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Abstract

he effect of wear on Thermoelastic Instability (TEI)

is investigated using a finite element approach. The

equations of thermoelasticity, the classical wear law
and the conforming contact conditions are considered. The
method is based on a two-dimensional, frictional sliding
model with a bimaterial interface and a simplified geometry
of finite thickness. An assumption of the solution in the
perturbation form leads to a quadratic eigenvalue problem.
The existing analytical solutions using two infinite half
planes are employed to validate the numerical solutions for
several representative scenarios, including a limiting case

Introduction

hermoelastic instability (TEI) is a theory that explains

the localized high temperatures, or hot spots on the

sliding surfaces of friction components. The theory was
first proposed by Barber [1] decades ago. Burton et al. applied
the perturbation method to hypothesize the cause of the inho-
mogeneous pressure distribution and introduced the concept
of a critical sliding speed for instability [2]. Most of the later
researches in this area improved the theory and focused on
the prediction of critical speed of TEI as well as the distribu-
tion of hot spots for clutches and brakes. For example, Dow
and Burton analytically investigated TEI of sliding contact
for the case of a blade sliding on a thermally conductive semi-
infinite body both ignoring and considering wear. The trend
of pressure variation with different material properties was
studied [3]. In some cases, the presence of wear was found to
give rise to oscillatory behavior where portions of the rubbing
surfaces alternately rose and dropped in temperature [4].
Papangelo and Ciavarella indicated a limit value of wear coef-
ficient above which TEI is completely suppressed [5]. They
also found that the dependence of the critical speed on the
material parameters is quite complex and in certain cases wear
may also destabilize the system [6]. Ciavarella et al. studied
TEI between two elastically similar half-planes, one of which
has a sinusoidally wavy surface [7], and considered disks of
finite thicknesses [8]. Lee and Barber extended the geometry
to the case of a finite thickness layer sliding between two half-
planes and evaluated the influence of finite disk thickness on

in the absence of wear. The analytical solutions are also
sought for the special cases when one of the materials is a
non-conductor and when the two materials are identical,
for the purpose of comparison. In general, the satisfactory
agreements between the numerical and analytical
approaches have been obtained. However, there are notice-
able discrepancies when the wear rates of the two materials
are sufficiently close to each other and when the wear rates
are much greater than the critical rate. It is confirmed that
wear may suppress or amplify the effect of TEIL. This is
consistent with the recent research findings on the same
topic via an analytical approach.

TEI [9]. Hartsock and Fash further modified the elastic
modulus of the pad in the half plane model and investigated
the effect of the pad stiffness and its support structure on TEI
[10]. Abbasi et al. studied the frictional heating and TEI in
railway brakes considering the effect of temperature on
material properties and on material wear [11]. Wang et al.
established a three-dimensional transient thermo-mechanical
coupling model for investigation of the distributions and
coupling relationships of the temperature, stress, and displace-
ment generated by the combination of the thermal and
mechanical loads of hydro-viscous drive [12].

In addition to analytical approaches, numerical methods
were also extensively used to investigate TEI by many
researchers. For example, Chen studied the coupling between
thermal buckling and thermoelastic instability in clutch disks
using Hotspotter and ABAQUS [13]. Yi used the finite element
method and higher-order eigenvalue scheme to solve the
problem related to thermoelastodynamic instability (TEDI)
in frictional sliding systems [14]. His group also developed a
finite element model for TEI in intermittent sliding contact
with realistic geometries and friction material properties [15].
Liu et al. derived an eigenfunction solution for the contact
pressure variation due to wear by the finite element method
[16]. Belhocine and Abdullah developed a thermomechanical
model for the analysis of disc brake using a finite element
commercial code [17]. Zhao et al. constructed both analytical
and numerical models to study TEI in a wet clutch subjected
to the mixed lubrication stage [18], then investigated the
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stability boundaries of thermal buckling in automotive
clutches [19]. Graf and Ostermeyer provided a three-dimen-
sional model that directly satisfied the field equations and
relevant boundary conditions to estimate the critical speed
and thermal mode of TEI in brakes [20]. Abdullah et al.
studied the transient thermoelastic processes of multidisc dry
clutch using a finite element technique, and investigated the
effect of the sliding speed on the contact pressure distribution,
the temperature field and the frictional heat generated along
the frictional interfaces [21].

In general, the finite element method is a more convenient
method to deal with complex geometries, boundary condi-
tions and loadings compared to the analytical approach, it is
therefore a preferable tool in industry. Although extensive
research has been conducted on the aforementioned problems,
the effect of wear on TEI has not yet been attempted using the
finite element method. In this study we will follow an approach
similar to the classical eigenvalue formulation for TEI
problems, with the addition of the Archard wear law.

Method
1. Analytical Method

1.1 Overview of the Analytical Model Theanalytical
model for the effect of wear developed by Papangelo and
Ciavarella involves two half planes sliding at a constant
velocity V' [6]. Although the perturbation generally migrates
in both bodies, the problem can be formulated by choosing a
frame of reference (x, y, z) fixed to the perturbation and the
two bodies move at speeds ¢; and c¢,, respectively (see Fig. 1).
The relative sliding speed, V is related to the two absolute
speeds via V =|¢,—¢,|. The corresponding temperature field
solution, T must satisfy the thermal diffusion equation with
appropriate convective terms. In Fig. 1, the out-of-plane direc-
tion is designated as y, and the in-plane directions are (x;, z))
with j indicating body j (j=1, 2).

With these assumptions the heat conduction equation
can then be written

o'T; 0°T;
+
Ox? 62]2

m Two sliding half-spaces.

+ =

@)
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where T;is the temperature fields of body j, k; is the diffu-
sivity of body j, t is the time. Its general solution is in the
form as

@

where 0 is a unique complex constant, b is the grow rate

T (xj,zj,t) = Re{@oefijzfeb’e"mx}

S . . . 2r .
of perturbation, i is the imaginary unit, m = T is the wave-

number, L is the associated wavelength, and the special decay
rate, A is defined as

m2+£— imc;
ki k;

J

z]-:

j ©)
The sum of all three terms of displacements of two mate-
rials must be zero to ensure conforming contact:

2
Z(uﬁ} +ult +ul ) =0
j=1
where ufj (x) is the elastic displacement of body j, ulj (x)
is the thermally induced displacement, and uy; ( x ) is the wear-
induced displacement that can be written
uZ(x):Re{ w]-eb’e"mx} (5)
where w; are complex constants of body j. By expressing
the displacements and the contact pressure in the perturbation
form similar to Eq. (5), the following equation is obtained.

2 Z(Xj(l‘l‘Vj)
Zj:1 m+}.,]
\1%

Dyt
i=1b—imc;

where p, is the amplitude of pressure perturbation in the
expression p(x) = p, Re {e"e"™}; W; is the wear coefficient of
body j; ; is the coeflicient of thermal expansion of body j; E*
is the combined elastic modulus for plane strain defined as
1 _1-vi 1-v§
e @
E'  E E,
where E,, E, are Young’s elastic moduli of the two mate-
rials; vy, v, are Poisson’s ratios.
The total heat flux across the sliding interface is

@)

Po= 7 (O (6)

mE"

2
q(x)=-K,—-K,——==Re @OZKjAjeb’eW 8)
j=1

where K, K, are the conductivities.
Using the frictional heating equation

q(x)=fVp(x) ©)

imposing Egs. (6) ands (8), canceling out the exponents
form, and defining the following dimensionless quantities:

~ A -~
i= ‘ > /11_7]’ b= i}
mkz m me
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the characteristic equation can finally be written in
the form:

(I%lil + iz){H i%\a —EZ(EIHNQW ;H
1 2

_Hza—az(l"“i . lij:o
+A +A

1.2 Limiting Cases

1.2.1. A Conductor Sliding against a Nonconductor. The
solution for the limiting case when one of the materials is a
thermal non-conductor, i.e. K; = k; — 0, was sought. In this
case, the migration speed of perturbation with respect to
material 1 becomes zero, therefore c, > 0,and ¢, > V.If V> 1,
b =0 and setting

j:lz 1—i2=)}1—iy2,i2=\[1_i52=)~C2+i)72 (12)
j
we obtain

El ~ 1~2 ~ EZ
=X, > 1+ =03,y > ——
2k g7

Hence, Eq. (11) becomes

)z1:y~1_)

1o, 1o~/ =~y ~ |~ |k 1
1+—=c;+—Wilc; + R, |- Hye | oy, —+—|=0 (13
8 2 4 1( 2 l) 2 1{ 1 2C1 ZJ ( )
and
14+ LR, - L HE =0 (14)
4 IEN g 2 241
This results in
‘7”:51:% (15)
2H, -WR,

In the absence of wear, we obtain the solution for the
critical speed
2
H,
If we define a special dimensionless value of wear
coefficient as

7 ®
v

W 2k fE 0 (14v;) _2d,
2

Eg. (15) will become V,, = N
H, (1 -

w

Evidently, V., — o0 when W, = W* =2 H,. This means that
there is a wear coeflicient of the conducting material above
which TEI is completely suppressed, and this is similar to what
Papangelo and Ciavarella recently discovered for a slightly
different geometry [5]. Notice however that if H, is very high,
the standard “Burton” critical speed (without wear) is very
low, the system is highly unstable, and the wear coefficient to

make it stable is very high. On the other hand, if H, is very
low, then the critical wear coeflicient enters a practical range,
but probably the system was stable already without wear, as
Burton’s critical speed is already high. Intermediate cases are
therefore the most interesting.

1.2.2 Identical Materials. In the special case where two
bodies have the identical materials (which meaps they also

have identical wear rate), it requires ¢, =—c, =—. Also, Eq.
(11) becomes 2

S 1
M+ =H,V = = 16
1 A2 ? [1+).1 1+2,2] 16

whereil:,/1—i%:x—iy,i2:,/l+i%:x+iy.

Hence Eq. (16) becomes zﬁzzf:
along with Y

8H,
4H,> -1

2. Finite Element Method

Considering a two-dimensional sliding system in which a
moving body slides in the positive x-direction at constant
speed V on a stationary body and makes contact over a
common interface (Fig. 1), we assume that all boundaries are
thermally insulated except the sliding interface. The bodies
are assumed to be of infinite extent in the horizontal
x-direction.
The heat conduction equation is

kVZT—(a;;Jrngj:o (18)
X

where k is the thermal diffusivity. If we assume a pertur-
bation of temperature as

T(xy,t)=e"""O(y) 19)

where b is an exponential growth rate and m is a wave-
number. Substituting Eq. (19) into Eq. (18) yields

0’0

0z’

k

[k +(imV +b) [© =0 (20)

Using appropriate boundary conditions, a finite element
formulation of the problem [14] can be obtained as

(K+VC+bH)O+Q=0 1)

where K, C, H indicate matrices and V, @ represent
vectors. Due to the results of frictional heating at the contact
interface, the nodal heat sources Q is given by

Q=¢fVP (22)

where ¢ represents a coefficient matrix.
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This leads to
(K* +bH)®+¢fVP=O (23)
where
K'=K+VC (24)

where P is the corresponding vector of nodal contact
forces normal to the contact interface and f is the coefficient
of friction.

For the thermoelastic contact problem without consid-
ering the wear effect, a quasi-static thermoelastic equations
has no time-dependent terms and has also no dependence on
the velocity V or the growth rate b. Thus, the contact forces
are coupled with the temperature and displacement field as

N
U-| '|l@=Mp 5)
L, G,

where M is a coefficient matrix.

If we consider the wear effect prescribed by the Archard
law, i.e. 5 = WVP where W is the wear coefficient, and the
conforming contact condition expressed in such a way that
the deformation of the moving body is equal to the thermal
expansion subtracted by the amount of wear. For simplicity
we assume wear takes place on material 1 only, and the tech-
nique will later be extended to include wear on both materials.
To do this we partition L, into L;; and L,, to separate the
portion in L, associated with the z-displacement of the
contacting nodes in material 1, namely U, from the rest
degrees of freedom of the system, namely U,. The wear condi-
tion modifies the contact boundary condition of Eq. (25) as

Lll L12 Ul - J.WVPdt G]
| "le=MP  (26)
L, L,, U, G,

where M is a constant matrix. The wear problem is depen-
dent on time and the growth rate b. Thus, if the displacement,
contact pressure, and temperature are expressed as Ue"‘, Pebt,
©¢® and Eq. (26) is differentiated with respect to t,
we can obtain

L, Lyl bU -WVP G,
- ®=MP (27)
Ly Ly bU, G,

Considering that the tractions exerted on the contacting
surface pairs have opposite signs, we may rearrange this
equation to obtain

bLlU - LHWVP - bG1® =0
bLzU - LZIWVP - bGz@ =0

In deriving this equation, we combined some equations
together to make the right hand side of the equations to
be zero. This is possible because the tractions cancel out at the
contacting nodes by addition and the external loading is zero
at the interior nodes. Combining the two equations by elimi-
nating U leads to

(28)

LVP+bG'®-bP=0 (29)
where

L' =W (LLy'Ly — Lo (30)

and
G* = L()L_ZIGZ - GO (31)
Putting together Egs (23), and (29) yields

5 o S
oV K 0O -H
X = P 33
{®} 63

This is a standard eigenvalue problem, in which the
growth rate b is the eigenvalue. However, we encountered
numerical difficulties in directly solving this equation some-
times. We instead converted this equation into a higher order
eigenvalue problem by eliminating the degrees of freedom
associated with the pressure, Pin X. The final result becomes

where

in which
AO = _L*VK* (35)
A, =K —HQ'V - ¢fVG" (36)
A,=H (37)

This is a second-order polynomial eigenvalue equation,
for which the solution method is well known. Namely,
we convert Eq. (34) into two first order eigenvalue equations

P

O =bO (39)

It was found that the solutions from Egs. (38) and (39)
converged much better than Eq. (32). The above discussion is
based on the assumption that wear is absent in material 2. To
incorporate the effect of wear from both materials, all equa-
tions remain the same except that L" has to be redefined as

L' =L,L; (LZIuWu + LW, ) - (LOMWa +LoW, ) (40)

and

where the subscript a and b are used to indicate the two
different materials.

Results and Discussions

In order to validate the results from the finite element analysis
(FEA), we referred to Papangelo and Ciavarella[6] but assume
that H, =0.0013, &, =2.5, K; = k;. We assumed H, =0.0013
rather than 0.34 here because we intended to fix a misprint in
[6]. We first compared the three solutions: Burton’s analytic
solution [2], Papangelo and Ciavarella’s solution and FEA
solution in the limiting case when there is no wear. As is shown
in the Fig. 2, all solutions for W/ W*=0 vary linearly with
respect to the thermal conductivity. In Fig. 2(a), when Poisson’s
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m The comparison of solutions of Burton,

Papangelo and FEA as a function of the conductivity K. = k. for
wear rate W,/ W* =0, H, =0.0013, &, = 2.5, different values of
v=0() or 0.3(b).

ratio v is set to zero, solutions of Burton, Papangelo and FEA
are nearly identical. When Poisson’s ratio is greater than 0
(v¥=0.3) as shown in Fig. 2(b), he solutions from Papangelo
and FEA are comparable, but different from Burton’s. This is
because the effect of Poisson’s ratio is neglected in Burton’s
solution, while Papangelo and FEA took the plane strain
equality by considering the effect of Poisson's ratio. Since the
FEA solution agrees with Papangelo’s solution much better
than Burton’s, we decided to use Papangelo’s analytic solutions
to validate the FEA results in the following discussions.
Practically the wear rate is not zero and two materials have
different wear rates. We first assume R,, = 0.1, i.e. material 2 has
awear rate 10% of that of material 1. Fig. 3 shows the comparison
between the analytic and FEA solutions as a function of the
conductivity Kl(— kl) for Hz 0.34, a, =2.5, with different
values of wear rate Wl /W™ [0.1,0.4,0.7,1]. We assumed
H, =0.34 here because it is easier to compare the FEA solution
to analytical solution in [6]. This value has been used in the
current study to maintain consistency. As is shown above, the
analytic and FEA solutions exhibit the same trend of variation.
When W, /W* = 0.1 or 0.4, the FEA and analytic solutions
increase at the beginning before they decrease. When W, / W* =
0.7 or 1, the solutions of FEA and analytic are monotonic with
K, The difference between the two solutions also gradually
increases with K, with a maximum value around 14%. It has also
been found that the maximum difference between the two solu-
tions decreases with the wear rate. When the dimensionless wear
rate VVI / W* is set to 1, the maximum difference is 5.47%. When

m The comparison of solutions of analytic and FEA
as a function of the conductivity K, (: kl) for H, =0.34, &, = 2.5,
R, =0.1 different values of wear rate w, / w* =[0.1,0.4,0.7,1]-

© SAE International.
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m The comparison of solutions of analytic and FEA
as a function of the conductivity Ki(=k ) for H, =0.34, &, =2.5,
R, =0, different values of wear rate w,/ w* =[0,0.1]

0.1< K, <0.5, the critical speed decreases as W, / W" increases,
tllerefore wear destabilizes the system; On~the gther hand, when
K, > 0.5, the critical speed increases with W, / Wj, therefore wear
stabilizes the system by suppressing TEL. When K; — 0, the result
is complex because of the computational accuracy.

We investigated the special case where material 2 does
not involve wear, i.e. R, =0. Fig. 4 shows the comparison of
the analytic and FEA solutions as a function of the conduc-
tivity K, (= k, | for Hz 0.34, a; =2.5, R, =0, and different
values of wear rate W, / W* =[0,0.1]. There are a number of
similarities between the analytic and FEA solutions. It reveals
that there is a steep rise when K, " 0.3 for W, /W* =0, then it
gradually drops. As for W, /W* = 0.1, the variation trend is
the same, but the curve is flattened. The maximum difference
between the two solutions is by around 16%. The transition
of the effect on TEI occurs at K; =0.4: When 0.1< K, <0.4,
TEI is amplified; Otherwise, TEI is suppressed.

In addition, the results are presented as a function of the
wear rate by assuming H, =0.34, @, =2.5, K, =k, R,, =0.1in
Fig. 5. Clearly the analytlcal and FEA solutions as a functlon
of the wear rate W, / W* for K, = [0.01,0.1,0.5,1] tend to vary
in the same pattern. The critical speed is qulte stable with the
wear rate W, / W* when the conductivity K is less than 0.5. It
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m The comparison of solutions of analytic and FEA
as a function of the wear rate 1, /w* for H, =0.34, &, =2.5, K, = k,,
different values of conductivity K, =[0.01,0.1,0.5.1]

IS Comparison of analytic and FEA solutions as a
funct|on of the wear rate W,/ W* for R, =0.3, K, =0.01, H, =0.34,
=25 K, =k,

can be seen in this figure that the critical speed steadily
increases when K,=1land W, /W"* <1.6. When the wear rate
W, is greater than the critical wear rate W*, the discrepancy
between the two solutions could become significant. For
example, the two solutions deviate from each other b)l no more
than 11.1% when W, / W* < 1. However, when W, / W* =2 and
K, =1, the difference becomes as large as 15%.

We also investigated the case where the ratio of the two
wear rates R,, is greater than 0.1. Fig. 6 shows the comparison
of the analytlc and FEA solutions as a function of the wear
rateW, /W™ for R, =0.3,K, =0.01, H, =0.34, a; =2.5, K =k

. The two solutions are close to each other as W, / W* ranges
from 0to 5. When W, / W* < 3, the analytical solution is almost
linear, while the FEA solution exhibits an apparent nonlin-
earity. The analytical solution is greater than the finite element
solution in this domain. When W, /W* >3, however, the
analytical solution falls below the FEA solution.

These differences are largely induced by the numerical
errors in the finite element approach, as well as the conver-
gence issue in the analytical approach when the solution dras-
tically oscillates across the thickness. Four possible sources
of error have been summarized as follows:

1. The analytical solution was based on the half-space
geometries. However, it is known that infinite

© SAE International.

© SAE International.

dimensions are not allowed in the finite element
model. Instead a reasonably large thickness, e.g. has
been assumed in the latter to approximate half planes.

2. The finite element analysis led to a nonlinear
eigenvalue equation whose solution is significantly
more unstable than a linear eigenvalue problem.

3. Itis known that the temperature field is highly
oscillating with a substantially large gradient near the
friction interface. A biased finite element mesh
towards the sliding interface has thus been
implemented. On the other hand, the differences in
the element sizes should not be too large in a finite
element model. Otherwise it may lead to a scaling
problem in the matrix operations, causing a
noticeable numerical inaccuracy.

4. The problem is highly nonlinear and the analytical
solution itself is sometimes unstable when the
parameters are chosen in a certain way. Therefore the
analytical solution does not necessarily converge in
this study. For example, the analytical solution starts
to diverge when the wear coeflicient well exceeds the
critical value.

Conclusions

A finite element approach was implemented to study the effect
of wear on frictionally excited thermoelastic instability. The
classical theory was augmented by including the wear law.
The governing equations on the contact pressure, temperature
and displacement were reduced to a quadratic eigenvalue
equation, where the eigenvalue is the exponential growth rate
of perturbation and the eigenvector is the nodal temperature.
The solution was sought via a conversion of the nonlinear
problem into two ordinary linear eigenvalue equations. The
computational results based on a simplified, two-dimensional
model generally show good agreements with those of the
analytical solution assuming an infinite thickness and
conforming contact. However, the noticeable differences exist
between the two approaches in some situations when the
numerical instability starts to dominate due to the high
nonlinearity in the solutions.

The conclusions from the analytical approach has been
confirmed that depending on the chosen parameters wear
may suppress or amplify TEI induced hot spotting. The advan-
tage of the finite element method lies in the fact that there is
no restriction on the geometric complexities and boundary
conditions. Further studies are needed in the future, especially
on the role of wear in more realistic, three-dimensional geom-
etries such as automotive brake and clutch discs.
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