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Abstract

The effect of wear on Thermoelastic Instability (TEI) 
is investigated using a finite element approach. The 
equations of thermoelasticity, the classical wear law 

and the conforming contact conditions are considered. The 
method is based on a two-dimensional, frictional sliding 
model with a bimaterial interface and a simplified geometry 
of finite thickness. An assumption of the solution in the 
perturbation form leads to a quadratic eigenvalue problem. 
The existing analytical solutions using two infinite half 
planes are employed to validate the numerical solutions for 
several representative scenarios, including a limiting case 

in the absence of wear. The analytical solutions are also 
sought for the special cases when one of the materials is a 
non-conductor and when the two materials are identical, 
for the purpose of comparison. In general, the satisfactory 
agreements between the numerical and analytical 
approaches have been obtained. However, there are notice-
able discrepancies when the wear rates of the two materials 
are sufficiently close to each other and when the wear rates 
are much greater than the critical rate. It is confirmed that 
wear may suppress or amplify the effect of TEI. This is 
consistent with the recent research findings on the same 
topic via an analytical approach.

Introduction

Thermoelastic instability (TEI) is a theory that explains 
the localized high temperatures, or hot spots on the 
sliding surfaces of friction components. The theory was 

first proposed by Barber [1] decades ago. Burton et al. applied 
the perturbation method to hypothesize the cause of the inho-
mogeneous pressure distribution and introduced the concept 
of a critical sliding speed for instability [2]. Most of the later 
researches in this area improved the theory and focused on 
the prediction of critical speed of TEI as well as the distribu-
tion of hot spots for clutches and brakes. For example, Dow 
and Burton analytically investigated TEI of sliding contact 
for the case of a blade sliding on a thermally conductive semi-
infinite body both ignoring and considering wear. The trend 
of pressure variation with different material properties was 
studied [3]. In some cases, the presence of wear was found to 
give rise to oscillatory behavior where portions of the rubbing 
surfaces alternately rose and dropped in temperature [4]. 
Papangelo and Ciavarella indicated a limit value of wear coef-
ficient above which TEI is completely suppressed [5]. They 
also found that the dependence of the critical speed on the 
material parameters is quite complex and in certain cases wear 
may also destabilize the system [6]. Ciavarella et al. studied 
TEI between two elastically similar half-planes, one of which 
has a sinusoidally wavy surface [7], and considered disks of 
finite thicknesses [8]. Lee and Barber extended the geometry 
to the case of a finite thickness layer sliding between two half-
planes and evaluated the influence of finite disk thickness on 

TEI [9]. Hartsock and Fash further modified the elastic 
modulus of the pad in the half plane model and investigated 
the effect of the pad stiffness and its support structure on TEI 
[10]. Abbasi et al. studied the frictional heating and TEI in 
railway brakes considering the effect of temperature on 
material properties and on material wear [11]. Wang et al. 
established a three-dimensional transient thermo-mechanical 
coupling model for investigation of the distributions and 
coupling relationships of the temperature, stress, and displace-
ment generated by the combination of the thermal and 
mechanical loads of hydro-viscous drive [12].

In addition to analytical approaches, numerical methods 
were also extensively used to investigate TEI by many 
researchers. For example, Chen studied the coupling between 
thermal buckling and thermoelastic instability in clutch disks 
using Hotspotter and ABAQUS [13]. Yi used the finite element 
method and higher-order eigenvalue scheme to solve the 
problem related to thermoelastodynamic instability (TEDI) 
in frictional sliding systems [14]. His group also developed a 
finite element model for TEI in intermittent sliding contact 
with realistic geometries and friction material properties [15]. 
Liu et al. derived an eigenfunction solution for the contact 
pressure variation due to wear by the finite element method 
[16]. Belhocine and Abdullah developed a thermomechanical 
model for the analysis of disc brake using a finite element 
commercial code [17]. Zhao et al. constructed both analytical 
and numerical models to study TEI in a wet clutch subjected 
to the mixed lubrication stage [18], then investigated the 
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stability boundaries of thermal buckling in automotive 
clutches [19]. Graf and Ostermeyer provided a three-dimen-
sional model that directly satisfied the field equations and 
relevant boundary conditions to estimate the critical speed 
and thermal mode of TEI in brakes [20]. Abdullah et  al. 
studied the transient thermoelastic processes of multidisc dry 
clutch using a finite element technique, and investigated the 
effect of the sliding speed on the contact pressure distribution, 
the temperature field and the frictional heat generated along 
the frictional interfaces [21].

In general, the finite element method is a more convenient 
method to deal with complex geometries, boundary condi-
tions and loadings compared to the analytical approach, it is 
therefore a preferable tool in industry. Although extensive 
research has been conducted on the aforementioned problems, 
the effect of wear on TEI has not yet been attempted using the 
finite element method. In this study we will follow an approach 
similar to the classical eigenvalue formulation for TEI 
problems, with the addition of the Archard wear law.

Method

1. Analytical Method
1.1 Overview of the Analytical Model The analytical 
model for the effect of wear developed by Papangelo and 
Ciavarella involves two half planes sliding at a constant 
velocity V [6]. Although the perturbation generally migrates 
in both bodies, the problem can be formulated by choosing a 
frame of reference (x, y, z) fixed to the perturbation and the 
two bodies move at speeds c1 and c2, respectively (see Fig. 1). 
The relative sliding speed, V is related to the two absolute 
speeds via V =|c1−c2|. The corresponding temperature field 
solution, T must satisfy the thermal diffusion equation with 
appropriate convective terms. In Fig. 1, the out-of-plane direc-
tion is designated as y, and the in-plane directions are (xj, zj) 
with j indicating body j (j=1, 2).

With these assumptions the heat conduction equation 
can then be written
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where Tj is the temperature fields of body j, kj is the diffu-
sivity of body j, t is the time. Its general solution is in the 
form as
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where Θ0 is a unique complex constant, b is the grow rate 
of perturbation, i is the imaginary unit, m

L
= 2π  is the wave-

number, L is the associated wavelength, and the special decay 
rate, λ is defined as
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The sum of all three terms of displacements of two mate-
rials must be zero to ensure conforming contact:
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where u xzj
el ( ) is the elastic displacement of body j, u xzj

th ( ) 
is the thermally induced displacement, and u xzj

w ( ) is the wear-
induced displacement that can be written
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where wj are complex constants of body j. By expressing 

the displacements and the contact pressure in the perturbation 
form similar to Eq. (5), the following equation is obtained.
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where p0 is the amplitude of pressure perturbation in the 
expression p(x) = p0 Re {ebteimx}; Wj is the wear coefficient of 
body j; αj is the coefficient of thermal expansion of body j; E∗ 
is the combined elastic modulus for plane strain defined as
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where E1, E2 are Young’s elastic moduli of the two mate-
rials; ν1, ν2 are Poisson’s ratios.

The total heat flux across the sliding interface is
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where K1, K2 are the conductivities.
Using the frictional heating equation

	 q x fVp x( ) = ( )	 (9)

imposing Eqs. (6) ands (8), canceling out the exponents 
form, and defining the following dimensionless quantities:

	

� � �

� � � �

c
c

mk m
b

b

m k

W E W R
W

W
K

K

K
k

k

j
j

j
j

W

= = =

= = = =∗

2
2

2

1 1
2

1
1

1

2
1

, ,

, , ,

λ
λ

11

2

2
2

2
2 2 1

1 1

2 2

1
1

1

k

H
k f

K
E� �= +( ) =

+( )
+( )

∗α ν α
α ν
α ν

,

	 (10)

 FIGURE 1  Two sliding half-spaces.
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the characteristic equation can finally be  written in 
the form:
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1.2 Limiting Cases

1.2.1. A Conductor Sliding against a Nonconductor. The 
solution for the limiting case when one of the materials is a 
thermal non-conductor, i.e. � �K k1 1 0= → , was sought. In this 
case, the migration speed of perturbation with respect to 
material 1 becomes zero, therefore c2 → 0, and c1 → V. If V ≫ 1, 
�b = 0 and setting
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Hence, Eq. (11) becomes
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and
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This results in
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In the absence of wear, we obtain the solution for the 
critical speed
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If we  define a special dimensionless value of wear 
coefficient as
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Evidently, �Vcr →∞ when � � �W W H2 22= =∗ . This means that 
there is a wear coefficient of the conducting material above 
which TEI is completely suppressed, and this is similar to what 
Papangelo and Ciavarella recently discovered for a slightly 
different geometry [5]. Notice however that if �H 2 is very high, 
the standard “Burton” critical speed (without wear) is very 
low, the system is highly unstable, and the wear coefficient to 

make it stable is very high. On the other hand, if �H 2 is very 
low, then the critical wear coefficient enters a practical range, 
but probably the system was stable already without wear, as 
Burton’s critical speed is already high. Intermediate cases are 
therefore the most interesting.

1.2.2 Identical Materials. In the special case where two 
bodies have the identical materials (which means they also 
have identical wear rate), it requires c c

V
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2. Finite Element Method
Considering a two-dimensional sliding system in which a 
moving body slides in the positive x-direction at constant 
speed V on a stationary body and makes contact over a 
common interface (Fig. 1), we assume that all boundaries are 
thermally insulated except the sliding interface. The bodies 
are assumed to be  of infinite extent in the horizontal 
x-direction.

The heat conduction equation is

	 k T
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where k is the thermal diffusivity. If we assume a pertur-
bation of temperature as

	 T x y t e ybt imx, ,( ) = ( )+ Θ 	 (19)

where b is an exponential growth rate and m is a wave-
number. Substituting Eq. (19) into Eq. (18) yields

	 k
z

km imV b
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2
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Using appropriate boundary conditions, a finite element 
formulation of the problem [14] can be obtained as

	 K C H+ +( ) + =V b QΘ 0	 (21)

where K, C, H indicate matrices and V, Θ represent 
vectors. Due to the results of frictional heating at the contact 
interface, the nodal heat sources Q is given by

	 Q fVP= φ 	 (22)

where ϕ represents a coefficient matrix.
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This leads to

	 K ∗ +( ) + =b fVPH Θ φ 0	 (23)

where

	 K K C∗ = +V 	 (24)

where P is the corresponding vector of nodal contact 
forces normal to the contact interface and f is the coefficient 
of friction.

For the thermoelastic contact problem without consid-
ering the wear effect, a quasi-static thermoelastic equations 
has no time-dependent terms and has also no dependence on 
the velocity V or the growth rate b. Thus, the contact forces 
are coupled with the temperature and displacement field as
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where M is a coefficient matrix.
If we consider the wear effect prescribed by the Archard 

law, i.e. �δ =WVP  where W is the wear coefficient, and the 
conforming contact condition expressed in such a way that 
the deformation of the moving body is equal to the thermal 
expansion subtracted by the amount of wear. For simplicity 
we assume wear takes place on material 1 only, and the tech-
nique will later be extended to include wear on both materials. 
To do this we partition L1 into L11 and L12 to separate the 
portion in L1 associated with the z-displacement of the 
contacting nodes in material 1, namely U1 from the rest 
degrees of freedom of the system, namely U2. The wear condi-
tion modifies the contact boundary condition of Eq. (25) as
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where M is a constant matrix. The wear problem is depen-
dent on time and the growth rate b. Thus, if the displacement, 
contact pressure, and temperature are expressed as Uebt, Pebt, 
Θebt and Eq. (26) is differentiated with respect to t, 
we can obtain
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Considering that the tractions exerted on the contacting 
surface pairs have opposite signs, we  may rearrange this 
equation to obtain
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In deriving this equation, we combined some equations 
together to make the right hand side of the equations to 
be zero. This is possible because the tractions cancel out at the 
contacting nodes by addition and the external loading is zero 
at the interior nodes. Combining the two equations by elimi-
nating U leads to

	 L G∗ ∗+ − =VP b bPΘ 0	 (29)

where
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Putting together Eqs (23), and (29) yields
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This is a standard eigenvalue problem, in which the 
growth rate b is the eigenvalue. However, we encountered 
numerical difficulties in directly solving this equation some-
times. We instead converted this equation into a higher order 
eigenvalue problem by eliminating the degrees of freedom 
associated with the pressure, P in �X . The final result becomes

	 b b2
2 1 2 0A A AΘ Θ Θ+ − = 	 (34)

in which

	 A L K0 = − ∗ ∗V 	 (35)

	 A K HQ G1 = − −∗ ∗ ∗V fVφ 	 (36)

	 A H2 = 	 (37)

This is a second-order polynomial eigenvalue equation, 
for which the solution method is well known. Namely, 
we convert Eq. (34) into two first order eigenvalue equations
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and

	 �Θ Θ= b 	 (39)

It was found that the solutions from Eqs. (38) and (39) 
converged much better than Eq. (32). The above discussion is 
based on the assumption that wear is absent in material 2. To 
incorporate the effect of wear from both materials, all equa-
tions remain the same except that L* has to be redefined as

	 L L L L L L L∗ −= +( ) − +( )0 2
1

21 21 01 01a a b b a a b bW W W W 	 (40)

where the subscript a and b are used to indicate the two 
different materials.

Results and Discussions
In order to validate the results from the finite element analysis 
(FEA), we referred to Papangelo and Ciavarella[6] but assume 
that �H 2 0 0013= . , �α1 2 5= . , � �K k1 1= . We assumed �H 2 0 0013= .  
rather than 0.34 here because we intended to fix a misprint in 
[6]. We first compared the three solutions: Burton’s analytic 
solution [2], Papangelo and Ciavarella’s solution and FEA 
solution in the limiting case when there is no wear. As is shown 
in the Fig. 2, all solutions for � �W W1 0/ ∗ =  vary linearly with 
respect to the thermal conductivity. In Fig. 2(a), when Poisson’s 
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ratio ν is set to zero, solutions of Burton, Papangelo and FEA 
are nearly identical. When Poisson’s ratio is greater than 0 
(ν=0.3) as shown in Fig. 2(b), he solutions from Papangelo 
and FEA are comparable, but different from Burton’s. This is 
because the effect of Poisson’s ratio is neglected in Burton’s 
solution, while Papangelo and FEA took the plane strain 
equality by considering the effect of Poisson's ratio. Since the 
FEA solution agrees with Papangelo’s solution much better 
than Burton’s, we decided to use Papangelo’s analytic solutions 
to validate the FEA results in the following discussions.

Practically the wear rate is not zero and two materials have 
different wear rates. We first assume �Rw = 0 1. , i.e. material 2 has 
a wear rate 10% of that of material 1. Fig. 3 shows the comparison 
between the analytic and FEA solutions as a function of the 
conductivity � �K k1 1=( ) for �H 2 0 34= . , �α1 2 5= . , with different 
values of wear rate � �W W1 0 1 0 4 0 7 1/ . . .∗ = [ ], , , . We  assumed 
�H 2 0 34= .  here because it is easier to compare the FEA solution 

to analytical solution in [6]. This value has been used in the 
current study to maintain consistency. As is shown above, the 
analytic and FEA solutions exhibit the same trend of variation. 
When � �W W1 /

∗ = 0.1 or 0.4, the FEA and analytic solutions 
increase at the beginning before they decrease. When � �W W1 /

∗ = 
0.7 or 1, the solutions of FEA and analytic are monotonic with 
�K1. The difference between the two solutions also gradually 

increases with �K1, with a maximum value around 14%. It has also 
been found that the maximum difference between the two solu-
tions decreases with the wear rate. When the dimensionless wear 
rate � �W W1 /

∗ is set to 1, the maximum difference is 5.47%. When 

0 1 0 51. .< <�K , the critical speed decreases as � �W W1 /
∗ increases, 

therefore wear destabilizes the system; On the other hand, when 
�K1 0 5> . , the critical speed increases with � �W W1 /

∗, therefore wear 
stabilizes the system by suppressing TEI. When �K1 0→ , the result 
is complex because of the computational accuracy.

We investigated the special case where material 2 does 
not involve wear, i.e. �Rw = 0. Fig. 4 shows the comparison of 
the analytic and FEA solutions as a function of the conduc-
tivity � �K k1 1=( ) for �H 2 0 34= . , �α1 2 5= . , �Rw = 0, and different 
values of wear rate � �W W1 0 0 1/ .∗ = [ ], . There are a number of 
similarities between the analytic and FEA solutions. It reveals 
that there is a steep rise when �K1 0 3″ .  for � �W W1 0/ ∗ = , then it 
gradually drops. As for � �W W1 0 1/ .∗ = , the variation trend is 
the same, but the curve is flattened. The maximum difference 
between the two solutions is by around 16%. The transition 
of the effect on TEI occurs at �K1 0 4= . : When 0 1 0 41. .< <�K , 
TEI is amplified; Otherwise, TEI is suppressed.

In addition, the results are presented as a function of the 
wear rate by assuming �H 2 0 34= . , �α1 2 5= . , � �K k1 1= , �Rw = 0 1.  in 
Fig. 5. Clearly the analytical and FEA solutions as a function 
of the wear rate � �W W1 /

∗ for �K1 0 010 10 51= [ ]. . ., , ,  tend to vary 
in the same pattern. The critical speed is quite stable with the 
wear rate � �W W1 /

∗ when the conductivity �K1 is less than 0.5. It 

 FIGURE 2  The comparison of solutions of Burton, 
Papangelo and FEA as a function of the conductivity = ��

1 1K k  for 
wear rate ∗ =� �

1 / 0W W , =�
2 0.0013H , α =� 1 2.5, different values of 

ν=0(a) or 0.3(b).
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 FIGURE 3  The comparison of solutions of analytic and FEA 
as a function of the conductivity ( )= ��

1 1K k  for =�
2 0.34H , α =� 1 2.5, 

=� 0.1wR  different values of wear rate ∗ =   
� �
1 / 0.1,0.4,0.7,1W W .
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 FIGURE 4  The comparison of solutions of analytic and FEA 
as a function of the conductivity ( )= ��

1 1K k  for =�
2 0.34H , α =� 1 2.5, 

=� 0wR , different values of wear rate ∗ =   
� �
1 / 0,0.1W W .
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can be  seen in this figure that the critical speed steadily 
increases when �K1 1=  and � �W W1 1 6/ .∗ < . When the wear rate 
�W1 is greater than the critical wear rate �W∗, the discrepancy 

between the two solutions could become significant. For 
example, the two solutions deviate from each other by no more 
than 11.1% when � �W W1 1/ ∗ < . However, when � �W W1 2/ ∗ =  and 
�K1 1= , the difference becomes as large as 15%.

We also investigated the case where the ratio of the two 
wear rates �Rw is greater than 0.1. Fig. 6 shows the comparison 
of the analytic and FEA solutions as a function of the wear 
rate � �W W1 /

∗ for �Rw = 0 3. , �K1 0 01= . , �H 2 0 34= . , �α1 2 5= . , � �K k1 1=
. The two solutions are close to each other as � �W W1 /

∗ ranges 
from 0 to 5. When � �W W1 3/ ∗ ≤ , the analytical solution is almost 
linear, while the FEA solution exhibits an apparent nonlin-
earity. The analytical solution is greater than the finite element 
solution in this domain. When � �W W1 3/ ∗ > , however, the 
analytical solution falls below the FEA solution.

These differences are largely induced by the numerical 
errors in the finite element approach, as well as the conver-
gence issue in the analytical approach when the solution dras-
tically oscillates across the thickness. Four possible sources 
of error have been summarized as follows:

	 1.	 The analytical solution was based on the half-space 
geometries. However, it is known that infinite 

dimensions are not allowed in the finite element 
model. Instead a reasonably large thickness, e.g. has 
been assumed in the latter to approximate half planes.

	 2.	 The finite element analysis led to a nonlinear 
eigenvalue equation whose solution is significantly 
more unstable than a linear eigenvalue problem.

	 3.	 It is known that the temperature field is highly 
oscillating with a substantially large gradient near the 
friction interface. A biased finite element mesh 
towards the sliding interface has thus been 
implemented. On the other hand, the differences in 
the element sizes should not be too large in a finite 
element model. Otherwise it may lead to a scaling 
problem in the matrix operations, causing a 
noticeable numerical inaccuracy.

	 4.	 The problem is highly nonlinear and the analytical 
solution itself is sometimes unstable when the 
parameters are chosen in a certain way. Therefore the 
analytical solution does not necessarily converge in 
this study. For example, the analytical solution starts 
to diverge when the wear coefficient well exceeds the 
critical value.

Conclusions
A finite element approach was implemented to study the effect 
of wear on frictionally excited thermoelastic instability. The 
classical theory was augmented by including the wear law. 
The governing equations on the contact pressure, temperature 
and displacement were reduced to a quadratic eigenvalue 
equation, where the eigenvalue is the exponential growth rate 
of perturbation and the eigenvector is the nodal temperature. 
The solution was sought via a conversion of the nonlinear 
problem into two ordinary linear eigenvalue equations. The 
computational results based on a simplified, two-dimensional 
model generally show good agreements with those of the 
analytical solution assuming an infinite thickness and 
conforming contact. However, the noticeable differences exist 
between the two approaches in some situations when the 
numerical instability starts to dominate due to the high 
nonlinearity in the solutions.

The conclusions from the analytical approach has been 
confirmed that depending on the chosen parameters wear 
may suppress or amplify TEI induced hot spotting. The advan-
tage of the finite element method lies in the fact that there is 
no restriction on the geometric complexities and boundary 
conditions. Further studies are needed in the future, especially 
on the role of wear in more realistic, three-dimensional geom-
etries such as automotive brake and clutch discs.

References
	 1.	 Barber, J.R., “Thermoelastic Instabilities in the Sliding of 

Conforming Solids,” Proceedings of the Royal Society of 
London A 312:381-394, 1969.

 FIGURE 5  The comparison of solutions of analytic and FEA 
as a function of the wear rate ∗� �

1 /W W  for =�
2 0.34H , α =� 1 2.5, = ��

1 1K k , 
different values of conductivity =   

�
1 0.01,0.1,0.5,1K .

©
 S

A
E 

In
te

rn
at

io
na

l.

 FIGURE 6  Comparison of analytic and FEA solutions as a 
function of the wear rate ∗� �

1 /W W  for =� 0.3wR , =�
1 0.01K , =�

2 0.34H , 
α =� 1 2.5, = ��

1 1K k .
©

 S
A

E 
In

te
rn

at
io

na
l.

Downloaded from SAE International by Yun-Bo Yi, Monday, October 05, 2020



© 2020 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work lies 
solely with the author(s).

ISSN 0148-7191

	 7EFFECT OF WEAR ON FRICTIONALLY EXCITED THERMOELASTIC INSTABILITY

	 2.	 Burton, R.A., Nerlikar, V., and Kilaparti, S.R., 
“Thermoelastic Instability in a Seal-Like Configuration,” 
Wear 24:177-188, 1973.

	 3.	 Dow, T.A., and Burton, R.A., “Thermoelastic Instability of 
Sliding Contact in the Absence of Wear,” Wear 19:315-
328, 1972.

	 4.	 Dow, T.A., and Burton, R.A., “The Role of Wear in the 
Initiation of Thermoelastic Instabilities of Rubbing Contact,” 
Journal of Lubrication Technology 95:71-75, 1973.

	 5.	 Papangelo, A., and Ciavarella, M., “Can Wear Completely 
Suppress Thermoelastic Instabilities?” Journal of Tribology 
142:3-8, 2020.

	 6.	 Papangelo, A., and Ciavarella, M., “The Effect of Wear on 
ThermoElastic Instabilities (TEI) in Biomaterial Interfaces,” 
Tribology International 142:1-6, 2020.

	 7.	 Ciavarella, M., Decuzzi, P., and Monno, G., “Frictionally-
Excited Thermoelastic Contact of Rough Surfaces,” 
International Journal of Mechanical Sciences 42:1307-
1325, 2000.

	 8.	 Decuzzi, P., Ciavarella, M., and Monno, G., “Frictionally 
Excited Thermoelastic Instability in Multi-disk Clutches and 
Brakes,” Journal of Tribology 123:865-871, 2001.

	 9.	 Lee, K., and Barber, J.R., “Frictionally Excited Thermoelastic 
Instability in Automotive Disk Brakes,” Journal of Tribology 
115:607-614, 1993.

	10.	 Hartsock, D.L., and Fash, J.W., “Effect of Pad/Caliper 
Stiffness, Pad Thickness, and Pad Length on Thermoelastic 
Instability in Disk Brakes,” Journal of Tribology 122:511-
518, 2000.

	11.	 Abbasi, S., Teimourimanesh, S., and Vernersson, T., 
“Temperature and Thermoelastic Instability at Tread 
Braking Using Cast Iron Friction Material,” Wear 314:171-
180, 2014.

	12.	 Wang, Q.L., Cui, H.W., Lian, Z.S., and Li, L., “Thermoelastic 
Analysis of Friction Pairs in Hydro-Viscous Drive Combined 
Thermal and Mechanical Loads under Soft Startup 
Condition,” Numerical Heat Transfer, Part A: Applications 
75:327-341, 2019.

	13.	 Chen, Z., Yi, Y.B., Bao, K., and Zhao, J.X., “Numerical 
Analysis of the Coupling between Frictionally Excited 
Thermoelastic Instability and Thermal Buckling in 

Automotive Clutches,” Proc IMechE Part J: J Engineering 
Tribology 0:1-10, 2018.

	14.	 Yi, Y.B., “Finite Element Analysis of Thermoelastodynamic 
Instability Involving Frictional Heating,” Journal of 
Tribology 128:718-724, 2006.

	15.	 Yi, Y.B., Bendawi, A., Li, H.Y., and Zhao, J.X., “Finite 
Element Analysis of Thermoelastic Instability in Intermittent 
Sliding Contact,” Journal of Thermal Stresses 37:870-
883, 2014.

	16.	 Liu, Y.W., Jang, Y.H., and Barber, J.R., “Finite Element 
Implementation of an Eigenfunction Solution for the 
Contact Pressure Variation due to Wear,” Wear 309:134-
138, 2014.

	17.	 Belhocine, A., and Abdullah, O.I., “A Thermomechanical 
Model for the Analysis of Disc Brake Using the Finite 
Element Method in Frictional Contact,” Journal of Thermal 
Stresses 43:305-320, 2019.

	18.	 Zhao, J.X., Research on Thermoelastic Instability of Shifting 
Clutches in the Process of Engagement (Beijing: Beijing 
Institute of Technology, 2014).

	19.	 Zhao, J.X., Chen, Z., Yang, H.Z., and Yi, Y.B., “Finite 
Element Analysis of Thermal Buckling in Automotive Clutch 
Plates,” Journal of Thermal Stresses 39:77-89, 2016.

	20.	 Graf, M., and Ostermeyer, G.P., “Efficient Computation of 
Thermoelastic Instabilities in the Presence of Wear,” Wear 
312:11-20, 2014.

	21.	 Abdullah, O.I., Akhtar, M.J., and Schlattmann, J., 
“Investigation of Thermo-Elastic Behavior of Multidisk 
Clutches,” Journal of Tribology ASME 137:1-9, 2015.

Contact Information
Yun-Bo Yi, Ph.D.
Professor
Mechanical & Materials Engineering
University of Denver
2155 E Wesley Ave
Denver, CO 80208
Yun-Bo.Yi@du.edu
Phone: 303-871-2228

Downloaded from SAE International by Yun-Bo Yi, Monday, October 05, 2020

Yun-Bo.Yi@du.edu

	10.4271/2020-01-1629: Abstract
	Introduction
	Method
	1. Analytical Method
	1.1 Overview of the Analytical Model
	1.2 Limiting Cases
	1.2.1. A Conductor Sliding against a Nonconductor.
	1.2.2 Identical Materials.
	2. Finite Element Method

	Results and Discussions
	Conclusions

	References

