Gaussian signal distributions,
ellipsoid perturbations to the unknown payoff parameters, and
social welfare as the design objective. Numerical experiments
show that the designer would choose to reveal less information
about the payoff states to the players as its uncertainty about
the players’ payoffs grow. This suggests that in situations
where the game payoffs are highly uncertain, it may be prefer-
able to not disclose any information, rather than risk providing
misleading information.

APPENDIX

We start with writing the first order condition equivalent
to (2) for a given 6 = H:

d
E;[a—mu?(s(a)), y)|a)l~i| =0 &
—2H;isi(w;) — 2 HijElsjloi] + 2E; [yilwi] =0 (37)
i#f
We solve (37) for the best response s;(w;), Vi € N:
Hiisi(w) = = Y HijEclsjlo) + E¢lyilo], i€ N (38)
i#]
We look for an equilibrium strategy of the form given below:
Vie N, (39)

where a; and b;, Vi € N are constants. We plug (39) into the
first order condition (38):

Xj\:/Hi,jE[flj + bj(wj — E¢[wj)|w; = @] = Elyilo; = @],
Jje

si(w;) = a; + bi(w; — E¢[w;]),

Vo; € R,i € N. Via conditional expectation rule over
multivariate normal distribution, we obtain following:

Z Hi’j(bjcov(wj, a)i)var(a)l')fl (J),' — E; [a),]) + Elj)
jeN

= E[yil + cov(w;, yi)var(w) ™ (@; — Ec[wi]), (40)

Vo, € R,i € N. Vectors b;, i € N and constants a;, i € N are
determined by following set equations when we separate (40)
into respective parts: For i €

Z H; jbjcov(w;, wivar(w) ™" = cov(w;, yi)var(a)i)_l, 41)
jeN
ieN.

> Hijaj = Elyil, (42)

JjeN

We divide both sides of (41) by var(w;)~! and obtain the
following set of equations:

Z H; jbjcov(wj, w;) = cov(wi, yi), i€ N.
jeN
For scalar signals w; € R, if we let b; = 1 and a; = E[w;]

for i € NV, then we have a; = w; by (39). Moreover, the set
of equations in (43) is equivalent to (11).

(43)
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