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The elastic moduli of solids play a central role in determining functional properties mediated by

phonons. In the study of thermoelectric materials, elastic moduli can be used to understand as

well as predict lattice thermal conductivity and some aspects of the electronic conductivity (e.g.,

electron-phonon interactions). Elastic moduli are also highly sensitive to the details of chemical

bonding and structural arrangement in a material and can be used to detect subtle changes in crystal

symmetry or site disorder due to phase transitions. Consequently, measurements of elastic moduli

are of fundamental importance in the study of thermoelectric materials and provide an important link

in developing structure-property relationships. Experimental characterization of elastic constants in

functional materials are still relatively sparse, and temperature-dependent data is even less common.

This review compares the temperature-dependent elastic properties of various classes of thermo-

electric materials and emphasizes the role that such data can play in interpreting the transport

properties and chemical bonding. In particular, we highlight the relationship between the Grüneisen

parameter and the rate of softening of materials, and we discuss the use of temperature-dependent

measurements to investigate structural phase transitions.
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1 Introduction

Thermoelectric materials - used in the solid-state conversion of
heat to electricity and vice-versa1 - encompass a wide spectrum
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of material chemistries, ranging from semiconductors to semi-
metals, ceramics and polymers. Throughout these classes, effi-
cient thermoelectrics require good electronic properties (i.e. elec-
trical conductivity and Seebeck coefficient - connected with the
heat conversion capability), but low thermal conductivity κ. This
is typically modelled as the sum of an electronic κe, and a lattice
κL component, which represent the heat transported by charge
carriers and lattice vibrations, respectively. As suppressing κe

would adversely affect the electrical transport, optimization ef-
forts need to focus on reducing κ through engineering κL. This
requires a thorough understanding of the physical origin of a ma-
terial’s κL. In this regard, a powerful tool are elastic properties.
Indeed, these can provide insights on a materials chemical bond-
ing, which determines both the lattice capability of carrying vi-
brations (phonons), as well as, in part, its ability to scatter them.

The focus of the present review is to examine the elastic prop-
erties of thermoelectric materials. We will show how elastic con-
stants behave for several classes of materials and how these can
provide deep understanding of chemical bonding and thermal
transport.

Elastic constants are a measure of a material’s resistance to de-
formation under applied stress in the elastic regime2,3 (i.e., suf-
ficient stress to stretch chemical bonds, but not enough to break
them). The term ªconstantº is a misnomer, however, since the
elastic constants are not constant with respect to thermodynamic
variables such as temperature4 and pressure5,6, or with respect
to changes in composition or microstructure. From this point
forward, we will refer to the elastic constants as elastic mod-
uli. Though often dismissed as purely of interest for mechanical
performance, elastic moduli are fundamentally connected to the
chemical structure, and thus impact the transport physics in sev-
eral important ways. Furthermore, they can be a useful probe
of underlying structural and chemical changes in a material as a
function of composition or temperature7.

Thermoelectric materials have broadly varying elastic proper-
ties due to wide variations in chemical bonding. For example, stiff
covalent bonds in tetrahedrally-bonded semiconductors (e.g., sil-
icon) lead to much higher elastic moduli than the weaker sec-
ondary bonds in bulk polymers. This leads to marked disparities
in transport properties ± in particular phonon transport. Acoustic
phonon velocities are determined directly from the elastic mod-
uli, while the Grüneisen parameter, which determines phonon-
phonon scattering rates, can be estimated from the temperature-
dependence of the elastic moduli8. Elastic moduli also play a role
in electronic transport by influencing electron-phonon scattering
(i.e., acoustic deformation potential scattering9,10). Further, be-
cause elastic moduli are second-order derivatives of Gibb’s free
energy, temperature-dependent measurements serve as a pow-
erful tool in the investigation and detection of both first- and
second-order phase transitions11. Several important classes of
thermoelectrics have phase transitions at high temperatures (e.g.,
SnSe12±14, Cu2Se15,16, GeTe17±20, kesterite and stannite21±24,
etc) and their elastic moduli can be used to reach a deeper under-
standing of the impact that structural changes have on transport
properties. In the study of elasticity of functional materials, com-
putation has far outpaced experiment, providing predicted elastic

tensors for thousands of complex materials25±28. However, while
Density Functional Theory (DFT) can easily yield single crystal
elastic tensors in many cases, it cannot be readily applied to the
study of phase transitions, to predict temperature-dependent be-
havior, or to study materials with high degree of disorder. Not
to mention, the polycrystalline nature of most applied materials
cannot be captured.

In the present review, our aim is to emphasize the impor-
tance of experimental elasticity measurements. We introduce the
basic theory of elasticity, summarize the existing literature on
temperature-dependent elastic moduli of thermoelectric materi-
als, and discuss the value of such data in the investigation of
thermal transport. Experimental approaches to measuring elas-
tic moduli are presented, emphasizing high-temperature resonant
ultrasound spectroscopy as an accurate yet simple tool. We con-
clude by discussing study cases from some of the authors, in
which the determination of elastic moduli was decisive for in-
terpreting the thermal transport behavior, as well as detecting
changes in chemical bonding due to phase transitions.

2 Elastic moduli from a chemical bonding perspec-

tive

2.1 Elasticity basics

Definition of elastic moduli

The elastic moduli are a measure of a material’s resistance
to small (i.e., elastic) deformations under an applied stress2,3.
Strain in the elastic regime is fully reversible because it does not
involve any bond breaking or the formation or slip of disloca-
tions. In this regime, Hooke’s law relates stress, σ , to strain ε, by
σ = Cε, where C is the elastic modulus, also known as the stiff-
ness coefficient. Conversely, ε = Sσ , where S is the compliance
modulus. From a chemical bonding perspective, we can consider
C and S as a measure of the stiffness (or softness) of the bonds in
response to an applied stress. How stiff the bonds are in a crystal
will determine a number of properties, including how lattice vi-
brations (phonons) propagate. Because crystalline materials are
anisotropic, a tensor representation is needed to fully describe C

and S. In this review, however, most of the discussion focuses on
scalar values of the elastic moduli, which represent a polycrys-
talline average. Thus, readers need not be familiar with the ten-
sor form. Nonetheless, we provide a brief introduction in section
2.2 for those interested in the physical interpretation of elastic
tensors. A more comprehensive review of these concepts can be
found in ref.29,30.

Young’s, bulk, and shear moduli

To calculate the response of a solid to an arbitrary stress state, one
needs to use the full elastic tensor, represented by Ci j. However,
for most purposes, we are only interested in a few specific types
of stress: pure tensile stress along one axis, pure shear about
one axis, or hydrostatic pressure. For these purposes, we rely on
the ªengineering elastic moduliº: Young’s modulus, shear mod-
ulus, and bulk modulus. These are shown schematically in Fig-
ure 1. The Young’s modulus or modulus of elasticity, Y , is used
to calculate the tensile strain (∆l/l) along the same axis as an
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applied tensile stress σ (Y = σ(l/∆l)). It is to be remembered
that this and the following definitions are rigorous - and thus
to be regarded - only in the limit of small displacements. The
shear modulus, G, quantifies the shear strain (∆w/l) that results
from a pure shear stress σ (G = σ(l/∆w)). The bulk modulus, B,
measures the volume change (∆V/V ) in response to a hydrostatic
pressure P (B = −P(V/∆V ). Another useful quantity is the Pois-
son’s ratio, µ, shown schematically in Figure 1, which is defined
as (µ = (∆l/l)/(∆w/w)), and illustrates the change in a materials
cross section resulting from a change in length. It can also be
defined as the ratio between the Young’s and the shear moduli
(µ = Y/2G−1). Perhaps surprisingly, µ can be used as an indica-
tor of anharmonic bonding in a solid. We will return to this topic
in section 4.5, when we discuss the ways in which elastic moduli
can be used to estimate a material’s Grüneisen parameter.

2.2 Elastic tensors

Crash course in single crystal elastic tensors

Describing an arbitrary stress or strain requires the use of 2
nd

rank tensors represented by symmetric 3x3 matrices (Figure 2a-
b). Due to the symmetry properties of these tensors, the 9 coeffi-
cients can be simplified to 6 independent terms (Figure 2b). The
Voigt-notation representation of the applied stress, σi, is shown
in Figure 2c. σ1, σ2, and σ3 each describe a uniaxial stress (also
known as tensile stress) along the x, y, or z axis, respectively. σ4,
σ5, and σ6 represent a shear stress about the x, y, or z axis, respec-
tively. Likewise, the resulting strain, ε j, can be either tensile (ε1,
ε2, or ε3) or shear (ε4, ε5, ε6) in nature. The axes in Figure 2a cor-
respond to the principal axes of the crystal system, as long as we
are talking about systems with mutually perpendicular axes (cu-
bic, tetragonal, orthorhombic). Thus, x points along the a-axis, y

points along b, and z points along c. For hexagonal and trigonal
crystal systems, z is aligned with the c-axis, and x is aligned with
the a-axis. For lower symmetries, we refer the reader to ref.29.
For most material design purposes, we need only to consider spe-
cific combinations of stress. For example, hydrostatic pressure (as
used in diamond anvil cell experiments) means that σ1 = σ2 = σ3,
and σ4 = σ5 = σ6 = 0. Or one might apply a uniaxial stress, as in
tensile testing, such that σ1 is positive, while σ2−6 = 0.

To describe the elastic response of a crystal, each of the 9 stress
elements (Figure 2b) must be related to each of the analogous
9 strain elements. That makes a total of 81 coefficients. In ten-
sor notation, C (or S) is thus represented as a 3x3x3x3 matrix of
coefficients (i.e., a 4

th rank tensor). Fortunately, symmetry con-
siderations and the use of the Voigt notation allow C and S to
be represented as ªsimpleº 6x6 matrices (tensors). Thus, we can
write σi = Σ jCi jε j, where i and j = 1− 6 (Figure 2d). In single
crystals, the number of non-zero, independent terms in the elas-
tic tensor Ci j varies from just 3 for a cubic symmetry to 21 for
a triclinic symmetry. A complete description and derivation of
the elastic tensor elements for each crystal class can be found in
ref.29.

The elastic behavior of a single crystal must exhibit the same
symmetry elements as the point group (Neumann’s principle). For
example, the Young’s modulus of cubic PbTe and rhombohedral

GeTe are shown in Figure 3 as a function of direction, using pre-
dicted elastic tensors from MaterialsProject.org31. In the rock salt
compound, PbTe, the Young’s modulus exhibits 4-fold rotational
symmetry along the <100> directions, as well as 3-fold rotational
symmetry along the <111> directions. The elastic response is
the same along the three principal axes, but it is not isotropic.
The <100> directions are significantly stiffer because they are
directly aligned with the octahedral Pb-Te bonds. As expected,
in rhombohedral GeTe, which has a distorted rock salt structure,
the Young’s modulus shows 3-fold roto-inversion symmetry about
the <001> direction. Y is equal along the a- and b-axes, but not
along the c-axis. The distortion of the octahedral environment
in GeTe directly leads to the distortion of Y . However, Y is still
stiffest approximately parallel to the Ge-Te bonds. The anisotropy
in the elastic moduli of a single crystal will then be reflected in
an analogous anisotropy of related material properties, such as
sound velocities and lattice thermal conductivity.

Elastic moduli of polycrystalline materials

In the majority of experimental research on thermoelectric ma-
terials, we are dealing with bulk, polycrystalline samples. As-
suming a polycrystalline sample has a statistically random grain
orientation (i.e., no texturing or preferred orientation), the elas-
tic moduli will be isotropic and thus will be the related physical
properties. This is illustrated by the spherical Young’s modulus
shown in Figure 3. The isotropic elastic tensor is fully described
by just two independent terms: C11 and C44. A third component,
C12, is related to the other two by C12 = C11 − 2C44. In isotropic
materials, C44 is equivalent to the shear modulus, G. C11, how-
ever, is not directly equivalent to any engineering modulus (Y or
B for example). However, if both C11 and C44 are known, convert-
ing to any of the engineering elastic moduli is straightforward. In
fact, knowledge of any two of the moduli (C11, C44, G, Y , B, or
µ) can be used to easily obtain any of the other ones using the
relations summarized in Figure 4.

Effect of texturing

Experimentally, it is also common to encounter textured poly-
crystalline samples with strongly-oriented grains. This is more
likely to occur for compounds with crystal structures character-
ized by highly anisotropic bond stiffness (e.g., Bi2Te3, SnSe, etc.).
If texturing is the consequence of a uniaxial pressure during hot-
pressing or spark plasma sintering (SPS), samples will likely ac-
quire a transversely isotropic symmetry. In this case, the elastic
tensor takes on the same symmetry as a hexagonal single crys-
tal32. This means that the properties will be isotropic in all di-
rections perpendicular (i.e., transverse) to the applied pressure.
Nevertheless, elastic constants in the direction parallel to the ap-
plied pressure may be either stiffer or softer than those along
the transverse direction, depending on the preferred orientation.
Most commonly, uniaxial pressing leads to grains preferentially
oriented with the strongest bonds perpendicular to the applica-
tion of pressure.

Elastic moduli from DFT calculations

Today, elastic tensors computed using density functional theory
(DFT) are widely available, much more so than experimental
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Fig. 1 Conceptual illustration of the łEngineering elastic moduliž, so named because they describe simple stress states that are useful as material

selection criteria. Formulas are intended in the limit of small displacements.

Fig. 2 a) Illustration of the elements of the stress tensor. Each of the nine

components is applied to one plane (identiőed by the normal), and points

to a speciőc direction (e.g. σi j, for a stress applied on plane i and directed

along j ). b,c) Mathematical representation of the stress elements in the

classical tensor notation (b) and in the Voigt notation (c), after symmetry

considerations. The same illustration and mathematical formalism can

be adopted for the strain tensor. d) Hooke’s law relating stress and strain

through the stiffness tensor represented in Voigt notation.

data. For the most part, calculated elastic tensors are accurate
within 10-20% of experimental values33. A notable exception are
compounds with van der Waals type of bonding, in which a stan-
dard DFT-based approach predicts in-plane elastic moduli with
decent accuracy but tends to greatly underestimate out-of-plane
elastic moduli. For example, in Bi2Te3, a 30% discrepancy is

found between the DFT33 and the experimental34 C11, while the
calculated C33 is predicted more than five times lower than the
experimental value. By its very nature, DFT is used to predict
properties of single crystals. Usually, the full single crystal elastic
tensor, Ci j, or compliance tensor, Si j, is reported in the literature.
For example, it is available for thousands of compounds on Ma-
terialsProject.org31. It is important to note that the C11 and C44

terms of the single crystal tensor obtained from DFT cannot be
directly used as a proxy for the ªisotropicº C11 and C44 values of a
hypothetical polycrystal of the same material. However, it is pos-
sible to convert from the single crystals tensor to an isotropic ten-
sor using an averaging scheme. Two different averages ± an upper
bound (Voigt) and a lower bound (Reuss) - are typically used to
estimate the engineering elastic moduli (B, Y , G) of a polycrystal
from the single crystal elastic tensor. The average of the upper
and lower bounds (an average of two averages) is often taken as
the best estimate for the polycrystal. This averaging procedure
is known as the Voigt±Reuss±Hill method and can be found in
ref33. Note that once you calculate B, Y , and G of the polycrys-
tal, you can convert to the respective C11 and C44 using Figure 4.
It’s important to keep in mind that the Voigt±Reuss±Hill averaging
scheme does not account for local changes (most likely softening)
in the elastic moduli that may be caused by grain boundaries (see
section 2.3). The assumption inherent in the Reuss and Voigt ap-
proximations is that the strain and disorder at grain boundaries
have no effect on the elasticity of the crystalline phase.

2.3 Structure-property relations

Elastic moduli and composition

The elastic moduli are a measure of bond stiffness, which in turn
is a strong function of bond length. In covalent bonds, increased
orbital overlap can be seen as responsible for stiffer bonds. In
ionic materials, the same is caused by increased coulombic at-
traction. Regardless of the ionic or covalent character, one will
find that the elastic moduli (e.g., Y , B, G) tend to decrease
smoothly as a function of average bond length within any sin-
gle class of isostructural materials29,35. Within the same mate-
rial, stiffness can vary up to an order of magnitude along differ-
ent crystallographic directions, again correlated with bond length
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Fig. 3 Upper row: crystal structures for cubic rock-salt PbTe and rhombohedral distorted rock-salt GeTe, and an isotropic polycrystal. Lower row: The

isosurfaces show the magnitude of the Young’s modulus as a function of crystallographic direction for a cubic, rhombohedral, and isotropic materials.

Even in a cubic material, the elastic moduli are anisotropic. In the case of rock salt chalcogenides, single crystals are much stiffer along the < 100 >

family of directions than along < 111 >. Elastic tensors from MaterialsProject.org31.

Fig. 4 Formulas summarizing the relationship among elastic moduli. The

knowledge of any two moduli allows the calculation of all the others.

and stiffness (e.g., graphite presents a 23-fold higher C11 than
C33, reflecting the anisotropy between strong in plane covalent
bonds, and weak out of plane inter-layer bonding). This has
been shown in countless papers and is often discussed in the
introductory chapters of materials science and solid-state chem-
istry textbooks29. In materials comprised of primary bonds and
weak interactions (e.g., polymers, graphite), the elastic moduli
can be highly dependent on crystallinity and the orientation of
the covalent bonds. Stiffness, represented here in terms of the
Young’s modulus, varies from 1150 GPa for diamond36 to 1 GPa
for a polymer like PEDOT:PSS37, and this entire spectrum is en-
tirely a result of differences in chemical bonding. Outliers to the
"longer-corresponding-to-softer-bonds" trend are rare, thus worth

a second look. In section 5.1, we will discuss the special case of
Mg3Sb2, which is softer than isostructural compounds with larger
unit cells.

Effect of microstructure

Compared with the mechanical properties that involve plastic de-
formation (e.g., hardness, yield and ultimate strength, tough-
ness), the elastic moduli are less sensitive to microstructural
changes. However, microstructure introducing a large degree of
strain into a sample can have an impact on elastic moduli. Com-
mon causes of micro-strain in a sample are dislocations, stacking
faults, and twinning. Locally, strain leads to softer (more compli-
ant) bonds. If the density of such defects is high (e.g., induced by
high-energy ball-milling), one can observe softening of the over-
all elastic moduli of the sample. This has been shown recently
in PbTe, where the introduction of microstrain through disloca-
tions was shown to have a direct correlation with softening, iden-
tified in a decrease of sound velocity (and thus of lattice thermal
conductivity)38,39. Similarly, elastic moduli can be a function of
grain size. Samples with large grains (> 10µm), in which grain
boundaries themselves make up a negligible volume fraction of
the bulk material, should basically have the same overall elastic
moduli as the single crystalline average (see discussion of Reuss,
Voigt, Hill averages in section 2.2). However, at the limit of nano-
grained samples, the highly strained grain boundaries will lead
to an overall softening of the elastic moduli. To this end grain
boundaries can be treated as a separate phase, softer than the
bulk40,41.

3 Temperature dependence of elastic moduli

3.1 Softening of elastic moduli with temperature

The elastic moduli of most solids decrease with increasing tem-
perature until the melting point. Although if compared to other
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material properties the variation is relatively weak, over a wide
temperature range it can be significant enough (up to 30%) that it
should be accounted for when modeling the thermal and mechan-
ical behavior. The decrease in elastic moduli, or softening, arises
from the 3

rd and higher-order terms in the interatomic potential
energy, given by V (r) = V (0) + a2(r − r0)

2 + a3(r − r0)
3 + a4(r −

r0)
4..., where r− r0 is the displacement of an atom from its equi-

librium position, a2 is the magnitude of the harmonic term, and ai

(i>2) represent the anharmonic terms. Each element of the elas-
tic tensor, Ci j, can have its own temperature dependence, owing
to the stretching or shearing of bonds along different crystallo-
graphic directions. Here, we will focus on the temperature depen-
dence of the Young’s modulus. In fact, Y is related to the curva-
ture at the vertex of the interatomic potential as Y = 1

r0

(

∂ 2V
∂ r2

)

r=r0

.

A larger curvature corresponds to a narrower potential well and
thus stiffer bonds. In a completely harmonic potential, the curva-
ture is energy-independent, implying a constant Y as a function of
temperature. Nevertheless, the interatomic potential of real solids
inevitably contains anharmonic terms, which leads to decreasing
Y with temperature. Importantly, the temperature derivative of
elastic moduli is a useful measure of the anharmonic contribu-
tion to bonding, quantified by the Grüneisen parameter, γ (further
discussion and formal definition in section 4.5). Below, we will
describe thermodynamic models that relate the thermodynamic
γ to the temperature-dependence of elastic moduli, review rele-
vant experimental techniques for their determination, and then
discuss the trends found in the temperature-dependent moduli of
thermoelectric materials.

Fig. 5 Young’s modulus, normalized to the őtted 0 K value, as a function

of temperature for solids ranging from soft and anharmonic (Mg3Sb2) to

stiff and harmonic (ReB2)
32,42. The solid curves are őt using Eq. 1,

where θE is related to the Einstein temperature, s is a őtting parameter

related to the slope, Y0 is the Young’s modulus at 0 K. The Grüneisen

parameter, γLedbetter, was obtained by őtting the linear portion of the slope

with Eq. 2.

Fig.5 illustrates the typical behavior of Y as a function of tem-

perature. Here, we employ the normalized Y/Yo to enable a com-
parison of materials (ReB2

32, Cu43, and Mg3Sb2
42) with signif-

icantly different 0 K Young’s modulus, Yo. At very low tempera-
ture, it is typical for elastic moduli to plateau at a constant value,
reflecting the harmonic curvature of the bottom of the interatomic
potential. As temperature increases, the elastic moduli typically
decrease linearly, provided that no phase transition occurs within
the measured temperature range. In 1970, Varshni44 put forward
an expression based on the Einstein-oscillator model to describe
the temperature-dependence of any elastic modulus, Ci j:

Ci j =C0
i j −

s

eθE/T
−1

. (1)

Here, C0
i j denotes the elastic modulus at 0 K, θE is related to the

Einstein temperature, and s is a fitting parameter that represents
the curvature of the transition region. The solid curves in Fig. 5
show that the Varshni equation provides an excellent fit for for
ReB2, Cu, and Mg3Sb2. In fact, for most solids Eq. 1 has proven
to be the best representation of the low- and mid-temperature
trends of elastic moduli. In the higher temperature linear regime,
an expression derived from the Varshni equation (Eq. 1) by Led-
better et Al. can be used to estimate the Grüneisen parameter45.

dY

dT
=−

s

θE
=−

3kγ(γ +1)

Va
, (2)

where dY/dT is the slope of the Young’s modulus with respect
to temperature, γ is the Ledbetter Grüneisen parameter, k is the
Boltzmann constant, and Va is the volume per atom. Note that the
original formulation reported in ref45 is expressed for dB/dT . In
principle, an estimate of the Grüneisen parameter can be obtained
from the temperature derivative of any elastic modulus. As it will
be further discussed in section 4.5, the estimate will inevitably
depend on the used modulus. In this case, we employed dY/dT

as one of the most widely available properties. By fitting the high
temperature slope with Eq. 2 we obtain the estimates for γ shown
in Fig. 5. Alternative methods to calculate γ will be discussed
in section 4.5. To differentiate between them, we refer to this
estimate as γLedbetter.

3.2 Measurement techniques

It is worthwhile at this point to briefly discuss methods used
to measure elastic moduli at high temperature. The most com-
mon technique for room temperature sound velocities (directly
related with elastic moduli, as it will be described in section 4.2),
is ultrasonic time-of-flight, or pulse-echo ultrasound, measure-
ments46,47. The speed of sound is quantified by measuring the
time it takes for an acoustic pulse to travel across a known length
of the sample. The most common setups are (i) the double-
transducer one, where a piezoelectric transducer emits a wave
packet and the transit time is acquired by a pickup transducer
positioned at the opposite side of the sample; (ii) the single-
transducer setup, where the pulse-echo time (to the opposite face
of the sample and back to the emitter) is recorded. More details
on this method can be found in ref.46. Pulse-echo ultrasound
measurements provides uncertainties in the order of 1%, are not
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very demanding in terms of sample geometry, the data analysis is
straightforward, and the equipment is accessible. However, the
method typically requires a relatively large sample (e.g. 5x5x1
mm3), and different measurements are needed to obtain inde-
pendent elastic moduli. The main disadvantage though is with
respect to temperature-dependent acquisitions. In fact, a cou-
pling medium (typically a gel with the consistency of honey) is
required between the sample and the transducers, and often the
sample needs to be re-mounted to obtain an adequate signal.
Therefore, it is challenging to design an enclosed atmosphere-
and temperature-controlled apparatus for low or high tempera-
ture data collections.

Resonant ultrasound spectroscopy (RUS) is the most accurate
technique to determine the elastic moduli of solids7,48,49. This
is the method employed for most of the temperature-dependent
data in this article. During the measurement, the sample is
lightly-clamped on diagonal corners between two piezoelectric
transducers. The emitter generates a signal over a wide range
of vibrational frequencies, while the pickup transducer collects
the sample response7,48. Resonance peaks can be observed when
the excitation frequency matches the Eigen-frequency of the sam-
ple. Conceptually, each resonant peak can be viewed as the fre-
quency of one low energy acoustic phonon mode of the sam-
ple. The temperature-dependence of a peak frequency is thus a
measure of the anharmonic character of a specific phonon mode.
The elastic tensor of the sample is obtained by iteratively match-
ing the observed resonant frequencies with calculated ones using
widely-available open-source software50. Although in principle
resonances from any sample geometry can be predicted and mea-
sured, this process is most feasible when using well-defined ones
such as parallelepipeds, cylinders, or spheres7,51,52. For polycrys-
talline samples, C11 and C44 are obtained in a unique measure-
ment. For single crystals, all the tensor elements can be obtained
in a single measurement, though the analysis is increasingly chal-
lenging (higher number of unknown variables), especially if the
sample is not properly cut and oriented. Further, the attenuation
or damping of individual acoustic phonons can be determined
with RUS, as this is inversely proportional to the peak quality
factor (based on the full-width at half-maximum)53. Since RUS
yields a complete set of elastic moduli from a single scan, elim-
inating the need of remounting, it results being convenient for
measurements under varying temperature or atmospheric condi-
tions. In addition, the absence of a coupling medium eliminates
issues with thermal expansion mismatches and sublimation or re-
activity of the couplant, enabling to carry out measurements un-
der extreme temperatures48.

Other techniques are also available. Mechanical methods, such
as tensile, compression, and micro-hardness tests, can be used
for a direct determination of elastic moduli. These are typically
destructive, and most often used for ductile specimens such as
metals and composites. Diffraction and scattering techniques in-
cluding Brillouin scattering54±56, X-ray residual strain analysis57,
high-pressure X-ray diffraction58, and inelastic neutron scatter-
ing59,60, can yield an indirect measurement of moduli. These re-
quire specialized equipment and are not designed specifically for
elastic moduli. Acoustic methods result therefore being particu-

larly advantageous, as non-destructive and more accurate than
mechanical methods, as well as more readily available than most
scattering or diffraction-based techniques.

3.3 Temperature-dependent moduli of thermoelectric mate-

rials

In Fig. 6, we have compiled selected high-temperature Young’s
modulus data for various classes of thermoelectric materials.
Most of the data were measured on bulk polycrystalline speci-
mens using RUS. Although the availability of high-temperature
elastic constants for thermoelectric materials remains quite lim-
ited, Fig. 6 still illustrates the wide range of elastic stiffness
among different classes. Half-Heuslers and Si1−xGex are among
the stiffest thermoelectrics, due to their short, stiff covalent
bonds. Similarly, clathrates are relatively stiff, as a result of the
covalently bonded cage-like structures. In general, compounds
with octahedral coordination, (e.g., rock-salt compounds SnTe
and PbTe) are softer than those with tetrahedral coordination
(half Heuslers). In the case of AM2X2 Zintls, the alternating lay-
ers of tetrahedral and octahedral coordination may explain their
intermediate values of Y .

Fig. 6 Temperature-dependence of the Young’s modulus, Y , of se-

lected thermoelectric materials37,48,61ś71. Half-Heuslers and Si1−xGex

are among the stiffest thermoelectric materials due to their short cova-

lent bonds. The softest crystalline materials are the layered tetradymites

and Mg3Sb2 and Mg3Bi2. At the lower left corner, PEDOT, an extremely

soft conducting polymer, is shown for comparison.

The softest crystalline materials shown in Fig 6 are the
tetradymites (Sb2Te3 and Bi2Te3), which have structures that
combine covalent octahedral layers with van der Waals bonding,
SnSe, possessing a layered structure with soft in plane accordion-
like bonds72, and Mg3Sb2 and Mg3Bi2, which exhibit anoma-
lously low shear moduli and will be discussed further below. Fi-
nally, the extremely low Young’s modulus of a typical conducting
polymer, PEDOT:PSS, is shown for comparison.

Fig. 6 also emphasizes the dual roles of structure and compo-
sition in determining the magnitude of Y . Within the same struc-
ture type, differences in atomic radii often determine the stiffness
of individual compounds. For example, the Ge-based clathrates
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are generally softer than Si-based clathrates, and among AM2X2

Zintls, the Bi-based compounds are generally softer than Sb-
analogues due to the larger size of Bi. Nevertheless, composi-
tion does not strongly impact the temperature slope of moduli,
and thus the anharmonicity. The exact values of elastic moduli
and softening rate can be found in Supplemental Table 1. The
difference in Y explains much of the difference in lattice thermal
conductivity across materials. For example, Half Heuslers’ κL is
inherently high due to their high bond stiffness. In particular, Zr-
NiSn has a κL of 17.2 W/mK at room temperature73, which is on
the high end of thermoelectric materials. PEDOT, on the other
hand, is a class of conducting polymer with inherently ultra-low
κ (∼ 0.4 - 0.9 W/mK)74. The Young’s modulus of PEDOT thin
films, as shown in Fig. 6, is typically around 1 GPa37,68,69.

To highlight the relative softening rate of different material
classes, Fig. 7 shows the fractional change in Y with respect
to the room temperature value. While the modulus of Si1−xGex

only decreases by 3% between 300 and 900 K, traditional thermo-
electrics, such as PbTe and SnTe soften by as much as 20% within
their operational temperature range (approximately 300-700 K).
As a general trend, materials with lower melting temperatures,
TM , are expected to exhibit a more rapid decrease of Y with tem-
perature. For example, PbTe has TM = 1197 K, while Si0.8Ge0.2

has TM = 1623 K. The compounds Mg3Sb2 and Mg3Bi2, with TM

of 1698 K75 and 1093 K76, respectively, defy this trend. The ori-
gin of this behavior is discussed in section 5.1.

Fig. 7 Temperature-dependence of the Young’s modulus normalized to

the room temperature value, Y/Y300. Large disparities in the relative rate

of softening are found among different compounds.48,61ś67,77

.

4 Elastic moduli as predictors of lattice thermal

conductivity

4.1 Overview

For semiconductors, the dominant carriers of heat are charge
carriers and lattice vibrations, which are responsible for κe and
κL, the electronic and lattice components of thermal conductiv-
ity, respectively78. Lattice vibrations in a solid, or phonons, can

be broadly grouped into two categories: high frequency optical
modes involving opposing vibrations of atoms, and lower fre-
quency acoustic modes in which neighboring atoms move con-
currently. For this last category the group velocity, or sound ve-
locity, is directly related to the elastic moduli. Although this is
not always the case and should not be taken for granted79±82,
in most materials acoustic phonons dominate the heat trans-
port78,83. Hence, a widely used approximation for the lattice
thermal conductivity, derived from the kinetic gas model, is given
by:

κL =
1

3
Cvv2

soundτ. (3)

Here, κL is proportional to the specific heat Cv, sound velocity
vsound , and phonon relaxation time τ 84. Compared with the in-
herent nature of Cv, vsound and τ can be more readily controlled
and are therefore the focus of most optimization studies of ther-
moelectric materials. As it will be discussed below, quantification
and trends of both vsound and τ can be obtained from measure-
ments of elastic moduli.

4.2 Determining sound velocities from elastic moduli

Sound velocities represent the speed at which low frequency lat-
tice vibrations travel in a solid. In phonon dispersion relations,
they are identified as the slope of the acoustic branches as fre-
quency approaches zero. From equation 3, we can readily in-
fer how vsound represents a main contributing factor to thermal
transport. Indeed, it is the greatest contribution to variations in
κL between different classes of materials. For example, stiff co-
valent bonds in tetrahedrally-coordinated crystals yield several
magnitudes larger sound velocities than weakly bonded polymers
(diamond average vsound ∼14000 m/s85, PEDOT:PSS ∼900-1400
m/s86), contributing to the marked deviations in κL (diamond
∼2000 W/mK87, PEDOT:PSS ∼0.4-0.9 W/mK86). The sound
velocity is proportional to the square root of the elastic mod-
uli and inversely proportional to the square root of density ρ

(vsound ∝
√

C/ρ). Therefore, measuring the elastic moduli of a
solid is the most accurate approach to measuring its speed of
sound, as the two properties are related via only one, easily-
quantifiable parameter, i.e. density.

Isotropic solids

As discussed in section 2.2, the form of the elastic moduli tensor
is strictly dependent on the crystal symmetry of a solid. Con-
sequently, sound velocities preserve this dependence. In isotropic
polycrystalline samples the behavior is not dependent on the crys-
tal class. In this case, the longitudinal sound velocity, vL, and the
shear sound velocity, vs are given by Eq. 4 and Eq. 5, in which
B is the bulk modulus, and G is the shear modulus. Eq. 6 can be
used to estimate an average or effective sound velocity vsound,m.

vL =

√

B+ 4

3
G

ρ
(4)

vs =

√

G

ρ
(5)
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vsound,m =

[

1

3

(

1

v3
L

+
2

v3
s

)]

−
1

3

(6)

Eq.s 4 and 5 explain why many of the best thermoelectric mate-
rials contain large, heavy elements: these often lead to high den-
sity and soft bonds, both of which cause low sound velocities and
thus a suppression of lattice thermal conductivity. Note that soft
bonds do not necessarily mean a mechanically weak sample. In
fact, softer bonds are often associated with materials that are less
prone to brittle failure and more likely to exhibit ductile behavior,
which is more favorable for practical applications88. Since sound
velocities can be readily obtained from ultrasonic measurements
or first-principles calculations, they are the primary factor that
should be considered when evaluating trends in lattice thermal
conductivity across a series of materials. In particular, when κL,
Cv and vsound are all known, differences in the phonon scattering
rate can be evaluated (see Eq. 3).

Single crystals

In non-isotropic materials (i.e. single crystals or strongly textured
polycrystalline samples), the sound velocities are dependent on
the crystal class and direction propagation. It is to be noted that
only for certain crystallographic directions the propagating wave
produces pure transversal or longitudinal modes89. For such
cases, the relationships between Ci j and sound velocities for dif-
ferent crystal classes can be found in ref.90,91. Generalized rela-
tionships including non-pure modes require solving the Christof-
fel equation. Useful calculation tools can be found in ref.89,92,93.
As an example, Table 1a shows the experimental elastic moduli
for trigonal Bi2Te3

94,95. The anisotropic form of the tensor pro-
duces a marked contrast in sound velocities along different crys-
tallographic directions, as reported in Table 1b (only pure modes
are considered). The anisotropy in elastic moduli, and thus in
sound velocities, explains the anisotropy in κL

93. An illustration
of the concepts of wave propagation and polarization in a crystal
is presented in Figure 8.

4.3 Debye-Callaway model

Eq. 3 represents a simplified picture of lattice thermal conductiv-
ity, where the frequency dependence of each term is neglected.
This can allow for quick estimates but often fails in capturing the
whole experimental behavior of materials. A commonly used ap-
proach is the Debye-Callaway model96. According to the Boltz-
mann transport theory of phonons, the frequency-dependent κL

can be expressed by Eq 7, where is ω the phonon frequency and
vg is the group velocity.

κL =
1

3

∫ ωmax

0

CV (ω)vg(ω)2τ(ω)dω (7)

From here, three main assumptions are typically introduced84.
The first approximation relies on the Debye model of the phonon
dispersion relation. This assumes the phonon group velocity
as frequency-independent and equal to the low frequency limit,
i.e.vsound . The effective sound velocity (Eq. 6) can further be

Fig. 8 Bi2Te3 crystal structure with cartoon explaining wave propagation

and polarization. A wave with propagation direction [100] and polariza-

tion [001], one with propagation direction [010] and polarization [100]

and one with propagation direction [001] and polarization [010] are illus-

trated.

.

used for vsound to capture a transversal and longitudinal mode-
averaged behavior. Second, the high temperature limit for the
heat capacity is used, which is sufficiently accurate for materi-
als above their Debye temperature. Finally, Umklapp or phonon-
phonon scattering is considered as the dominant contribution
to τ. This means that other phonon scattering mechanisms,
otherwise accounted for as series contributions to the overall τ

(τ−1 = Σiτ
−1

i ), are neglected. This is acceptable for non-heavily
nanostructured and non-doped materials, when point defect and
boundary scattering are not dominating the phonon behavior.

Overall, this model yields a description of κL expressed by Eq.
8, where M̄ and V̄ are the average mass and volume per unit atom,
γ is the Grüneisen parameter, and T is the absolute temperature.
A full derivation can be found in ref.84.

κL =
(6π2)2/3

4π2

M̄v3

sound

V̄ 2/3γ2T
(8)

The adoption of this formalism allows to use the speed of sound to
describe the overall acoustic phonon behavior of a material. This
results particularly convenient as vsound can be readily obtained
either from direct measurements, or from the elastic moduli (ex-
perimental or calculated) with Eqs. 4-6. It is to be noted that
Eq. 8 neglects the contribution of optical modes to phonon trans-
port. In the case of simple materials, most of the heat is carried
by acoustic phonons, and Eq. 8 results sufficiently accurate. For
complex compounds with a large crystal structure97 the contribu-
tion of higher-frequency optical modes becomes relevant. In these
cases, a correction to Eq. 8 can be applied to take into account
the optical contribution, and can be found in refs.84,97.

This model has been demonstrated to perform well, predicting
κL within a factor of two when experimental values are used for
vsound and γ 84. When unavailable, the model still was able to
yield surprisingly good predictions. Indeed, for classes of materi-
als with lattice thermal conductivity spanning across four orders
of magnitude, the model was able to predict κL within one or-
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a) Ci j =

















68.47 21.77 27.03 13.25 0 0

21.77 68.47 27.03 −13.25 0 0

27.03 27.03 47.68 0 0 0

13.25 −13.25 0 27.38 0 0

0 0 0 0 27.38 13.25

0 0 0 0 13.25 23.35

















b) Propagation direction Anisotropic sound velocity

[100] Polarization [100] vL =
√

C11/ρ = 3028 m/s

Polarization [010] vT 1 =

√

1

2
(C66 +C44 − ((C44 −C66)2 +4C2

14
)

1

2 )/ρ = 2278 m/s

Polarization [001] vT 2 =

√

1

2
(C66 +C44 +((C44 −C66)2 +4C2

14
)

1

2 )/ρ = 1265 m/s

[001] Polarization [001] vL =
√

C33/ρ = 2526 m/s

Polarization [100] and [010] vL =
√

C44/ρ = 1915 m/s

Table 1 (a) Experimental elastic moduli tensor for trigonal Bi2Te3, with values in GPa. The anisotropic form of the tensor leads to anisotropy in the

speed of sound, calculated in panel (b) for purely transversal or longitudinal modes, and thus in lattice thermal conductivity. Density ρ = 7.47 g/cm3.

der of magnitude of the experimental value98, further dropping
the accuracy to within 1.5 when a correction for anharmonicity
was employed99. An extension of the model to account for the
anisotropy in the lattice thermal conductivity of crystals was also
successfully tested93. These studies are making use of DFT mod-
uli to calculate the sound velocity. For most compounds, these can
be found at MaterialsProject.org31, allowing quick and accessible
predictions.

4.4 Temperature dependence of speed of sound

As explained in the previous sections, elastic moduli present a
dependence over temperature which is reflected in temperature-
dependent sound velocities. The Debye-Callaway model is de-
rived assuming a constant cell volume, which implies no changes
in heat capacity due to thermal expansion and constant sound ve-
locities. Therefore, κL predictions based on the Debye-Callaway
model usually limit the temperature dependence to the phonon
scattering time term only, employing constant values for vsound .
This can lead to systematic inaccuracies when compared to ex-
periments. In fact, since κL is proportional to the cube of sound
velocity, deviations in the latter can propagate considerably to
the former. For example, using room temperature experimen-
tal values of vsound for PbTe100 leads to a 9% overestimate of
sound velocity at 700K, causing a 25% overestimation of κL with
respect to calculations employing the experimental temperature-
dependent vsound . However, if a constant Cp is used (Doulong-
Petit limit), these errors tend to cancel out, as the experimental
Cp instead increases with temperature due to thermal expansion.
Figure 9a shows the relative variation of experimental vsound and
Cp for PbTe (data from refs.100,101). Figure 9b illustrates instead
the result of applying constant or temperature-depended vsound

and Cp to the Debye-Callaway model. Despite the partially com-
pensating trends of vsound and Cp over temperature, discrepan-
cies in the models can still be observed. This further motivates

the advantage of employing temperature-dependent experimen-
tal sound velocities: it can improve the accuracy of existing mod-
els, overall leading to improved understanding for established
materials and better predictions for novel compounds. This can
be particularly relevant for materials with predicted large anhar-
monicity, where a heavy dependence of vsound and Cp with tem-
perature is expected.

4.5 A comparison of Grüneisen parameter estimates

In addition to yielding vsound , elasticity measurements can provide
relevant information on the relaxation time of acoustic phonons.
As discussed in section 3.1, the rate of softening of a material
(i.e., dY/dT ) is directly related to the degree of bond anhar-
monicity, quantified by the Grüneisen parameter, γ. Being able
to accurately estimate γ is important to gain insights on the Umk-
lapp or phonon-phonon scattering rate τU , as τU ∝ 1/(T γ2). The
same dependence is then carried on κL (Eq. 8). Although Umk-
lapp is not always the dominant scattering mechanism in ther-
moelectrics (point-defect and boundary scattering also play an
important role), it becomes increasingly important in all solids at
high temperature, and it is the only scattering mechanism that oc-
curs even in a perfect, defect-free crystal. Unfortunately, there is
no single approach to estimate γ. From a microscopic perspective,
each vibrational mode has its unique mode Grüneisen parameter
γi, expressed as

γi =−

∂ lnωi

∂ lnV
, (9)

in which ωi is the vibrational frequency of the phonon mode i,
and i is the unit cell volume.102 Note that γi can take on either
negative or positive values, both related to anharmonic behav-
iors. A mean Grüneisen parameter can be obtained by taking an
average of the mode Grüneisen parameters weighted on the heat
capacity of each vibrational mode CV,i, as γ = ∑i γiCV,i

∑i CV,i
. Even though

it is straightforward to obtain γi for all phonons from DFT calcu-
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Fig. 9 (a) Relative variation of experimental sound velocity and heat capacity at constant pressure for PbTe (data from refs. 100,101). Normalization

is with respect to the room temperature sound velocity and the Doulong-Petit limit for heat capacity, respectively. b) Lattice thermal conductivity

calculated from the Debye-Callaway model for PbTe, assuming Umklapp-dominated phonon scattering. Employing constant (room temperature vsound

and Doulong-Petit Cp) or temperature dependent (experimental) parameters causes deviations in the temperature trend. Values are normalized with

respect to room temperature calculations.

.

lations, it is prohibitively difficult experimentally. For example,
γi for arbitrary modes can be painstakingly extracted from single
crystal neutron scattering measurements and γi for specific zone
center modes can be obtained from Raman spectroscopy103,104.
However, the complete experimental determination of γi for com-
plex solids remains out of reach. For this reason, reported ex-
perimental Grüneisen parameters are usually a thermodynamic,
or "average" γ, obtained from more accessible properties such as
thermal expansion or elastic moduli. Here we show some of the
employed methods.

4.5.1 Temperature dependence of elastic moduli

As described in section 3.1 (Eq. 2), we can directly obtain the
Grüneisen parameter, γLedbetter, of a material from the tempera-
ture derivative of elastic moduli. Specifically, γLedbetter should be
considered an estimate of the anharmonicity of acoustic phonon
modes. In Fig. 10, Eq. 2 is used to estimate γLedbetter for a va-
riety of thermoelectric materials and traditional semiconductors.
Here, the Bulk modulus is employed and the linear portion of
dB/dT is selected for the calculation. For compounds exhibiting
phase transitions, only the linear slope before the transition is
used.In principle, an estimate of the Grüneisen parameter can be
obtained from the temperature derivative of any elastic modulus,
though the estimate will inevitably depend on the used modu-
lus. This reflects the fact that (i) the elastic-tensor anisotropy
can diverge with temperature (i.e., C11 might soften faster than
C44, leading to a temperature dependent µ); (ii) moduli like Y

and G can have significantly different magnitudes at low tem-
perature, but still tend towards zero close to the melting (not
the case for B), thus necessarily implying different temperature
derivatives. As an example, Figure Sx (Supplemental Material)
shows the variability in the estimated gamma for some relevant
materials, employing different moduli in the Ledbetter equation.

Although general material trends can be inferred, in some cases
estimates from different moduli can differ more than the 250%.
Consistency is therefore essential when comparing different ma-
terials.

Fig. 10 A comparison of Grüneisen parameter estimates calculated from

Eq. 2 and Eq. 11. Experimental Poisson’s ratio and temperature-

dependent Bulk modulus data were used21,32,61,63,64,77,105ś109. The

data can be őnd in Supplemental Table 2. The dashed lines indicate a

20% deviation from an ideal 1-to-1 agreement.

4.5.2 Poisson’s ratio

Since experimental and computed room temperature elastic mod-
uli are more widely available than temperature-dependent data,
an expression relating γ to the Poisson’s ratio, µ, has recently
gained popularity110±113. Eq. 10 was initially derived within the
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Debye model for a cubic system but has been shown to provide
reasonable results for other symmetries as well110.

γ =
3

2

B

ρv2
(10)

Here, v is the root mean square velocity (v2 =
v2

L+2v2
T

3
). By consid-

ering that v2 = C11+2C44

3ρ and B= C11+2C12

3
, we can see that γ reduces

to 1 when C12 =C44. Therefore, the estimate of Grüneisen param-
eter from Eq. 10 can be practically interpreted as the difference
between C12 and C44 (i.e.(C11 + 2C12)/(C11 + 2C44)), or in other
words, how uniformly the material reacts to a given strain. By
substituting the expressions for v, B and µ one can obtain a single
variable equation:

γPoisson =
3

2

(

1+µ

2−3µ

)

. (11)

As γPoisson increases monotonically as a function of µ in the range
covered by most materials (µ = 0-0.5), a large µ can be consid-
ered a hallmark of a large Grüneisen parameter.

4.5.3 Thermal expansion

The most common method to estimate the Grüneisen parameter
relies on thermal expansion. When the Einstein heat capacity and
the quasi-harmonic approximation (i.e., when ω is the only term
that is affected by volume) are applied to Eq. 9 and combined
with the Maxwell relations, Eq. 12 can be derived.

γα =
αB

CV ρ
(12)

Here, α is the volumetric thermal expansion. It is to be remem-
bered that in the case of a material with large positive and nega-
tive mode Grüneisen parameters, the weighted average might be
a small positive value, which would lead one to falsely conclude
that the material is harmonic (thus possessing γ=0). Indeed, ma-
terials designed to have zero thermal expansion are not perfectly
harmonic solids - rather, their structures allow for phonon modes
with highly negative γi

114.

4.5.4 Discussion

Although the above calculation methods for the Grüneisen pa-
rameter are derived from the same origin, they are measuring
fundamentally different phenomena, all of which are tied to an-
harmonicity. For this reason, they provide somewhat different
estimates. This can be misleading when comparing materials
if different expressions have been used. However, general con-
clusions can still be drawn. A comparison of γPoisson (Eq. 11)
and γLedbetter (Eq. 2) for a variety of materials is shown in Fig.
10. Figure 11a instead shows the functional trends of γLedbetter

(here from dG/dT ) and γPoisson (alongside a comparison with the
γα value), while Figure 11b compares the thermodynamic and
DFT estimates for selected relevant compounds. All the data can
be found in the Supplementary Table 2. The approximations
show some agreement with respect to general trends. For ex-
ample, diamond, Ge, and Si are found to be relatively harmonic
(low γ), while Mg3Sb2 and Mg3Bi2 have overall more anharmonic
bonding. However, there are also notable disparities among the

methods. For example, since γLedbetter is calculated from a non-
normalized temperature derivative of elastic moduli, it tends to
be overemphasized for very hard materials, such as diamond. As
such, comparing the anharmonicity of diamond and Ge, γLedbetter

is higher for the former whereas γPoisson is larger for Ge. Based
on the functional forms and commonly adopted values of dG/dT

and µ, γLedbetter can adopt a larger range of values than γPoisson,
overall leading to more spread out and generally higher values
for the former. This can indicate a greater sensitivity of the elas-
tic moduli method in estimating the thermodynamic Grüneisen
parameter.

In general, highly anharmonic materials have both high ther-
mal expansion coefficients and a high rate of softening. How-
ever, elastic moduli soften at a faster rate than volume increases.
For example, Mg3Sb2, among the most anharmonic TE materi-
als, shows a 20% decrease in Y (as well as B and G) from room
temperature to 300°C63, while the volume increases of less than
1.5% in the same range63. On the other hand, a comparatively
harmonic material like silicon exhibits more than one order of
magnitude lower softening at high temperature ( 2% decrease in
Y from room temperature to 300°C124), while around three times
lower thermal expansion116,125. Negative thermal expansion ma-
terials present an interesting conundrum, as they can still exhibit
pronounced softening with increasing temperature126. For such
materials, one would obtain a negative Grüneisen parameter from
Eq. 12. The Ledbetter formula is ambiguous in this regard, as we
can choose the negative or positive root as solution of Eq. 2. Nev-
ertheless, for this last one, regardless of the sign of γ, a material
will soften with increasing temperature. Eq. 11, in contrast, only
allows positive values of γ for physical values of Poisson’s ratio.

Ultimately, even though the thermodynamic approximations of
γ discussed here can reveal trends in materials, none can be re-
garded as a full replacement of in-depth computational or exper-
imental characterizations.

5 Key recent results

In this section we illustrate some recent results highlighting differ-
ent ways in which elastic moduli turned out valuable in studying
thermoelectrics. Elastic moduli can provide important insights on
the bonding chemistry, as well as on the thermal transport behav-
ior, allowing to decouple contributions to κL due to the phonon
group velocity, and phonon scattering and anharmonicity.

Furthermore, they represent a useful tool for an in-depth study
of phase transitions. They are especially convenient when deal-
ing with second-order ones. Indeed, in first-order phase transi-
tions the first derivatives of the Gibbs energy G (and thus most
material properties, e.g. density) are discontinuous at the tran-
sition. In contrast, second-order transitions involve continuous
first derivatives of G and thus a gradual change of material prop-
erties127±130,130±133. For this reason, clear sings of discontinu-
ities must be searched in physical properties connected with the
second-order derivative. Second order derivatives of G include
thermal expansion, specific heat, and elastic moduli134. While
each of these parameters can be used to reveal a second order
phase transition, it is worth noting that the specific heat is a scalar,
and thermal expansion is a vector. Instead, the elastic moduli are
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Fig. 11 a) Functional forms of the Grüneisen parameters calculated from elastic moduli softening (Eq. 2) and Poisson’s ratio (Eq. 11). As visible, the

former gives a larger spreading of values thus possibly a greater sensitivity than the latter. Calculated γ for different materials are reported, alongside

the estimation of γ from the thermal expansion (Eq. 12) for comparison. b) Bar plot comparing the different estimates of Grüneisen parameter for

selected relevant materials. Data from refs. Si115ś117, CaMg2Sb2 and Mg3Sb2
63, Bi2Te3

64,118,119, PbTe100,120,121, SnSe71,122,123.

described by a fourth-order tensor, and thus carry the full symme-
try of the discontinuities through a second-order transition. The
effect of structural phase transitions on elastic constants has been
studied extensively. Examples among functional materials include
the ferroelectrics BaTiO3, SrTiO3

135,136, EuTi1−xNbxO3
137 and

Cd2Re2O7
138, as well as several thermoelectric materials such as

SnxGe1−xT19,139±141, Zn4Sb3
142, and Mg2Si143.

5.1 Case Study - Discovery of anharmonic inter-layer bond-

ing in Mg3Pn2 (Pn=Sb,Bi)

AM2X2 compounds with the CaAl2Si2 (P3̄m1) structure type (Fig-
ure 12a, where A is an alkali, alkaline earth, or rare earth metal,
M is Mg, Al, or a transition metal, and X belongs to the IVA-
VIA groups) have attracted interest in thermoelectrics because of
their chemical diversity and tunability144,145. Mg3Pn2 have re-
cently emerged as promising candidates of this class, also due
to their exceptionally low κL. In fact, they exhibit values 2-3
times lower compared to isostructural CaMg2Pn2 and YbMg2Pn2

despite the larger, heavier cations in the latter compounds (Fig.
12f))144,146±148. High temperature elastic moduli measurements,
combined with high pressure XRD and ab initio phonon calcula-
tions were decisive in shedding light on this unusual thermal be-
haviour.

It was found that Mg3Sb2 and Mg3Bi2 possess exceptionally low
elastic moduli (Fig. 6) with anomalously rapid softening rate
(Fig. 12d), pointing to a high degree of anharmonicity. These
properties are expected to have a major contribution to ther-
mal transport and were found arising from the atomic arrange-
ment. AM2X2 compounds can be described as covalently bonded
[A2X2]2− tetrahedral slabs sandwiched between monolayers of
A2+ cations (Fig. 12a)144,149. In Mg3Pn2, Mg occupies the
octahedrally-coordinated A-site, defined as Mg(1) here, and the
tetrahedrally-coordinated M-site, referred to as Mg(2). Both the

Mg(1)-Pn and Mg(2)- Pn bonds have similar ionic character150.
However, the different bond lengths (i.e. , 3.12 Å for Mg(1)-Sb
and 2.88 Å for Mg(2)-Sb) and coordination environment lead to
stiff tetrahedral Mg(2)-Pn and weak octahedral Mg(1)-Pn bonds.
This has been confirmed by high-pressure XRD, showing a higher
compressibility of the latter bond151, as well as phonon calcula-
tions63, pointing to a softer character for the Mg(1) over Mg(2)
phonon modes.

The weak bonding between Mg(1) and Pn render the entire
structure unstable with respect to inter-layer shear stress, as evi-
denced by the unusually low shear moduli63. This instability fur-
ther leads to a high degree of anharmonicity, as confirmed by the
large DFT Grüneisen parameter associated with these vibrational
modes (see Fig. 12c), as well as the rapid softening observed in
the experimental moduli with temperature (see Fig 12d). The an-
harmonicity associated to the Mg(1)-Pn bonds leads to enhanced
phonon scattering and thus suppressed κL. One possible expla-
nation for why only compounds with A = Mg (not those with
A = Yb, Ca, Sr, Eu) exhibit anomalous thermal properties can be
traced to the ionic radii. In the sphere packing model proposed by
Pauling for ionic solids, the smallest stable cation to anion radius
for an octahedral coordination is given by rcation:ranion=0.414.
Fig. 12b) shows the estimated rcation:ranion for AMg2Pn2 solids,
in which compounds with A = Mg have rcation:ranion below the
stability limit, while those with larger cations are predicted to be
stable in a six-fold coordinated environment. This can be the rea-
son of the unstable inter-layer bonding leading to the anharmonic
behaviour. For additional details, we refer the readers to refs.63

and151.
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Fig. 12 a) The structure of AM2X2 compounds. b) When Mg occupies the octahedral A-site, the cation to anion size ratio falls below the stability limit

according to Pauling’s radius rule. c) The phonon dispersion of the Mg3Sb2 at low frequencies. Among AMg2Pn2 compounds, Mg3Sb2 and Mg3Bi2
have the fastest softening rate as shown by d) the normalized shear modulus, G/G300, and e) they have the highest rate of thermal expansion. These

features point to a high degree of anharmonicity. f) A comparison of the lattice thermal conductivity of AMg2Sb2 with A=Mg, Ca, and Yb146ś148,

shows that Mg3Sb2 possesses the lowest values, in contradiction to typical trends between κL and mass.

5.2 Case Study - Quantifying scattering due to disorder in

diamond like semiconductors

The quaternary tellurides Cu2ABTe4, where A = Zn, Hg, Cd, and
B = Si, Sn, Ge, are a family of compounds possessing a diamond-
like structure (DLS). They belong to the broader class of qua-
ternary chalcogenides, which enormous chemical and structural
freedom leads to highly tunable properties, with some compo-
sitions being suitable for photovoltaic (typically sulfides or se-
lenides) and thermoelectric applications152±154. This class of ma-
terials is characterized by significant site disorder (anti-site de-
fects) and the existence of order-disorder phase transitions af-
fecting both thermal and electrical properties155±157. Quaternary
DLS compounds exhibit different cation ordering motifs in close
energetic proximity to one another (e.g., stannite and kesterite).
For this reason, within a given structure type it is frequent to
form anti-site defects. In the ideal, ordered stannite structure
(Fig. 13a), the A and B cations are confined to specific layers.
When both A and B are large atoms (e.g., Sn and Hg), strain is
developed in the a direction. As temperature increases, the struc-
ture can relieve this strain by becoming increasingly disordered,
with the large atoms diffusing into the Cu-containing layers (Fig.
13a).

High temperature measurements of elastic moduli helped un-
derstanding the connection between site disorder and the ob-

served ultra-low κL in certain DLS compounds, as well as proved
effective in detecting the critical temperature of the disorder-
ing phenomena. Indeed, order-disorder transitions in DLS com-
pounds are generally second-order, meaning that the variation of
lattice parameters with temperature is continuous (no sharp dis-
continuity). In contrast, the elastic moduli can change abruptly,
revealing the transition temperature, Tc. In a study of a se-
ries of Cu2ABTe4 compounds by Ortiz el.al21, a change in slope
of the temperature-dependent elastic moduli and sound veloci-
ties was detected with RUS (Fig. 13b) and correlated with an
order-disorder phase transition. Interestingly, above Tc all the
compounds exhibit an increase in softening rate (larger negative
slope), mostly corresponding to a further suppression in κL.

As can be seen in Fig. 13b), the Cu2ABTe4 compounds dis-
play relatively small variations in the magnitude of sound velocity
(no more than 20% difference). Nevertheless, the room temper-
ature κL of Hg-containing quaternary compounds is more than
three times lower than that of Zn-containing ones (e.g., κL = 3.8
W/mK and 1.1 W/mK for Cu2ZnGeTe4 and Cu2HgSnTe4, respec-
tively). By combining the measured κL and vsound , an estimate of
the mean phonon relaxation time τ as a function of temperature
was extracted using Eq. 3. A drastic decrease in τ for the Hg-
containing samples was found and hypothesized connected with
a change in point defect scattering. To quantify the impact of
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different types of anti-site defects, the authors investigated the
overlap integrals of the partial density of states (PDOS) of indi-
vidual atoms, revealing a trend between the PDOS overlap and
κL. They found that anti-site defects comprised of atoms with dis-
similar PDOS (exemplified by Cu and Hg) perturb the associated
phonon modes more strongly than defects with nearly identical
PDOS, thus explaining the contrast in τ among DLS compounds
and the remarkably low κL in Hg-based ones. For additional de-
tails, we refer the readers to ref.21.

Fig. 13 a) A schematic representation of the order-disorder phase tran-

sition for Cu2ABTe4 compounds (A = Zn, Cd, Hg, and B = Si, Ge, Sn).

b) The elastic moduli of DLS Cu2ABTe4 with A = Zn, Hg, Cd, and B

= Si, Sn, Ge21. At around 430 K, discontinuities in the temperature-

dependent speed of sound measured by RUS can be observed for all nine

compounds.

5.3 Case Study - Mapping the transition from a 2D to a 3D

structure in (GeTe)17Sb2Te3

(GeTe)-(Sb2Te3) alloys (abbreviated as GST) have been studied
extensively as materials for phase-change random-access mem-
ory applications158±160. In recent years, Ge-rich GST has also
attracted attention in thermoelectrics for the excellent perfor-
mance (zT>2) and reduced thermal conductivity compared to
pure GeTe161±164. Similarly to GeTe165, GST alloys exhibit a re-
versible transition from an ambient temperature rhombohedral to
a high temperature rock-salt cubic structure64,166,167. However,
the incorporation of Sb2Te3 leads to van der Waals gaps causing
fascinating elastic properties, as described below. In the high-
temperature rock-salt structure, the cation sublattice is randomly
occupied by Ge, Sb, and vacancies, while Te occupies the anion

sublattice. In contrast, the rhombohedral structure contains cova-
lent, fully occupied slabs, which are interrupted by ordered lay-
ers of cation vacancies. These vacancy layers can be effectively
described as van der Waals gaps (Fig. 14a) and confer a two-
dimensional structure to the material. Unlike pure GeTe, in which
the rhombohedral to cubic transition is rapid and involves only a
local displacement of the cation positions20, the phase transition
in GST alloys necessitates of a dynamic reconfiguration of the va-
cancies. Cations must diffuse from the covalent slabs to fill the
vacancy layers. Concurrently, vacancies get randomly dispersed
into the matrix.

Peng et al. investigated the impact of the phase transition
on the thermal expansion and elastic moduli of polycrystalline
Ge17Sb2Te20. The study allowed to identify the role of vacancy
diffusion on the anomalous lattice thermal conductivity, which
featured a mostly flat trend with a sharp increase at the transi-
tion.64 Fig. 14b) shows the Young’s modulus normalized to 300
K (Y/Y0) of Ge17Sb2Te20 compared with Sb2Te3 and GeTe. Al-
though all three compounds were shown to have similar rates of
volumetric thermal expansion, they exhibit drastic differences in
the temperature-dependence of the elastic moduli. Ge17Sb2Te20,
while in the rhombohedral structure, shows unique elastic mod-
uli stiffening with temperature. This behaviour contrasts with
pure Sb2Te3 and GeTe, both of which exhibit the usual soften-
ing with increasing temperature. The stiffening of rhombohedral
Ge17Sb2Te20 with temperature likely compensates the expected
increase in phonon-phonon scattering thus explaining the flat
trend of κL. This stiffening was attributed to (i) the gradual de-
crease in the rhombohedral distortion with temperature, (ii) the
progressive diffusion of cation vacancies from the van der Waals
layers into the surrounding slabs. This suggests that a crystal
structure with randomly distributed vacancies is stiffer than one
with ordered vacancy layers. Consistently, at the phase transition
to the cubic symmetry, Ge17Sb2Te20 shows an abrupt increase in
Young’s modulus. This is in accordance with the reported be-
haviour of GeTe-SnTe alloys through an analogous rhombohedral
to cubic transition139. Softening of the elastic moduli can instead
be observed above the phase transition, as expected due to ther-
mal expansion.

Through a combination of structural and elasticity measure-
ments, the study maps the progressive vacancy diffusion in
Ge17Sb2Te20 leading to an anomalous lattice hardening. This pro-
gressive structural stiffening explains the flat temperature depen-
dence of κL as well as the step observed with the transition to
the fully 3D cubic structure. For additional details, we refer the
readers to ref.64.

6 Summary and outlook

Our aim with the present review is to emphasize the importance
and utility of experimental elasticity measurements, especially at
high-temperature, in improving our understanding of underlying
relationships between chemical bonding and transport physics. A
survey of the existing literature on temperature-dependent elas-
tic moduli of thermoelectric materials is used to highlight the re-
lationship between bonding and properties that control thermal
conductivity. In particular, we see that differences in bond stiff-
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Fig. 14 a) The structure of (GeTe)17Sb2Te3 before and after the phase

transition. b) Temperature versus the Young’s modulus normalized to

300 K of (GeTe)17Sb2Te3, Sb2Te3, and GeTe. (GeTe)17Sb2Te3 stiffens

with increasing temperature.

,

ness lead to wide variations in the acoustic speed of sound and
Grüneisen parameter. We also present case-studies to show the
remarkable sensitivity of temperature-dependent elasticity mea-
surements in interpreting thermal conductivity trends, as well as
detecting phase transitions.

As valuable as elasticity data is for understanding properties,
the elastic moduli and their relationship with lattice thermal con-
ductivity remains unexplored for the vast majority of thermoelec-
tric materials. While it has become increasingly common to see
reports of room-temperature speed of sound, these results are too
often presented in a cursory fashion. Significant value could be
gleaned via accurate analyses of elastic moduli data, especially if
compared with related materials, allowing to determine whether
changes in the speed of sound (and hence thermal conductivity)
are due to differences in chemical bonding or other effects, like
microstructure.

While the present review emphasized stand-alone measure-
ments of elastic moduli, in particular via acoustic techniques,
a further prolific opportunity is combining them with other in-
situ techniques. For example, by coupling elasticity measure-
ments with Raman spectroscopy and inelastic neutron or X-ray

scattering, one can gain a complete and detailed picture of the
phonon spectrum of a material. The elastic moduli provide ac-
curate information about low energy acoustic phonons, while
Raman spectroscopy yields the frequencies of selected optical
modes, and inelastic scattering can be used to target any desired
phonon mode.In each technique, temperature-dependent mea-
surements can be used to provide an estimate of the anharmonic-
ity (Grüneisen parameter) of various phonons. Ab initio phonon
calculations are becoming increasingly powerful as well, and now
include open-source visualization tools that can help chemists
draw direct connections between specific chemical bonds and the
associated vibrational modes. Combining them with experimen-
tal measurements of elastic moduli, carefully analysed with the
methods described above, can help constructing a comprehensive
understanding of the thermal conductivity in solids.
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