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ABSTRACT ARTICLE HISTORY

The objective of this study is to develop a mathematical model to aid in Received 19 September 2022
predicting the onset of instability in automotive disk brakes and clutches Accepted 27 February 2023
when using viscoelastic friction materials. The model is derived from and
expands upon the fundamental of Burton’s model for thermoelasticity in
pure elastic materials. In this investigation, three physical material parame- critical speed: friction;
ters are considered: relaxation time, elasticity, and thermal conductivity. thermomechénical; '
Prior to this parametric study, the effects of these material properties in viscoelasticity
relation to thermoelasticity were yet to be fully understood. Therefore, a

finite element analysis is developed and used to validate the mathematical

model by comparing the variation of the critical speed as a function of

thermal conductivity. The results reveal that an increase in the relaxation

time significantly reduces the critical sliding speed. Changing the elastic

parameter further increases the effect of relaxation time by also reducing

the critical sliding speed. However, increasing the thermal conductivity par-

ameter dampens the effect of the elastic parameter and relaxation time on

the critical speed. The study concludes there is a critical value of the relax-

ation time and elastic parameter above which the system stability is

improved, meanwhile thermal conductivity attempts to counter the stabil-

ity gained from other material properties. The study is instrumental in

understanding the influence of viscoelastic parameters in sliding systems

and provides an intuitive means of predicting the onset of thermomechan-

ical instability.

KEYWORDS
Brake pad/clutch disk;

1. Introduction

It is widely known that the sliding interactions between the friction ring section of a rotating disk
(rotor) and the brake/clutch lining material are usually accompanied by vibrations. The vibration
occurring at the interface between these two sliding materials tends to excite the entire rotor cre-
ating unwanted noise. This noise is transmitted to other parts of the vehicle, and unfortunately
the occupants of the vehicle may experience discomfort due to these vibrations. The noise gener-
ated is more intense with the use of metallic and semi-metallic brake lining materials [1, 2]. In
an attempt to address these challenges, manufacturers have embraced a somewhat innovative
approach where damping elements are applied to the backing plate of the brake assembly to
reduce noise transmission [3]. An example of such an invention is a laminate that includes one
or two layers of viscoelastic adhesives, bonded to one or more intermediate materials to form the
brake pad assembly.
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Research has proven that the vibration and noise in brake systems can be dissipated by using
material damping in the brake components [4-6]. However, it is interesting to note that the
application of damping materials to the backplate does not adequately reduce the unwanted noise
transmitted to the occupant of the vehicle [7]. This is expected because the noise and vibration
generated due to thermomechanical instabilities occur at the interface of the sliding pairs and not
at the backing plate. Therefore, the most effective approach to reducing noise and vibration in
brake systems is to consider a special class of friction materials with acceptable thermophysical
parameters, stable friction coefficient, optimal elastic behavior, and damping properties as pro-
posed by Sergienko et al. [8]. Meanwhile, there are few published studies on how such materials
could impact brake performance. This article considers a low viscoelastic material as a friction
lining in an automotive disk brake pad, and investigates how the physical material properties
could influence the onset of thermomechanical instabilities, as these types of materials are known
to eliminate noise, vibration, and squeal in sliding systems [3, 9]. When solid bodies come into
contact under the influence of an applied load, contact stresses develop at the contact interface
which is influenced by temperature in the case of sliding. In the process, peak values of the con-
tact stresses cause thermomechanical instability to occur [10]. To minimize or prevent this phe-
nomenon, a reduction of the peak values of the contact stresses are targeted to make the interface
pressure as uniform as possible. Based on the mechanism of contact systems and the nature of
viscoelastic materials, reduced pressure peak values can be attained [11]. Currently, there is no
comprehensive experimental or theoretical study on viscoelastic friction materials and how they
excite thermomechanical instability in automotive disk brakes and clutches, except for the limit-
ing case considered by Decuzzi [12]. The authors developed an analytical model to study the
effect of viscoelastic and poroelastic properties of friction materials on the onset of frictionally
excited thermoelastic instability. The model was restricted to materials with zero thermal con-
ductivity and therefore assumes that the critical sliding speed of the pure metallic material is
completely zero, while that of the viscoelastic material is equal to the sliding speed. This results
in the over-approximation of the critical sliding speeds, tending to predict a much higher instabil-
ity for real materials. More importantly, the model does not provide an efficient means of obtain-
ing the critical sliding speed of both sliding materials simultaneously.

It is imperative to note that there are several research works on the contact interactions of sol-
ids involving viscoelastic materials, but only a few focused-on surface interfacial behavior and
how it influences sliding instability. Yu et al. [13] derived viscoelastic contact models for a more
realistic contact analysis and also developed a model based empirical method to determine the
localized properties of a viscoelastic material. Furthermore, the influence of material dependent
damping on brake squeal in disk brake systems has been numerically and experimentally studied

by Uradnicek et al. [14]. The authors found that nonproportional material dependent damping
can significantly affect the stability of the brake system. Zhao et al. [15] carried out an important
study on the friction analysis of an anisotropic surface by considering a viscoelastic material. This
was an extension of Persson’s [16, 17] work to study sliding friction and the effect of the elastic
modulus on the contact area. Also, Feng et al. [18] carried out a study to establish the relations
between viscoelastic friction and wear by considering a polymer composite friction lining materi-
als and wire rope.

The work herein derives a mathematical model, which uses a numerical approach to predict
the critical sliding speed of friction material with viscoelastic parameters. Materials with viscoelas-
tic properties are widely used in the automotive industry because of their ability to dissipate noise
and vibrations from systems. This investigation studies the response of viscoelastic material to
thermomechanical instability when used as friction materials in brake pads and clutch disks as a
means of controlling noise and vibration. The work does not consider the frequency response
and its resulting vibration and noise effect during sliding interaction but rather the response of
the viscoelastic parameters to thermomechanical instability. The main objective of this study and
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a major distinction between this and prior work is that the model predicts the critical sliding
speed for both the viscoelastic friction material and the pure elastic material during sliding by
considering the thermal conductivity parameters unlike the limiting case considered by Decuzzi
[12], where the thermal conductivity of the friction material is assumed to be zero. Moreover,
this work seeks to foster the idea of using viscoelastic friction materials for brake pads and disk
clutches.

2. The mathematical formulation of the problem

Multiple models have been established to describe the behavior of viscoelastic materials.
However, the simplest model which adequately predicts this behavior, and is widely used in solid
mechanics, is the standard linear solid model also known as the three-parameter model [19]. The
three-parameter model is established by either adding a spring in series or parallel to a Maxwell
model [20]. The Maxwell model consists of a spring and dashpot connected in series. In this
work, a spring placed in parallel with a series connection of a spring and a dashpot is considered
to represent the viscoelastic model, shown in Figure 1. The physical model, which consists of a
viscoelastic friction material and a steel disk, is treated as two straight blades on a single plane, in
contact along a straight common interface, as shown in Figure 2. The model does not consider
thermal radiation nor thermal convection heat exchange with the surrounding air. The funda-
mental mathematical derivation, which describes the thermomechanical behavior was obtained
from Burton et al. [21].

If the linearly viscoelastic plate designated as body 1 is loaded with a sinusoidal pressure, the
strain response is also sinusoidal with the same frequency as the applied pressure but lags by a
phase angle J. Thus,

& = gcos (wx — &) (1)
where ¢ is a constant. Moreover, Eq. (1) can be rewritten as

i(wx—0)

& = 8061 = goez(uxefzb (2)

Considering the linear elastic plate designated as body 2, the strain response does not lag as in

the case of the viscoelastic material and can be expressed as:
& = Soei(wx) - goei(ux (3)

From Burton’s equation [21], it follows that the surface pressure on bodies 1 and 2, with the sur-
face held flat, can be expressed as Eq. (4) and Eq. (5) respectively:

=
Q Oom—y — — — — — — — G—)

Figure 1. Standard solid model describing the viscoelastic behavior.
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Figure 2. Geometry configuration of sliding bodies.
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When the two bodies are in contact, each surface is expected to undergo equal and opposite dis-
placement. If we consider a cosine wave distribution of the displacement, the pressure on body 1

/
can be expressed as P = P, — P/.

where
: Ewe Eymepe e
P, =— oiel ozt B (6)
2 2
For body 2, the pressure on the body is given as P = P, — P!. Where:
. Eawe, | Eywepe
p, = 020 208 )

2 2

By considering the equilibrium condition, where pressure, P is identical on both bodies. We can
express P as:

/ ;i
p-bbthPe ™ 8)
E, + Eze‘“)

By substituting P’1 and P; into Eq. (8), we obtain:

arki (by — w)e ™ B arka(by — ) cos () +
E1E2TQ VC[ ch

Bt BT nake | sk
e + 2% sin (wx)

9)

Ve Ve,
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Meanwhile, for equilibrium, the heat generated due to friction must equal heat conducted from
the interface.

HUP(Ve, + Ve,) = Gnet (10)

where gpe is the net heat flow between the bodies as expressed in Eq. (11). Reference to the deriv-
ation can be found in Burton et al. [21].

et =q1 + @2 = TO{(Klbl + K;by)sin (wx) + (Kya, — Ky by)cos (a)x)} (11)

Substituting Egs. (9) and (11) into Eq. (10). We get:

O(]kl(bl — (,0)671‘5 _ O{zkz(bz — (1))) cos (wx)
Ve, Ve,
_l’_

drarkie™  oak
141k +22251n(wx)
Ve, V.,

:uElEZ(VCl + VCz) (
E, + Ezefi5 (

= (Klbl + biz)Sin ((JJX) + (K2a2 — Klbl)COS (wx) (12)
where e = (cos & — isin §). Note that, isind is the imaginary component.
Rearranging the coefficients of the sine and cosine terms to be equal on both sides of Eq. (12)

gives:

‘LtElEz(VC —+ VC ) OC]kl (b] — UJ)(COS 5) O(zkz(bz — (1))
! 2 — = (Kya, — K;b 13
El + E2 (COS 5) Vcl VCZ ( 20 1 1) ( )
UELE,(Ve, + V) | [ 1aiki(cosS)  oxark,
! 2 = (Kb Kb 14
E, + Ey(cosd) V. + v, (Kiby + Kzbs) (14)

Equations (13) and (14) are solved using numerical techniques, such as Gaussian elimination to
obtain Vi and Vg, for the viscoelastic friction material and the steel material respectively.

To obtain the expression for the phase lag, the standard linear model consisting of a spring E,
in parallel to a series connection of a spring E; and a dashpot ¢, displayed in Figure 1, as
obtained in Findley et al. [22] is used. The expression is given as:

wcE?
0 = —arctan >2 5 (15)
El —|—E2 Cl)zgz + ElE
2

where the load frequency, w is given as:

_Vm

- 2m
where V = V¢, + V¢, is the sliding velocity and m is the wave number of the imposed
perturbation.

(16)

3. Finite element approach

To validate the derived expressions for the critical speed of the viscoelastic friction material siding
against the metal material, a finite element model is utilized. Two plates that are thermally con-
ducting are used. Plate 1 is the viscoelastic material that moves in-plane with a sliding velocity V
with respect to plate 2, the conducting material. Plate 1 moves in the x and y direction while
plate 2 is constrained in the x and y directions. Figure 3 shows a schematic of the sliding bodies
used in this study. The two plates have equal lengths L and heights of h; and h, respectively.
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Figure 3. Schematic of the two sliding bodies.

Where y = y; represents the contact interface between the two plates. Reference to the applied
boundary conditions, mesh refinement procedures and the accuracy of the model can be obtained
from Koranteng et al. [23].

Throughout this analysis, the commercial finite element package ABAQUS [24], which is
equipped with the Petrov-Galerkin algorithm, is utilized. A viscoelastic analysis comprised of a
single Maxwell model is considered. The viscoelastic parameters shear modulus, bulk modulus,
and the relaxation time © = ¢/E; are computed and applied using an ABAQUS input script.

3.1. Solution procedure for the viscoelastic model

The following list outlines the procedure used in this study to solve the viscoelastic model.

1. Impose a sinusoidal perturbation having a specific wavenumber (m = 2n7m/L) onto a mean
contact pressure as:

p(x,t) = Py + Asin (wx — 9) (17)

Here, a sinusoidal load is used because it provides a more convenient way to get a response
from viscoelastic materials under a short time loading when compared to using a static load [22].
Further, the frictional heat at the contact interface y = y; is computed using the pressure in Eq.
(17), the sliding velocity, and the friction coefficient value. We defined a mass flow onto the mov-
ing body using the density, p of the moving body, and the sliding velocity, V. These are applied
in ABAQUS via a user-defined Subroutine.

1. A heat transfer analysis is carried out and the resulting nodal temperatures are extracted
from the contacting interface at y = y;. The nodal temperatures are fed into a dynamic
viscoelastic step in ABAQUS.

2. The contact pressure resulting from the viscoelastic analysis is extracted from the sliding
interface. The new nodal contact pressure is used to compute the heat flux for the next heat
transfer analysis.

3. Repeat the process using an iterative scheme as shown in the simulation procedure in Figure
4. For each iteration, extract the maximum contact pressure or temperature, while taking
note of the time steps involved.

4. Find the natural log of the values from step 4 and plot a graph of the natural log of the
contact pressure or temperature versus time. The plot is linear with either a positive or
negative slope. The slope represents the growth rate of the perturbation. For a positive
slope, which indicates instability, V > V, and for a negative slope which indicates stability
within the system, V < V. Since the critical speed is initially unknown, the sliding speed
can be adjusted while observing the resulting maximum temperature or contact pressures
at each iteration.
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Figure 4. Simulation solution procedure.

5. The critical speed is obtained using a linear interpolation procedure based on the condition
that the critical speed occurs when the growth rate, b is zero. For a stable system, the critical
sliding speed needs to be high. Meanwhile, a reduced critical sliding speed implies that the
system is unstable.

3.2. Convective term and convergence problem

Solutions to conductive-convective problems are usually accompanied by numerical errors due to
convergence issues. These numerical convergence issues usually occur when the Peclet number
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exceeds 2. Typically for clutch and brake problems, the Peclet number is greater than 100. Also,
when using the standard Galerkin finite element procedure, results are anticipated to have high
numerical errors. Therefore, ABAQUS [22], a commercial finite element package equipped with a
Petrov-Galerkin algorithm to handle the conductive convective problem, is utilized in this investi-
gation. The algorithm uses an up-winding approach [25, 26], where the central-difference scheme
is replaced with the backward-difference scheme for the conductive-convective term. Further, the
high Peclet number associated with the brake/clutch model is due to the imposed perturbation
moving at a fast speed close to the sliding velocity, with respect to the poor conductor. This
causes a high temperature gradient, in the y-direction, near the contact surface of the poor con-
ductor [18, 19]. To address this problem, the finite element mesh of the poor conductor is biased
at 1.25 near the contact surface and a mesh refinement exercise ensures the model is capable of
reproducing a strong variation of temperature in the skin layer by estimating the temperature dis-
tribution perpendicular to the interface [27] as shown in Figure 5.

3.3. Validation of the mathematical model

The results from Egs. (13) and (14) are validated by comparing the effect of the thermal conduct-
ivity of the viscoelastic friction material on the critical sliding speed of the system with the results
of the finite element simulations. Further, since it is difficult and expensive to perform experi-
mental work on this study by considering the range of physical parameters used, the results are
compared with Burton’s model which is well-known and experimentally validated as shown in
Figure 6a. Table 1 shows the material properties used in the analysis. The simulated finite elem-
ent approach agrees quite well with the results from the derived mathematical model.
Furthermore, the result from Burton’s model is different from the other two models with visco-
elastic parameters, but this is expected as the presence of a damping element in the two models
may decrease the critical sliding speed depending on the viscoelastic parameters.

To further prove the accuracy of the model, a comparison between the Decuzzi model and the
developed mathematical model is considered. To compare the two models, the thermal conductiv-
ity of the friction material in the developed model is set to zero, that is, K; =0 since the
Decuzzi model neglects the effect of thermal conductivity of the friction material. Moreover, since
the developed model assumes that the surface displacement in the y-direction is zero, that is,
u|y:o =0, it implies that there will be no lateral expansion of the model and so Poisson’s ratio

v1, is nearly zero. Therefore, the smaller the Poisson’s ratio used in the Decuzzi model, the more
it agrees well with the developed model. Figure 6b shows the comparison between the two models
with a Poisson’s ratio v; ~ 0. Note that a 1:1 ratio is obtained when v; = 0. The results from
Figure 6a and b provide confidence in the output results from the developed mathematical
expression for investigating the critical sliding speed of viscoelastic friction material.

140 T T T T T T
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Figure 5. Character of temperature distribution in the skin layer of the finite element mesh of the poor conductor [23].
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Figure 6. Comparison of the effect of (a) thermal conductivity and (b) phase angle on the critical sliding speed of the viscoelas-
tic material for different models.

Table 1. Properties of the material used in the study.

Properties Conducting material (steel) Friction material
Modulus of elasticity, £ (GPa) 210 6
Damping modulus (GPa) - 0.2
Conductivity, K (W/(m-K)) 57 0.1-1
Poisson’s ratio, v 0.25 0.25
Thermal expansion coefficient, o (107°K™") 12 14.2
Specific heat, C(J-kg~"K™") 460 120
Density, p (kg/m°) 7250 2000
4.0x10° r T T T 8.0x10°
35%10° |- - = -p=02 P ‘] 7.0x10° |
7
3.0x10° - L o] 6.0x10° |-
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~ 25%10° F s 10,8 - s 1 o 5.0x10°
APl 2 1 Saoxoot
- <
1.5x10° -7 > soae|
1.0x10° 20x10°F
5.0x107 1.0x10° -
7/ s
0.0 1=
00 0.0 02 04 06 08 1.0
Ki/K,

b)

Figure 7. The variation of dimensionless critical speed as a function of the ratio of the thermal conductivities for (a) the visco-
elastic friction material and (b) the pure elastic conducting material.

4, Results

The mathematical formulation is applied to investigate the variation of the normalized critical
sliding speed with other physical material parameters by solving Eqs. (13) and (14) simultan-
eously using a numerical approach. The sliding speed V, and wave parameter are normalized in
terms of the half-thickness of the metal material, a,, and its thermal diffusivity k,. Figure 7a and
b show the variations of the dimensionless critical sliding speed in the viscoelastic friction mater-
ial and the metal material respectively, by considering different ratios of the thermal
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conductivities at different friction coefficient values. The wavenumber m = 27/L is 32, which rep-
resents an upper limit for actual sliding bodies.

The resulting normalized critical speed Va,/k, in the viscoelastic material is significantly
higher than that of the metal material when Kj /K, is varied from 0 to 1. This behavior, which is
observed in the linear elastic model by Burton et al. [21] is preserved in the case of the viscoelas-
tic model. When p = 0.2 for both materials, the curve departed significantly from the remaining
u plots. A deeper look reveals that, for even larger values of y, the curves flatten with a consider-
ably reduced critical speed. It can be inferred from the graphs that the effect of thermal conduct-
ivity is less dominant for larger values of u. Thus, increasing u decreases the critical sliding speed
of the system and promotes the occurrence of noise and vibration which may lead to buckling,
hot spots, thermal fatigue, etc. For stability purposes, an appropriate combination of the friction
coefficient u and thermal conductivities is required for sliding stability.

Figure 8a considers the dimensionless wave number and is essential in understanding the
influence of the relaxation time {/E;(K;/K, = 0.02) on the system stability. It should be noted
that the higher the value of {/E;, the greater the damping effect during sliding. For the pure elas-
tic solution, where {/E; = 0, the normalized critical speed Va,/k, as a function of the wave par-
ameter is linear and relatively high.

This indicates a more stable system but may not necessarily prevent noise and vibration over
time. Besides, when {/E; > 0, a nonlinear reduction in the critical sliding speed as a function of
wave parameter, ma, is observed. This becomes more pronounced as {/E; is increased. Thus, it
follows that the relaxation time decreases the effect of the wave parameter (ma > 0.2) on the crit-
ical speed. Figure 8b shows the variation of the dimensionless critical speed as a function of the
wave parameter for different elastic parameters E;/E, ({/E; = 0.02). As the elastic parameter
E,/E, increases, the critical speed Va,/k, reduces significantly. This clearly shows that increasing
the elastic parameter E;/E, reduces the effect of the wave parameter on the system stability.
Therefore, when the ratio of the elasticity of the two sliding materials is relatively high, the sys-
tem stability cannot be guaranteed. The variation of the normalized critical speed Va,/k, as a
function of the thermal conductivity parameter K;/K; at different relaxation times ¢/E; and elas-
tic parameters E;/E, are considered in Figure 9. The effect of the relaxation time on the system
stability as the thermal conductivity parameter K; /K, is increased is very significant in Figure 9a.
The overall critical speed decreases as the relaxation time increases. For instance, at {/E; =0,
the resulting critical speed is found to be dominant. Further increasing (/E; causes the overall
critical speed Va,/k, to reduce slightly. Similarly, as the elastic parameter is increased in Figure
9b, the overall critical speed decreases. This means that increasing the relaxation time {/E; and
elastic parameter decrease the effect of the thermal conductivity parameter and makes the system
prone to instability.

T T T T T T

2 [ . .
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Figure 8. The variation of the dimensionless critical speed as a function of the wave parameter for (a) different values of the
relaxation time, {/E; and (b) different values of the elastic parameter, E;/E,.
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Figure 9. The variation of the dimensionless critical speed with the thermal conductivity parameters at different (a) relaxation
time parameters, (/E; and (b) elastic parameters , E;/E,.
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Figure 10. The variation of the dimensionless critical speed with the elastic parameter at different (a) relaxation time, (/E;
and (b) thermal conductivity ratio, K; /K.

Figure 10a and b show the variation of the normalized critical speed Va,/k, with the elastic
parameter for different values of the relaxation time parameter {/E; and the thermal conductivity
parameter K; /K, respectively. The critical speed decreases rapidly as the elastic parameter E;/E,
is increased. This is intuitive because an increase in E;/E, leads to high stress levels, which
explains the decrease in critical speed. Further increasing {/E;, as seen in Figure 10a, causes the
curve of the critical speed as a function of the elastic parameter E;/E, to reduce. Meanwhile by
increasing the parameter K; /K, as seen in Figure 10b, the curves of the critical sliding speed as a
function of the elastic parameter increase.

It can be inferred that increasing the thermal conductivity parameter of the viscoelastic mater-
ial reduces the effect of the elastic parameter on the system stability while increasing the relax-
ation time increases the effect of the elastic parameter.

The variation of the critical speed Va,/k, as a function of the relaxation time parameter {/E;
for the elastic parameters E;/E, and thermal conductivity parameters K; /K, for the sliding pairs
are considered. For relatively small values of the elastic parameter E;/E,, the resulting critical
speed is higher and is significantly influenced by the relaxation time 7 as shown in Figure 1la.
The critical speed decreases as the relaxation time parameter {/E; is increased. This is because
the phase angle ¢ is highly influenced by E;/E, and {/E; according to Eq. (15). As the phase
angle increases, the critical speed decreases.

Meanwhile, there are critical values of the relaxation time 7 at which the critical speed starts to
rise and fall for relatively small values of E;/E,. For instance, when E;/E, =0.002, the
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Figure 11. The variation of critical speed as a function of the relaxation time by considering different (a) smaller values of the
elastic parameter, (b) larger values of the elastic parameter, and (c) values of the thermal conductivities.

normalized critical speed decreases rapidly from 1603.7 when {/E;, = 0 to 580.5 when {/E; = 1.
It then rises gradually to a localized peak of 808.5 when (/E; = 1.47 and then starts decreasing
gradually with an increasing (/E;. This trend is observed for all increasing values of the E;/E,
except when E;/E, = 0.012. At {/E; > 1.91 for E;/E, = 0.012, a sharp rise in the critical speed
is found. This further shows that there is a specific critical value above which increasing {/E; will
cause the critical speed to rise. This occurs because as {/E; becomes larger and the phase angle
approaches zero, the linear elastic problem is recovered. This may explain the sharp rise in critical
speed as E; /E, is increased to 0.012 when {/E; > 2. Meanwhile, the curves start decreasing rap-
idly by further increasing E;/E, with an oscillation trend as seen in Figure 11b. The profile
becomes less pronounced and flattens to a more uniform profile as E;/E, increases. This is
caused by a shift in the phase angle, 6. When (/E; increases, the phase angle increases leading to
a reduction in the critical speed. Conversely, by increasing the thermal conductivity parameter as
seen in Figure 1lc, the critical speed is improved. For small values of the thermal conductivity
(0.01-0.04), increasing the {/E; above 2 causes the critical speed to increase rapidly. Meanwhile,
when K;/K; > 0.04 the reverse is observed. This could be because of the change in the phase
angle 6. These phenomena observed for the viscoelastic friction material during sliding interac-
tions are particularly useful in determining the threshold at which it can either stabilize noise and
vibration or encourage the onset of instabilities.

5. Conclusion

A mathematical model is derived to predict the critical sliding speed of friction materials with
viscoelastic parameters in automotive disk brakes and clutches. The model provides a means to
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estimate the onset of instabilities for sliding interactions between a conducting material and a
viscoelastic friction material, something that has yet to be extensively investigated. Moreover, a
finite element approach to the problem is established to provide an alternative means to estimate
the critical speed in viscoelastic friction materials and to validate the mathematical model. Three
physical material parameters of viscoelastic friction materials are investigated: relaxation time
{/E;, elastic parameter E;/E,, and thermal conductivity parameter K;/K;, and the following
deductions are obtained:

1. The relaxation time parameter is found to reduce the critical sliding speed of the system.
This is strongly dependent on how the relaxation time impacts the phase angle, 6, during
sliding. Meanwhile, for larger values of the relaxation parameter, the phase angle may
approach zero. This means that the linear elastic solution is recovered, which may increase
the critical sliding speed. Therefore, a viscoelastic friction pad material may either encourage
or discourage the onset of instability depending on the resulting phase angle due to the relax-
ation time.

2. Increasing the elastic parameter significantly reduces the critical sliding speed, making the
system susceptible to instability. Moreover, as the elastic parameter grows the resulting peak
contact pressures and stresses increase, which also lead to thermomechanical instability.

3. The thermal conductivity parameter significantly reduces the effect of the relaxation time and
elastic parameters. Thus, increasing the critical speed and discouraging thermomechanical
instability. It is determined that for a stable system while discouraging noise and vibration, a
reasonable thermal conductivity ratio is required.

Generally, viscoelastic friction materials may either increase or decrease the critical sliding
speed when used in automotive disk brakes and clutches. This is, however, dependent on the
material property compositions. Therefore, a careful consideration of the appropriate combination
and interaction of the elastic parameters and the thermal conductivity parameters is required for
the manufacturing of viscoelastic friction materials in automotive disk brakes and clutches.
Future work may include expanding the viscoelastic model to three dimensions to analyze anti-
symmetric geometries, consider the effects of wear coupled with viscoelasticity, and further inves-
tigate the effects of lubricated friction systems which employ viscoelastic materials.

Nomenclature

2

half-thickness of the sliding layer i
the growth rate of the perturbation
elastic modulus of the layer i
thermal diffusivity of layer i

height of the layer i

thermal conductivity of the layer i
length of the sliding layer

the wave number of the perturbation
number of hotspots

pressure at the contact surface i
sliding distance

constant temperature

the sliding velocity of the layer
critical sliding speed of layer i
damping modulus

the phase angle between stress and deformation
relaxation time

elastic stress

coefficient of friction

frequency of the cyclic load

Ealtalico By

HrmIItR

SEQH%ﬂs<
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o

coefficient of thermal expansion of layer i
suffix related to the friction layer
suffix related to the metal layer
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